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ABSTRACT Categories and Subject Descriptors
We consider a class of geometric facility location problems in which F.2.2 Nonnumerical Algorithms and Problemsg: Geometrical
the goal is to determine a s¥tof disks given by their centers;} problems and computations

and radii () that cover a given set of demand poiivtsC R? at General Terms
the smallest possible cost. We consider cost functions of the form _
¥ f(rj), wheref(r) = r% is the cost of transmission to radius ~ Algorithms, Theory.
Special cases arise far= 1 (sum of radii) andx = 2 (total area); Keywords
power consumption models in wireless network design often use an ) ) L
exponentl > 2. Different scenarios arise according to possible re- Covering problems, tour problems, geometric optimization, com-
strictions on the transmission centefswhich may be constrained ~ Plexity, approximation.
to belong to a given discrete set or to lie on a line, etc.

We obtain several new results, including (a) exact and approx- 1. INTRODUCTION
imation algorithms for selecting transmission poit)t&n a given
line in order to cover demand pointsc RZ; (b) approximation
algorithms (and an algebraic intractability result) for selecting an
optimal line on which to place transmission points to cove(c)
a proof of NP-hardness for a discrete set of transmission points in
R? and any fixedx > 1; and (d) a polynomial-time approximation
scheme for the problem of computingnainimum cost covering
tour (MCCT), in which the total cost is a linear combination of the
transmission cost for the set of disks and liegthof a tour/path
that connects the centers of the disks.

The problem.  We study a geometric optimization problem that
arises in wireless network design, as well as in robotics and vari-
ous facility location problems. The task is to select a number of
locationst; for the base station antennase(ver$, and assign a
transmission range; to eacht;, in order that eachp; € Y for a
given setY = {ps,..., pn} of ndemand pointsqlients is covered.

We say that clienp; is covered if and only ifp; is within range of
some transmission poing, i.e.,d(tj,, pi) < rj;. The resulting cost
per server is some known functidnsuch as (r) =r®. The goalis

to minimize the total costy ; f(rj), over all placements of at most
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jective arising in some applications. A linear dependernce- (1)
is sometimes assumed, as in Lev-Tov and Peleg [19], who study
the base station coverage problem, minimizing the sum of radii.
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or scan an environment with a laser scanner [13, 14]: For a fixed

spatial resolution of the desired map, the time it takes to scan a cir-

ingly coarser approximation factors.
A practical example in which servers are restricted to lie along a

cle corresponds to the number of points on the perimeter, i.e., isline is that of a highway that cuts through a piece of land, and the

proportional to the radius.

Our problem is a type of clustering problem, recently named
min-size k-clusteringy Bilo et al. [7]. Clustering problems tend to
be NP-hard, so most efforts, including ours, are aimed at devising
an approximation algorithm or a polynomial-time approximation
scheme (PTAS).

We also introduce a new problem, which we aalhimum cost
covering tour(MCCT), in which we combine the problem of find-
ing a short tour and placing covering disks centered along it. The
objective is to minimize a linear combination of the tour length
and the transmission/covering costs. The problem arises in the au

server locations are restricted to lie along the highway. The line lo-
cation problem arises when one not only needs to locate the servers,
but also needs to select an optimal corridor for the placement of the
highway. Other relevant examples may include devices powered by
a microwave or laser beam lining up along the beam.

If the servers are restricted to lie on a horizontal line, but the
location of this line may be chosen freely, then we show that the
exact optimal position (witlx = 1) is not computable by radicals,
using an approach similar to that of Bajaj [5, 6] in addressing the
unsolvability of the Fermat-Weber problem. On the positive side,
‘we give a fully polynomial-time approximation scheme (FPTAS)

tonomous robot scanning problem [13, 14], where the covering cost requiring timeO((n®/€)logn) if o = 1 and timeO((n®/¢)logn) if

is linear in the radii of the disks, and the overall objective is to
minimize the total time of acquisition (a linear combination of dis-
tance travelled and sum of scan radii). Another motivation is the
distribution of a valuable or sensitive resource: There is a trade-
off between the cost of broadcasting from a central location (thus
wasting transmission or risking interception) and the cost of trav-

a>1.

For servers on an unrestricted line, of any slope, @ard1, we
give O(1)-approximations (4-approximation ®(n*logn) time, or
8v/2-approximation inO(n3logn) time) and an FPTAS requiring
time O((n®/&2) logn).

We give the first algorithmic results for the new problem, mini-

elling to broadcast more locally, thereby reducing broadcast costs mum cost covering tour (MCCT), which we introduce. Given a set

but incurring travel costs.

Location Constraints.  Inthe absence of constraints on the server

locations, it may be optimal to place one server at each demand

point. Thus, we generally set an upper bouxdn the number of
servers, or we restrict the possible locations of the servers. Here
we consider two cases of location constraints:

(1) Servers are restricted to lie in a discrete{set. .., tm}; or

(2) Servers are constrained to lie on a line (which may be fully
specified, or may be selected by the optimization).

Ourresults.  We provide a number of new results, some improv-
ing previous work, some giving the first results of their kind.

In the discrete case studied by Lev-Tov and Peleg [19], and Bil6
et al. [7], we give improved results. For the discrete 1D problem
whereY C R, we improve their 4-approximation to a linear-time
3-approximation by using a “Closest Center with Growth” (CCG)
algorithm, and, as an alternative to the previ@{gn+ m)2) algo-
rithm [19], we give a near-linear-time 2-approximation that uses a
“Greedy Growth” (GG) algorithm. Unfortunately, we cannot ex-
tend our proofs to the%D problem. Intuitively, greedy growth
works as follows: start with a disk with center at each server, each
disk of radius zero; among all clients, find one that requires the
least radial disk growth to capture it; repeat until all clients are cov-
ered. Note that for > 2 the 2D variants of the problem are already
proved to be NP-Hard and to have a PTAS [7].

In the general 2D case with clientsC R?, we strengthen the
hardness result of Bil6 et al. [7] by showing that the discrete prob-
lem is already hard for any superlinear cost function, f.&.) =r%
with o > 1. Furthermore, we generalize the min-size clustering

Y C R2 of nclients, our goal is to determine a polygonal tduand

a setX of k disks of radiirj centered ofT that covery while min-
imizing the cost lengtfl) +Cy r¥. Our results are fom = 1. The
ratio C represents the relative cost of touring versus transmitting.
We show that MCCT is NP-hard &€ is part of the input. At one
'extreme, ifC is small then the optimum solution is a single server
placed at the circumcenter ¥f (we can show this to be the case
for C < 4). At the other extreme (i€ very large), the optimum
solution is a TSP among the clients. For any fixed valu€ of 4,

we present a PTAS for MCCT, based on a novel extension of the
m-guillotine methods of [20].

