Lower Bounds for External Algebraic Decision Trees *

Jeff Erickson'

Abstract

We propose a natural extension of algebraic decision trees to
the external-memory setting, where the cost of disk opera-
tions overwhelms CPU time, and prove a tight lower bound
of Q(nlog,, n) on the complexity of both sorting and element
uniqueness in this model of computation. We also prove a
Q(min{nlog,, n, N}) lower bound for both problems in a
less restrictive model, which requires only that the worst-
case internal-memory computation time is finite. Standard
reductions immediately generalize these lower bounds to
a large number of fundamental computational geometry
problems.

1 Introduction

Lower bounds for computational geometry problems are
frequently stated in the algebraic decision tree model
defined by Steele and Yao [15]. Examples include
convex hulls, Voronoi diagrams, Euclidean minimum
spanning trees, closest and farthest pairs, line segment
intersections, and batched planar point location. Tight
Q(N1gN) lower bounds in the algebraic decision tree
model have been known for these problems for two
decades; these lower bounds were all proved by reduc-
tions from sorting or element uniqueness [7, 14, 15].
On the other hand, geometric algorithms are usually
designed around a core of low-degree polynomial prim-
itives, such as triangle orientation tests and in-circle
tests, which are treated as black boxes. Algebraic
decision trees describe these algorithms perfectly.

More recently, researchers have developed efficient
external memory or out-of-core algorithms for these
same geometric problems [1, 5, 6, 10]. Algorithms in
this model assume that the input data is too large to
fit into main memory, and their analysis assumes that
the cost of swapping blocks of data between memory

*See http://www.cs.uiuc.edu/~jeffe/pubs/extlower.html for
the most recent version of this paper.

TDepartment of Computer Science, University of Illinois
at Urbana-Champaign, and LORIA-CNRS-INRIA Lorraine;
jeffe@cs.uiuc.edu; http: //www.cs.uiuc.edu/~jeffe/. Partially sup-
ported by NSF CAREER award CCR-0093348 and NSF ITR
grants DMR-0121695 and CCR-0219594.

and disk overwhelms the CPU time. The running
time of an external-memory algorithm is the number
of I/O operations it performs, expressed as a function
of the input size N, the block size B, and the size
of internal memory M. For notation convenience, we
define n = [N/B] and m = [M/B]. All the geometric
problems listed above can be solved in O(nlog,, n)
I/O’s, which is the same as the I/O bound for sorting.
Tight I/O lower bounds for sorting and testing element
uniqueness are known, but only for comparison-based
external-memory algorithms [1] and for algorithms that
accept only integer input [4]. Most interesting geometry
problems cannot be solved with comparisons alone, and
their most natural formulations call for arbitrary real-
valued inputs. Arguably, therefore, no nontrivial lower
bounds are known for the I/O complexity of these
geometric problems.

In this paper, we define the first workable extension
of the algebraic decision tree model to the external-
memory setting. Using a generalization of Aggarwal
and Vitter’s argument for external comparison trees [1],
we prove a tight lower bound of Q(nlog,, n) on the
complexity of sorting in this model. Similar arguments
imply a tight lower bound of Q(nlog,, n) for element
uniqueness and other decision problems in the exter-
nal linear decision tree model, but yield only trivial
lower bounds for decision trees of higher degree. We
strengthen this bound using a two-stage argument.
First we describe a randomized adversarial reduction
to element uniqueness from a new problem called
prozimate visitors, related to the proximate neighbor
problem considered by previous authors [2, 8, 12]. We
then prove that the proximate visitor problem requires
Q(nlog,, n) I/O’s to solve in our model.

Finally, we briefly consider a less restrictive version
of our model, which assumes only that the worst-case
internal-memory computation time is finite; algorithms
in this model may perform any finite number of ar-
bitrary polynomial queries, of arbitrary degree, before
each I/O operation. Even in this very permissive model,
Q(min{nlog,, n, N}) 1/Os are required to solve the
element uniqueness problem, and therefore to sort. This
bound matches the number of I/O’s required to permute
N items into some desired order.

