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Abstract. Let G be an edge-weighted planar graph with 2k terminal vertices5

s1, t1, . . . , sk, tk. The minimum-sum vertex-disjoint paths problem asks for a set of6

pairwise vertex-disjoint simple paths of minimum total length, where the ith path7

connects si to ti. Even when all terminals lie on a single face, efficient algorithms8

for this problem are known only for fixed k ≤ 3. We describe the first polynomial-9

time algorithm for the case of four arbitrary terminal pairs on a single face.10

1 Introduction11

In the vertex-disjoint paths problem, we are given a graph G along with k vertex pairs12

(s1, t1), . . . , (sk, tk), and we want to find k pairwise vertex-disjoint paths connecting each13

node si to the corresponding node ti. The vertices s1, . . . , sk, t1, . . . , tk are called termi-14

nals. The vertex-disjoint paths problem is a special case of multi-commodity flows15

with applications in VLSI design [7, 19] and network routing [18, 22]. This problem is16

NP-hard [13] and remains so even if G is undirected planar [16] or if G is directed and17

k = 2 [6]. On the other hand, it can be solved in polynomial time if G is undirected and k18

is bounded [14, 20] or if G is directed acyclic and k is bounded [6]. Furthermore, the19

problem is fixed-parameter tractable with respect to the parameter k in directed planar20

graphs [5, 21].21

We focus on an optimization version of the vertex-disjoint paths problem, where22

the goal is to minimize the total length of the paths. This version of the problem has23

also been considered in the context of network routing, where we want to minimize the24

amount of energy required to send packets [18, 22]. In the k-min-sum problem, we are25

given a graph G, in which every edge e has a non-negative real length `(e), and k pairs26

of vertices (s1, t1), . . . , (sk, tk). We want to find k vertex-disjoint paths P1, . . . , Pk where27

each path Pi is a path from si to ti and the total length
∑k

i=1 `(Pi) is as small as possible.28

(Here `(Pi) =
∑

e∈Pi
`(e).)29

Middendorf and Pfeiffer [16] proved that the k-min-sum problem is NP-hard when30

the parameter k is part of the input, even in undirected 3-regular plane graphs. Not much31

is known about the complexity of the planar k-min-sum problem for fixed k. In fact, no32

non-trivial algorithms or hardness results are known for either the 2-min-sum problem33

in directed planar graphs or the 5-min-sum problem in undirected planar graphs, even34

when all terminals are required to lie on a single face.35

Polynomial-time algorithms for the planar k-min-sum problem are known for ar-36

bitrary k when all 2k terminals terminals lie on a single face, in one of two patterns.37
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In a parallel instance, the terminals appear in cyclic order s1, . . . , sk, tk, . . . , t1, and an1

a serial instance, the terminals appear in cyclic order s1, t1, s2, t2, . . . , sk, tk. Even in2

directed planar graphs, parallel instances of k-min-sum can be solved using a straight-3

forward reduction to minimum-cost flows [9]; in fact, this special case can be solved4

in O(kn) time. A recent algorithm of Borradaile, Nayyeri, and Zafarani [2] solves any5

serial instance of k-min-sum in an undirected planar graph in O(kn5) time.6

If we allow arbitrary patterns of terminals, fast algorithms are known for only very7

small values of k. Kobayashi and Sommer [15] describe two algorithms, one running in8

O(n3 log n) time when k = 2 and all four terminals are covered by at most two faces,9

the other running in O(n4 log n) time when k = 3 when all terminals are incident to a10

single face. Colin de Verdière and Schrijver [4] describe an O(kn log n)-time algorithm11

for directed planar graphs where all sources si lie on one face and all targets ti lie on12

another face. Finally, if k ≤ 3, every planar instance of k-min-sum with all terminals on13

the same face is either serial or parallel.14

Zafarani [23] proved an important structural result for the planar k-min-sum prob-15

lem. Consider an undirected edge-weighted plane graph G with vertices s1, t1, . . . , sk, tk16

on its outer face. Let Q1,Q2, . . . ,Qk be the shortest vertex-disjoint paths in G connecting17