Related work.  There is a vast family of clustering problems,
among which are th&-centerproblem in which one minimizes
mawx; r j, thek-mediarproblem in which one minimizeg; d(p;.tj,),
and thek-clusteringproblem in which one minimizes the maximum
over all clusters of the sum of pairwise distances between points in
that cluster. For the geometric instances of these related clustering
problems, refer to the survey by Agarwal and Sharir [1]. Wkén
fixed, the optimal solution can be found in tir@nK) using brute
force. In the plane, one of the only results for the min-size cluster-
ing problem is a small improvement fke= 2 by Hershberger [17],
in subquadratic tim&(n?/loglogn). Approximation algorithms
and schemes have been proposed, particularly for geometric in-
stances of these problems (e.g., [4]). Clustering for minimizing the
sum of radii was studied for points in metric spaces by Charikar
and Panigrahy [9], who present &{1)-approximation algorithm
using at mosk clusters.

For the linear-cost modeti(= 1), our problem has been consid-
ered recently by Lev-Tov and Peleg [19] who give@f(n+ m)®)

problem in two new directions. On the one hand, we consider less algorithm when the clients and servers all lie on a given line (the
restrictive server placement policies. For instance, if we only re- 1D problem), and a linear-time 4-approximation in that case. They
strict the servers to lie on a given fixed line, we give a dynamic also give a PTAS for the two-dimensional case when the clients and
programming algorithm that solves the problem exactly, in time servers can lie anywhere in the plane. Bilo et al. [7] show that the
O(n?logn) for any L, metric in the linear cost case, and in time problem is NP-hard in the plane for the cdge) =%, a > 2, either
O(n*logn) in the case of superlinear non-decreasing cost functions. when the setX andY are given and is left unspecifiedK = n),

For simple approximations, our algorithm “Square Greedy” (SG) or whenk is fixed but therX =Y. They give a PTAS for the linear
gives in timeO(nlogn) a 3-approximation to the square covering cost cased = 1) and a slightly more involved PTAS for a more
problem with any linear or superlinear cost function. A small varia- general problem in which the cost function is superlinear, there are
tion, “Square Greedy with Growth” (SGG), gives a 2-approximation fixed additive costs associated with each transmission server and
for a linear cost function, also in tim®(nlogn). The results are there is a boun& on the number of servers.

also valid for covering by p disks for anyp, but with correspond- There are many problems dealing with covering a set of clients



by disks ofgivenradius. Hochbaum and Maass [18] give a PTAS
for covering with a minimum number of disks of fixed radius, where

If we consider a single disb with clients p_ and pr on the
left and right edges oD, associated centerg, Xr at distances

the disk centers can be taken anywhere in the plane. They intro-respectively radiugf)—e to the left and radiugf)—e to the right,

duce a “grid-shifting technique,” which is used and extended by
Erlebach et al. [12]. Lev-Tov and Peleg [19] and Bilo et al. [7]
extend the method further in obtaining their PTAS results for the
discrete version of our problem.

When a discrete s&t of potential server locations is given, Gon-

along with a dense set of clients in the left hand halDofve see
that 3 is the best possible constant for CCG.

Finally we offer an algorithm that achieves a 2-approximation
but runs in timeO(m+ nlogm).

Greedy Growth (GG) Algorithm : Start with a disk with center

zalez [16] addresses the problem of maximizing the number of at each server all of radius zero. Now, amongst all clients, find

covered clients while minimizing the number of servers supply-

the one which requires the least radial disk growth to capture it.

ing them, and he gives a PTAS for such problems with constraints Repeat until all clients are covered. An efficient implementation
such as bounded distance between any two chosen servers. In [8]yses a priority queue to determine the client that should be captured
a polynomial-time constant approximation is obtained for choosing next. One can set up the priority queuedim) time. Note that the

a subset of minimum size that covers a set of points among a set ofyriority queue will never have more tham2elements, and that
candidate disks (the radii can be different but the candidate disks eachp; eventually gets captured, either from the right or from the

must be given).

left. Each capture can be done in tif®¢ogm) for a total running

The closest work to our combined tour/transmission cost (MCCT) time of O(m+ nlog m).

is the work on covering tours: the “lawn mower” problem [2], and

the TSP with neighborhoods [3,11], each of which has been shown
to be NP-hard and has been solved with various approximation al-

gorithms. In contrast to the MCCT we study, the radius of the
“mower” or the radius of the neighborhoods to be visited is speci-
fied in advance.

2. SCENARIO (1): SERVER LOCATIONS RE-
STRICTED TO A DISCRETE SET

2.1 The one-dimensional discrete problem with
linear cost

Consider the case of fixed server locationX = {t1,...,tm}, n
client locationsY = {ps, ..., pn}, and a linear¢ = 1) cost function,
with clients and servers all located along a fixed line. Without loss
of generality, we may assume théatandY are sorted in the same
direction, at an extra cost @((n+ m)log(n+m)). Lev-Tov and
Peleg [19] give arO((n+m)3) dynamic programming algorithm
for finding an exact solution. Bilo et al. [7] show that the problemis
solvable in polynomial time for any value afby reducing it to an
integer linear program with a totally unimodular constraint matrix.
The complexities of these algorithms, while polynomial, is high.
Lev-Tov and Peleg also give a simple “closest center” algorithm
(CC) that gives a linear-time 4-approximation. We improve to a
3-approximation in linear time, and a 2-approximationdfm-
nlogm) time.

We now describe an algorithm which also runs in linear time, but
achieves an approximation factor of 3.

Closest Center with Growth (CCG) Algorithm: Process the clients
{p1,...,pn} from left to right keeping track of the rightmost ex-
tending disk. Letwr denote the rightmost point of the rightmost
extending disk, and I€® denote the radius of this disk. (In fact the
rightmost extending disk will always be the last disk placeddf

is equal to, or to the right of the next client processgd then p

is already covered so ignore it and proceed to the next clieq. If
is not yet covered, consider the distancepofo wr compared with
the distance ofy to its closest centef. If the distance ofp; to
wR is less than or equal to the distanceppto its closest centdf,
then grow the rightmost extending disk just enough to cappure
Otherwise use the disk centeredjadf radius|p; — fi| to coverp.

LEMMA 1. For a =1, CCG yields a3-approximation to OPT
in O(n+m) time.

