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Abstract

We give a deterministic algorithm to find the minimum cut
in a surface-embedded graph in near-linear time. Given an
undirected graph embedded on an orientable surface of genus g,
our algorithm computes the minimum cut in gO(g)n log log n
time, matching the running time of the fastest algorithm
known for planar graphs, due to Łącki and Sankowski, for any
constant g. Indeed, our algorithm calls Łącki and Sankowski’s
recent O(n log log n) time planar algorithm as a subroutine.

Previously, the best time bounds known for this problem
followed from two algorithms for general sparse graphs:
a randomized algorithm of Karger that runs in O(n log3 n)
time and succeeds with high probability, and a deterministic
algorithm of Nagamochi and Ibaraki that runs in O(n2 log n)
time. We can also achieve a deterministic gO(g)n2 log log n time
bound by repeatedly applying the best known algorithm for
minimum (s, t)-cuts in surface graphs. The bulk of our work
focuses on the case where the dual of the minimum cut splits
the underlying surface into multiple components with positive
genus.

1 Introduction

Recently there has been a new-found interest in flow and
cut problems in planar graphs. While flows in planar
graphs have been studied since Ford and Fulkerson’s
seminal work in the 1950s [37], it has only been a few
years since Borradaile and Klein announced the first
algorithm to find maximum flows in directed planar
graphs in near-linear time [1, 5]. Borradaile and
Klein’s result came after a long line of work on finding
maximum flows and minimum (s, t)-cuts in undirected
planar graphs [38, 41, 45, 62]. Frederickson’s O(n log n)-
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time algorithm [38] stood as the fastest algorithm for
these problem for almost 25 years, until the recent
O(n log log n)-time algorithm of Italiano et al. [46].

There has also been recent work on finding global
minimum cuts, where the goal is to partition the vertices
of a weighted undirected graph into two non-empty
sets, without a specified pair of terminals that must be
separated. (Unless specified otherwise, any references
to minimum cuts in this paper refer to this version
of the problem.) Chalermsook, Fakcharoenphol, and
Nanongkai described the first deterministic near-linear
time algorithm for computing minimum cuts in planar
graphs [13]. This result was recently improved by Ital-
iano et al. [46] and again by Łącki and Sankowski [53],
who describe a deterministic algorithm that runs in
O(n log log n) time. These algorithms are significantly
faster than the best known algorithms for general sparse
graphs: a randomized algorithm of Karger that runs in
O(n log3 n) time and succeeds with high probability [49],
and a deterministic algorithm of Nagamochi and Ibaraki
that runs in O(n2 log n) time [60].

These results and many others support the thesis that
planarity aids in finding efficient algorithms. Moreover,
most techniques for efficient computation on planar
graphs generalize directly to graphs embedded on
surfaces of higher genus, perhaps the most natural gen-
eralization of planar graphs. Examples include minimum
spanning trees [61, 55]; single-source shortest paths
[15, 43, 51, 54, 58, 65]; multiple-source shortest paths
[8, 50]; replacement paths [33, 67]; graph and subgraph
isomorphism [39, 44, 56, 29, 30]; and approximation
of several NP-hard problems [2, 3, 4, 24, 30]. However,
the first significant progress on flow and cut problems
in surface graphs was made only recently [15, 16, 34].
It appears that all our intuitive notions for solving these
problems in planar graphs require substantial modifica-
tion, specifically a significant infusion of topology, when
more complicated surfaces are involved.

In this paper, we describe the first deterministic near-
linear time algorithm to find global minimum cuts in
graphs embedded on orientable surfaces of fixed genus.
Specifically, given an n-vertex graph embedded on a
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surface of genus g, our algorithm runs in gO(g)n log log n
time. When the genus g is constant, our algorithm’s
running time matches the recent algorithm of Łącki
and Sankowski for planar graphs [53]. In fact, our
algorithm invokes both Łącki and Sankowski’s algorithm
and the planar minimum (s, t)-cut algorithm of Italiano
et al. [46]. Further improvements in both of these
algorithms would immediately improve our algorithm as
well.