all k terminal pairs, and let P1, P2, . . . , Pk−1 be the shortest vertex-disjoint paths in G18

connecting every pair except sk, tk, where the subscript on each path indicates which19

terminals it connects. Zafarani’s Structure Theorem states that if two paths Pi and Q j20

cross, then i = j.21

We describe the first polynomial-time algorithm to solve the 4-min-sum problem22

in undirected planar graphs with all eight terminals on a common face. If the given23

instance is parallel or serial, it can be solved using existing algorithms; otherwise, the24

terminals can be labeled s4, s3, s1, t1, s2, t2, t3, t4 in cyclic order around their common25

face. To solve these instances, our algorithm first computes a solution to the 3-min-26

sum problem for the terminal pairs s1t1, s2t2, s4t4, using the serial-instance algorithm27

of Borradaile et al. We identify a small set of key anchor vertices where the 3-min-28

sum solution intersects the 4-min-sum solution we want to compute. For each possible29

choice of anchor vertices, we connect these vertices to the terminals using parallel min-30

sum problems in three carefully constructed subgraphs of G. Overall, our algorithm runs31

in O(n6) time. Our characterization of the interaction between the 3-min-sum and 4-32

min-sum solutions, which both relies on and extends Zafarani’s Structure Theorem [23],33

is the main technical contribution of the paper.34

2 Preliminaries35

For any integer N, let [N] denote the set {1, 2, . . . ,N}.36

For any plane graph G, we write ∂G to denote the boundary of the outer face of G;37

we also informally call ∂G the boundary of G. Without loss of generality, we assume38

that ∂G is a simple cycle.39

Our algorithms search for pairwise disjoint walks with minimum total length that40

connect corresponding terminals, rather than explicitly seeking simple paths. Because41

all edge lengths are non-negative, the shortest set of walks will of course consist of42

simple paths. The length of a walk w in an edge-weighted graph, which we denote `(w),43
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is the sum of the lengths of its edges, with appropriate multiplicity of w is not a simple1

path. The total length of any set of walks W, which we denote `(W) =
∑

w∈W `(w), is2

just the sum of their lengths. Two walks meet or touch if they have at least one vertex3

in common.4

For any path P and any vertices u and v on that path, we write P[u, v] to denote5

the subpath of P from u to v. Similarly, let P[u, v) denote the subpath of P from u6

to the predecessor of v, let P(u, v] denote the subpath of P from the successor of u7

to v, and let P(u, v) denote the subpath of P from the successor of u to the predecessor8

of v; these subpaths could be empty. The reversal of any path P is denoted rev(P). The9

concatenation of two paths P and P′ is denoted P ◦ P′.10

Our 4-min-sum algorithm relies on a black-box subroutine to solve parallel in-11

stances of 2-min-sum and 3-min-sum. As observed by van der Holst and de Pina,12

any parallel instance of k-min-sum can be solved in polynomial time by reduction to13

minimum-cost flow problem [9]. In fact, these instances can reduced in O(n) time to14

a planar instance of minimum-cost flow, by replacing each vertex with a clockwise15

directed unit-capacity cycle, as described by Colin de Verdiére and Schrijver [4] and16

Kaplan and Nussbaum [12]. The resulting minimum-cost flow problem can then be17

solved O(kn) time by performing k iterations of the classical successive shortest path18

algorithm [3,10,11], using the O(n)-time shortest-path algorithm of Henzinger et al. [8]19

at each iteration. We omit further details from this version of the paper.20

To simplify our presentation, we assume that our given instance of 4-min-sum and21

every instance of 2-min-sum and 3-min-sum considered by our algorithm has a unique22

solution. If necessary, these uniqueness assumptions can be enforced with high prob-23

ability using the isolation lemma of Mulmuley, Vazirani, and Vazirani [17]. We omit24

further details from this version of the paper.25

3 Structure26

Let G be an undirected plane graph with non-negative edge lengths, and let s4, s3, s1, t1,27

s2, t2, t3, t4 be eight distinct vertices in cyclic order around the outer face, as illustrated28

