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Abstract. We construct, for any positive integer n, a family of n congruent
convex polyhedra in IR3, such that every pair intersects in a common facet.
Our polyhedra are Voronoi regions of evenly distributed points on the helix
(t, cos t, sin t). The largest previously published example of such a family
contains only eight polytopes. With a simple modification, we can ensure
that each polyhedron in the family has a point, a line, and a plane of
symmetry. We also generalize our construction to higher dimensions and
introduce a new family of cyclic polytopes.

1. Introduction and History

A family of d-dimensional convex polytopes is neighborly if every pair

of polytopes has a (d − 1)-dimensional intersection. It has been known for

centuries that a neighborly family of convex polygons (or any other connected

sets) in the plane has at most four members. In 1905, Tietze [27, 28]

proved that there are arbitrarily large neighborly families of 3-dimensional

polytopes, answering an open question of Guthrie [17] and Stäckel [26].

Tietze’s result was independently rediscovered by Besicovitch [4], using a

different construction, and generalized to higher dimensions by Rado [11]

and Eggleston [22].

Neighborly families of convex bodies are closely related to neighborly

convex polytopes. A polytope is (2-)neighborly if every pair of vertices lies on

1Partially supported by a Sloan Fellowship and NSF CAREER award CCR-0093348.
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a convex hull edge; the Schlegel diagram of the polar dual of any neighborly

4-polytope consists of a neighborly family of 3-polytopes. Neighborly poly-

topes were discovered by Carathéodory [7], who showed that the convex hull

of any finite set of points on either the moment curve (t, t2, t3, . . . , td) ∈ IRd or

the trigonometric moment curve (cos t, sin t, cos 2t, sin 2t, . . . , cos kt, sin kt) ∈

IR2k is a neighborly polytope. Carathéodory’s proof was later simplified by

Gale [13], who called these polytope families the cyclic polytopes and the

Petrie polytopes, respectively, and showed that the two families are combi-

natorially equivalent. Cyclic polytopes were independently rediscovered by

Motzkin [21, 16] and Šaškin [23], among others. For further discussion of

neighborly and cyclic polytopes, see Grünbaum [15] and Ziegler [32].

Dewdney and Vranch [10] showed that the Voronoi diagram of the integer

points {(t, t2, t3) | t = 1, 2, . . . , n} form a neighborly family of unbounded

convex polyhedra. Klee [18] derived a similar result for any set of evenly

distributed points on the trigonometric moment curve in even dimensions

four and higher. Seidel [25] observed that for any d ≥ 3, Descartes’ rule of

signs2 implies that any finite set of points on the positive branch of the d-

dimensional (polynomial) moment curve has a neighborly Voronoi diagram.

More generally, the vertices of any neighborly polytope have a neighborly

Voronoi diagram, since the endpoints of any polytope edge have neighboring

Voronoi regions.

Zaks [29] described a general procedure to modify any neighborly family

of unbounded polyhedra of any dimension, where each polyhedron contains

an unbounded circular cone, so that the resulting polytopes are symmetric

about a flat of any prescribed dimension.

Danzer, Grünbaum, and Klee [9] asked if there is a largest neighborly

family of congruent polytopes. Zaks (with Linhart) [29] observed that

Klee’s Voronoi diagram of evenly distributed points on the trigonometric

moment curve forms a neighborly family of congruent convex polyhedra in

even dimensions four and higher, but left the three-dimensional case open.

The largest previously published neighborly family of congruent 3-polytopes,

discovered by Zaks [30], consists of eight triangular prisms. According to

Croft, Falconer, and Guy [8, Problem E7], this was also the largest known

collection of congruent convex bodies in IR3 with the property that every pair

has even one (distinct) point of contact. Both Zaks [30] and Croft, Falconer,

and Guy [8] conjectured that the largest neighborly family of congruent 3-

polytopes is finite (see also Moser and Pach [20, Problem 55]).

In Section 2, we show that this conjecture is incorrect, by giving a con-

structive proof of the following theorem.