Prior to our work, the fastest algorithms known for
computing global minimum cuts in arbitrary surface
graphs were the algorithms for general sparse graphs
mentioned earlier: Karger’s randomized O(n log3 n)-time
algorithm [49] and Nagamochi and Ibaraki’s O(n2 log n)-
time deterministic algorithm [60]. For graphs of fixed
genus, global minimum cuts can also be computed
in gO(g)n2 log log n time by invoking the fastest known
algorithm for minimum (s, t)-cuts in surface graphs n
times [16, 46].

At a very high level, the planar-graph algorithms
of Chalermsook et al. [13] and Łącki and Sankowski
use a divide-and-conquer strategy in the dual graph.
In the dual graph, vertices and faces exchange roles;
the minimum cut in the primal graph corresponds to
the minimum-length cycle in the dual graph. Their
algorithms split the dual graph into two pieces of roughly
equal size with a simple cycle, and then recursively
compute the minimum length cycle inside each piece.
For the conquering step, Chalermsook et al. prove that
the minimum-length cycle crosses the boundary between
the two pieces at more twice. They use this fact to
argue that a minimum-length cycle crossing the boundary
must separate two specific faces and can therefore be
found using an algorithm for minimum (s, t)-cuts (in the
original primal graph).

Unfortunately, this divide-and-conquer approach does
not immediately generalize to surfaces with positive
genus. First, the minimum cut is no longer necessarily
dual to a single cycle; second, because not all cycles
in surface graphs bound disks, we cannot so easily
divide the graph into equal-sized pieces that maintain
the necessary crossing properties. To work around these
obstacles, as in previous work on (s, t)-minimum cuts
[16, 34], we rely on properties of subgraphs that have
minimum weight in their Z2-homology class. (Two
subgraphs of G are in the same Z2-homology class if
their symmetric difference is the boundary of a subset of
faces of G; see Section 2 for further details.) In particular,
in Sections 5 and 6, we prove several properties of Z2-
minimal subgraphs that can possibly cross the dual of the
minimum cut; these properties may be of independent
interest.

1.1 Related work

Minimum (s , t )-cuts. The first algorithm to compute
minimum cuts in planar graphs appears in the seminal
work of Ford and Fulkerson [37]. Itai and Shiloach [45]
proposed an algorithm to compute minimum (s, t)-cuts
in undirected planar graphs in O(n log2 n) time. Their
algorithm was later improved by Reif [62], Frederick-
son [38], and most recently Italiano et al. [46]; the last
of these improvements runs in O(n log log n) time. The
fastest algorithms known for computing minimum (s, t)-
cuts in directed planar graphs require the computation
of maximum (s, t)-flows [1, 5].1 Chalermsook et al. [13]
described the first algorithm to compute global minimum
cuts in undirected planar graphs in near-linear time.
Their algorithm was recently improved by Łącki and
Sankowski [53] to run in O(n log log n) time.

Until recently, the best algorithms to compute min-
imum cuts in surface graphs were those for general
sparse graphs. Chambers et al.described an algorithm
to compute minimum (s, t)-cuts in undirected surface
graphs in gO(g)n log n time [16]. This time bound
was improved to gO(g)n log log n Italiano et al. [46]
and to 2O(g)n log n by Erickson and Nayyeri [34]. For
minimum (s, t)-cuts in directed surface graphs, the fastest
algorithm known is the maximum-flow algorithm of
Chamberset al. [15], which runs in near-linear time for
graphs of fixed genus and polynomially-bounded integer
capacities.

Shortest interesting cycles. Itai and Shiloach [45]
proved that the minimum (s, t)-cut in an undirected
planar graph G corresponds to the shortest generating
cycle in an annulus, obtained by removing the faces s∗

and t∗ from the dual graph G∗. All the planar minimum-
cut algorithms mentioned earlier actually work in this
dual formulation. Thomassen [66] described the first
polynomial-time algorithm to find the shortest nontriv-
ial cycle in undirected surface graphs; Thomassen’s
algorithm runs in O(n3) time. Erickson and Har-
Peled improved the running time to O(n2 log n) [32].
Their algorithm is currently the best when the genus
is unbounded, but there are several faster algorithms
when the genus is sufficiently small [12, 7, 52, 8, 46].
Cabello [6] describes an algorithm to find the shortest
simple contractible cycle (without repeated vertices) in
an undirected surface graph in O(n2 log n) time; he also
proves that finding the shortest simple separating cycle is
NP-hard. For related results, see [10, 11, 14, 36].