in Figure 1. Let Q = {Q1, . . . ,Q4} denote the unique optimal solution to this 4-min-29

sum instance, where each path Qi connects si to ti, and let P = {P1, P2, P4} denote the30

unique optimal solution to the induced 3-min-sum problem that omits the demand pair31

s3t3, where again each path Pi connects si to ti. We can compute P in O(n4 log n) time32

using the algorithm of Kobayashi and Sommer [15], or in O(n5) time using the more33

general algorithm of Borradaile et al. [2].34

The paths in P divide G into four regions, as shown in Figure 1(a). Let X be the35

unique region adjacent to all the paths in P. For each index i , 3, let Ci denote the36

subpath of ∂G from si to ti that shares no edges with X, let Ri denote the closed region37

bounded by Pi and Ci, and let R◦
i

denote the half-open region Ri \ Pi.38

3.1 How P intersects Q39

We begin by proving several simple structural properties of the 4-min-sum solution Q40

that will help us compute it quickly once we know the 3-min-sum solution P. Fig-41

ure 1(b) shows a typical structure for Q.42
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Fig. 1. (a) Terminals, paths in P, and the regions they define. (b) Typical structure of Q.

Lemma 3.1. If Pi crosses Q j, then i = j. In particular, Q3 does not cross any path in P.1

Proof. This is an immediate consequence Zafarani’s structure theorem [23]. ut

Lemma 3.2. Q1 and Q2 do not meet P4. Similarly, Q4 does not meet P1 or P2.2

Proof. Q3 separates s1, t1, s2, t2 from s4 and t4. Thus, Lemma 3.1 implies that Q3 sepa-
rates Q1 and Q2 from P4, and Q3 separates P1 and P2 from Q4. ut

Lemma 3.3. Q4 lies entirely in R4.3

Proof. For the sake of argument, suppose Q4 leaves R4. Let q be any component of4

Q4 \ R◦4, as shown at the bottom of Figure 2. The endpoints x and y of q must lie on5

P4; let p denote the subpath P4[x, y]. Define two new paths P′4 = P4 \ p ∪ q and6

Q′4 = Q4 \ q ∪ p. Both P′4 and Q′4 are walks from s4 to t4. Let P′ = {P1, P2, P′4} and7

Q = {Q1,Q2,Q3,Q′4}.8

Lemma 3.2 implies that q ⊆ Q4 does not meet P1 or P2, so P′4 does not meet P19

or P2, which implies that the walks in P′ are pairwise vertex-disjoint. On the other10

hand, subpath p lies inside the disk enclosed by P′4 ∪C4, so Lemmas 3.1 and 3.2 imply11

that Q′4 does not meet Q1, Q2, or Q3. It follows that the walks in Q′ are also pairwise12

vertex-disjoint.13

The unique optimality of P implies `(P) < `(P′), and the unique optimality of Q
implies `(Q) < `(Q′). But `(P) + `(Q) = `(P′) + `(Q′), so we have a contradiction. ut

Lemma 3.4. Every component of Q1 \ R◦1 meets P2, and every component of Q2 \ R◦214

meets P1.15

Proof. For the sake of argument, suppose some component q of of Q1 \ R◦1 does not16

meet P2, as shown at the top of Figure 2. We derive a contradiction using a similar17

exchange argument to Lemma 3.3.18

The endpoints x and y of q must lie on P1; let p denote the subpath P1[x, y]. Define19

two new paths P′1 = P1 \ p ∪ q and Q′1 = Q1 \ q ∪ p. Clearly P′1 and Q′1 are both20

walks from s1 to t1. Let P′ = {P′1, P2, P4} and Q = {Q′1,Q2,Q3,Q4}. Lemma 3.2 and21

our assumption that q does not meet P2 imply that the walks in P′ are pairwise vertex-22

disjoint. On the other hand, p lies in the disk enclosed by P′1 ∪ C1, which implies23
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Fig. 2. An impossible configuration of optimal paths, for the proofs of Lemmas 3.3 and 3.4.