Standard linear-time reductions [14], originally de-
veloped for the internal-memory setting, immediately
generalize all of our lower bounds to a huge number
of computational geometry problems, including all the
examples listed above.

Previous and related work. Aggarwal and Vit-
ter [1] introduced the standard external-memory model
of computation and derived tight upper and lower
bounds for several fundamental problems, including
sorting and permuting. They proved a tight lower
bound of Q(nlog,, n) for in the comparison I/0 model,
in which internal-memory computation is restricted to
comparisons between input records. The bound is
derived by (over-)counting the number of permutations
that can be sorted using a certain number of I/Os.
This result was later generalized by Arge, Knudsen, and
Larsen [3], who proved that an Q(N lg N) lower bound
for any problem in the standard (internal-memory)
comparison tree model implies an Q(nlog,, n) bound
for the same problem in the comparison I/O model.
This reduction applies even to decision problems such
as element uniqueness, where Aggarwal and Vitter’s
counting arguments cannot be used.

Aggarwal and Vitter’'s Q(min{nlog,, n, N}) lower
bound for permuting, on the other hand, does not
restrict internal-memory computations at all, but does
require the following indivisibility assumption: Only
complete input records can be written to disk. This
assumption is automatically satisfied in the comparison
I/O model, as well as in the models we consider in
this paper. Aggarwal and Vitter’s lower bound was
later strengthened and generalized by Arge [2], Chiang
et al. [8], and Kameshwar and Ranade [12].

The strongest known lower bounds for several com-
putational geometry problems were developed by Arge
and Miltersen [4] in their external-memory Turing ma-
chine model of computation. Any external-memory
algorithm that obeys the indivisibility assumption can
be modeled as an external-memory Turing machine,
provided the input consists of w-bit integers for some
word length w. (Arge and Miltersen’s lower bounds
do not depend on w; algorithms in their model are
assumed to be correct for any word length.) This model
describes actual computation much more accurately
than algebraic decision trees—after all, real computers
can’t manipulate arbitrary real numbers—but it forbids
the natural abstract formulation of geometric problems
with real-valued inputs.

Arge and Miltersen also consider an external-memory
version of the algebraic computation tree model of Ben-
Or [7]. Arge and Miltersen showed that any continuous
function can be approximated arbitrarily closely by
an external-memory algebraic computation tree that
uses just 2n I/Os. Their universal approximation
algorithm relies on two crucial properties of the com-
putation model: (1) intermediate algebraic results can
be kept in internal memory across I/O operations, and
(2) the model does not require finite worst-case internal-
memory computation time. The models considered in
this paper have neither of these properties.

2 External-Memory Algebraic Decision Trees

We define the external-memory algebraic decision tree
model as follows. Let) be a fixed finite set of
multivariate query polynomials. Let t denote the max-
imum number of terms in any polynomial in @, and
let d denote the the maximum degree of any term.
The parameters ¢ and d and the cardinality of @ are
considered fixed constants, independent of the block
size B, the memory size M, or the input size N.
(Our lower bounds will ultimately depend on these
constants.) We also assume that B and M are fixed;
we are primarily interested in the asymptotic running
time of our algorithms as N tends to infinity.

We model an algorithm by a family of decision trees,
one for each possible input size N. The input to the
Nth tree is a real vector in IRY, which we imagine to
be stored in the first n blocks on disk. In each tree,
each internal node represents the following sequence of
actions:

1. Write B arbitrary real numbers from internal mem-
ory to an unused disk block. Without loss of
generality, if this is the Tth output operation, the
numbers are written to the (n+7")th block on disk.
Enforcing this assumption increases the number of
I/Os by at most a constant factor. Also without
loss of generality, we assume that the numbers
within the block are written in sorted order.

2. Read a block of B real numbers from disk, replacing
B arbitrary numbers in main memory. The block
to be read must be either an input block or a
previously written block.

