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ABSTRACT

We present an automatic algorithm to construct blocking scheme for multiblock structured meshes in 2D multiphase
flow problems. Our solution is based on the concepts of medial axis and Delaunay triangulation. We show that the
quality of the blocking scheme strongly depends on the quality of Delaunay triangulation. Therefore, well-known
techniques and issues like Delaunay refinement and geometric degeneracy resurge again in multiblock structured
meshes.

Keywords: multiblock structured mesh, medial axis, Delaunay triangulation, Voronoi diagram, De-
launay refinement, multiphase flow simulation.

1. INTRODUCTION

We study a fully automatic algorithm to construct
multiblock structured meshes in two dimensions for a
certain class of multiphase flow with moving particles.
Structured meshes have been widely used in compu-
tational fluid dynamics (CFD). For a certain class of
physical domains, there is an extensive list of litera-
ture that generates a structured mesh by mapping the
domain to a square in a parametric domain. For a do-
main with complex shape, however, manual editing is
required to subdivide the domain into simple blocks.
This manual step can be tedious and time consuming.

Target applications of our meshing scheme are direct
numerical simulations (DNS) of turbulence in mul-
tiphase flow with the presence of particles, bubbles,
or droplets. The simulations resolve small-scale flow
features around particles, turbulence in carrier-phase
flow, and interaction between the two phases. Fig-
ure 1 on the left gives an example of such simula-
tions in 2D. Recent advanced 3D simulation [1] con-
siders one stationary particle in ambient turbulence.
The grand-challenge simulation will consider a distri-

bution of freely moving particles in the ambient flow.
High fidelity of the simulation requires body-fitted grid
around the particles. Motion of particles requires fully
automatic meshing algorithms.

This paper focuses on meshing of the dispersed-phase
flow around particles. The carrier-phase flow can be
treated with a cartesian grid. The dispersed-phase
flow requires a body-fitted grid for high-fidelity simu-
lation. Its domain consists of a bounding circle with
circular holes representing the particles. The time-
dependent simulation determines motion of the par-
ticles. Figure 1 on the right gives an example of our
meshes. The two particles are enclosed by a bound-
ing circle. Transition from the bounding circle to the
cartesian grid is performed by a standard template.
Notice that the bounding circle has been transformed
to an ellipse by mesh smoothing.

We can formulate our problem in the following way.

Problem 1: Structured Meshes of Circles.
Given a domain described by a bounding circle
and several circular holes, generate a multiblock
structured mesh automatically.



Figure 1: Flow simulation (courtesy of Lin Zhang) on the left and the mesh around two particles on the right.

Our proposed solution is based on the concepts of me-
dial axis and Delaunay triangulation. Medial axis has
been used for quadrilateral and hexahedral meshing
by many researchers [2, 3, 4, 5, 6] since 1991. All
the previous works focused on unstructured meshes.
Our solution, on the other hand, applies medial axis
to multiblock structured meshes. Another contribu-
tion of our work is the simplicity of the algorithm.
By restricting ourselves to circular domains, our al-
gorithm becomes straightforward. The algorithms in
[2, 3, 4, 5, 6] are more general but require complicated
case analysis.

In general, meshing algorithms based on medial axis
have their own issues and limitations. We devote a
significant part of our work to handle such problems.
These problems are caused by bad features in medial
axis like poor angles and short arcs. We show that the
idea of Delaunay refinement can be helpful here.

The rest of this paper is organized into five sections.
Section 2 reviews the concept of medial axis and its
relation to Delaunay triangulation in two dimensions.
Section 3 presents our automatic blocking scheme and
explains its appealing properties. Section 4 discusses
how to detect special cases and how to handle them.
Section 5 presents our results to justify the approach.
Section 6 concludes the paper and discusses future re-
search.

2. MEDIAL AXIS AND DELAUNAY
TRIANGULATION

We adopt the definition of medial axis from [7, 8, 9].
Given a two-dimensional domain, its medial axis is
the locus of centers of maximal empty circles inside
the domain. Figure 2 gives an example of medial axis.
Some of the empty circles are shown as dotted circles.
These empty circles stay inside the domain. Each dot-

ted circle is maximal in the sense that it is tangent
to domain boundary at two or more points. Most of
the dotted circles in Figure 2 touch domain boundary
in exactly two points. Their centers lie on an arc of
medial axis. Figure 2 also shows one empty circle that
touches domain boundary in three points. Its center
lies on a vertex shared by three medial arcs.