that the walks in Q′ are also pairwise vertex-disjoint. The optimality of P implies that1

`(P) < `(P′), and the optimality of Q implies that `(Q) < `(Q′), but clearly `(P)+`(Q) =2

`(P′) + `(Q′), so we have a contradiction.3

A symmetric argument proves that every component of Q2 \ R◦2 meets P1. ut

Lemma 3.5. Either Q1 ⊂ R1 or Q2 ⊂ R2 or both.4

Proof. For the sake of argument, suppose Q1 leaves R1 and Q2 leaves R2. Let S 1 be the5

closed region bounded by Q1 ∪C1 and let S 2 be the closed region bounded by Q2 ∪C2.6

We call each component of S 1 \ R◦1 a left finger, and each component of S 2 \ R◦2 a right7

finger. Lemma 3.4 and the Jordan curve theorem imply that each finger is a topological8

disk that intersects both P1 and P2. Thus, the fingers can be linearly ordered by their9

intersections with P1 from s1 to t1 (from bottom to top in Figure 3). Because Q1 is10

a simple path, the fingers intersect Q1 in the same order. Without loss of generality,11

suppose the last finger in this order is a right finger. Let s be the last left finger, and12

let s′ be the right finger immediately after s.13

Let w be the last node of P1 (closest to t1) that lies in s, and let y be the last node of P214

(closest to t2) that that lies in s′. We define four subpaths p1 = P1[w, t1], q1 = Q1[w, t1],15

p2 = P2[s2, y], and q2 = Q2[s2, y], as shown on the left of Figure 3. (Paths p2 and q216

could enclose more than one right finger.)17

s1

t1 s2

t2
w

ys0

s

p1
p2q2

q1 z
x

Fig. 3. Another impossible configuration of optimal paths, for the proof of Lemma 3.5.

Now exchange the subpaths p1 ↔ q1 and p2 ↔ q2 to define four new walks P′1 =18

P1 \ p1 ∪ q1, Q′1 = Q1 \ q1 ∪ p1, P′2 = P2 \ p2 ∪ q2, and Q2 = Q2 \ q2 ∪ p2. Finally, let19

P′ = {P′1, P
′
2, P4} and Q′ = {Q′1,Q

′
2,Q3,Q4}. As in previous lemmas, we argue that P′20

and Q′ are sets of vertex-disjoint walks.21



6 Jeff Erickson and Yipu Wang

Lemma 3.1 implies that Q3 does not cross P1 or P2, and trivially Q3 does not1

cross Q1. Thus, none of the paths Q3, P4,Q4 touches any of the paths p1, q1, p2, q2.2

It follows that P4 does not touch either P′1 or P′2, and similarly, Q3 and Q4 does not3

touch either Q′1 or Q′2.4

We define two more auxiliary nodes x and z, as shown on the right in Figure 3. Let x5

be the first vertex of P2 also on Q1. Vertex y must precede x on P2, because x ∈ s and6

y ∈ s′. Let z be the first vertex of P1 also on q2. Vertex w must precede z on P1, because7

w ∈ s and z ∈ s′.8

Trivially, q1 does not meet q2, and P1 \ p1 does not meet P2 \ p2. Any left finger9

formed from q1 must succeed s. Because s is the last left finger, q1 does not form any10

left fingers and does not touch P2. By definition, z is the first node of P1 also on q2. On11

the other hand, all vertices of P1 \ p1 (except w) precede w on P1, which in turn strictly12

precedes z on P1, so P1 \ p1 is disjoint from q2. We conclude that P′1 does not meet P′2,13

implying that the walks in P′ are vertex-disjoint:14

Trivially, p1 does not meet p2, and Q1 \ q1 does not meet Q2 \ q2. Since q1 does15

not meet P2, x is the first vertex of P2 also on Q1 \ q1. On the other hand, all vertices16

of p2 (except y) precede y on P2, which in turn strictly precedes x on P2, so Q1 \ q117

is disjoint from p2. Any right finger whose boundary contains a subpath of Q2 \ q218

must precede s′, and any right finger that meets p1 must succeed s. Because no right19

fingers lie strictly between s and s′, the path Q2 \q2 does not form any right fingers that20

meet p1. We conclude that Q′1 does not meet Q′2, which implies that the walks in Q′ are21

vertex-disjoint.22

Finally, as usual, the optimality of P implies that `(P′) < `(P′), and the optimality
of Q implies that `(Q′) < `(Q′), but clearly `(P) + `(Q) = `(P′) + `(Q′). ut