The proof is similar to that of the next lemma, and omitted in this
version.

LEMMA 2. Fora =1, GG yields a2-approximation to OPT in
O(m+nlogm) time.

Proof. Define intervals); as follows: when capturing a clie
from a serveit; whose current radius (prior to capture)ris let
Ji = (tj +rj, pi] if pi >tj, andJ = [p;,tj —rj) otherwise. Our first
trivial yet crucial observation is thaNJs = 0 if i # k. Also note
that the sum of the lengths of tlieis equal to the sum of the radii
in the GG cover.

Consider now a fixed disR in OPT, centered ap, and the list
of intervalsJ; whosep; is insideD. As before, at most one sudh
extends outward to the right from the right edgeDofif so, call it
Jr, and defingl. symmetrically. IfJr exists, it cannot extend more
than radiudD) to the right ofD. LetA = length(Jr). We argue that
there is an interval of lengthiin D, to the right oftp, which is free
of Ji's. It follows that there is at most radiu3) worth of segments
to the right oftp. Of course, this is also truedk does not exist. By
symmetry, there is also radild) worth of segments to the left of
tp, whetherJ, exists or not, yielding the claimed 2-approximation.

AssumelJr exists. Then the algorithm successively extedgls
by growth to the left up to some maximum point (possibly stop-
ping right atpg). Since the growth could have been induced by
clients to the right oflg, that maximum point is not necessarily
a client. There is, however, some client insehat is captured
last in this process. This cliem; (possibly pr) cannot be within
A of tp, since otherwise it would have been captured prior to the
construction oflr.

If there is no client betweety and p; we are done, since then
there could be no interval in between. Thus consider the client
pi—1 just to the left ofp;. Supposel(pi_1,pi) = A. Then, ifpi_1
is eventually captured from the left, we would have the region be-
tweenp;_1 andp; free of Ji's and be done. On the other hand, if
pi—1 is captured from the right, it must be captured by a server be-
tweenp;_1 andp;, and that server is at leasto the left of p; since
otherwisep; would be captured by that server prior pg. This
leaves the distance from the servemptdree ofJJy’s.

Hence the only case of concern isdfpi_1,pi) < A. Clearly
pi—1 must not have been captured at the time whpgtis captured
since otherwisg; would have been captured befqug, contradict-
ing the assumption thag; is captured by growth leftward fromg.
Similarly, there cannot be a server betwgegn; andp;, since oth-
erwise bothp;_1 and p; would be captured beforpr. Together
with the definition ofp;, this implies thatp;_; is captured from the
left. Therefore, to the left op;_1, there must be one or more inter-
vals{J, } whose length is at leaatthat are constructed befopg_1
is captured. Similarly, to the right g, there must be some one or



more intervaIs{JrJ} whose length is at leadt, constructed before the covering of variabe loops assures that each clause has at least
pi is captured. However, either the latis placed before the last  one satisfying variable. a
Jy, or vice versa. In the first case, there are\riength obstructions
left in the left-hand subproblem, sB_4 will be covered, and with 3. SCENARIO (2); SERVER LOCATIONS
A length obstructions remaining in the right subproblgmnyill be RESTRICTED TO A LINE
captured by growth rightward. The second case is symmetrical to
the first. In either case we have a contradiction. m| . . .
To see that the factor 2 is tight, just consider serverszt€,0 3.1 Servers along a fixed horizontal line

and 2—¢ and clients at-1 and 1. .

3.1.1 Exact solutions
2.2 Hardness of the two-dimensional discrete Suppose that the servers are required to lie on a fixed horizontal

problem with superlinear cost line, whic_h we take wi_thout loss of generality to be thaxis. Such

a restriction could arise naturally (e.g., the servers must be con-
nected to a power line, must lie on a highway, or in the main corri-
dor in a building). In addition, this case must be solved first before
attempting to solve the more general problem—along a polygonal
curve.

In this section, we describe dynamic programming algorithms to
compute a set of server points of minimum total cost. For notational
convenience, we assume that the clienitare indexed in left-to-
right order. Without loss of generality, we also assume that all the
clients lie on or above the-axis, and that no two clients have the
samex-coordinate. (If a clienp; lies directly above another client
s-Pj, then any circle enclosing also enclosepj, so we can remove

pj fromY without changing the optimal cover.)
Let us call a circleC pinnedif it is the leftmost smallest axis-
tcentered circle enclosing some fixed subset of clients. Equivalently,

ing any particular variable by a closed loop, using the basic idea acircle is pinned ifitis the Ieftmqst smgllest circle passing through
shown in the left of Figure 1; this allows two fundamentally differ- & ¢hosen client or a chosen pair of clients. Under Bpynetric,
ent ways of covering those points cheaply (using the “odd” or the there are at mosb(n?) pinned circles. As long as the cost func-
“even” circles), representing the two truth assignments. For each tion f is non-decreasing, there is a minimum-cost cover consisting
edge from a vertex to a variable, we attach a similar chain of points entirely of pinned circles.
that connects the variable loop to the clause gadget; the parity ofLinear Cost.  If the cost functionf is linear (or sublinear), we
covering a variable loop necessarily assigns a parity to all incident easily observe that the circles in any optimum solution must have
chains. Note that choosing sufficiently fine chains guarantees thatdisjoint interiors. (If two axis-centered circles of radiysandr
no large circles can be used, as the overall weight of all circles in intersect, they lie in a larger axis-centered circle of radius at most
a cheap solution will be less than 1. (It is straightforward to see rj+rj.) In this case, we can give a straightforward dynamic pro-
that for any fixedo > 1, this can be achieved by choosing coordi- gramming algorithm that computes the optimum solution under any
nates that are polynomial in the size@f, with the exponent being Lp metric.
O(1/(a—1)).) The algorithm given in Figure 2 (left) finds the minimum-cost
cover by disjoint pinned circles, where distance is measured using
anyLp metric. We call the rightmost point enclosed by any pinned
circle C theownerof C.

If we use brute force to compute the extreme points enclosed by

In 2D, we sketch an NP-hardness proof, for any- 1. This
strengthens the NP-hardness proof of [7], which only works in the
casea > 2.

THEOREM 3. For any a fixeda > 1, let the cost function of
a circle of radius r be fr) =r%. Then it is NP-hard to decide
whether a discrete set of n clients in the plane, and a discrete set
of m potential transmission points allow a cheap set of circles that
covers all demand points.