2The number of real roots of a polynomial is no more than the number of sign changes
in its degree-ordered sequence of non-zero coefficients.
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Main Theorem. For any positive integer n, there is a neighborly family of

n congruent convex 3-polytopes.

Like the earlier constructions of Dewdney and Vranch [10] and Zaks and

Linhart [30], our construction is based on the Voronoi diagram of a set of

points on a curve, namely the regular circular helix h(t) = (t, cos t, sin t). An

example of our construction is shown in Figure 1, and a single polytope in

our family is shown in Figure 3.

(a) (b)

Figure 1. (a) A neighborly family of sixteen congruent
convex polytopes. (b) An exploded view of the same family.

Our neighborly family (or a linear transformation thereof) was discovered

in the late 1980s by the second author, who was inspired by the way playing

cards overlap when they are fanned. However, except for a brief announce-

ment by Gardner [14] (which was unnoticed by most of the mathematics

community), the construction was never published. The same construction

was independently discovered by the first author in 2001, as a result of his

research on the complexity of three-dimesnional Voronoi diagrams [12].

In Section 3, we generalize our Main Theorem to higher dimensions,

by constructing an arbitrarily large family of congruent convex polytopes

in IRd, any dd/2e of which share a unique common boundary face. We

also introduce a new family of cyclic polytopes, generalizing both the classic

cyclic polytopes and the Petrie polytopes.

2. The Main Theorem

Our construction relies on the following observation, independently dis-

covered by Bochiş and Santos [6, Lemma 4.2] (generalizing their earlier proof

of a special case [5, Lemma 2.8]) and the author [12, Lemma 2.1]. We include

the proof here for the sake of completeness.
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Lemma 1. Let β(t) denote the unique sphere passing through h(t) and h(−t)

and tangent to the helix at those two points. For any 0 < t < π, the sphere

β(t) intersects the helix only at its two points of tangency.

Proof. Since a 180◦ rotation about the y-axis maps h(t) to h(−t) and leaves

the helix invariant, the bitangent sphere β(t) must be centered on the y-

axis. Thus, β(t) is described by the equation x2 + (y − a)2 + z2 = r2 for

some constants a and r. Let γ denote the intersection curve of β(t) and

the cylinder y2 + z2 = 1. Every intersection point between β(t) and the

helix must lie on this curve. If we project the helix h and the intersection

curve γ to the xy-plane, we obtain the sinusoid y = cosx and a portion of

the parabola y = γ(x) = (x2 − r2 + a2 + 1)/2a. These two curves meet

tangentially at the points (t, cos t) and (−t, cos t). See Figure 2.

Figure 2. The intersection curve of the cylinder and a
bitangent sphere projects to a parabola on the xy-plane.

The mean value theorem implies that the equation γ(x) = cosx has at

most four solutions in the range −π < x < π. (Otherwise, the curves

y′′ = − cosx and y′′ = γ′′(x) = 1/a would intersect more than twice in that

range.) Since the curves meet with even multiplicity at two points, those are

the only intersection points in the range −π < x < π. Since γ(x) is concave,

we have γ(±π) < cos±π = −1, so there are no intersections with |x| ≥ π.

Thus, the curves meet only at their two points of tangency. �

Lemma 1 immediately implies that the Voronoi diagram of any finite set

of points on the helix (t, cos t, sin t) in the range −π < t < π is a neighborly

collection of unbounded convex polyhedra.

To obtain a neighborly family of congruent polyhedra, we use the Voronoi

diagram of evenly spaced points on the helix. For any positive integer n, let

hn(t) = h(2πt/n) and let Hn denote the infinite point set {hn(t) | t ∈ ZZ}.

By Lemma 1, the Voronoi regions of any n+1 consecutive points in Hn form

a neighborly family of convex bodies. Since the point set Hn is preserved by

the rigid motion

(x, y, z) 7→

(

x +
2π

n
, y cos

2π

n
− z sin

2π

n
, y sin

2π

n
+ z cos

2π

n

)

,
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which maps each point hn(t) to its successor hn(t+1), these Voronoi regions

are all congruent.