Cabello et al. [9] described the first non-trivial
algorithms to compute shortest non-contractible or non-

1Janiga and Koubek [47] claimed an algorithm to compute mini-
mum (s, t)-cuts in directed planar graphs in near-linear time, but their
algorithm has a subtle flaw [48].



separating cycles in directed surface graphs; the fastest of
their algorithms runs in O(pgn3/2 log n) time. Erickson
and Nayyeri [34] showed that a modification of their
algorithm for minimum (s, t)-cuts finds shortest non-
separating cycles in 2O(g)n log n time. Most recently,
Erickson [31] proposed algorithms to find shortest non-
separating cycles in O(g2n log n) time and to find shortest
non-contractible cycles in gO(g)n log n time.

Shortest equivalent cycles and subgraphs. There are
several results on finding shortest cycles in surface graphs
that are topologically equivalent to a given cycle. Colin
de Verdière and Erickson [22] described an algorithm
to compute the shortest cycle homotopic to a given
cycle in O(gnk log nk) time, where k is the number of
edges in the input cycle, generalizing and improving an
earlier result of Colin de Verdière and Lazarus for simple
cycles [23].

Chambers et al. [14] showed that finding the shortest
cycle (simple or not) in any given homology class is NP-
hard, but fixed-parameter tractable with respect to genus.
The minimum (s, t)-cut algorithms of Chambers et al. [16,
34] work by computing the minimum-cost even subgraph
in a given Z2-homology class, a problem which is also
NP-hard. Chen and Friedman [18, 19] proved that this
problem becomes NP-hard to approximate within any
constant factor when generalized to simplicial complexes.
Following a strategy first suggested by Sullivan [64],
Chambers et al. [15] describe an algorithm to quickly find
minimum-cost circulations in any given real or integer
homology class in a directed surface graph. Their result
was subsequently generalized by Dey et al. [25] to work
with arbitrary chains of arbitrary dimension in arbitrary
simplicial complexes. For more related results, see [20,
28, 26, 35].

2 Notation and Terminology

We begin by recalling several useful definitions related
to surface-embedded graphs. For further background,
we refer the reader to Gross and Tucker [40] or Mohar
and Thomassen [57] for topological graph theory, and
to Hatcher [42] or Stillwell [63] for surface topology
and homology. We adopt most of our terminology and
notation from previous works [16, 34].

2.1 Surfaces and Curves

A surface (more formally, a 2-manifold with boundary) is
a compact Hausdorff space in which every point has an
open neighborhood homeomorphic to either the plane R2

or a closed halfplane {(x , y) ∈ R2 | x ≥ 0}. The points
with halfplane neighborhoods make up the boundary
of the surface; every component of the boundary is
homeomorphic to a circle.

A path in a surface Σ is a continuous function
p : [0,1] → Σ. An arc is a path whose endpoints
lie on the boundary of Σ. A cycle is a continuous
function γ: S1→ Σ. Paths and cycles are simple if they
are injective. Following standard practice, we do not
distinguish between a simple path or cycle and its image
in Σ.

The genus of a surface Σ is the maximum num-
ber of disjoint simple cycles γ1,γ2, . . . ,γg in Σ whose
complement Σ \ (γ1 ∪ · · · ∪ γg) is connected. We will
consider only compact, connected, orientable surfaces.
Up to homeomorphism, there is exactly one such surface
with any genus g ≥ 0 and any number of boundaries
b ≥ 0; the Euler characteristic χ of this surface is
χ := 2− 2g − b.