3. Compute the sign of every polynomial in Q at every
possible tuple of real numbers in main memory.

4. Branch to the child of v corresponding to the vector
of signs computed in the previous step.

Each leaf is labeled with a possible output value. The
running time of the algorithm is the maximum depth of
the Nth tree, expressed as a function of the input size V.
This cost counts only the number of I/O operations; the
actual cost of computing the signs of query polynomials
is completely ignored.

Restricting the entire family of decision trees to the
same finite set @) of query polynomials imposes some
weak but natural uniformity on the model. One can
think of @) as the set of algebraic primitives employed by
some uniform geometric algorithm. However, our lower
bounds do not require true uniformity; trees for different
input sizes may have radically different structures, or
even different query polynomials as long as |Q)|, d, and ¢
remain constant. An external algebraic decision tree
whose query polynomials all have degree 1 is called an

external linear decision tree. The external comparison
trees of Aggarwal and Vitter [1] are just external linear
decision trees where only the only query polynomial is

T —y.

3 Lower Bounds for Sorting

In this section, we generalize Aggarwal and Vitter’s
Q(nlog,, n) sorting lower bound to the external alge-
braic decision-tree model. To help keep our argument
self-contained, we include a slight simplification of their
proof here.

Theorem 3.1 ([1]). Any external-memory compari-
son tree that sorts an array of N elements has depth
Q(nlog,, n).

Proof: Without loss of generality, we assume that N is
a multiple of B and that each block in the input array is
initially sorted; we can enforce the second precondition
by making a single scan over the data in O(n) I/Os.
These simplifying assumptions imply that the number
of possible output permutations is exactly N!/(B!)™.
We can also safely assume that after the algorithm
dumps any block to disk, it sorts the remaining M — B
elements in internal memory, because such an internal
sort requires no additional I/O operations. Thus, when
the algorithm loads a block of B numbers from disk, the
only useful comparisons are between one of the B new
elements and one of the M — B old elements already in
memory. It follows that the degree of any node in any

external comparison tree is at most (Ag) (The degree

could be smaller than (z\g) if some old number and some

new number were compared in some earlier node, but
this can only help us.)

We conclude that any external comparison tree for
sorting has at least N!/(B!)" > n” leaves, and each
internal node has degree at most (Ag) < MB /B, so its
depth is at least

log(n®™) Nlogn
log(MB/B!) Blog M — Blog B
Nlogn
=9 (Blogm)
= Q(nlog,, n). O

First we generalize this proof to linear decision trees.

Theorem 3.2. Any external-memory linear decision
tree that sorts an array of N elements has depth
Q(nlog,, n).

Proof: Fix a finite set @ of linear forms over the formal
variables x1,Zo,...,7s. As in the previous proof, we
assume that the input blocks are presorted, so the
number of possible output permutations is N!/B!"™ >

n™. (This assumption is only reasonable if the set Q

contains some linear form z; — x;; on the other hand,
if @ does not contain such a linear form, the algorithm
cannot sort at alll)

Consider an arbitrary linear form oy + 22:1 ;T
in Q. During the execution of a single I/O node, we
evaluate this form on all possible ¢t-tuples of numbers
in internal memory. In order for a ¢-tuple to yield any
new information, at least one of its ¢ components must
come from the new block. We can safely assume that
the variable 1 is always assigned a new value (and that
ay # 0), by increasing the number of forms in @ by at
most a factor of t if necessary. We can express a test of
the sign of this linear form as the query

t

(7)) (6%
T § _— = E —1:1717
(651 i—o (6751
1=

The results of all such queries are determined by the
relative order of the new block and the set

M=c-=-3""ug,
aq : aq

t
=2

xg,...,xtEM},

where M is the set of M numbers in internal memory.
M clearly has at most M'~! elements, so the total
number of outcomes of all evaluations of our linear form
is at most (M,) < MU=DE/BI.