Figure 2: Medial axis is the locus of centers of maximal
empty circles inside the domain.

Delaunay triangulation [10, 11] of a finite point set
consists of triangles with empty circumcircles (circum-
scribing circles). Three points in the set form a Delau-
nay triangle when their circumcircle encloses no other
points. We are interested in Delaunay triangulation
of sample points from domain boundary, and we con-
sider only triangles that lie inside the domain. We call
the set of such triangles Delaunay triangulation of the
domain. Figure 3 shows an example of Delaunay trian-
gulation of sample points and Delaunay triangulation
of the domain.



Figure 3: On the left, Delaunay triangulation of sample points. On the right, Delaunay triangulation of the domain.

Figure 4: On the left, Voronoi diagram of sample points. On the right, Voronoi diagram of the domain.

We assume that the set of sample points is good
enough that its Delaunay triangulation can represent
the domain appropriately. Coming up with a good
sampling strategy is not trivial for domains with all
possible shapes, especially the ones with sharp angles.
Many works [12, 13, 14, 15, 16] have been done to
address this problem. In our case, however, our do-
main has smooth boundary, and the problem becomes
manageable.

Delaunay triangulation of a point set has a dual com-
plex called Voronoi diagram [17, 11]. Their duality is
inverse in dimension. In two dimensions, a vertex in
Voronoi diagram corresponds to a triangle in Delaunay
triangulation. Specifically, Voronoi vertex resides at
the circumcenter of Delaunay triangle. Two Voronoi
vertices are connected when two Delaunay triangles
share an edge. Voronoi polygons partition space by
proximity to Delaunay vertices.

Given sample points from domain boundary, we can
consider Delaunay triangulation of the domain as a
subcomplex of Delaunay triangulation of the point set.
Similarly, we can define Voronoi diagram of the do-
main as the part of Voronoi diagram that lie com-
pletely inside the domain. Figure 4 gives an example
of Voronoi diagram of sample points and Voronoi dia-
gram of the domain.

In two dimensions, dense sample points can give
Voronoi diagram that approximate medial axis well.
In terms of implementation, several authors [2, 18, 19,
20, 21] have proposed several algorithms similar to the
following one. It approximates medial axis by travers-
ing Delaunay triangulation.

The algorithm classifies Delaunay triangles into two
classes. Interior triangles have no edge on domain
boundary. Boundary triangles have exactly one edge
on domain boundary. In our case, we do not have a



triangle with two boundary edges. By convexity of
circular holes, such a triangle cannot appear in the
domain around a hole. By empty circle property, the
triangle cannot appear around the bounding circle ei-
ther.

Interior triangles have three neighboring triangles, and
boundary triangles have two neighboring triangles.
We can construct an arc of medial axis from a sequence
of successive neighboring triangles. The sequence
starts and ends at interior triangles with boundary
triangles in between. Figure 5 gives an example of the
construction.

Algorithm 1: Approximate Medial Axis.
Vertices of medial axis are approximated by
circumcenters of interior triangles. An arc of
medial axis is approximated by circumcenters
of boundary triangles between two interior
triangles.

Figure 5: Vertices of medial axis correspond to interior
triangles. An arc of medial axis corresponds to a sequence
of triangles between two interior triangles.

3. BLOCKING SCHEME

A block in a structured mesh can be described by four
bounding curves. The four curves are mapped to the
four sides of a square [0, 1] × [0, 1] in a parametric
domain (ξ, η). We define ξ0-curve to be the bounding
curve with constant ξ = 0. The other three curves
ξ1, η0, η1 are defined similarly. Our blocking scheme
will describe the four bounding curves for each block.

Each arc of medial axis serves as a ξ0-curve. We con-
struct ηi-curves by connecting each medial vertex to
vertices of the corresponding interior triangle. This
implies that our ηi-curves are always straight lines.
Finally, each ξ1-curve is a part of domain boundary

between end points of η0- and η1-curves. Figure 6 on
the left shows a block created this way. Figure 6 on
the right shows the whole blocking scheme. The ξ0-
curves from medial axis are drawn with thick lines.
The ηi-curves are drawn with dotted lines.