2.2 Graph Embeddings

An embedding of an undirected graph G on a surface
Σ maps vertices to distinct points and edges to interior-
disjoint curves. The faces of the embedding are maximal
connected subsets of Σ that are disjoint from the image
of the graph. An embedding is cellular if each of its
faces is homeomorphic to the plane; in particular, in any
cellular embedding, each component of the boundary
of Σ must be covered by a cycle of edges in G. Euler’s
formula implies that any cellularly embedded graph with
n vertices, m edges, and f faces lies on a surface with
Euler characteristic χ = n−m+ f , which implies that
m = O(n + g) and f = O(n + g). We consider only
cellular embeddings of genus g = O(n), so that the
overall complexity of the embedding is O(n).

Cellular graph embeddings are equivalent to the com-
binatorial surfaces introduced by Colin de Verdière [21]
and used by several authors to formulate optimization
problems for surface-embedded graphs. A combinato-
rial surface consists of an abstract surface Σ together
with a cellularly embedded graph G with (possibly
asymmetrically) weighted edges. Paths and cycles in
a combinatorial surface are directed walks in its graph;
the length of any such walk is the sum of its (directed)
edge weights, counted with appropriate multiplicity.

Two paths or cycles in a combinatorial surface cross
if no continuous infinitesimal perturbation makes them
disjoint; if such a perturbation exists, then the paths are
non-crossing. We say that a cycle γ is non-self-crossing
if no two sub-paths of γ cross, weakly simple if γ is non-
self-crossing and traverses each edge at most once, and
(strictly) simple if γ visits each vertex at most once.

We redundantly use the term arc to refer to a walk
in the graph whose endpoints are boundary vertices.
Likewise, we use the term cycle to refer to a closed walk
in the graph. Cutting a combinatorial surface along a
cycle or arc modifies both the surface and the embedded



graph. For any combinatorial surface S = (Σ, G) and
any cycle or arc γ in G, we define a new combinatorial
surface S Qγ by taking the topological closure of Σ\γ as
the new underlying surface; the new embedded graph
contains two copies of each vertex and edge of γ, each
bordering a new boundary. In contrast, a cut in a graph
is a set of edges whose removal partitions the graph into
two non-empty connected components. The weight of a
cut is the total weight of its edges.

2.3 Homotopy and Homology

Two cycles γ and δ in Σ are homotopic, or in the
same homotopy class, if there is a continuous map
h: [0, 1]× S1→ Σ such that h(0, ·) = γ and h(1, ·) = δ.
The function h is called a homotopy between γ and δ.
A cycle γ is contractible if it is homotopic to a constant
map, separating if Σ \ γ is disconnected, and splitting if
Σ \ γ is disconnected and both components have positive
genus. Similarly, two arcs α and β are homotopic if
there is a continuous map h: [0, 1]× [0, 1]→ Σ such
that h(0, ·) = α, h(1, ·) = β , and h(t, ·) is an arc for all
t ∈ [0, 1].

An arc or a cycle is tight if it is as short as possible in
its homotopy class. A system of tight arcs is a minimal
set {α1,α2, . . . ,αk} of arcs such that Σ QP is a disk and
each arc αi is tight. Euler’s formula implies that any
system of tight arcs contains exactly 2g + b− 1 arcs.

Homology is a coarser equivalence relation than
homotopy, with nicer algebraic properties. Like several
earlier papers [17, 18, 26, 27, 16, 34], we consider only
one-dimensional cellular homology with coefficients in
the finite field Z2; this restriction allows us to radically
simplify our definitions.

Fix a cellular embedding of an undirected graph G
on a surface Σ with genus g. An even subgraph is a
subgraph of G in which every node has even degree,
or equivalently, the union of edge-disjoint cycles. An
even subgraph is null-homologous if it is the boundary
of the union of a subset of faces of G. In this paper,
the term separating subgraph always refers to a null-
homologous even subgraph with at least one edge. Two
even subgraphs η and η′ are homologous, or in the same
homology class, if their symmetric difference η⊕η′ is
null-homologous. The even subgraphs of G fall into
exactly 4g Z2-homology classes.