It follows that any internal node in an external-
memory linear decision tree has degree at most
(M®=DB/BNIRI (This upper bound is a gross
overestimate; outcomes of tests with different linear
forms are generally not independent.) We conclude
that the depth of the tree is at least

Nlogn B (nlog,, n)
Q| log (M@-DB/Bl) — "\ (t-1)Q[)

Since t and |@Q| are fixed constants, the proof is com-
plete. O

Further generalizing our proof to algebraic decision
trees is now straightforward.

Theorem 3.3. Any external-memory algebraic deci-
sion tree that sorts an array of N elements has depth
Q(nlog,, n).

Proof: Fix a finite set Q of query polynomials. We
assume without loss of generality that each polynomial
in @ has exactly ¢ terms, each the product of exactly d
variables, by keeping the constants 0 and 1 in internal
memory at all times if necessary. As before, we assume
that the input blocks are presorted, so the number of
possible output permutations is N!/B!"™ > n™V.

Consider an arbitrary query polynomial

t d
Yol
J=1

i=1

in Q. In order for an evaluation of this polynomial to
yield any new information, at least one variable in some
non-zero term must be assigned a value from the new
block. We can safely assume that the the variable z1;
is always assigned a new value and that no variable z;
is assigned the value 0, by increasing the number of
polynomials in @ by at most a factor of ¢ if necessary.
We can express testing the sign of this polynomial as
the query

t d
< _ Dimn O Hj:l Lij ?

d
a1 [[og 215

T1

The results of all such queries are determined by the
relative order of the new block and the set

d
o~ { — 25:2 (7] Hj:l Tij

M= = xTij €E M, x1; #0forall i,j p,
an [[i, 215

where M is the set of M numbers in internal memory.
The set M clearly has at most M¥~! elements, so
the total number of outcomes from evaluating this

dt—
polynomial is at most (M]; 1).

Following the analysis in the previous proof, we
conclude that any external algebraic decision tree that
sorts N elements must have depth at least

nlog,n \ n n
o () = 2osam) -

4 Lower Bounds for Decision Problems

The proofs in the previous section relied on the fact
that the sorting problem has a large number of possible
outputs. In the standard algebraic decision tree model,
lower bounds for decision problems, where there are
only two possible outputs, can be proved by exploiting
topological properties of the set of inputs that lead to
each answer.

We consider the following decision problems, each of
which can be solved in O(nlog,,, n) I/Os by sorting and
scanning the data once. In internal memory, Dobkin
and Lipton [9] proved Q(NlogN) lower bounds for
all these problems in the linear decision tree model.
Their technique was generalized to algebraic decision
and computation trees by Steele and Yao [15] and Ben-
Or [7], again yielding Q (NN log N) lower bounds.

e ELEMENT UNIQUENESS: Given an unsorted array
A[l.. N] of real numbers, is A[i] = A[j] for any pair
of indices i # j7

e SET INTERSECTION: Given two arrays A[l..N]
and B[1.. N] of distinct real numbers, at most one
of which is sorted, is A[i] = BJ[j] for any pair of
indices ¢, j7

e SET EQUALITY: Given two arrays A[l..N] and
BJ[1.. N] of distinct real numbers, at most one of
which is sorted, is there a permutation 7 such that
Ali] = B[r(4)] for all 47

4.1 Counting components. In the external [lin-
ear decision tree model, tight lower bounds for these
problems follow essentially from Dobkin and Lipton’s
component-counting argument [9].

Theorem 4.1. Any external linear decision tree that
solves either ELEMENT UNIQUENESS, SET INTERSEC-
TION, or SET EQUALITY for inputs of size N has depth
Q(nlog,, n).

Proof: As in the previous proofs, we assume without
loss of generality that each lock of the input data is
sorted. This assumption restricts the input vector to a
convex region of IRY. For each problem, the set W of
negative instances has N!/(B!)™ connected components.
The inputs that traverse any root-to-leaf path in an
external linear decision tree satisfy a finite sequence of
linear inequalities, so they comprise a convex polytope,
which is necessarily connected. Thus, the set of inputs
that reach each leaf can intersect at most one connected
component of W. We conclude any external linear
decision tree for ELEMENT UNIQUENESS has at least
N!/(B!)™ leaves. The lower bound now follows from
the same argument as Theorem 3.2. 0

Unfortunately, this argument does not generalize to
the external algebraic decision tree model, because the
set of inputs that traverse a root-to-leaf path can have
a huge number of components. Following the proofs
of Steele and Yao [15] and Ben-Or [7], we can bound
the number of components using the following classical
result of Petrovskii and Oleinik [13], Thom [16], and
Milnor [11].

