Lower bounds for electrical reduction on surfaces

With Hsien-Chih Chang* and Marcos Cossarini.

šŸ”„ To appear in Proceedings of the 35th International Symposium on Computational Geometry, 2019.

Prelinary version (without Cossarini) in arXiv:1707.04683.

Includes results reported at the Computational Geometry: Young Researchers Forum, 2017.


Abstract:
We strengthen the connections between electrical transformations and homotopy from the planar settingā€”observed and studied since Steinitzā€”to arbitrary surfaces with punctures. As a result, we improve our earlier lower bound on the number of electrical transformations required to reduce an n-vertex graph on surface in the worst case [SOCG 2016] in two different directions. Our previous Ω(n3/2) lower bound applies only to facial electrical transformations on plane graphs with no terminals. First we provide a stronger Ω(n²) lower bound when the graph has two or more terminals, which follows from a quadratic lower bound on the number of homotopy moves in the annulus. Our second result extends our earlier Ω(n3/2) lower bound to the wider class of planar electrical transformations, which preserve the planarity of the graph but may delete cycles that are not faces of the given embedding. This new lower bound follows from the observation that the defect of the medial graph of a planar graph is the same for all its planar embeddings.


Publications - Jeff Erickson (jeffe@cs.uiuc.edu) 15 Feb 2019