Without loss of generality, in light of Lemma 3.5, we assume for the rest of the23

paper that P1 and Q2 are disjoint, and thus Q2 ⊂ R2.24

3.2 Subgraph Solutions25

Our algorithm solves several parallel instances of k-min-sum inside certain subgraphs26

of G. To prove that our algorithm is correct, we need to argue that the subgraph solutions27

coincide exactly with portions of the desired global solution. As an intermediate step,28

we first show that the subgraph solutions interact with the global solution in a limited29

way.30

Lemma 3.6. Let (G, {si, ti | i ∈ [k]}) be a planar instance of k-min-sum, with all termi-31

nals si and ti on ∂G, whose unique solution is Q = {Q1, . . . ,Qk}. Let S be a subset of [k]32

such that the induced planar min-sum instance (G, {si, ti | i ∈ S }) is parallel. Let H be a33

subgraph of G such that34

(1) Qi ∩ H , ∅ if and only if i ∈ S , and35

(2) for all distinct i, j ∈ S , no component of Qi ∩ H separates components of Q j ∩ H36

from each other in H.37

For each index i ∈ S , let ui and vi be vertices of Qi∩∂H such that Qi[ui, vi] ⊆ H. Finally,38

suppose (H, {ui, vi | i ∈ S }) is a parallel planar min-sum instance, whose unique solution39

is Π = {πi | i ∈ S }. Then for all indices i, j ∈ S , if i , j, then πi does not cross Q j.40
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Proof. First we establish some notation and terminology. Let κ = |S |, and re-index the1

terminals so that S = [κ] and the counterclockwise order of terminals around the outer2

face of H is u1, . . . , uκ, vκ, . . . , v1. Fix an index i such that 1 ≤ i < κ, and consider the3

paths Qi and πi+1.4

Let C (“ceiling”) denote the path in ∂G from si to ti that does not contain si+1 or ti+1,5

and let A be the closed region bounded by C and Qi. A point in G is above Qi if it lies6

in A \ Qi and below Qi if it does not lie in A.7

Similarly, let F (“floor”) denote the path in ∂H from ui+1 to vi+1 that does not con-8

tain ui or vi, and let B be the closed region bounded by F and πi+1. A point in H is be-9

low πi+1 if it lies in B \ πi+1 and above πi+1 if it does not lie in B.10

Paths Qi and πi+1 also divide the interior of G into connected regions, exactly one11

of which has the entire path C on its boundary; call this region U. Finally, let Q′i denote12

the unique path in G from si to ti such that C ∪ Q′i is the boundary of U. Every point13

on Q′i lies on or above Qi, and our assumption (2) implies that every point in Q′i ∩ H14

lies on or above πi+1. Thus, intuitively, Q′i is the “upper envelope” of Qi and πi+1. In15

particular, Q′i = Qi if and only if Qi and πi+1 are disjoint.16

Similarly, paths Qi and πi+1 divide the interior of H into connected regions, exactly17

one of which contains F on its boundary; call this region L. Let π′i+1 denote the unique18

path in H from ui+1 to vi+1 such that D ∪ π′i+1 is the boundary of L. Assumption (2)19

implies that every point on π′i+1 lies on or below both πi+1 and Qi. Thus, intuitively, π′i+120

is the “lower envelope” of Qi and πi+1. In particular, π′i+1 = πi+1 if and only if Qi and21

