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Abstract: This paper addresses the problem of cap-
turing an arbitrary convex object P in the plane with
three congruent disc-shaped robots. Given two sta-
tionary robots in contact with P, we characterize the
set of positions of a third robot that prevent P from
escaping to infinity and show that the computation of
this so-called capture region reduces to the resolution
of a visibility problem. We present two algorithms for
solving this problem and computing the capture re-
gion when P is a polygon and the robots are points
(zero-radius discs). The first algorithm is exact and
has polynomial-time complexity. The second one uses
simple hidden-surface removal techniques from com-
puter graphics to output an arbitrarily accurate ap-
proximation of the capture region; it has been imple-
mented and examples are presented.

1 Introduction

This paper addresses the problem of capturing a
convex object in the plane with three congruent disc-
shaped robots. In practice, these robots may be mo-
bile platforms, the fingertips of a gripper, the locators
of a modular fixturing system, or the pins of a re-
configurable parts feeder. Applications include robot-
ic grasping, sensorless manipulation, and flexible au-
tomation.

Capture regions are related to the notions of
force/form closure and immobilizing grasps from kine-
matics and robotics: For a hand to hold an object se-
curely, it should be capable of preventing any motion
due to external forces and torques. A grasp that pre-
vents any infinitesimal motion of the object is said to
achieve form closure, and it is said to achieve force
closure when it can balance any external force and
torque. Force and form closure are dual notions from
classical kinematics [2, 16] and, as noted in [10, 11]
for example, force closure implies form closure and
vice versa. They are the traditional theoretical ba-
sis for grasp planning algorithms (see, for example,
[6, 9, 11, 12]).

Recently, Rimon, and Burdick have introduced the
notion of second-order immobility [14, 15] and shown

that certain equilibrium grasps of a part which do not
achieve form closure effectively prevent any finite mo-
tion of this part: In effect, an object is immobile when
it lies at an isolated collision-free point of its configura-
tion space. Sudsang, Ponce, and Srinivasa [19] intro-
duced the notion of capture region of a robotic system
as the set of configurations of this system that may not
immobilize the object being manipulated but prevent
it from escaping to infinity (see [4, 8, 13] for related
work): An object is captured when it lies in a compact
valid region of its configuration space.

Capture regions have been applied to a number of
problems in sensorless manipulation, including grasp-
ing and in-hand manipulation [13, 20, 21], mobile
robot motion planning [18, 22], parts feeding [3, 4],
and stable pose computation [8]. This paper presents
(to the best of our knowledge) the first algorithm for
computing the exact capture region associated with a
robotic system with multiple degrees of freedom (dof):
Previous exact algorithms have been limited to static
situations [3, 4, 8] or to robotic systems with a sin-
gle dof [13], whereas efforts to tackle robotic systems
with multiple dof have been limited to approximate
algorithms that assume that each robot can only in-
teract with a single object edge, and output relatively
small capture regions [18, 20, 21, 22].

This paper proposes an approach that takes into ac-
count the entire boundary of a convex object and will
(in general) output much larger regions. We focus on
the case of two fixed robots a and b in contact with a
convex object P in its initial configuration, and char-
acterize the set of positions of a third robot ¢ that
prevent P from escaping to infinity. We show that
the computation of this capture region reduces to the
resolution of a visibility problem. We present two al-
gorithms for solving this problem and computing the
capture region when P is a polygon and the robots
are points (zero-radius discs). The first algorithm is
exact and has polynomial-time complexity. The sec-
ond one uses simple hidden-surface removal techniques
from computer graphics to output an arbitrarily accu-
rate approximation of the capture region; it has been



implemented and examples are presented.

We assume without loss of generality that robot
a is at the origin of the coordinate system; robot b
is on the positive = axis; the initial orientation of the
object makes a zero angle with the positive z axis; and
a, b, and c are labeled in clockwise order. All angles
are measured with respect to the positive x axis, with
positive counterclockwise angles.

2 Canonical Motions

We assume in this section that the position of ¢ is
fixed, and show that when P can escape from its initial
configuration by a rigid motion, it can also escape by
a canonical motion. This will allow us to characterize
capture regions in a simple fashion in the next section.

Without loss of generality, we can assume that the
robots are points (zero-radius discs) by replacing P
by its Minkowski sum with a disc congruent to the
three robots. Here onwards we will use P to denote
the result of this Minkowski sum which is also convex.
We work in the configuration space R? x S! of possible
positions (z,y) and orientations 6 of P. We will abuse
notation in the sequel and also designate by a, b, or ¢
the point in any § = constant plane (or #-slice) of R? x
S1 where the vertical line erected at the corresponding
robot position intersects that plane.