We define the carrier of a (not necessarily simple)
cycle γ in G to be the even subgraph of edges that γ
traverses an odd number of times; two cycles are
homologous if their carriers are homologous. A cycle γ or
even subgraph η is Z2-minimal if it has minimum total
length among all cycles or even subgraphs homologous
with γ or η.

2.4 Graph Duality

For any graph G on a surface without boundary, we
can define a canonical dual graph G∗. The vertices
of G∗ correspond to the faces of G, and two vertices
in G∗ are joined by a (dual) edge if and only if the
corresponding faces of G are separated by an edge of
G. Thus, every edge e in G has a corresponding dual
edge in G∗, denoted e∗. For any face f of G, we let
f ∗ denote the corresponding vertex of G∗. The dual
graph G∗ has a cellular embedding on Σ, whose faces
correspond exactly to the vertices of G. For any vertex
v of G, we let v∗ denote the corresponding face of G∗.
Duality is an involution—the dual of G∗ is isomorphic to
the original graph G.

f g

u

v

u*

v*

f* g*

Figure 1. Graph duality. One edge uv and its dual (uv)∗ = f ∗g∗ are
emphasized.

For any subgraph F = (U , D) of G = (V, E), we
write G \ F to denote the edge-complement of F in G
or (V, E \ D). Also, when the graph G is fixed, we abuse
notation by writing F∗ to denote the subgraph of G∗

corresponding to a subgraph F of G; each edge in F∗ is
the dual of a unique edge in F . In particular, we have the
identity (G \ F)∗ = G∗ \ F∗.

3 Homology Cuts
We are now ready to describe our minimum cut algorithm.
To work with the topology of Σ in computing a minimum
cut, we use the following modification of a lemma of
Chambers et al. [16, Lemma 3.1]. Recall that a separating
subgraph is a null-homologous even subgraph with at
least one edge.

Lemma 3.1. Let G be an undirected graph with non-
negative edge capacities, cellularly embedded on a
surface Σ without boundary, and let C be a minimum-
capacity cut in G. Then C∗ is a minimum-weight
separating subgraph of G∗.

Proof: Let C be an arbitrary cut in G. The cut partitions
the vertices of G into two disjoint subsets S and T .
Therefore, the dual subgraph C∗ partitions the faces of G∗

into two disjoint subsets S∗ and T ∗. Further, C∗ is the
boundary of the union of faces in S∗, implying that C∗ is
null-homologous in Σ and therefore separating.

Conversely, let C∗ be an arbitrary separating subgraph
of G∗. As C∗ is null-homologous, it is the boundary of a



subset of the faces of G∗. Moreover, because C∗ is non-
empty, it must be the boundary of a proper, non-empty
subset of faces. Let s∗ and t∗ be faces of G∗ on either side
of C∗. Any path from s to t in the primal graph G must
traverse at least one edge of C . We conclude that C is a
cut (in particular, an (s, t)-cut). �

Fix an undirected graph G = (V, E), a non-negative
weight function w : E → R, and a cellular embedding
of G on a surface Σ of genus g with at least two faces. In
light of Lemma 3.1, we focus our attention on finding a
minimum-weight separating subgraph of G.

To simplify our exposition, we assume without loss of
generality that G contains a unique shortest path between
any pair of vertices; this assumption can be enforced
with high probability using standard perturbation tech-
niques [59].

Our algorithm separately considers three (overlap-
ping) cases, illustrated in Figure 2:

1. Some minimum-weight separating subgraph is the
union of two nonempty edge-disjoint even sub-
graphs.

2. Some minimum-weight separating subgraph con-
sists of a single contractible simple cycle.

3. Every minimum-weight separating subgraph splits
the surface into two components of positive genus.

Figure 2. Three types of minimum-weight separating subgraphs:
decomposable, contractible, and splitting.

We emphasize that only the first two cases are disjoint.
In the following sections, we describe subroutines to

find a minimum-weight separating subgraph if the
corresponding condition holds. If one of these conditions
does not hold, the corresponding subroutine returns
either an error or a separating subgraph that is not
minimal. By running all three subroutines and returning
the best result, we find a minimum separating subgraph
no matter which category it falls into.

