
Finding Longest Arithmetic Progressions

Je� Erickson
�

Abstract

We describe eÆcient output-sensitive algorithms to �nd the

longest arithmetic progression in a given set of numbers.

1 Introduction

This paper describes eÆcient algorithms for �nding the

longest arithmetic progression in a set of n integers.

That is, given an array A[1 :: n] of integers, we wish

to �nd the largest sequence of indices hi0; i1; : : : ; ik-1i
such that A[ij] -A[ij-1] = A[i1] -A[i0] for all j. Note

that the indices themselves need not form an arithmetic

progression. There is an
(n logn) lower bound on the

complexity of this problem in the algebraic decision tree

model of computation [1], so without loss of generality,

we assume that the input array A is sorted and free of

duplicate elements.

2 Dynamic Programming

An interesting subproblem, which we call Average, is

to determine whether the input contains a three-term

arithmetic progression, or equivalently, if any array el-

ement is the average of two others. Average can be

solved by the following simple O(n2)-time algorithm.

This is the fastest algorithm known. There is a match-

ing
(n2) lower bound in the 3-linear decision tree

model, in which every decision depends on the sign of an

aÆne combination of three or fewer input elements [4],

so at least in that model, this algorithm is optimal.

Average(A[1 :: n]):

for j 2 to n - 1

i j- 1

k j+ 1

while (i � 1 and k � n)

if A[i] +A[k] < 2A[j]

k k+ 1

else if A[i] +A[k] > 2A[j]

i i- 1

else

return True

return False

Average is closely related to the class of 3SUM-hard

problems de�ned by Gajentaan and Overmars [5]. A

problem is 3sum-hard if there is a sub-quadratic re-

duction from the problem 3sum: Given a set A of

�Computer Science Dept., University of Illinois, Urbana-

Champaign; je�e@uiuc.edu; http://www.uiuc.edu/�je�e

n integers, are there elements a; b; c 2 A such that

a + b + c = 0? It is not known whether Average

is 3sum-hard. However, there is a simple linear-time

reduction from Average to 3sum, whose description

we omit. (Thus, 3sum-hard problems might better be

called \Average-hard".)

The longest arithmetic progression can be found in

O(n2) time using a dynamic programming algorithm

similar to our algorithm for Average. The algorithm

shown below computes only the length of the longest

arithmetic progression; computing the actual progres-

sion requires only a few extra lines. When our algo-

rithm terminates, L[i; j] stores the maximum length of

an arithmetic progression whose �rst two terms are re-

spectively A[i] and A[j]. Our algorithm can be de-

scribed by a family of 3-linear decision trees, and the

(n2) lower bound for Average [4] implies that it is

optimal in that model of computation.

LongestArithProg(A[1 :: n]):

L� 2

for j n- 1 downto 1

i j- 1; k j+ 1

while (i � 1 and k � n)

if A[i] +A[k] < 2A[j]

k k + 1

else if A[i] +A[k] > 2A[j]

L[i; j] 2

i i- 1

else

L[i; j] L[j; k] + 1

L� max
�
L�; L[i; j]

	
i i- 1; k k + 1

while i � 1

L[i; j] 2; i i- 1

return L�

Theorem 1. The longest arithmetic progression in an

n-element set can be found in time O(n2), which is op-

timal in the 3-linear decision tree model of computation.

3 Output-Sensitive Divide and Conquer

Another problem related to �nding largest arithmetic

sequences is �nding an element of a multiset with

largest multiplicity. This problem can be solved in

O(n logn) time by sorting and scanning the multi-

set. Since determining whether the maximum multi-

plicity is at least two (the element uniqueness prob-

lem) requires
(n logn) time in the algebraic compu-

tation tree model [1], this algorithm is worst-case opti-

mal. However, we can \beat" the lower bound if the

maximum multiplicity m is large. A simple divide-

and-conquer algorithm computes m in O(n log(n=m))

time [7]; a matching lower bound was proved by Bj�orner

and Lov�asz [2].

Another similar problem is the exact �tting problem

considered by Guibas, Overmars, and Robert [6]: Given

a set of points in IRd, �nd the largest subset that lies

on a common hyperplane. This problem can be solved

in O(nd) time by constructing the dual hyperplane ar-

rangement, and known lower bounds suggest that this

approach is optimal in the worst case. However, Guibas

et al. describe a complex divide-and-conquer algorithm

that runs in time O((nd
=k

d-1) log(n=k)), which is sig-

ni�cantly faster when the output size k is large.

We can make a similar improvement to our worst-

case-optimal algorithm LongestArithProg by ex-

ploiting the following simple lemma.

Lemma 2. Any set of n numbers contains O(n2
=k

2)

maximal arithmetic progressions of length k or more.

Proof: Say that two elements are close if their ranks

(positions in sorted order) di�er by less than n=2(k- 1).