Each robot defines in R? x S! an obstacle consisting
of a twisted column whose cross-sections are rotated
copies of P. For example, robot a defines the obsta-
cle A = Ug(a ® Ppyr) x {0}, where @ denotes the
Minkowski sum operator and P denotes P rotated by
some angle # about its fixed reference point. We sim-
ilarly define obstacles B and C' corresponding to the
robots b and ¢. The complement of the union of these
three obstacles is called the free space. Obstacles are
closed sets and free space is open. Contact space is
defined as the set of configurations that belong to the
boundary of one of the obstacles but not to the inte-
rior of any of them. Finally, valid space is the union
of free and contact space. A particular configuration
of P is captured if and only if the corresponding point
p lies in a compact component of valid space.

It is convenient to visualize rigid motions of the
object by separating the translation component from
the rotation component, viewing just a single 6-slice of
configuration space at a time (Figure 1). For any an-
gle 4, the configuration plane contains three obstacles
Ag=ad® P&—i—ﬂ; By =b P P9+ﬂ-, and Cy = ¢ P Pg+7r.
As we increase 6, the obstacles Ay, By, and Cy rotate
counterclockwise around the corresponding points a,
b, and c.

We define a pocket of a 8-slice as any compact com-
ponent of its valid part. Since Ay, By, and Cy are

Figure 1. A convex object P in contact with the robots a and b in
(a) workspace and (b) configuration space. Note that p lies in a
pocket in this case. In all examples shown in this paper, the object
is a polygon and the robots have zero radius, but the discussion
in this section and the next one applies to arbitrary convex planar
objects and robots with nonzero radius. The 8 subscripts have
been omitted for readability.

convex, there is at most one pocket (see Figure 1 for
an example), and a necessary and sufficient condition
for its existence is that all obstacles intersect pairwise,
but the interior of Ag N By N Cy be empty. When this
condition is satisfied, we denote by Vj the correspond-
ing pocket. When a pocket does not exist (or when the
initial object configuration does not belong to it), the
component of valid space that contains the initial con-
figuration is unbounded, and the object can obviously
escape by a pure translation.

Let us assume from now on that a pocket exist-
s for § = 0 and the initial configuration belongs to
this pocket. We define a canonical motion as follows
(Figure 2):

Monotonically increase or decrease 6 while
maintaining contact between P and the
robots a and b until (1) two of the obsta-
cles no longer intersect, allowing the object
to escape by a pure translation, or (2) it is
blocked for further rotation by a contact with
¢, or (3) it returns to its original orientation.

A canonical escape motion is defined as a canonical
motion ending by an escape to infinity with condition
(1) being satisfied. Suppose that such a motion does
not exist. By definition, the three obstacles intersect
pairwise throughout the two (clockwise and counter-
clockwise) canonical motions. Suppose condition (2)
is satisfied and the object’s rotation is blocked by ¢
at orientation v during its counterclockwise canonical
motion. Since the initial configuration belongs to a
pocket and the motion is continuous, it is clear that
AgN ByNCy is empty when 0 < 6 < 9, equal to a sin-
gle point (the blocking configuration) when 6 = ¢, and
has a nonempty interior for some interval [¢,¢'). In
particular, a pocket exists for § € [0,], and there is no
pocket in the range (1,4'). It is easy to see that if the



Figure 2. Canonical motions, with the corresponding changes in the configuration plane. Center to left: counterclockwise turning stopped
by a triple contact. Center to right: clockwise turning ending in escape through bc.

object is blocked by a counterclockwise rotation at ori-
entation 1), it must also be blocked by a clockwise one
for some orientation ¢ (and vice versa). We can apply
the same line of reasoning as before to clockwise rota-
tions in the range [¢,0], and it follows that the stack
of pockets V = Ug}:qua is a compact connected com-
ponent of the valid configuration space. When there
is no blocking motion and the canonical motions end
with condition (3) satisfied, contiguous pockets exist
at every orientation, and the stack U3™,Vj defines a
compact component of R? x S'. We have proven the
following lemma.

Lemma 2.1. P can escape if and only if it can escape
by some canonical motion.

Our proof allows us to define three types of escape,
depending on which two of the configuration obstacles
Ay, By, and Cy do not overlap at the object’s final
orientation 6. If Ay and By are disjoint, we say that
P escapes through ab; we define escape through ac and
escape through be analogously.