4 Multiple Even Subgraphs

We begin with the easiest of the three cases. If the
minimum separating subgraph σ is the union of multiple
non-empty even subgraphs, the following algorithm
finds it. Otherwise, this algorithm may return an even
subgraph more expensive than σ.

Lemma 4.1. Let σ be a minimum-weight separating
subgraph of G. If σ is the union of two or more non-
empty even subgraphs, then σ is also the union of a
non-separating Z2-minimal subgraph η and a minimum-
weight even subgraph that is edge-disjoint from η and
homologous with η.

Proof: Suppose σ is the union of two non-empty edge-
disjoint even subgraphs γ and δ. Because σ is null-
homologous, γ and δ must be homologous. Let η be the
minimum-weight even subgraph homologous to δ and γ.
If either η= δ or η= γ, we are done. Otherwise, η⊕ γ
is a separating subgraph of smaller total weight than σ,
which is impossible. �

The minimum even subgraph in any homology class
can be found in gO(g)n log log n time using Italiano et al.’s
modification of an algorithm by Chambers, Erickson, and
Nayyeri [16, 46]. Likewise, we can find the smallest
subgraph of any homology class that avoids the minimum
even subgraph η in that same class in gO(g)n log log n
time by assigning infinite weight to every edge of η and
applying the same algorithm. We can enumerate Z2-
homology classes and apply Lemma 4.1 to show the
following:

Lemma 4.2. We can compute a minimum-weight sep-
arating subgraph in gO(g)n log log n time, if any such
subgraph is the union of two non-empty edge-disjoint
even subgraphs.

5 Contractible Cycle

Next we describe an algorithm to handle the case
where some minimum-weight separating subgraph is
a contractible simple cycle. We emphasize that out
algorithm may fail to return a contractible simple cycle
if no such cycle is a minimum separating subgraph. We
begin by borrowing a result of Cabello [6, Lemma 4.1].



Lemma 5.1 (Cabello [6]). Let α be a tight arc or tight
cycle on G. The shortest contractible simple cycle does
not cross α.

Corollary 5.2. The shortest contractible simple cycle
and the shortest non-separating cycle in G do not cross.

Figure 3. The shortest contractible simple cycle does not cross the
shortest non-separating cycle.

Lemma 5.3. We can compute a minimum-weight sep-
arating subgraph in gO(g)n log log n time, if any such
subgraph is a contractible simple cycle.

Proof: We begin by computing the shortest non-
separating cycle α in G in gO(g)n log log n time, using
a recent modification of an algorithm of Kutz [52]
by Italiano et al. [46]. The surface Σ Qα has two
boundary cycles α′ and α′′. We compute a system P
of tight arcs connecting α′ and α′′ in O(n) time using
the shortest-path algorithm of Henzinger et al. [43], as
described by Erickson and Nayyeri [34]. Let G

Q

denote
the planar graph G Q (α ∪ P); this graph has O(gn)
vertices.

Pick an arbitrary edge e of α, and let e1 and e2 be the
copies of e in G

Q

. Let γ1 and γ2 be the shortest simple
cycles in the subgraphs G

Q

\e1 and G

Q

\e2, respectively.
We compute both γ1 and γ2 in O(gn log log n) time using
the algorithm of Łącki and Sankowski [53].

Let γ the shorter of the cycles γ1 and γ2. The cycle γ
projects to a null-homologous closed walk γ′ in the
original graph G, which may or may not be simple. The
outer face of G

Q

is the only face that is not also a face
of G. It follows that the only separating cycle in G

Q

that
is not a separating subgraph in G is the boundary of outer
face. Because γ avoids at least one edge of the outer face,
the carrier of γ′ must be non-empty.

Corollary 5.2 and Lemma 5.1 imply that some
shortest contractible simple cycleσ in G crosses neither P
nor α. (We emphasize that our algorithm does not
actually compute σ.) This cycle σ appears as a simple
cycle in G

Q

that avoids at least one of the edges e1 or e2.
Thus, σ cannot be shorter than γ.