Proof (sketch). Letl be an instance ofRNAR 3SAT, and letG

be the corresponding variable-clause incidence graph. After choo
ing a suitable layout of this planar graph, resulting in integer vari-
ables with coordinates bounded by a polynomial in the siz8,of
for all vertices and edges, we replace each the vertex represen

* client points

odd circles o each pinned circle and to test whether any points lie directly above
° ggﬁ;“'ss"" a pinned circle, this algorithm runs @(n®) time. With some more
] work, however, we can improve the running time by nearly a linear
even circles
factor.
This improvement is easiest in thg, metric, in which circles
are axis-aligned squares. Each pgitis the owner of exactly
pinned squares: the unique axis-centered squarepyiththe up-
per right corner, and for each poipf to the left ofp;, the leftmost
Figure 1. (Left) The switch structure of a variable gadget. Note how there smallest axis-centered square wjthand pj on its boundary. We
are two fundamentally different ways to cover all points cheaply. (Right) The ; ;
structure of a clause gadget. One small circle is needed for picking up the can easily compute all th_ese _sq_uares, as _We”_ as the IeﬂmOSt point
client point at the center of the gadget. enclosed by each one, @(ilogi) time. (To simplify the algorithm,

we can actually ignore any pinned square whose owner does not lie
For the clauses choose a hexagonal arrangement as shown in then its right edge.) If we preproce8sinto a priority search tree in
right of Figure 1: There is one central point that must be covered O(nlogn) time, we can test i©(logn) time whether any client lies
somehow; agairg > 1 guarantees that it is cheaper to do this from directly above a horizontal line. The overall running time is now
a nearby transmission point, rather than increasing the size of aO(nZIogn).
circle belonging to a chain gadget. For any othet., metric, we can compute the extreme points en-
Now it is straightforward to see that there is a cheap cover, using closed by allO(n?) pinned circles irO(n?) time using the follow-
only the forced circles, iff the truth assignment corresponding to ing duality transformation. I€ is a circle centered &k, 0) with



radiusr, let C* be the point(x,r). For each clienty;, let pi' =
{C*|Cis centered on the-axis andp; € C}, and lety* = {p; | pi €

Y}. We easily verify that each sgt" is an infinitex-monotone
curve. (Specifically, in the Euclidean metric, the dual curves are
hyperbolas with asymptotes of slofidl.) Moreover, any two dual
curvesp; and p]-* intersect exactly once; i.€Y;* is a set of pseudo-

lines. Thus, we can compute the arrangemeitah O(n?) time.
For each pinned circl€, the dual pointC* is either one of the
clientsp; or a vertex of the arrangement of dual cur¥es A cir-
cle C encloses a clienp; if and only if the dual poinC* lies on
or above the dual curvg;. After we compute the dual arrange-
ment, it is straightforward to compute the leftmost and rightmost
dual curves below every vertex @(n?) time by depth-first search.
Finally, to test efficiently whether any points lie directly above
an axis-centeredLg) circle, we can use the following two-level
data structure. The first level is a binary search tree ovexthe
coordinates of. Each internal node in this tree corresponds to a
canonical vertical slal, containing a subseg, of the clients. For
each nodey, we partition thex-axis into intervals by intersecting
it with the furthest-point Voronoi diagram g, in O(|py|log|py/|)
time. To test whether any points lie above a circle, we first find a
set ofO(logn) disjoint canonical slabs that exactly cover the circle,
and then for each sla$, in this set, we find the furthest neighbor
in py of the center of the circle by binary search. The region above
the circle is empty if and only if alD(logn) furthest neighbors
are inside the circle. Finally, we can reduce the overall cost of the
query fromO(log?n) to O(logn) using fractional cascading. The
total preprocessing time ®(nlog?n).

THEOREM 4. Given n clients in the plane, we can compute in
O(n?logn) time a covering by circles (in any fixeg Imetric) cen-
tered on the x-axis, such that the sum of the radii is minimized.

Superlinear Cost. A similar dynamic programming algorithm

all pinned circlesA satisfying the following conditions: (1) The
center ofA is left of the center ofC; (2) the apex ofA is outside

C; (3) the apex o is outsideA; and (4)A encloses every point in
Yc \ Ya. The last condition is equivalent to there being no clients
inside the regioB(A,C) bounded by thex-axis, the circlesA and

C, and vertical lines through the apicesfandC; see Figure 3(c).

Our dynamic programming algorithm (Figure 2 (right)) consid-
ers the pinned circle€,,Cy, ...,Cp in left to right order by their
centers; that is, the center Gf is left of the center o€ whenever
i < j. To simplify notation, letyj = Yc,. For convenience, we add
two circlesCy andCp, 1 of radius zero, centered far to the left and
right of Y, respectively, so thafy = @ andYp, 1 =Y.

Implementing everything using brute force, we obtain a run-
ning time of O(n®). However, we can improve the running time
to O(n*logn) using the two-level data structure described in the
previous section, together with a priority search tree. The region
B(Ci,Cj) can be partitioned into two or three three-sided regions,
each bounded by two vertical lines and either a circular arc otr-the
axis. We can test each three-sided region for emptineSglagn)
time.

THEOREM 5. Let f: Ry — R be a fixed non-decreasing cost
function. Given n clients in the plane, we can compute(in‘@gn)
time a covering by circles (in any fixeg Imetric) centered on the
x-axis, such that the sum of the costs of the circles is minimized.

The algorithm is essentially unchanged in themetric, except
now we define the apex of a square to be its upper right corner.
It is easy to show that there is an optimal square cover in which
no square contains the apex of any other square. Equivalently, we
can assume without loss of generality that if two squares in the
optimal cover overlap, the larger square is on the left. To compute
the optimal cover, it suffices to consider subset®f points either
directly above or to the right of each pinned squ@re For any
two squared\ andC, the regionB(A,C) is now either a three-sided

computes the optimal covering under any superlinear (in fact, any rectangle or the union of two three-sided rectangles, so we can use

non-decreasingcost functionf. As in the previous section, our al-
gorithm works for any  metric. For the moment, we will assume
thatp is finite.

Although two circles in the optimal cover need not be disjoint,
they cannot overlap too much. Clearly, no two circles in the opti-

a simple priority search tree instead of our two-level data structure
to test whetheB(A,C) is empty inO(logn) time.

However, one further observation does improve the running time
by a linear factor: Without loss of generality, the rightmost box in
the optimal cover offc has the rightmost point ofc on its right

mal cover are nested, since the smaller circle would be redundant.edge. Thus, there are at mestandidate boxe€; to test in the

Moreover, the highest point (@peX of any circle in the optimal
cover must lie outside all the other circles. If one cirdleontains
the apex of a smaller circB, then the lund\ Ais completely con-
tained in an even smaller circ{e@ whose apex is the highest point
in the lune; it follows thatA andB cannot both be in the optimal
cover. See Figure 3(a).