The following more refined analysis of the Delaunay triangulation of Hn,

reminiscent of Gale’s ‘evenness condition’ for cyclic polytopes [13, 24], im-

plies that these Voronoi regions have only a finite number of facets, and thus

are actually polyhedra.

Lemma 2. For any integers a < b < c < d, the points hn(a), hn(b),

hn(c), hn(d) are vertices of a simplex in the Delaunay triangulation of Hn if

and only if b − a = d − c = 1 and d − a ≤ n.

Proof. Call a tetrahedron with vertices hn(a), hn(b), hn(c), hn(d) local if b−

a = d − c = 1 and d − a ≤ n. Let σ be the sphere passing through the

vertices of an arbitrary local tetrahedron. Analysis similar to the proof of

Lemma 1 implies that the only portions of the helix that lie inside σ are the

segments between hn(a) and hn(b) and between hn(c) and hn(d). Thus, all

other points in Hn lie outside σ, so the four points form a Delaunay simplex.

The local Delaunay simplices exactly fill the convex hull of Hn, and

therefore comprise the entire Delaunay triangulation. Specifically, the only

triangles that are facets of exactly one local tetrahedron have vertices hn(i),

hn(i+1), hn(i+n) or hn(i−n+1), hn(i), hn(i+1) for some integer i. Thus,

a tetrahedron is Delaunay if and only if it is local. �

In light of the duality between Delaunay triangulations and Voronoi dia-

grams, Lemma 2 lets us exactly describe the combinatorial structure of the

Voronoi regions of Hn. Let Vn(t) denote the Voronoi region of hn(t). This

polyhedron has exactly 2n facets, in n symmetric pairs, as follows:

• two unbounded (2n − 1)-gons shared with Vn(t ± 1), each bounded

by 2n − 3 segments and two parallel rays;

• two triangles shared with Vn(t ± 2);

• 2n − 8 bounded quadrilaterals shared with Vn(t ± 3), Vn(t ± 4), . . . ,

Vn(t ± (n − 2));

• two unbounded quadrilaterals shared with Vn(t ± (n − 1)), each

bounded by two line segments and two parallel rays;

• two wedges in parallel planes shared with Vn(t ± n), each bounded

by a pair of rays.

The two (2n − 1)-gons are adjacent to all the other facets, including each

other, and contain all the vertices of Vn(t); otherwise, the facets are adjacent

in sequence. See Figure 3.

The vertex of Vn(0) furthest from the x-axis is the center of the sphere

through the points hn(0), hn(1), hn(n − 1), and hn(n); this point has coor-

dinates (π, (2π− θ)θ/(2−2 cos θ), 0), where θ = 2π/n. Thus, all the Voronoi

vertices of Hn lie in a cylinder of radius (2π−θ)θ/(2−2 cos θ) ≈ n−1 around
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(a) (b)

Figure 3. (a) One polytope in the neighborly family of
sixteen shown in Figure 1. (b) An orthographic edge-on view
of the same polytope.

the x-axis. To transform our neighborly family of unbounded polyhedra into

a neighborly family of polytopes, we intersect each Voronoi region Vn(t) with

the halfspace y cos(2πt/n) + z sin(2πt/n) ≤ n, which contains some positive

area of every facet of Vn(t).

This completes the proof of the Main Theorem.

Zaks [31] describes an alternate proof, based entirely on the neighborliness

of the Voronoi regions of Hn. For each integer 1 ≤ t ≤ n, place a triangle on

the shared boundary facet between Vn(0) and Vn(t). Now place congruent

copies of these triangles on the boundary of every Voronoi region, so that

the entire collection has the same screw symmetry as Hn. Finally, for any

integer t, let Cn(t) be the convex hull of the triangles on the boundary of

Vn(t). The n + 1 congruent convex polytopes Cn(0), Cn(1), . . . , Cn(n) form

a neighborly family.