In terms of implementation, we construct the blocks
by traversing Delaunay triangulation from one inte-
rior triangle to another. Two blocks sharing the same
medial arc are created at the same time. Each pair
of blocks is described by three polygonal curves C1,
M , and C2. The curves C1 and C2 are parts domain
boundary. The curve M is an arc of medial axis. The
following algorithm assumes that the three edges in
each triangle are oriented in counterclockwise order.

Algorithm 2: Blocking2D.

Input: Delaunay triangulation of the domain.

Output: Decompose domain into pairs of blocks.
Each pair is described by three polygonal curves
C1, M , and C2.

1. for each interior triangle ∆
2. for each unvisited edge λ of triangle ∆
3. a, b = vertices of λ
4. C1 = {a}, C2 = {b}, M = {circumcenter(∆)}

5. loop forever (invariance: λ is an interior edge)
6. ∆ = next triangle sharing edge λ
7. p = vertex of ∆ not owned by λ
8. λ0, λ1, λ2 = three edges of ∆

with λ0 mirror of λ

9. add circumcenter(∆) to M
10. if λ1 is on boundary, add p to C1

11. if λ2 is on boundary, add p to C2

12. if both λ1, λ2 are interior edges,
13. exit loop

13. if λ1 is an interior edge,
14. continue with λ = λ1

15. else continue with λ = λ2

16. end loop

17. end for

18. end for

The states of the algorithm at line 3 and line 8 are de-
picted in Figure 7. We maintain a loop invariance that
the edge λ is always an interior edge. The loop exits
at line 13 when we reach an interior triangle, which
corresponds to an endpoint of a medial arc. Notice
that the curve M always receives a new point at line
9, but the curves C1 (C2) receives a new point at line
10 (line 11) only when we are traversing a boundary
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Figure 6: On the left, an example of a block created by Algorithm 2. On the right, the whole blocking scheme.

triangle. An example of a mesh generated by our algo-
rithm is shown in Figure 8. The algorithm generates
the blocking scheme automatically, and quadrilateral
elements inside each block are generated using trans-
finite interpolation.
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Figure 7: States of Blocking2D at line 3 on the left and
at line 8 on the right.

Our blocking scheme has several appealing proper-
ties. Every block has its ξ1-curve aligned with domain
boundary, so boundary layer can be captured nat-
urally. The blocks are always orthogonal to domain
boundary because each ηi-curve is a radial ray from
the center of an empty circle to a tangent point on do-
main boundary. The fact that ηi-curves are straight
lines guarantees applicability of transfinite inter-
polation(TFI). Applying TFI to our blocks will never
create self intersection or folding of grid lines.

In our blocking scheme, two adjacent blocks always
share the whole ξi-curve or the whole ηi-curve. There
is no partial overlap between any two blocks. In other
words, the blocks are conforming and permit regu-
lar communication pattern in parallel simulation.
In fact, each block always communicate to only three

Figure 8: An example of a multiblock structured mesh
from Algorithm 2.

neighboring blocks on ξ0-, η0-, and η1-curves. Each
corner point on domain boundary is always shared by
two blocks. Each corner point in the interior, located
at each medial vertex, is always shared by six blocks.

The last property is a geometric relation between the
blocks and the Delaunay triangulation. The four cor-
ners of a block can be classified into two classes.
Boundary corners are the ones located on domain
boundary. Interior corners are the ones located in-
side the domain. They reside at medial vertices. As
mentioned above, the angles of boundary corners are
90◦. We will show that angles of interior corners equal
angles of interior triangles in Delaunay triangulation.

Lemma 1: Angle Lemma. Angles of interior cor-
ners of the blocks from Algorithm 2 equal an-
gles of interior triangles in Delaunay triangula-
tion (Figure 9).
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Figure 9: An illustration of Angle Lemma on the left and its proof on the right.

Proof Consider an interior triangle pqr in Delaunay
triangulation. Let c be its circumcenter, which is
a vertex of medial axis. The angle pĉr is twice the
angle pq̂r by Euclid’s theorem. Finally, medial
axis subdivides the angle pĉr into two corners of
adjacent blocks.

EOP

4. SPECIAL CASES

We describe two important special cases that can hap-
pen in the blocking scheme from Algorithm 2. The
first one is about poor angle at an interior corner of a
block. The second one is the possibility of very thin
blocks caused by degeneracy in Delaunay triangula-
tion.