@)

(b)

Figure 3. (a) The apex of each circle in the optimal cover lies outside the
other circles. (b) The points Yc lie in the shaded region. (c) If A and C are
adjacent circles in the optimal covering, the shaded region B(A,C) is empty.

To compute the optimal cover of, it suffices to consider sub-
problems of the following form. For each pinned cir€elet Yo
denote the set of clients outsi@eand to the left of its center; see
Figure 3(b). Then for each pinned circe we havecost(Yc) =
mina(f(radius(A)) 4 cost(Ya)), where the minimum is taken over

inner loop; we can easily enumerate these candidat®$ripntime.

THEOREM 6. Let f: R, — R be a fixed non-decreasing cost
function. Given n clients in the plane, we can compute(nf@gn)
time a covering by axis-aligned squares centered on the x-axis,
such that the sum of the costs of the squares is minimized.

3.1.2 Fast and simple solutions

In this section we describe simple and inexpensive algorithms
that achieve constant factor approximations for finding a minimum-
cost cover with disks centered along a fixed horizontalllipesing
anyLp metric. The main idea for the proofs of this section is to as-
sociate with a given disk in OPT, a set of disks in the approximate
solution and argue that the set of associated disks cannot be more
than a given constant factor coveriafin terms of cumulative edge
length, cumulative area, and so forth.

As in the previous section, the case lof metric is the eas-
iest to handle. By equivalence of all tlg metrics, constant-
factor c-approximations for squares will extend to constant-factor
c’-approximations fot., disks.

Square Greedy Cover Algorithm (SG): Process the client points
in order of decreasing distance from the line Find the farthest



MINSUMOFRADIUSCIRCLECOVER(Y) :
for every pinned circl€
find the leftmost and rightmost points enclosedby
Cost0] < 0
fori—1lton
Costi] « o
for each pinned circl€ owned byp;
if no points inP lie directly aboveC
pj < leftmost point enclosed b@
Cosfi] < min{Costi], Costj — 1] +radius(C))}
returnCostn|

MINSUPERLINEARCOSTCIRCLECOVER(Y, f) :
sort the pinned circles from left to right by their centers
Cosf0] — 0
forj—1top+1
Cosj] — e
fori—1ltoj—1
if G; andC; exclude each other’s apices
andB(C;,C;j) is empty
Costj] — min{Cosf{j], Cos{i] + f (radiusCi)))}
returnCostp+ 1]

Figure 2. The dynamic programming algorithm: Left: linear cost; Right: superlinear cost function.

point p; from L; cover p; with a squareS; exactly of the same
height asp; centered at the projection gf; on L. Remove all
points covered by from further consideration and recurse, find-
ing the next farthest point frorh and so forth. In the case where
two points are precisely the same distance figrbreak ties arbi-
trarily.

Obviously, SG computes a valid coveringYoby construction.We
begin the analysis with a simple observation.

LEMMA 7. Inthe SG covering, any point in the plane (not nec-
essarily a client) cannot be covered by more than two boxes.

Proof. Suppose5 andS; are two squares placed during the run-
ning of SG and that < j so that§ was placed befor&;. Then

S cannot contain the center point 8f since thenSj would not
have had the opportunity to be placed, and simil&lgannot con-
tain the center point o&. Now consider a poinp € SNS;j. If p
were covered by a third squagg then either one ofS;, Sj} would
contain the center d§, or S, would contain the center of one of
{S.Sj}, neither of which is possible. O

THEOREM 8. Given a set Y of n clients in the plane and any
a > 1, SG computes in time (@logn) a covering of Y by axis-

aligned squares centered on the x-axis whose cost is at most threeIO

times the optimal.
Proof. LetY = {p,...,pn} and consider a squai®@in OPT.

We consider those squargs; } selected by SG corresponding to
points {pj; : pi; € S}, see Figure 4, and argue that these squares

Figure 4. Squares of the SG algorithm inside a square of the optimal solu-
tion.

cannot have more than three times the total edge lengéh dhe
same will then follow for all of SG and all of OPT. The argument,

total horizontal length of these protruding parts of squares, then
r < s, the side length o, since the side length of each protruding
square is at mostand at most half of each square is protruding.

Because of Lemma 7 the total horizontal length of all nonpro-
truding parts of the squar&s is at most 8, consequently all points
covered bySin OPT are covered by a set of squaBgsn SG whose
total (horizontal) edge lengt}i; s, is at most 3.

For exponentst > 1 observe thay | §, <3s and 0< 5 < sfor
all j implies thaty j 5, < 3s".

To analyze the running time of the algorithm we need some more
details about the data structures used: Initially, sort the points by
x-coordinate and separately by distance from the Llin@ time
O(nlogn) and process the points in order of decreasing distance
from L. As the pointp; at distanced; from L is processed, we
throw away points which are within horizontal distandiefrom
pi. This takes timeD(logn+ k;) time wherek; is the number of
points withind; from p;. Since we do this up tm times with
ki +---+k = nthe total running time i©(nlogn). O

For the linear cost function, it is easy to modify the SG algorithm
to get a 2-approximation algorithm.

Square Greedy with Growth Algorithm (SGG): Process the points
as in SG. However, if capturing a poipt by a square§ would re-
sult in an overlap with already existing squaethen, rather than
lacing§, grow S; just enough to capturg;, keeping the vertical
edge furthest fronp; at the same point oh. If placing § would
overlap two squares, grow the one which requires the smallest edge
extension. Break ties arbitrarily.

A proof somewhat similar to that of Lemma 2 shows that:

THEOREM 9. Given n clients in the plane, SGG computes in
time Q(nlogn) a covering by axis-aligned squares centered on the
x-axis whose cumulative edge length is at most twice the optimal.

Proof. As we process pointg; using SGG, attribute to each point
pi a line segmeng alongL as follows. If processingy; resulted
in the placement of a squa& centered at the projection @ in
L then attribute top; the projection orL of a horizontal edge of
S (Case 1). If, on the other hand, processingpfesulted in the
growing of a prior squar&; to just capturep;, attribute top; the
projection onL of the portion of the horizontal edge of the ex-
pandedS; needed to capturp; (Case 2). (This amount is at most
the distance ofg; to L since otherwisgy; would have been fallen
into case 1.) We must show that the lengths of the segments is no
more than twice the edge lengths of squares in OPT.