Lemma 4.2. A semi-algebraic set in RY defined by h
polynomial inequalities, each with degree d, has at most
at most d(2d — 1)N+"=1 connected components.

Each node in an external algebraic decision tree
performs at most MRl = MO queries of degree
at most d. Thus, the Petrovskii-Oleinik-Thom-Milnor
bound implies that the set of points traversing any
path of length T has at most d(2d — 1)N+TM°®
components. Our earlier arguments imply that if the

tree has depth 7', then it has at most (M;(l))O(T) leaves.

If the tree is correct, the total number of connected

components in all leaves is at least the number of
components of W:

MOMNOM)

d(2d—1)N+TMO(1)(5) >nh.

This inequality implies that the depth of the tree must

be at least
. Nlogn
Q (mln {nlogm n, W}) .

Unfortunately, this lower bound is trivial unless N is
exponential in M.

4.2 An adversarial reduction. We improve this
lower bound using a different proof technique, which has
two stages. The first stage is an adversarial reduction
to ELEMENT UNIQUENESS from the following problem:

PROXIMATE VISITORS: Given an unsorted
array A[l..N] on disk, bring each adjacent
pair of the form (A[r(2i — 1)], A[r(2i)]) to-
gether into internal memory, where 7 is any
permutation such that A[n(j)] < A[r(j + 1)]
for all j.

As the name suggests, this problem is similar to the
prozimate neighbor problem considered by Chiang
et al. [8], Arge [2], and Kameshwar and Ranade [12]:
Given an unsorted array A[l..N] with N/2 distinct
values, where each value appears exactly twice, permute
the array so that equal values are adjacent on disk.
Indeed, any algorithm for the proximate neighbor
problem must route each proximate pair through
internal memory, thereby solving the proximate visitor
problem. However, our problem is easier, since it does
not require any actual output; once any proximate pair
(A[r(2¢ — 1)], A[m(2¢)]) ‘visit each other’ in internal
memory, it can be discarded forever.

Lemma 4.3. Any external algebraic decision tree that
solves ELEMENT DISTINCTNESS, SET INTERSECTION,
or SET EQUALITY can be forced to solve PROXIMATE
VISITORS.

Proof: We prove the lemma using a randomized ad-
versary argument. We explicitly consider only ELE-
MENT DISTINCTNESS; the arguments for the other two
problems are almost identical. Our adversary chooses
N/2 real numbers r1,72,...,7y/2 independently and
uniformly at random from the unit interval [0,1] and
an arbitrary (not random) permutation 7 € Sy. The
adversary then presents the input array A[l.. N], where
Alr(2i — 1)] = r; and A[n(2¢)] = r; + € for each
1 <4 < N/2 and ¢ is some small positive value to
be determined later. We choose ¢ < 1/N3, so that

with very high probability, every proximate visitor pair
has the form (A[r(2i — 1)], A[x(29)]) = (ri, 7 +). We
emphasize that our argument relies only on choosing a
difficult set of input values; the permutation 7 plays no
role in the proof.

We claim that with positive probability, any
external-memory algebraic decision tree that
solves ELEMENT DISTINCTNESS must bring each
proximate pair (A[r(2i — 1)], A[w(2¢)]) into memory
at some point during the computation. If some pair
(A[r(2i—1)], A[m(2¢)]) is never in memory together, the
adversary can ‘collapse’ the pair, decreasing A[m(27)]
by € so that it equals A[r(2¢ — 1)], without modifying
the sign of any query polynomial evaluated by the
algorithm. Since the algorithm cannot distinguish
between the original input and the collapsed input,
even though one has a duplicate and the other does
not, the algorithm must not be correct.