πi+1 are disjoint.22

Each component of Q′i \Qi is an open subpath of πi+1 that lies entirely above Qi and23

therefore is not contained in π′i+1. Similarly, every component of π′i+1 \ πi+1 is an open24

subpath of Qi ∩ H that lies entirely below πi+1 and therefore is not contained in Q′i . It25

follows that `(Q′i) + `(π′i+1) ≤ `(Qi) + `(πi+1).26

Finally, let Q′ = {Q′1, . . . ,Q
′
κ−1,Qκ, . . . ,Qk} and Π ′ = {π1, π

′
2, . . . , π

′
κ}; see Figure 127

for an example of our construction.28

(a) (b)

Fig. 4. Proof of Lemma 3.6. The inner red circle is ∂H. (a) The original disjoint paths Q (solid
blue) and Π (dashed red). (b) The transformed disjoint paths Q′ (solid blue) and Π ′ (dashed red).

Now suppose for the sake of argument that Qi crosses πi+1 for some index i, or29

equivalently, that Q′ , Q and Π ′ , Π . As usual, to derive a contradiction, we need to30
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show that Q′ and Π ′ are sets of disjoint walks. The following case analysis implies that1

the walks in Q′ are pairwise disjoint:2

– None of the paths Qκ+1, . . . ,Qk intersect H. On the other hand, for all i < κ, Q′i \Qi3

is a subset of πi+1 and therefore lies in H. Trivially, Qκ+1, . . . ,Qk are disjoint from4

Q1, . . . ,Qκ. Thus, paths Q′1 . . . ,Q
′
κ−1,Qκ are disjoint from paths Qκ+1, . . . ,Qk.5

– Qκ lies entirely below Qκ−1 and therefore entirely below Q′κ−1.6

– Now consider any point x ∈ Q′i , for any index 1 ≤ i < κ − 1. Point x lies on or7

above Qi (because every point in Q′i lies on or above Qi), and therefore lies above8

Qi+1. So we must have x ∈ πi+2 and therefore x ∈ H. But because x ∈ Q′i ∩H, x lies9

either on or above πi+1, and therefore lies above πi+2. So x cannot lie on Q′i+1. We10

conclude that Q′i and Q′i+1 are disjoint.11

Similar case analysis implies that the walks in Π ′ are pairwise disjoint:12

– π1 lies entirely above π2 and therefore entirely above π′2.13

– Now consider any point x ∈ π′i+1, for any index 1 < i < κ. Point x lies on or14

below Qi, and therefore below Qi−1. On the other hand, x lies on or below πi+1,15

and therefore lies below πi. So x cannot lie in π′i . We conclude that π′i and π′i+1 are16

disjoint.17

The unique optimality of Π and Q implies `(Π) < `(Π ′) and `(Q) < `(Q′). On the other18

hand, we immediately have19

`(Π) + `(Q) = `(π1) +

κ−1∑
i=1

(
`(Qi) + `(πi+1)

)
+

k∑
i=κ

`(Qi)20

≤ `(π1) +

κ−1∑
i=1

(
`(Q′i) + `(π′i+1)

)
+

k∑
i=κ

`(Qi)21

= `(Π ′) + `(Q′),22
23

giving us a contradiction.24

We conclude that πi does not cross Qi−1 for any index i. It follows immediately
that πi does not cross (in fact, does not touch) any Q j such that j < i − 1. A symmetric
argument implies that πi does not cross any Q j such that j > i. ut

4 Algorithm25

Now we are finally ready to describe our algorithm for computing Q given P. We define26

five anchor vertices as follows; see Figure 5.27

– If Q1 meets P2, then a is the first vertex of Q1 that is also on P2, and b is the first28

vertex in the suffix P2(a, t2] that is also on Q2; otherwise, a = t1 and b = s2.29

– If Q3 meets P2, then c is the first vertex in their intersection; otherwise, c = t3.30

– If P4 meets the prefix Q3[s3, c), then d is the last vertex in their intersection; other-31

wise, d = s4.32

– Finally, e is the first vertex of the suffix P4(d, t4] that is also on Q4.33
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We also split each path Qi into a prefix Qs
i and a suffix Qt

i that meet at a single vertex.1

Specifically, we split Q1 at a, we split Q2 at b, we split Q3 at c, and we split Q4 at e.2

Thus, for example, Qs
1 = Q1[s1, a] and Qt

1 = Q1[a, t1].3

s1

t1 s2

t2

s3

s4 t4

t3

a

b
c

d
e

Fig. 5. Anchor vertices a, b, c, d, e.