It suffices to show that for any squaBén OPT, the segments

without modification, covers the case of cost measured in terms associated with pointg; € Sprocessed by SGG cannot have total
of the sum of edge length raised to an arbitrary positive exponent edge length which exceeds twice the edge lesgthS.

a>1.

Arguing as in Lemma 7 it is easy to see that at most two boxes
S, associated with points;; € Sprocessed by SG actually protrude
outside ofS, one on the left and one on the right. Denoterlire

To see this observe that the sum of the lengths of tisolséng
completely insideS does not exceed since they are nonoverlap-
ping. In addition, each of the parts of the at most two segments
protruding fromS can have length at mosf2, in case 1 for the



same reason as in the SG algorithm, in case 2 since the total lengthTherefore, in order to find the best horizontal line, we must mini-

of the segment is at most2. mizec(y). Setting the derivative to zero, we obtain the equation
In order to make SGG efficient, we proceed as in SG. In addi- 2Ay—1) 2y

tion, we maintain a balanced binary search tree containing-the c(y) = + -1=

coordinates of the vertical sides of the squares already constructed. V2(y-12+18 /2y2+8

For each new poinp; to be processed we locate icoordinate \yg easily verify that”(y) is always positive. The minimum value
within this structure to obtain its neighboring squares and to decide c(y) ~ 8.3327196 is attained gt~ 1.4024709, which is a root of

whether case 1 or case 2 applies. This can be done irQitogn) the following polynomial:

just as adding a new square in case 1 or updating an existing square

in case 2. Removing points covered by the new or updated square fly) = 10244512 — 16007+ 1536/ — 960"
is done as in SG, so that the total runtime rem&fslogn). O +368° — 1728+ 28y" — 7.

Unlike SG, SGG is not a constant factor approximation for area. i
Considem consecutive points at height 1 separated one from the Using the computational system GAP [15], we compute that the
next by distance of 4 €. Processing the points left to right using ~ Galois group off (y) is the symmetric groufSs, so the polynomial
SGG covers all points with one square of edge lemgth(n— 1), is not solvable by radicals.
and so are@(n?), while covering all points witt overlapping

squares each of edge length 2, uses total anea 4 3.2.2 Fast and simple constant-factor approximations

Finally, extending these results from squares to disks inLany The simple constant factor approximations for a fixed line can
metric is not difficult. Enclosing each square in the algorithm by be extended to the case of approximations to the optimal solution
an |_p disk leads to an approximation factocX3for GG and 22 on an arbitrary axis-parallel line with the same constant factors,

. . . . 2 . - .
for SGG, wherec = p®/P. In particular, forL, disks, this yields a E.r:sggh with a multiplicative factor o©(n<) increase in running
ime.

2+/2-approximation foo = 1 and a 4-approximation far = 2.

32  Findi he b . el li 3.2.3 An FPTAS for finding the best horizontal line
’ Inding the best axis-parallel line We begin with the case = 1. Letd denote the distance between

we first prove that finding the best line, even bor= 1, is uncom- the horizontal strip of height that covers the points intaZe hor-
putable, then in this linear case give a simple approximation, and jzontal strips, each of heigit= de/2n, using 4/e — 1 regularly-
finally a PTAS. spaced horizontal lineg;. For each ling/;, we run the exact dy-
namic programming algorithm, and keep the best among these so-
3.2.1 A hardness result — uncomputability by radicals lutions. Consider the ling’*, that contains OPT. We can shift line

Our approach is similar to the approach used by Bajaj on the un- £* to the nearest;, while increasing the radius of each disk of OPT
solvability of the Fermat-Weber problem and other geometric opti- by at mostd, to obtain a covering of the points by disks centered
mization problems [5, 6]. on somey;; the total increase in cost is at mast = de/2 < €

OPT. Thus, our algorithm computes(&+ €)-approximation in

THEOREM 10. Let dt) = ¥;ri denote the minimum cost of a  time O((n°/e) logn).

cover whose centers lie on the line of equatieaty There exists a In order to generalize this result to the case- 1, let us write
setY of clients such that, i ts the value that minimize<tg, then PSEUDO-OPT for the lowest cost of a solution on any of the hor-
to is uncomputable by radicals. izontal linest;, SHIFT for the result of shifting OPT to the closest

of these lines, andy, ..., ry for the radii of the optimal set of disks.

The proof proceeds by exhibiting such a point set and showing For an arbitrary powen > 1, we have

by differentiatingc(t) thattp is the root of a polynomial which is
proven not to be solvable by radicals.

The following definitions and facts can be found in a standard
abstract algebra reference; see, for example, Rotman [22]. A poly 94+ 3a
nomial with rational coefficients isolvable by radicalsf its roots i; ' =
can be expressed using rational numbers, the field operations, and 201
taking kth roots. Thesplitting field of a polynomialf (x) over the OPT(1+ 302 n/d).
field of rationalsQ is the smallest subfield of the complex numbers The last line used < d,ri < d and OPT> (d/2)%. Choosingd =
containing all of the roots of (x). The Galois groupof a poly- £d/(a2291n) gives the desiredl + €)-approximation.
nomial f(x) with respect to the coefficient fiel@ is the group of Together with the results from previous sections we have:
automorphisms of the splitting field that leaGefixed. If the Ga-

! : ; s THEOREM 11. Given n clients in the plane and a fixed> 1
lois group of f(x) over Q is a symmetric group on five or more . L ) o -
elements, theri (x) is not solvable by radicals ove. there exists an FPTAS for finding an optimally positioned horizon-

Consider the following set of pointy3,4). (—3, —2),(102.2), tal line _anq a minimum-cost covering by disks centered on that line.
(98,—2),(200,—2)}. Bygexhaustliove gse ()3m(alysis, )w(e cin )show It runSS in time Q(n%/¢)logn) for the linear cost caseo(= 1) and
that the optimal solution must consist of one circle through the first O((n>/¢)logn) for o > 1.
two points, a second circle through the next two points, and a third ; ; ;
circle touching the last point, and the optimal horizontal line must 3.3 Appro.)<|mat|_ng the best line —
lie in the range-2 < y < 2. For a given value of in this range, the any orientation
cost of the best cover is Finally, we sketch approximation results for selecting the best
line whose orientation is not given. We give both a constant factor
c(y) = \/2(yf 1)24+ 18+ \/2y2 +8+(2—y). approximation and a PTAS for the linear cost case=(1).