3 Characterizing the Capture Region
The robot locations that capture P are those that
prevent counterclockwise and clockwise canonical es-
cape motions as well as escape by pure translation at
6 =0. Let X*, X~ and X° denote the corresponding
regions of the plane. We characterize below X° and
Xt as the projections in the z,y plane of simple con-
figuration space surfaces, and show that X+ c XO.
The set X~ can be characterized in a symmetric way,
and the capture region is X = XN Xt NnX~- =
XtnXx-.
3.1 Preventing Escape by Translation
Recall from the previous section that the configu-
ration obstacles are Ap = a ® Pypir, By = b ® Pyinr,
and Cyp = ¢ ® Pyir. As noted before, a necessary

and sufficient for the existence of a pocket is that the
three obstacles intersect pairwise but their overall in-
tersection has an empty interior. To operationalize
this condition, we introduce the second-order config-
uration obstacles A3 = Ag ® Py =a @ Py ® Py and
Bj =By ® Py =b@® Py ® Py, (Figure 3). It is clear
that ¢ is in Aj (resp. Bj) when Ay and Cy (resp. By
and Cy) intersect. It is also clear that Aj (resp. By) is
the area swept by Py while maintaining contact with
a (resp. b).

Figure 3. The A3, B}, P;, and XY regions at § = 0. The
subscripts and superscripts have been omitted for readability.

Let us assume that Ay and By intersect (otherwise
the object can escape by a translation through ab),
and denote by Py the placement of Py that maintains
contact with a and b during the rotational part of the
canonical motion. The tangent lines are the tangents
to the boundary of Pj at the points where it touches a
and b. By construction, Py must lie in the intersection
of A5 and Bj and be tangent to the boundary of A5 N
Bj in the two points aj and b} of 0P, that are the
furthest away from the contact lines (see Figure 3;
this follows directly from the properties of A} and B}
mentioned earlier).

The set Ay N By \ P is divided by the points aj



and b into two connected components, one below the
line ajb}, call it X?, and one above, call it Y?. We
have the following result.

Lemma 3.1. P is unable to escape by translation at
orientation 6 if and only if Ay and By intersect, and ¢
is in X°.

A formal proof is omitted for lack of space. In-
formally, the conditions of Lemma 3.1 guarantee that
the three obstacles intersect pairwise, that P in its
initial configuration does not collide with ¢, and that
it cannot escape by pure translation along one of the
contact edges, which it could do if ¢ were in the upper
component Y of A3 N By \ P;.

Since we have assumed that P is in contact with
a and b in its initial configuration, 4y and By must
intersect, and the set of positions of ¢ that prevent
escape by pure translation at § = 0 is simply X°.
3.2 Preventing Canonical Escape Motions

We denote by A* and B* the surfaces respectively
swept by the boundaries of A; and Bj as 6 varies
between 0 and 27 (Figure 4). The escape angle is
defined as the first orientation (when one exists) for
which Ay and By no longer intersect. We denote by
P* the surface swept by the boundary of P} as 8 varies
between 0 and the escape angle o if it exists (P is not
defined for § > o in this case), and between 0 and 27
otherwise. Finally, we denote by II and II' the two
planes respectively defined by 8 = 27 and 6 = o if an
escape angle o exists and 8 = 27 + 1 otherwise.

BN

§

Figure 4. The volumes bounded by the surfaces .A*, B*, and
P*. We only show a finite number of slices to reveal some of the
internal structure of these volumes.

We identify the plane of possible positions for ¢ with
the plane Iy defined by 8 = 0 in the object configura-
tion space, with the 6 direction serving as “vertical”
axis. We have the following result.

Lemma 3.2. The counterclockwise capture region
X7 consists of the points ¢ in X° such that the ver-
tical half-line erected above ¢ in configuration space

intersects either P* or II before it intersects A*, B*,
orII'.

Proof: Let A. denote the vertical half-line erected
above c. First note that A, will obviously always in-
tersect one of the five surfaces of interest for some
0 < 2w+ 1. Let 6y be the value of & where the first
intersection occurs. There are five cases, depending
on which surface is intersected first. If this surface is

1. A*: the obstacles Ay and Cy stop intersecting at
0 = 6y, with the object free to escape by transla-
tion through ac;

2. B*: the obstacles By and Cy stop intersecting at
0 = 6y, with the object free to escape by transla-
tion through bc;

3. IT': fy is the escape angle; the obstacles Ay and
By stop intersecting at § = 6y, with the object
free to escape by translation through ab;

4. P*: the rotation is blocked in 6y, preventing fur-
ther rotation before any escape by translation can
occur;

5. II: the object is back to its original configuration,
and a canonical escape motion does not exist.

The lemma immediately follows. O

Note: there is no need to check that ¢ remains in
the lower component of A3 N By \ Py since A, would
have to cross A*, B*, or P* first to move to its upper
component.