Let T'(A) be the number of polynomial queries eval-
uated by the algorithm given input A, and assume
that each such query has total degree at most d. For
notational convenience, let us write z = A[r(2i—1)] and
y = A[m(2i)]. Suppose the algorithm never has both z
and y in memory simultaneously. By fixing the other
N —2 input values, we can express any query polynomial
on the computation path as a univariate polynomial
in x, a univariate polynomial in y, or a constant. (A
query polynomial involving both = and y can only be
evaluated if x and y are together in memory.) We
require that no univariate query polynomial has a root
in the interval [z,y]. In other words, if p is a real root
of any query polynomial, z = r; must not lie in the
forbidden interval [p—e, p|. Since each query polynomial
has at most d real roots, the total length of all forbidden
intervals is at most deT'(A).

Let T(N) = maxjq—ny T(A); this is the just the
depth of the corresponding internal-memory algebraic
decision tree. If ¢ < 1/2dT(N), the proximate pair
(A[r(2i — 1)], A[w(2¢)]) is forced together in internal
memory with probability at least 1/2, no matter what
other values are stored in in input array. Since each ran-
dom value r; is generated independently, the probability
that all N/2 proximate pairs must be forced together is
at least 27V/2 > 0.]

4.3 Counting permutations. The second stage of
our proof replaces the Petrovskii/Oleinik/Thom/Milnor
lemma with a more straightforward counting argument
that bounds. Specifically, we count the number of
input permutations that can reach a single leaf in
any algebraic decision tree that solves PROXIMATE
VISITORS. Our proof is similar to earlier lower-bound
arguments for the proximate neighbor problem [2, 8, 12].

Lemma 4.4. Any external-memory algebraic decision
tree that solves PROXIMATE VISITORS for inputs of size
N has depth Q(nlog,, n).

Proof: To simplify the proof, we assume without loss
of generality that both N and M are integer multiples
of 2B, and that N > M5. (If N < M5, then nlog,, n =
O(n), and the lower bound becomes trivial.) We also
assume, as in our earlier proofs, that each block in the
input array is initially sorted.

For purposes of analysis, we establish an ongoing
record of the contents of internal memory, called the
trace. Whenever a block of data is read from the disk,
the trace records which B items in internal memory
are discarded and which B new items are read in. In
addition, after every I/O operation, the trace records
the B items in internal memory that were least recently
written to the trace. Thus, an algorithm that performs
T 1/0O operations leaves a trace of length at most 37"
The trace does not store the actual values of elements
in memory, but rather their indices in the original input
array. Under these assumptions, any algorithm that
solves PROXIMATE VISITORS leaves a trace with the
following property:

Every pair (m(2¢ — 1),7(2¢)) appears in the
trace at most 3M addresses apart, where m
is a permutation that sorts the input.

We emphasize that this requirement is independent of
the actual wvalues in the input array; only their order
matters.

Suppose some algorithm performs T different I/0
operations on a given input. We define a graph G with
N vertices, with an edge between vertices i and j if
and only if the indices 7 and j appear in the trace at
most 3M addresses apart. This graph has at most 9MT
edges. The algorithm has solved the given instance
of PROXIMATE VISITORS only if G contains an edge
between every pair of the form (7(2¢ — 1), 7(27)); these
edges, if they exist, form a perfect matching in G. There
are (crudely) at most (9]\%5) perfect matchings in G, and

exactly (N/2)12N/2 different input permutations can
give rise to each perfect matching. It follows that this
¢) IMT
trace ‘resolves’ at most (N/Q)(N/2)!2N/2 < (18MT)N/?
different input permutations.
As we observed earlier, an external-memory
algebraic decision tree with depth 7" has at most

(MZ,(I))T < (MOB)/BNT leaves. We easily observe
that the trace depends only on which root-to-leaf
path is taken through the decision tree. Thus, an
external-memory algebraic decision tree of depth T
correctly solves PROXIMATE VISITORS for all possible

inputs of length N only if each of the N!/(B!)" > nV

possible permutations is ‘resolved’ by at least one
root-to-leaf trace:

(A8MT)N/2(MOB) /BT > pN,

(Different inputs with the same permutation may follow
different paths through the decision tree, but this can
only help us.) In particular, one of two inequalities
must hold. If (MO®B)/BNT > pN/8 then our earlier
analysis implies that 7' = Q(nlog,, n). Otherwise,
(18MT)N/2 > nN/3; in this case, since n > N/M >
N*/5 we have T > n"/*/18M > N7/5/18N'/5

Q(NS/5) = Q(nlog,, n). O

Lemmas 4.3 and 5.1 immediately imply a tight lower
bound for all three canonical decision problems.

Theorem 4.5. Any external algebraic decision tree
that solves ELEMENT UNIQUENESS, SET INTERSEC-
TION, or SET EQUALITY for inputs of size N has depth
Q(nlog,, n).

5 Lower Bounds for Finite-CPU Algorithms

Finally, we consider a much less restrictive version of
our model of computation, which we call naive external-
memory algebraic decision trees. As in our standard
model, algorithms are described by a family of decision
trees, one for each possible input size N. Each internal
node represents writing a block of data from memory
to disk, reading a block of data from disk to memory,
computing the signs of several polynomials over the
data in memory, and branching on the resulting sign
vector. However, the only further restriction we impose
is that the number of polynomial queries performed in
each node is finite; equivalently, we require only that
the underlying internal-memory algorithm have finite
worst-case running time. We do not require the query
polynomials to come from a fixed set, to have a bounded
number of terms, or even to have bounded degree. In
this last respect, our model is even less restrictive than
the classical internal algebraic decision tree model.

To prove nontrivial lower bounds in our naive model,
we follow the same two-step approach as for our more
restrictive model. In fact, the first step of our argument
is unchanged; our proof of Lemma 4.3 only requires that
the algorithm evaluates a finite number of polynomials
during its execution. The second step, however, requires
a slight modification, since the degree of a node is no
longer bounded.

Lemma 5.1. Any naive external-memory algebraic de-
cision tree that solves PROXIMATE VISITORS for inputs
of size N requires Q(min{nlog,, n,N})) I/Os in the
worst case.

1Lower bounds in the classical algebraic decision tree necessar-
ily depend on the maximum degree of a query polynomial; recall
that the element uniqueness problem can be solved by evaluating
the sign of the single polynomial [T, ;(z: — ;).

Proof: We adopt the same assumptions as in the proof
of Lemma 5.1; in particular, we assume that N > M?°.
To prove the lemma, it suffices to prove a lower bound
on the worst-case number of I/Os required to produce a
trace where every pair (7(2¢ — 1), 7(2¢)) appears in the
trace at most 3M addresses apart.

Each time the algorithm reads a block from disk,
it chooses B items in memory to forget (after writing
them to the trace) and a block of B items to read into
memory (before writing them to the trace). After T
I/0 operations, there are at most T'+ n different blocks
that can be read by the next I/O operation. Thus,
very crudely, at most ((A]g) (T +n))T < (2TMB/B)T
different traces can be produced in T' I/Os.

Recall from the proof of Lemma 5.1 that a trace pro-
duced in T T/O operations resolves at most (18MT)N/?
different input permutations. Thus, in order for every
possible permutation to be resolved in T I/Os, we must
have

(2T MB /BT (6MTN)N/2 > plV,

In particular, one of three inequalities must hold. If
TT > nN/8 then T = Q(N), since n > N/M > N*/°,
If (2M5B/B)T > nN/8 then T = Q(nlog,,n) by our
earlier analysis. Finally, if (6MT)N/2 > n3N/4 then
T >n??/6M = NS/5/6M = Q(N). O

Theorem 5.2. Any naive external-memory algebraic
decision tree that solves ELEMENT UNIQUENESS, SET
INTERSECTION, or SET EQUALITY for inputs of size N
has depth Q(min{nlog,, n, N}).