To actually construct our neighborly family (or Zaks’), it suffices to com-

pute the Voronoi diagram of the finite point set {hn(t) | t = 0, 1, . . . , 3n}

and then consider only the Voronoi regions of the middle n + 1 points

hn(n), hn(n + 1), . . . , hn(2n− 1), hn(2n), since those Voronoi regions are the

same as in the infinite point set Hn. Figure 1 was computed using this

method.

Since a 180◦ rotation about the y-axis maps each point hn(t) to hn(−t),

and thus preserves the point set Hn, the Voronoi region Vn(0) is rotationally

symmetric about the y-axis. It immediately follows every Voronoi region

of Hn has a line of 180◦ rotational symmetry. Clipping each Voronoi region

by an additional halfspace as above retains this symmetry, since the clipping

plane is normal to the symmetry axis. We can create a neighborly family

of congruent polytopes with additional symmetries by taking the union of

each clipped Voronoi region and its reflection across its clipping plane. Each
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resulting polytope clearly has bilateral symmetry about its clipping plane

and 180◦ symmetry about the original Voronoi region’s axis of symmetry, and

therefore is centrally symmetric about the intersection point of the clipping

plane and the symmetry axis.

Theorem 3. For any integer positive integer n, there is a neighborly family

of n congruent convex 3-polytopes, each with a plane of bilateral symmetry,

a line of 180◦ rotational symmetry, and a point of central symmetry.

3. Higher Dimensions

A family of convex polyhedra in IRd is (strictly) k-neighborly if any subset

of k polyhedra has a (d − k + 1)-dimensional intersection, and no subset of

k+1 polytopes has a non-empty intersection.3 Arbitrarily large k-neighborly

families of polyhedra are easy to construct in IR2k−1, for example, Schlegel

diagrams of dual cyclic 2k-polytopes [7, 13] or Voronoi diagrams of points

on the moment curve [25]. However, arbitrarily large k-neighborly families

of congruent polyhedra were previously only known in dimensions 2k and

higher. The lowest-dimensional example is based on the Voronoi diagram

of evenly distributed points on the trigonometric moment curve [18, 29]

together with the origin (since otherwise the origin is on the boundary of

every Voronoi polyhedron).

In this section, we generalize our three dimensional results by considering

regularly spaced points on the following generalized helix :

hk(t) =
(

t, cos t, sin t, cos 2t, sin 2t, . . . , cos kt, sin kt
)

∈ IR2k+1.

Theorem 4. Let P be any finite set of points on the curve hk(t) in the range

0 < t < 2π, for some non-negative integer k. The Voronoi diagram of P is

a (k + 1)-neighborly family of convex polyhedra in IR2k+1.

Proof. Consider the sphere σ passing through k + 1 arbitrary points hk(a0),

hk(a1), . . . , hk(ak) ∈ P and tangent to the generalized helix at those points,

where 0 < a0 < a1 < · · · < ak < 2π. Any point hk(t) that lies on σ satisfies

the following (2k + 3) × (2k + 3) matrix equation:

3The second condition is necessary to rule out degenerate constructions such as the
product of a (d − 2)-dimensional cube with n congruent planar wedges.
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F (t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 a0 cos a0 sin a0 · · · cos ka0 sin ka0 k + a2
0

0 1 − sin a0 cos a0 · · · −k sin ka0 k cos ka0 2a0

1 a1 cos a1 sin a1 · · · cos ka1 sin ka1 k + a2
1

0 1 − sin a1 cos a1 · · · −k sin ka1 k cos ka1 2a1

...
...

...
...

. . .
...

...
...

1 ak cos ak sin ak · · · cos kak sin kak k + a2
k

0 1 − sin ak cos ak · · · −k sin kak k cos kak 2ak

1 t cos t sin t · · · cos kt sin kt k + t2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

(Each of the even rows of this matrix is the derivative of the preceding row.)

To bound the number of zeros of F (t), consider its second derivative

F ′′(t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 a0 cos a0 sin a0 · · · cos ka0 sin ka0 k + a2
0

0 1 − sin a0 cos a0 · · · −k sin ka0 k cos ka0 2a0

1 a1 cos a1 sin a1 · · · cos ka1 sin ka1 k + a2
1

0 1 − sin a1 cos a1 · · · −k sin ka1 k cos ka1 2a1

...
...