There are less than n2
=2(k-1) close pairs. Any progres-

sion of length k or more must include at least (k- 1)=2

close consecutive pairs. Any two elements are consecu-

tive in exactly one maximal progression. �

Tight bounds on the maximum number of maximal

k-term arithmetic progressions are not known, even in

very simple cases. Lemma 2 appears to be the best

upper bound known. Any improvement would have

to exploit maximality in some essential way, since the

sequence h1; 2; : : : ; ni contains roughly n
2
=2k

2 (non-

maximal!) k-term progressions. On the other hand,

the best published lower bound is only
(nlog
k
(k+2)),

which Erd}os and Simmons prove by considering a

generic projection of a regular k � k � � � � � k lat-

tice [3]. In the simplest nontrivial case k = 3, Simmons

and Abbott improve the lower bound to
(nlog
11

49) �

(n1:623) [8]. These lower bounds are almost cer-

tainly not tight|better bounds would follow immedi-

ately from better small examples by an easy product

construction.

The following divide-and-conquer algorithm �nds all

maximal progressions of length at least k. To simplify

both the presentation and analysis, we assume without

loss of generality that both n and k are powers of two.

AllLongProgs(k;A[1 :: n]):

if k � lgn lg lgn

use dynamic programming

else

P[AllLongProgs(k=2;A[1 :: n=2])

P] AllLongProgs(k=2;A[n=2+ 1 :: n])

return Extend(P]; k;A) [Extend(P[; k;A)

The subroutine Extend takes a set P of progressions,

a target length k, and an array A, and attempts to ex-

tend each progression across the array as far as possible.

Each progression is stored as a triple (x; �; `), where x is

its smallest term, � is its step size, and ` is its number

of terms. If a progression cannot be extended to the tar-

get length k, it is discarded; the successfully extended

progressions are returned.

Extend(P;k;A[1 :: n]):

for each progression (x;�; `) 2 P

search in A for all terms of (x- k�;�; 2k)

` 0 maximum number of consecutive terms found

if ` 0 � k

x 0 �rst of ` 0 consecutive terms found

add (x 0; �; ` 0) to the output

The correctness of these algorithm is fairly obvi-

ous, since any k-term progression in A must con-

tain a k=2-term progression in one of the two halves

of A. Searching for the terms of (x - k�;�; 2k) in A

takes O(k log(n=k)) time, so the total running time

for Extend is O(pk log(n=k)), where p is the num-

ber of progressions in P. By Lemma 2, p = O(n2
=k

2)

whenever we call Extend, so the running time is

O((n2
=k) log(n=k)).

Finally, the running time for AllLongProgs satis-

�es the recurrence

T(n; k)� 2T(n=2; k=2)+O((n2
=k) log(n=k));

whose solution is T(n; k) = O((n2
=k) log(n=k) log k).

This is faster than the quadratic dynamic programming

algorithm whenever k > lgn lg lgn.

Theorem 3. We can determine whether an n-element

set contains a arithmetic progression with k or more

terms in O((n2
=k) log(n=k) log k) time.

Finally, we can �nd the longest arithmetic progression

using a standard doubling trick, also used in [6]. We

call AllLongProgs several times, halting as soon as it

returns at least one progression. In the ith iteration, we

look for progressions with at least n=2i terms. Omitting

further details, we conclude:

Theorem 4. The longest arithmetic progression in

an n-element set can be found in time O(minfn2
;

(n2
=k) log(n=k) log kg), where k is the output size.

References

[1] M. Ben-Or. Lower bounds for algebraic computation trees. Proc. 15th Annu.

ACM Sympos. Theory Comput., pp. 80{86. 1983.
[2] A. Bj�orner and L. Lov�asz. Linear decision trees, subspace arrangements, and

m�obius functions. J. Amer. Math. Soc. 7(3):677{706, 1994.
[3] P. Erd}os. Problems and results on combinatorial nuymber theory. A Survey of

Combinatorial Theory, pp. 117{138. North-Holland, 1973.
[4] J. Erickson. Lower bounds for linear satisfiability problems. Proc. 6th ACM-

SIAM Sympos. Discrete Algorithms, pp. 388{395. 1995. hhttp://www.uiuc.edu/
�jeffe/pubs/linsat.htmli. To appear in Chicago J. Theoret. Comut. Sci.

[5] A. Gajentaan and M. H. Overmars. On a class of O(n2) problems in com-
putational geometry. Comput. Geom. Theory Appl. 5:165{185, 1995.

[6] L. J. Guibas, M. H. Overmars, and J.-M. Robert. The exact fitting problem
in higher dimensions. Comput. Geom. Theory Appl. 6:215{230, 1996.

[7] J. Misra and D. Gries. Finding repeated elements. Sci. Comput. Prog. 2(2):143{
152, 1982.

[8] G. J. Simmons and H. L. Abbott. How many 3-term arithmetic progressions
can there be if there are no longer ones? Amer. Math. Monthly 84(8):633{635,
1977.

2