Since all three of these decision problems can be
solved in O(n) I/Os when the input is sorted, the
following corollary is immediate.

Corollary 5.3. Any naive external-memory algebraic
decision tree that sorts an array of N elements has depth
Q(min{nlog,, n, N}).

Acknowledgments. Portions of this work were done
at the Eindhoven-Carleton Workshop on Computational
Geometry in October 2003. Thanks to Mark de
Berg, Jit Bose, and Otfried Cheong for organizing the
workshop, and to Erik Demaine for helpful discussions.

References

[1] A. Aggarwal and J. S. Vitter. The input/output
complexity of sorting and related problems. Com-
mun. ACM 31:1116-1127, 1988.

[2] L. Arge. The I/O-complexity of ordered binary-
decision diagram manipulation. Proc. 6th Annu.
Internat. Sympos. Algorithms Comput., 82-91,
1995. Lecture Notes Comput. Sci. 1004, Springer-
Verlag.

3]

[13]

[14]

[15]

[16]

L. Arge, M. Knudsen, and K. Larsen. A general
lower bound on the I/O-complexity of comparison-
based algorithms. Proc, 3rd Workshop Algorithms
Data Struct., 83-94, 1993. Lecture Notes Comput.
Sci. 709, Springer-Verlag.

L. Arge and P. B. Miltersen. On showing lower
bounds for external-memory computational geom-
etry problems. FEzternal Memory Algorithms and
Visualization, 139-160, 1999. DIMACS series in
Discrete Mathematica and Theoretical Computer
Science 50, AMS.

L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel,
and J. S. Vitter. Theory and practice of I/O-
efficient algorithms for multidimensional batched
searching problems. Proc. 9th ACM-SIAM Sympos.
Discrete Algorithms, 685-694, 1998.

L. Arge, D. E. Vengroff, and J. S. Vitter. External-
memory algorithms for processing line segments in
georgraphic information systems. Proc. 3rd Euro-
pean Sympos. Algorithms, 295-310, 1995. Lecture
Notes Comput. Sci. 979, Springer-Verlag. Full
version to appear in Algorithmica.

M. Ben-Or. Lower bounds for algebraic computa-
tion trees. Proc. 15th Annu. ACM Sympos. Theory
Comput., 80-86, 1983.

Y.-J. Chiang, M. T. Goodrich, E. F. Grove,
R. Tamassia, D. E. Vengroff, and J. S. Vitter.
External-memory graph algorithms. Proc. 6th
ACM-SIAM Sympos. Discrete Algorithms, 139—
149, 1995. (http://www.cs.brown.edu/cgc/papers/
cggtvv-emga-95.ps.gz).

D. P. Dobkin and R. J. Lipton. On the complexity
of computations under varying sets of primitives.
J. Comput. Syst. Sci. 18:86-91, 1979.

M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and
J. S. Vitter. External-memory computational ge-
ometry. Proc. 84th Annu. IEEE Sympos. Found.
Comput. Sci., 714-723, 1993.

J. W. Milnor. On the Betti numbers of real
algebraic varieties. Proc. Amer. Math. Soc. 15:275—
280, 1964.

K. Munagala and A. Ranade. I/O-complexity of
graph algorithms. Proc. 10th Annu. ACM-SIAM
Sympos. Discrete Algorithms, 687—694, 1999.

I. G. Petrovskii and O. A. Oleinik. On the topology
of real algebraic surfaces. Isvestia Akad. Nauk
SSSR. Ser. Mat. 13:389-402, 1949. In Russian.

F. P. Preparata and M. I. Shamos. Computational
Geometry: An Introduction. Springer-Verlag, New
York, NY, 1985.

J. M. Steele and A. C. Yao. Lower bounds for
algebraic decision trees. J. Algorithms 3:1-8, 1982.
R. Thom. Sur I'homologie des variétés algébriques
reélles. Differential and Combinatorial Topology,
255-265, 1965. Princeton University Press.