4.1 Poor angle

The Angle Lemma suggests that poor quality interior
triangles in Delaunay triangulation will induce poor
block angles. In two dimensions, there are two ways
a triangle can become very poor. Either it has a very
small angle, or it has a very large angle. The first row
of Figure 10 gives examples of small angle and large
angle of interior triangles in Delaunay triangulation.
These poor triangles influence the poor quality of the
blocks in the second row. The poor triangles are drawn
with thick lines.

There is an extensive list of literature on removing
poor quality triangles in Delaunay mesh [12, 22, 13,
11, 23]. The technique is commonly called Delaunay
refinement. The main idea of Delaunay refinement
is to repeatedly insert new points at circumcenters of
poor triangles. The process is guaranteed to terminate
because poor triangles have large circumcircles. The
new points are always placed far away from existing
points.

We would like to apply the idea of Delaunay refinement
to our problem. Instead of inserting circumcenters, we
will insert circular holes at circumcenters of interior

triangles with poor quality. We call this algorithm
macro Delaunay refinement.

Algorithm 3: Macro Delaunay refinement.

while ∃ poor quality interior triangle σ
c = circumcenter of σ
r = circumradius of σ
insert circular hole centered at c with radius r/2

endwhile

In Algorithm 3, we define poor quality triangle as the
one with the ratio r/` of circumradius per shortest
edge greater than 2.0. It can be shown that having the
ratio r/` greater than 2 is equivalent to having small-
est angle less than arcsin(1/4) ≈ 14.48◦. Improving
smallest angle above 14◦ implies having largest angle
below 152◦. The following lemma argues for the ter-
mination of macro Delaunay refinement. The proof is
very similar to the one for a typical Delaunay refine-
ment [12, 22, 13, 11, 23].

Lemma 2: Macro Delaunay refinement terminates.

Proof We define the gap between two circles as the
shortest distance between the two circles. For ex-
ample, it is the distance ‖ c1 − c2 ‖ −(r1 + r2)
where c1, c2 and r1, r2 are centers and radii of the
two circles, assuming that one circle is not inside
another. We will show that macro Delaunay re-
finement preserves the minimum gap G among all
circular holes and the bounding circle.

Consider an interior triangle with poor quality
r/` > 2. The length ` of its shortest edge is
greater than the minimum gap G, i.e. ` > G.
Thus, the newly inserted hole of radius r/2 has a
gap of at least r/2 > ` > G to all existing holes
and the bounding circle.

EOP

The last row of Figure 10 shows the structured meshes
after insertion of a circular hole. The newly inserted
holes are filled with two standard templates.



4.2 Degeneracy

It is customary to assume non-degeneracy for Delau-
nay triangulation. The non-degenerated assumption
is that the point sample contains no four co-circular
points. A technique like symbolic perturbation [24]
can be applied to create a valid triangulation of a point
set with degeneracy. In our case, however, two inte-
rior triangles sharing the same circumcircle will create
a medial arc of zero length. Similarly, two interior
triangles that are nearly co-circular will create a very
short medial arc. These anomalies will give rise to very
thin blocks with zero or almost zero area (Figure 11).

We say four or more holes are co-circular when there
is an empty circle tangent to all of them. A group of
n co-circular holes create (n − 2) co-circular interior
triangles, and Algorithm 2 will create 2(n− 3) blocks
with zero area.

In the case of many co-circular holes, an interior tri-
angle with very small angle will reside in the triangu-
lation. We can expect an angle as small as 180◦/n,
where n is the number of co-circular holes. We can
use macro Delaunay refinement to resolve this prob-
lem when n is larger than 12.

If only a few holes are co-circular, collapsing the very
short medial arc would be preferable. The disadvan-
tage of this approach is that high degree vertex will
be created. One collapsing operation will replace two
vertices of degree d1, d2 with a new vertex of degree
(d1+d2)−4. Collapsing an arc of four co-circular holes
will create a vertex of degree (6+6)-4 = 8. Collapsing
two arcs of five co-circular holes will create a vertex of
degree (8+6)-4 = 10.

It is not clear what is the best strategy to choose be-
tween macro Delaunay refinement and collapsing of
medial arcs. A reasonable strategy is to first per-
form macro Delaunay refinement to eliminate all an-
gles smaller than 15◦. This will eliminate the short
medial arcs resulted from 12 or more co-circular holes.
Then, the collapsing operations are performed on the
remaining short medial arcs.