Now suppose that we know the locations of the anchor vertices a, b, c, d, and e.4

Our algorithm computes Q in three phases; each phase solves a parallel instance of5

the k-min-sum problem (with k = 2 or k = 3) in a subgraph of G in O(n) time, via6

minimum-cost flows. The subpaths of Q computed in each phase are shown in Figure 6.7

c
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d

Fig. 6. Subpaths of Q computed by the three phases of our algorithm.

4.1 Phase 1: α, β, and γ8

Let H1 be the subgraph of G obtained by deleting every vertex in R2 except a and c,9

every edge incident to s4 or e outside of R4, and every vertex of P4(d, t4] except e. In10

the first phase, we compute the shortest set of vertex-disjoint paths in H1 from s1 to a,11

from s3 to c, and from s4 to e. Call these paths α, β, and γ, respectively.12

Lemma 4.1. α = Qs
1, β = Qs

3, and γ = Qs
4.13

Proof. For the sake of argument, suppose (α, β, γ) , (Qs
1,Q

s
3,Q

s
4), and define a new set14

of walks Q′ := {α ◦ Qt
1, Q2, β ◦ Qt

3, γ ◦ Qt
4}. The following exhaustive case analysis15

implies that the walks in Q′ are vertex-disjoint.16



10 Jeff Erickson and Yipu Wang

– Paths α, β, and γ are disjoint by definition.1

– Similarly, Qt
1, Q2, Qt

3, Qt
4 are subpaths of paths in Q and thus are disjoint by defi-2

nition.3

– P2 separates Q2 from α, β, and γ.4

– Lemma 3.6 implies that β and γ do not cross Qs
1, and therefore do not touch Qt

1.5

– Lemma 3.6 also implies that α does not cross Qs
3, and therefore does not touch Qt

3.6

– Lemma 3.6 also implies that α and β do not cross Qs
4, and therefore do not touch Qt

4.7

– Finally, if d = s4, then the definition of H1 implies that γ does not leave R◦4 except8

at s4 and e, so Lemma 3.1 implies that γ is disjoint from Qt
3. On the other hand, if9

d , s4, then Lemma 3.6 implies that γ does not cross Q3[s3, d]; on the other hand,10

Qt
3 does not meet Q3[s3, d]. The definition of H1 implies that γ does not cross the11

path P4[d, t4] and only meets it at d or e; on the other hand, neither d not e are12

on Qt
3. Since Q3[s3, d] ◦ P4[d, t4] separates γ from Qt

3, we conclude that Qt
3 and γ13

are disjoint.14

Because the walks in Q′ are vertex-disjoint, the unique optimality of Q implies that15

`(Q) < `(Q′).16

On the other hand, the lemmas in Section 3.1 and the definitions of the anchor
vertices imply that Qs

1, Qs
3, and Qs

4 are indeed paths in H1 between the appropriate
terminals. Moreover, Qs

1, Qs
3, and Qs

4 are vertex-disjoint, because they are subpaths
of the disjoint paths in Q. Thus, the unique optimality of {α, β, γ} implies that `(α) +

`(β) + `(γ) < `(Qs
1) + `(Qs

3) + `(Qs
4). It follows that `(Q′) < `(Q), giving us the desired

contradiction. ut

4.2 Phase 2: δ and ε17

If Q1 and P2 are disjoint, let δ = t1 and ε = s2. Otherwise, let H2 be the subgraph18

of G obtained by deleting every vertex of P2(a, t2] except b, all edges incident to b that19

leave R2, and every vertex of α except a. In the second phase, our algorithm computes20

the shortest vertex-disjoint paths in H2 from t1 to a and from s2 to b. Call these paths δ21