As mentioned earlier, the set X~ can be character-
ized in a symmetric way. Since X+ C X°, we finally
have X = X'NXtNX - =XTnX".

4 Computing the Capture Region

Lemma, 3.2 allows us to reduce the computation of
the capture region to the resolution of a visibility prob-
lem. We now present two algorithms for solving this
problem when P is a polygon and the three robots are
points (zero-radius discs). The first algorithm is exact
and runs in polynomial time. The second one returns
an approximation of the capture region computed ef-
ficiently with hidden-surface removal techniques from
computer graphics. Both algorithms require the com-
putation of a set of critical orientations to compute
an appropriate description of P*, as described in the
next section.



4.1 Critical Orientations

The polygon Q@ = P @ (—P) has 2n edges and can
be constructed in linear time. The two obstacles A*
and B* are obtained by translating @) so its reference
point coincides with a or b, then sweeping it along a he-
licoidal trajectory. The case of P* is more complicated
since the polygon must remain in contact with a and
b throughout the rotational part of the canonical mo-
tion. The surface of P* is continuous and piecewise-
smooth, with orientation discontinuities occurring at
critical orientations, where the contact edges change,
and a vertex of Ay intersect an edge of By (or vice
versa).

Lemma 4.1. The critical orientations and the coun-
terclockwise escape angle o (if it exists) can be com-
puted in O(p) time, where p is the number of critical
orientations, which is itself O(n?).

Proof: To begin, we compute either of the two inter-
section points of the boundaries of the initial config-
uration obstacles Ag and By, in O(n) time. We then
maintain the pair of intersecting edges of Ag and By as
6 increases continuously, using a variant of the rotating
calipers algorithm of Toussaint [7, 23].

The edge pair changes exactly when an endpoint
of one edge crosses the other edge (primary event).
Thus, at any orientation, there are only four possible
events at which the crossing edge pair can change next.
We can predict the orientation of each event in O(1)
time, so we can update the edge pair in O(1) time per
event. At each event, we can also detect in constant
time whether the obstacles still intersect at all. The
algorithm halts either when we discover that 4, and
By are disjoint (in which case § = o), or when we
reach § = 27 (in which case there is no escape angle).

The running time of the algorithm is O(p), where
p is the number of critical orientations found by the
algorithm. Since the polygons Ay and By are rotating
at the same rate, a single edge pair can be involved in
at most a constant number of events during one full
rotation. Thus, p = O(n?). O

Surprisingly, there are convex polygons P and
points a and b for which this algorithm must process
(n?) events (see Appendix), although these polygons
are unlikely to occur in practical applications.

4.2 Exact Algorithm

If we use a rational parameterization of the cir-
cle S', each one of the surfaces A*, B*, and P* is a
piecewise-smooth collection of algebraic surface patch-
es of constant degree with no self-intersection. We
project the boundary curves and silhouette curves of

each patch to the starting plane IIy. Since there are
O(np) surface patches altogether, we obtain a set of
O(np) algebraic curve segments (namely degree-four
limagon arcs, circular arcs, and line segments). To-
gether with the boundary of X°, which is comprised
of O(n) line segments, these curves induces a subdi-
vision C of the plane into cells with total complexity
O(n?p?), and we can compute this cell decomposition
in O(n%p?) time using a randomized incremental al-
gorithm [5]. The points in each cell of C all have the
same object above, and the same object below. Thus,
the capture region is the union of cells of C. This
immediately implies the following upper bound.

Lemma 4.2. The worst-case complexity of the cap-
ture region X is O(n?p?) = O(n®), where p = O(n?)
is the number of critical orientations.

To finish the computation of the capture region, we
need to identify the objects above and below each cell
in C. To do this efficiently, we compute two three-
dimensional cylindrical decompositions, one for the
lower envelope of the surface patches above IIj, the
other for the upper envelope of the surface patches be-
low IIy. Because the O(np) surface patches meet only
at their boundaries, we can show that each cylindri-
cal decomposition has complexity O(n?p?) and can be
computed in O(n%p?) time using a randomized incre-
mental algorithm. (For a similar combinatorial anal-
ysis, see [1].) The intersection of any cylindrical cell
with TIy is the union of several cells in C. For each
cylindrical cell that touches P* or II, we mark the
corresponding cells in C, each in constant time. The
cells that are marked twice, once from above and once
from below, comprise the capture region X.

Lemma 4.3. The capture region X can be computed
in time O(n?p?) = O(n®), where p = O(n?) is the
number of critical orientations.