...
...

. . .
...

...
...

1 ak cos ak sin ak · · · cos kak sin kak k + a2
k

0 1 − sin ak cos ak · · · −k sin kak k cos kak 2ak

0 0 − cos t − sin t · · · −k2 cos kt −k2 sin kt 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

F ′′(t) is an affine combination of the functions cos t, sin t, cos 2t, sin 2t, . . . ,

cos kt, sinkt, so it can be rewritten as as a polynomial of degree at most 2k

in the variable eit. Thus, F ′′(t) has at most 2k zeros in the range 0 < t < 2π.

(This is essentially the argument used by Carathéodory to show that Petrie

polytopes are neighborly [7].)

Since a0, a1, . . . , ak are roots of F (t) of multiplicity two, they are the only

roots in the range 0 < t < 2π; otherwise, by the mean value theorem, F ′′(k)

would have more than 2k roots in the range 0 ≤ a0 < t < ak ≤ 2π, which

we have just shown to be impossible. Thus, the points hk(a0), hk(a1), . . . ,

hk(ak) lie on a sphere that excludes every other point in P and so have

mutually neighboring Voronoi regions. �

In fact, Theorem 4 is a special case of the following result, which follows

from an easy generalization of the previous proof and Gale’s evenness con-

dition for cyclic polytopes [13, 24]. Define the mixed moment curve µd,k(t)

as follows:

µd,k(t) =
(

t, t2, . . . , td, cos t, sin t, cos 2t, sin 2t, . . . , cos kt, sin kt
)

∈ IR2k+d.

For example, µd,0(t) is the standard d-dimensional moment curve, µ0,k(t) is

the 2k-dimensional trigonometric moment curve, and µ1,k(t) is our general-

ized helix.
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Theorem 5. For any non-negative integers d and k, the convex hull of any

finite set of points on the curve µd,k(t) in the range 0 < t < 2π is a (d+2k)-

dimensional cyclic polytope.

Not surprisingly, we obtain arbitrarily large highly-neighborly families

of congruent polytopes by considering the Voronoi diagram of the infinite

evenly-spaced point set Hk
n = {hk(2πt/n) | t ∈ ZZ}.

Theorem 6. For any non-negative integers n and k, any n + 1 consecutive

Voronoi regions in the Voronoi diagram of Hk
n form a (k + 1)-neighborly

family of congruent convex polyhedra.

Proof. Fix an integer n. To simplify notation, let ~(t) = hk(2πt/n), and

let 〈t1, t2, . . . , tr〉 denote the convex hull of the points ~(t1), ~(t2), . . . , ~(tr).

Since the set Hk
n = {~(t) | t ∈ ZZ} is preserved under a rigid motion mapping

each point ~(t) to its successor ~(t + 1), the Voronoi regions of Hk
n are all

congruent.

Call a full-dimensional simplex with vertices in Hk
n local if all its vertices

consist of k + 1 adjacent pairs within a single turn of the generalized helix;

in other words, every local simplex has the form

〈a0, a0 + 1, a1, a1 + 1, . . . , ak, ak + 1〉

for some integers a0, a1, . . . , ak with ak+1 ≤ a0+n and ai+1 < ai+1 for all i.

Analysis similar to Theorem 4 implies that every local simplex is Delaunay.

The convex hull of Hk
n, which we will call the Petrie cylinder, is the

product of an 2k-dimensional Petrie polytope with n vertices and a line

orthogonal to that polytope’s hyperplane. By Gale’s evenness condition

[13, 24], the facets of the Petrie polytope are formed by all sets of k adjacent

pairs of points on the trigonometric moment curve. The faces of the Petrie

cylinder are cylinders over the faces of the Petrie polytope.