m
PSEUDO-OPT < SHIFT< Z(ri+5)°‘
i=

m

m
(ri+8)%t

IN

IN




3.3.1 Fast and simple constant-factor approximations must intersect the line and/, extendingv, andv, at a distance

Given a line/, we say that a se of disks Dy,... Dy is /- of at most ©PT from thex-axis. _
centeredf the centers of every dis€;j in D belongs tof. Recall The idea is now to put points on those parts’pand/z which
that the cost ofD is the sum of all its radii. are equally spaced at distante- eEOPT/n. Then we consider all
lines passing through one of these pointpand one orf,. For
LEMMA 12. Given k> 1, a line ¢, an (-centered setD of k each such line we find the optimal coveringriy circles centered
disks that CoverY, and any pourﬁ pn E’ there exist pe Y and an on it USing the algorithm Of Theorem 4, and giVe out the beSt one
'-centered sefD’ of k disks that cover Y, wheféis the line that s an approximation for the optimum. .
joins p and g, such that the cost @ is at most® times the cost Observe, that there is one of the lines checkigdyhose inter-
of D. section points with/; and/» are at distance at mo&f2 from the
ones of?*. Elementary geometric considerations show that to any
Proof. We will assume without loss of generality thais thex- point pin £* closest to some point ¢ there is a point ir¢ within
axis, po is the origin and that no other point ¥lies on they-axis. distance at mosd. Consequently, to any circle of radiusf the

The latter restriction can easily be enforced by a small perturbation. optimal covering centered d, there is a circle ohof radiusr +6
Let the coordinates ofj bex andy;, and letm; denote the slope  covering the same set of points (or more). THusas a covering

yi /i of the line; for 1 < i < n. First, we reordeY so thatjmy| < that differs by at mosid from the optimal one. By the choice &f

... < |my|. In what follows we assume that > 0 andy; > 0. The we have a } g-approximation to the optimum.

other cases can be treated analogously. Observe, that we chos®(OPT/8) = O(n/¢) points on/; and
For each disiDj = D(tj, ) in D, we construct a disR whose (2, 0 we are checkin@((n/e)?) lines. For each of them, we apply

the algorithm of Theorem 4 which has runti®én? logn) yielding
a total runtime oO(n*/g?logn).

Case 2. w < 2h: In this case the optimal liné* can have a
2 , , ) steeper slope and even be vertical. Of course, it must intelRsect
ﬁ ‘tgt_ T,lxi ah? P1 iigpjeke th(?ﬂ) clovtirs\t(,_smlply obserl\./e' and we expandR to a cocentric rectangl® such that the foot-

atd(tj,tj) <rj forall 1< j < kand apply the triangle inequality: point of any point inY on ¢* must lie insideR. An easy geomet-

any point inDj must be at distance at mostjf tj. The costof ¢ consideration shows that extending the widttRdfy h and its

radius isr’j =2rj and centeltj is obtained front; by rotating it

around the origin counterclockwise by an angle tqmy). The
setD’ of k disks thus defined i§-centered, wheré = {(x,y) €

this new solution is clearly at mosf 2imes that of? in the linear height byw will suffice, soR is a square of side lengtiv -+ h.
cost case. O Then we put equally spaced points of distabee eOPT/n on the

By a double appplication of this lemma, first about an arbitrary whole boundary oR', apply the algorithm of Theorem 4 to all lines
Po yielding a pointp’ = p;, then aboup; yielding anotheip’ = pj, passing through any two of these points, and return the one giving

?t is immediate that any-centered cover_oY_ can be transformed  the smallest covering as an approximation to the optimum. The
into an ¢ j-centered cover whose cost is increased at most four- same consideration as in the first case shows that this is indeed a
fold, where;  is the line joiningp; andp;j. By computing (exactly (1+¢)-approximation. Since the length of the boundaryRbis

or approximately) the optimal set of disks for ﬁl(nz) lines de- 4(w+h) < 12h < 240PT, we obtain the desired runtime in this
fined by two different points of, we conclude: case, as well.
For both cases it remains to show how to obtain a suitable value
THEOREM 13. Given n clients in the plane and a fixed> 1, of 8, since we do not know the value @PT. Since any value

in O(n*logn) time, we can find a collinear set of disks that cover P below OPT suffices, we simply run a constant factompproxima-
at cost at mos#®OPT, and fora = 1, in O(n®logn) time, we can tion algorithm of Theorem 4 and takgdtimes the value it returns
find a collinear set of disks that cover P at cost at n®gROPT. instead ofOPT in the definition ofd. O

3.3.2 A PTAS for finding the best line with 4. MINIMUM-COST COVERING TOURS

unconstramec_i o.rlentatlon . . ) . We now consider the minimum cost covering tour (MCCT) prob-
We now prove that finding the best line with unconstrained ori- |om: Givenk > 1 and a seY = {pr,.... P} of n clients, determine

entation and a minimum-cost covering with disks whose centers are 5 qver ofy by (at most)k disks centered & = {t, ...t} with
on that line admits a PTAS. radiirj and a touf visiting X, such that the cost lengff) +C y r®
is minimized. We refer to the tour, together with the disks cen-

) > - ! tered onX, as acovering tourof Y. Our results are for the case of
be covered by an optimal collinear set of disks at linear cost OPT |inear transmission costst ( 1). We first show a weak hardness

[ = 4 /o2 ; .
(ie., a=1), ande > 0. In O((n"/e%)logn) time, we can find @ egylt, then characterize the solution @K 4, and finally give a
collinear set of disks that cover Y at cost at mdst-€)OPT . PTAS for a fixedC > 4.

THEOREM 14. LetY be a set of n clients in the plane that can

Proof. LetH be a strip of minimal widthh that containy. Using

arotating calipers approadH,can be computed i®(nlogn) time. 4.1 Ahardness result

If h=0, we can conclude th&@PT = 0 and we are done. We prove the NP-hardness of MCCT wheZeis also part of
Otherwise, we can assume wlog tiais horizontal and that its the input. Note that this does not prove the NP-hardness of MCCT

center line is the-axis. LetR denote the smallest enclosing axis- WhereC is a fixed constant, which is the problem for which we give

parallel rectangl®R of Y, w its width, andh its height, Therh < w a PTAS below. Note also that appears in the run time exponent
and, moreoveth/2 < OPT. Let/* be the optimal line. of that PTAS, and so the PTAS no longer runs in polynomial time
We now distinguish two cases: if Cis not a fixed constant.
Case 1. w > 2h: Observe that both vertical sides, v, of R
contain a point ofY. Therefore,/* must have distance at most THEOREM 15. MCCT with linear cost is NP-hard if the ratio C

OPT to vy andvy. A straightforward calculation shows that thén is part of the input.