5. RESULTS

We present three examples of our results. In each case,
the mesh is generated by applying Algorithm 2 fol-
lowed by a simple transfinite interpolation inside each
block. No mesh smoothing is performed in order to
evaluate the direct outcome of our algorithm.

Figure 12 shows Hexagon data. It consists of seven cir-
cular holes arranged in a regular pattern of hexagonal
packing. This data is ideal for our algorithm. All the
interior triangles in Delaunay triangulation have good
quality. The mesh contains 36 blocks. The quadrilat-
eral elements have minimum angle 46◦ and maximum

angle 130◦. On average, an element has smallest angle
75◦ and largest angle 104◦. Every block is orthogonal
to the circular boundary.

Figure 12: Hexagon data consists of 7 holes. The mesh
contains 36 blocks.

Figure 13 shows the mesh of Bubble data. It represents
20 random bubbles in a periodic domain. The mesh
was generated by tiling the twenty circles nine times
in a three-by-three array. Then, we choose a section
of the mesh in the middle. This technique yields a
mesh with periodic boundary condition. Each block
on one side of the zigzag boundary matches another
block on the opposite zigzag side. In other words, we
can tile the space by infinite copies of this mesh. This
property is useful for several kinds of flow simulation.

Notice that there are a few areas where four or more
bubbles are almost co-circular. They result in a num-
ber of very thin blocks. In principle, we could have
”zipped” them away.

The mesh of Bubble data consists of 120 blocks. The
quadrilateral elements have minimum angle 31◦ and
maximum angle 148◦. On average, an element has
smallest angle 65◦ and largest angle 112◦.

Figure 14 presents our last data set Lattice. It con-
sists of 12 large particles interleaved with 9 small par-
ticles. The mesh consists of 120 blocks. Each small
particle is adjacent to four blocks. Each large particle
in the inner ring is adjacent to eight blocks. Each large
particle in the outer ring is adjacent to five blocks.
The quadrilateral elements have minimum angle 39◦

and maximum angle 138◦. On average, an element
has smallest angle 73◦ and largest angle 106◦. The
number of blocks is about six times the number of



particles. Generating the 120 blocks manually could
have taken days of user interaction. In this particular
example, we can generate the mesh in a few minutes.

6. DISCUSSION

We have presented an automatic algorithm to con-
struct blocking schemes for multiblock structured
meshes in multiphase flow problems. The capability
to generate the meshes automatically without human
intervention is desirable for our target applications of
multiphase flow with moving particles. To complete
the task, more development will include application
of mesh smoothing and a better scheme for node dis-
tribution. All the meshes presented in this report are
generated using transfinite interpolation, and the mesh
quality is acceptable. Some preliminary tests showed
that applying PDE-based mesh smoothing will further
improve the mesh quality.

Currently we distribute the nodes equally spacing
along the four sides of each block. This forces an artifi-
cial constraint on matching which point m along a me-
dial arc to which point b along the domain boundary.
A more natural way is probably to let the maximal
empty circle determine the matching. If the empty cir-
cle centered at m touches a point a on domain bound-
ary, the node m on one side of the block should be
matched to the node a on the opposite side of the
block. We already satisfy this property in the case of
medial vertex c with its empty circle touching three
points. We would like to extend this property to the
case of the empty circle touching two points. However,
it is not straightforward to apply this continuous idea
to the discrete setting of Delaunay triangulation.

A natural extension of a 2D problem is a 3D problem.
The 3D version of our problem will consider a set of
spherical particles in a bounding sphere. It is unfor-
tunate that Voronoi diagram in three dimensions do
not approximate medial surface due to the presence
of sliver tetrahedra in Delaunay triangulation. Many
researchers are working on a remedy of this problem
[20, 21]. Assuming that this issue can be resolved, the
next step would be generating structured meshes on
each patch of the medial surface and projecting the
nodes on each patch to domain boundary using the
principle of empty sphere. It remains to be seen how
well this approach will perform.
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Figure 10: Small angle and large angle of interior triangles in Delaunay triangulation (first row), induced poor blocks
(second row), and improvement after macro Delaunay refinement (last row).



Figure 11: On the top, two almost co-circular interior triangles induce one pair of very thin blocks. On the bottom, four
almost co-circular interior triangles induce three pairs of very thin blocks

Figure 13: Bubble data consists of 20 circles. The periodic mesh contains 120 blocks.



Figure 14: Lattice data consists of 12 large holes and 9 small holes. The mesh contains 120 blocks.
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