4.3 Approximate Algorithm

A discrete approximation of the capture region can
also be computed using classical hidden-surface re-
moval techniques such as z-buffering to render poly-
hedral approximations of all surfaces of interest in a
rasterized version of the z,y plane, the orientation 6
acting as depth for orthographic projection. Given the
critical orientations, it is easy to construct polyhedral
approximations of A*, B*, and P* that achieve any
desired degree of accuracy.

The algorithm proceeds in three elementary steps:

1. Render X°: Construct the polygon X° and a
bounding rectangle R® for it, and rasterize X°



into an N x N image buffer I, representing R°
with background color 0 and foreground color 1.

2. Render XT: Initialize a second N x N image
buffer I+ representing R with color 0. Attach
to it a z-buffer with initial depth 0. Assign the
color 1 to the (polyhedral approximations) of P*
and II, and assign the color 0 to the (polyhedral
approximations) of A*, B*, and II'. Render the
five surfaces.

3. Render X~: Repeat the process of step 2 to
render the five surfaces associated with X~ into
a new image buffer I~. Note: the nonnegative
value of —@ has to be used as depth in this case.

4. Output X as the binary AND of I°, I—, I*.

We have implemented this algorithm. Figure 5
shows three examples. In each case, the left part of
the figure shows the polygon in its initial configura-
tion and the corresponding capture region. The right
part of the figure shows the projections of the surfaces
A*, B*, P*, II and II' after hidden-surface removal,
with the outline of the region X° overlaid. The three
polygons have respectively 9, 9, and 8 edges, with 20,
18 and 7 critical orientations. In the last case, the dis-
tance between the two robots is greater than the width
of the polygon, and two of the critical orientations are
escape angles.

Figure 6 shows the first of the three polygons on
the verge of escaping through ac when robot ¢ is on
the boundary of the capture region.

5 Discussion

Let us conclude with a brief discussion of future
work. First on our list is the implementation of the
proposed exact algorithm. Extending both approaches
to discs with nonzero radius should not pose concep-
tual difficulties since the discussion of Sections 2 and
3 is valid for arbitrary convex objects and discs of ar-
bitrary radius. Adapting the two algorithms to this
case will essentially require adapting the computation
of critical orientations so it handles convex generalized
polygons bounded by line segments and circular arcs,
and, in the case of the exact algorithm, constructing
the arrangement of slightly more complicated curves.
It would of course be interesting to extend the ap-
proach presented in this paper to non-convex objects,
but it is not clear at this point whether appropriate
canonical escape motions can be defined in this case.

From a practical point of view, we believe that cap-
ture regions as characterized and computed in this
paper will prove a useful tool for various problems
in robotics and flexible manufacturing. We intend to

a b
a b
a b

Figure 5. Left: three polygons and their capture regions. Right:
the projections of the surfaces A*, B*, P*, II and II'. The back-
ground is white for the first two polygons, indicating that II is
visible and there is no escape angle. The shaded background for
the third polygon indicates that II’ is visible and an escape angle
exists.

Cc

Figure 6. The initial and final positions of a polygon during the
rotational phase of a counterclockwise canonical motion. Here ¢
is on the boundary of the capture region and the polygon is about
to escape by translation through ac.




demonstrate that this is indeed the case by integrat-
ing the new results obtained in this paper with some of
our previous work on fixturing, grasping, and in-hand
manipulation [20, 21], mobile robot motion planning
[17, 22], and parts feeding [3].
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Appendix

We demonstrate here with an example that the
number of critical orientations associated with a con-
vex polygon of size n is 2(n?). Consider a polygon
with one vertex at the center of a circle and the oth-
er vertices positioned at a fixed distance beyond the
radius of the circle (Figure 7).

(a) (b)

Figure 7. A convex polygon with Q(n?) events. (a) Point a re-
verses its motion around 9P (n) times in the neighborhood of a
vertex. (b) Replace the vertex with Q(n) vertices near the center
and perturb to make convex.

Let the radius of the circle be the distance between
a and b. The turning of P is equivalent to a and b
traveling around the perimeter of P, so we will think
in those terms for a moment. As the angle increases,
occasionally a or b must reverse direction to maintain
contact. These reversals occur whenever the segment
ab is perpendicular to the edge containing either a
or b. The construction of P in Figure 7 forces a to
reverse direction O(n) times. Suppose we add n more
vertices very near the vertex at the center of the circle,
and perturb them so that the object remains convex.
If the vertices are placed between the points where a
reverses, then a will pass Q(n) vertices as b traverses
one edge. This results in Q(n?) events.
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