and ε, respectively.22

Lemma 4.2. rev(δ) = Qt
1 and ε = Qs

2.23

Proof. The lemma is obvious if Q1 and P2 are disjoint, so assume otherwise.24

For the sake of argument, suppose (rev(δ), ε) , (Qt
1,Q

s
2), and let Q′ = {Qs

1 ◦ rev(δ),25

ε ◦ Qt
2,Q3,Q4}. The following exhaustive case analysis implies that the walks in Q′ are26

pairwise disjoint.27

– δ and ε are disjoint by definition.28

– Qs
1, Qt

2, Q3, and Q4 are disjoint by definition of Q.29

– Lemma 3.6 implies that δ does not cross Qs
2, and therefore does not touch Qt

2.30

– The path α ◦ P2[a, t2] separates δ and ε from Q3 and therefore from Q4.31

– Lemma 4.1 implies that Qs
1 ∩ V(H2) = {a}. It follows that ε does not touch Qs

1.32

The unique optimality of Q now implies that `(Q) < `(Q′).33

On the other hand, the lemmas in Section 3.1 and the definitions of the anchor
vertices imply that Qt

1 and Qs
2 are vertex-disjoint paths in H2 between the appropriate

terminals. Thus, the unique optimality of {δ, ε} implies that `(Qt
1) + `(Qs

2) > `(δ) + `(ε),
and therefore `(Q) > `(Q′), giving us the desired contradiction. ut
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4.3 Phase 3: ζ, η, and θ1

Finally, let H3 be the subgraph of G obtained by deleting all vertices in α · rev(δ), all2

vertices in β[s3, b), all vertices in γ[s4, e), and all vertices in ε[s2, b). The last phase3

of our algorithm computes the shortest vertex-disjoint paths in H3 from b to t2, from c4

to t3, and from e to t4. Call these paths ζ, η, and θ, respectively.5

Lemma 4.3. ζ = Qt
2, η = Qt

3, and θ = Qt
4.6

Proof. Suppose, for the sake of argument, that (ζ, η, θ) , (Qt
2,Q

t
3,Q

t
4), and let Q′ :=7

{Q1, Qs
2 ◦ ζ, Qs

3 ◦ η, Qs
4 ◦ θ}. As usual, exhaustive case analysis implies that the walks8

in Q′ are pairwise disjoint. Several cases rely on Lemmas 4.1 and 4.2, which imply that9

α ◦ rev(δ) = Q1, β = Qs
3, γ = Qs

4, and ε = Qs
2.10

– ζ, η, and θ are disjoint by definition.11

– Q1, Qs
2, Qs

2, and Qs
2 are disjoint by definition of Q.12

– Q1 is disjoint from H3 and thus disjoint from ζ, η, and θ.13

– Qs
2 ∩ H3 = {b}, so Qs

2 is disjoint from η and θ.14

– Qs
3 ∩ H3 = {c}, so Qs

3 is disjoint from ζ and θ.15

– Qs
4 ∩ H3 = {e}, so Qs

3 is disjoint from ζ and η.16

The unique optimality of Q now implies that `(Q) < `(Q′).17

On the other hand, Qt
2, Qt

3, and Qt
4 are paths between appropriate terminals in H3.

Thus, the unique optimality of {ζ, η, θ} implies that `(Qt
2)+`(Qt

3)+`(Qt
3) > `(ζ)+`(η)+

`(θ), and therefore `(Q) > `(Q), giving us the desired contradiction. ut

4.4 Summary18

Finally, we summarize our overall 4-min-sum algorithm. First, in a preprocessing phase,19

we compute P using the algorithm of Kobayashi and Sommer [15]. Then for all possible20

choices for the anchor vertices a, b, c, d, e, we compute the paths α, β, γ, δ, ε, ζ, η, θ as21

described in the previous sections, first under the assumption that Q2 ⊂ R2, and then22

under the symmetric assumption that Q1 ⊂ R1 (mirroring the definitions of the anchor23

vertices and the paths). Altogether, we compute the solutions to O(n5) parallel instances24

of 2-min-sum and 3-min-sum, each in O(n) time via minimum-cost flows. Thus, the25

overall running time of our algorithm is O(n6).26
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