Call a facet of a local simplex that is not shared by another local simplex a

boundary simplex. We easily observe that the boundary simplices are exactly

the 2k-simplices with one of the following two forms:

〈ak − n + 1, a1, a1 + 1, a2, a2 + 1, . . . , ak, ak + 1〉

〈a1, a1 + 1, a2, a2 + 1, . . . , ak, ak + 1, a1 + n〉

The following infinite sequence of boundary simplices exactly covers one facet

of the Petrie cylinder.
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. . .

〈ak − n + 1, a1, a1 + 1, a2, a2 + 1, . . . , ak, ak + 1〉

〈a1, a1 + 1, a2, a2 + 1, . . . , ak, ak + 1, a1 + n〉

〈a1 + 1, a2, a2 + 1, . . . , ak, ak + 1, a1 + n, a1 + n + 1〉

〈a2, a2 + 1, . . . , ak, ak + 1, a1 + n, a1 + n + 1, a2 + n〉
. . .

Every facet of the Petrie cylinder is covered in this manner, and every

boundary simplex lies on some facet of the Petrie cylinder. Thus, the union

of the boundary facets is the boundary of the Petrie cylinder, so the local

Delaunay simplices completely fill the Petrie cylinder and therefore comprise

the entire Delaunay triangulation.

It easily follows that each Voronoi region of Hk
n is a convex polyhedron

with Θ(nk) facets, and that any n + 1 consecutive Voronoi regions form

a (k + 1)-neighborly family. As we already observed, these polyhedra are

congruent. �

We can easily modify our construction to obtain a (k+1)-neighborly family

of polytopes, by intersecting each Voronoi region with a halfspace strictly

containing all its vertices. Each Voronoi region of Hk
n has a k-flat of two-fold

symmetry. As long as the boundary of the new halfspace is perpendicular to

this central k-flat, the resulting polytope is also symmetric about this flat.

Using a variant of Zaks’ symmetrization procedure [29], we can ensure

that each polytope is also symmetric about a flat of any specified dimension.

Consider the Voronoi region V of ~(0) in the Voronoi diagram of Hk
n. Let ρ

be the ray from the origin through ~(0), let φ+ and φ− denote the supporting

hyperplanes of the only two parallel facets of V (shared with the Voronoi

regions of ~(n) and ~(−n)), and let π be a hyperplane normal to ρ at

sufficient distance from the origin. Finally, let f be any flat that lies in π,

contains the point ρ ∩ π, and is either parallel or perpendicular to both φ+

and φ−. The intersection of V and its reflection across f is a convex polytope

that is obviously symmetric about f and whose boundary contains positive

measure from every boundary facet of V . Applying this procedure to any

n + 1 consecutive Voronoi regions of Hk
n, we obtain our final result.

Theorem 7. For any non-negative integers k, n, and r ≤ 2k, there is a

(k+1)-neighborly family of n+1 congruent convex polytopes in IR2k+1, each

of which is symmetric about an r-flat.
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[16] B. Grünbaum and T. S. Motzkin. On polyhedral graphs. Convexity, pp.

285–290. Proc. Symp. Pure Math., vol. VII, Amer. Math. Soc., 1963.

[17] F. Guthrie. Proc. Royal Soc. Edinburgh, 10 (1878–1880), 728.



12 ERICKSON AND KIM

[18] V. Klee. On the complexity of d-dimensional Voronoi diagrams. Archiv

der Math., 34 (1980), 75–80.

[19] S. Levy, T. Munzner, M. Phillips, C. Fowler, N. Thurston, D. Krech,

S. Wisdom, D. Meyer, T. Rowley, and S. M. Robbins. Geomview,

version 1.8.1, March 2001. 〈http://www.geomview.org〉.

[20] W. Moser and J. Pach. Research problems in discrete geometry: Packing

and covering. Tech. Rep. 93–32, DIMACS, 1993.

[21] T. S. Motzkin. Comonotone curves and polyhedra. Bull. Amer. Math.

Soc., 63 (1957), 35.

[22] R. Rado. A sequence of polyhedra having intersections of specified

dimensions. J. London Math. Soc., 22 (1947), 287–289.
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