Proof (sketch). We show a reduction from KMILTON CYCLE the center of the disk). I€ is very large, then the priority is to
IN GRID GRAPHS Given a set of points on a grid, we construct ~ minimize the sum of the radii of thke disks. Thus, the solution
an instance of MCCT in which each of the given points is a client. is to compute a covering of by k disks that minimizes the sum
We setC to be larger thanr2 We claim that the grid graph has a  of radii (as in [19]), and then link the resulting disk centers with
Hamilton cycle if and only if there is a todr visiting a set of disk a traveling salesman tour (TSP). (In the case katn, the disks
centers with radir; whose cost is at mosit in the covering will be of radius 0, and the problem becomes that
Clearly a Hamilton cycle in the grid graph yields a tour of cost of computing a TSP tour oW.) Note that our algorithm gives an
n with each client contained in a disk of radius O centered at that alternative to the Lev-Tov and Peleg PTAS [19] for coverage alone.
point. Our algorithm is based on applying threguillotine method [20],
Conversely, suppose we have a tour whose cost (length plus sumappropriately adapted to take into account the cost function and
of radii) is at mosi. Note that no two clients can be contained coverage constraift.We need several definitions; we largely fol-
in a single disk, as such a disk must have radius at least 0.5, andiow the notation of [20]. LeiG = (V,E) be an embedding of a
thus its contribution to the co&t-r;j > 2n-0.5 = n contrary to our connected planar graph, of total Euclidean edge-lehgttet D be
assumption. Next we want to show that each disk in an optimal a set of disks centered at each venef G of radiusr,. We refer
solution is centered at the client it covers. Suppose this is not the to the pair(G, D) as acovering networkf the unionUyey Dy of the
case, there is some clieptwhich is covered by a disk centered disks covers the clients. We can assume without loss of general-
atcj # j. Letthe distance between cliepand the center of the ity that G is restricted to the unit squaR i.e.,Uecge C int(B).
disk covering it bed. Now consider an alternate feasible solution Our algorithm relies on there being a polynomial-size set of can-
in which the tour visitsj then j then back tacj, coveringj with a didate locations for the transmission points that will serve as the
disk of radius 0. No other client is affected by this change, as the vertices of the covering tour we compute. In the case that g set
disk only covers poinf. The cost of the new solution is the cost of  of candidate points is given, this is no issue; however, in the case
the original (optimal) solutior-2d —Cd as we add @ to the length that the transmission points are arbitrary, we appeal to the follow-
of the tour, but decreagy ri by Cd. SinceC > 2 the new solution ing grid-rounding lemma (proved in the full paper).
is better than the original optimal solution, a contradition. O
LEMMA 18. One can perturb any covering netwof, D) to

4.2 The casé€ < 4: The exact solution is have its vertices all at grid points on a regular grid of spacing
a single circle 0 = O(e-diam(S)/n), while increasing the total cost by at most a
factor of (1 +¢).

THEOREM 16. In the plane, with a cost function teEngth(T) +
Cyri and C< 4, the minimum-cost solution is to broadcast to all
clients from the circumcenter of the client locations and no tour
cost.

An axis-aligned rectangl&yV C B, is called awindow rectan-
gleW will correspond to a subproblem in a dynamic programming
algorithm. An axis-parallel liné that intersect8V is called acut

For a covering network with edge $etand a set of disk®, we
say that(E, D) satisfies them-guillotine property with respect to
window Wif either (1) all clientsy C W lie within disks of D that
intersect the boundary dY; or (2) there exists a cutwith certain

LEMMA 17. For three points p, g and r in the plane, such that Properties (am-good cut with respect to Yhat splitsw into W,
the triangle pqr contains its own circumcenter, the length of a trip andW, and(E, D) recursively satisfies therguillotine property
from p to g to r and back to p is at leadt where r is the circum- ~ With respect to botkV, andW,. Due to the lack of space, we cannot
radius of the points. give the full definition of amm-good cut (see the full paper).

The crux of the method is a structural theorem, which shows how

Proof of Theorem 16. Letr(X) andr(Y) denote the minimum to convert any covering netwoilG, 2) into another covering net-
radius of a circle enclosing orY, respectively. LeT be a covering work (G, D'), such that the new graghl satisfies then-guillotine
tour of Y, X C T be the set of disk centers angtheir radii. Finally, property, and that the total cost of the new instafé& ?) is
let rmax = max;rj. at mostO((L + CR)/m) times greater than the original instance

By the triangle inequality, Lemma 17 implies that the leri@th> (G, D), whereL is the total edge length d& and R the sum of
4r(X). Since the tour visits all the centersXhand the disks cen-  the radii of ©. The construction is recursive: at each stage, we
tered aiX coverY, we haver (Y) < r(X) 4 rmax. By definition, the show that there exists a cut with respect to the current window
cost of T is lengtHT) +Cy ; rj, which by the observation above is  (which initially is the unit squar®), such that we can “afford” (by

The proof rests on the following elementary geometry lemma
(whose proof is omitted here).

at least 4(X) +Cyjrj = 4r(X) +Crmax. The assumptio€ < 4 means of a charging scheme) to add short horizontal/vertical edges
then implies that it be at lea&(r(X) + rmax) = Cr(Y), which is in order to satisfy then-guillotine property, without increasing the
the cost of covering by a single disk with a zero-length tour.O total edge length too much.

We then apply a dynamic programming algorithm, running in
4.3 The case€ > 4 A PTAS O(no(m)) time, to compute a minimum-cost covering network hav-

ing a prescribed set of properties: (1) it satisfies riguillotine
property (with respect t®), which is necessary for the dynamic
program to have the claimed efficiency; (2) its disks cover the clients
Y; and (3) its edge set contains an Eulerian subgraph. This third
condition allows us to extract a tour in the end. In the proof of the
following theorem (see the full paper), we give the details of the
dynamic programming algorithm that yields:

We distinguish between two cases for the choice of transmission
points: they may either be arbitrary points in the plane (selected by
the algorithm) or they may be constrained to lie within a discrete
set7 of candidate locations.

The constan€ specifies the relative weight associated with the
two parts of the cost function — the length of the tour, and the sum
of the disk radii. IfC is very small C < 4), then the solution is to

cover the seY using a single disk (the minimum enclosing disk), 1ihe “nv in this section refers to a parameter, whichQg/¢), not the
and a corresponding tour of length O (the singleton point that is number of servers.
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