If the walk γ′ is a simple cycle, it must be contractible,
and therefore cannot be shorter than σ. In this case, γ′

Figure 4. At least one copy of e is forbidden in the planarized graph.

must be a shortest contractible simple cycle in G, and our
algorithm returns this cycle. On the other hand, if γ′ is
not a simple cycle, its carrier is composed of more than
one cycle; in this case, our algorithm reports correctly
that no minimum-weight separating subgraph of G is a
contractible simple cycle. �

6 Splitting Subgraph

Finally, we consider the case where every minimum-
weight separating subgraph splits the surface into two
components with genus. Our algorithm may not return
the minimum-weight splitting subgraph if it is not the
minimum-weight separating subgraph, but it always
returns some separating subgraph if it returns anything
at all.

Lemma 6.1. Suppose every minimum-weight separating
subgraph is splitting; let σ be a minimum-weight
separating subgraph. Let γ be a closed walk on G such
that σ does not cross γ, and let η be the shortest even
subgraph homologous to γ. Then η lies in the closure of
the same component of Σ \σ as γ.

Proof: Assume for the sake of deriving a contradiction
that η does not lie in the closure of the same component
as γ. The subgraph σ separates the faces of G into two
non-empty sets. Call the faces in the component of Σ \σ
containing γ the near faces and call the rest of the faces
far. Similarly, the even subgraph η⊕γ is null-homologous
and separates the faces of G into two subsets; call the
faces in one subset black and the others white.

Figure 5. An impossible crossing: the shortest separating cycle σ, a
cycle γ that avoids σ, and the shortest even subgraph η homologous
to γ.



Let F be the boundary of the union of the far black
faces in G. By definition, F is a null-homologous even
subgraph. By assumption, η has edges that are incident
to two far faces, but γ does not; thus, there is at least
one far black face. Since there is also at least one
white face, F is non-empty. Because both F and σ are
null-homologous, the even subgraph η′ = η⊕ F ⊕σ is
homologous to η, and therefore to γ.

For any subgraph H of G, let w(H) denote the sum of
the weights of the edges of H. We now prove that w(F)+
w(η′) ≤ w(η) + w(σ) by bounding the contribution of
each edge e ∈ E(G) to both sides of the inequality. Note
that both F and η′ are subgraphs of σ ∩ η; moreover,
F ⊕η′ = σ⊕η. There are three cases to consider.

• If e 6∈ η∪σ, then e 6∈ F . In this case, e contributes 0
to both sides of the inequality.

• If e ∈ σ ⊕ η, then e ∈ F ⊕ η′. In this case, e
contributes w(e) to both sides of the inequality.

• If e ∈ σ∩η, then e contributes exactly 2w(e) to the
right side of the inequality. Trivially, e contributes at
most 2w(e) to the left side.

On the other hand, because F is a separating
subgraph, we must have w(F) > w(σ). It immediately
follows that w(η′) < w(η), which contradicts the
minimality of η. �

Corollary 6.2. Suppose every minimum-weight sepa-
rating subgraph is splitting; let σ be a minimum-
weight separating subgraph. Then G contains two even
subgraphs η1 and η2 that lie in the closures of different
components of Σ \σ, such that η1 and η2 are minimal
in their respective nontrivial homology classes.

Proof: Let Σ1 and Σ2 denote the closures of the compo-
nents of Σ \σ. Let γ1 be any closed walk in Σ1 whose
homology class is nontrivial; such a closed walk exists
because Σ1 has positive genus. Lemma 6.1 implies that
the shortest even subgraph η1 in G that is homologous
to γ1 lies in Σ1. Similarly, Σ2 contains the shortest even
subgraph of G that is homologous to any nontrivial closed
walk in Σ2. �

Lemma 6.3. We can compute a minimum-weight sep-
arating subgraph in gO(g)n log log n time, if every such
subgraph is splitting.

Before we prove the lemma, we describe the follow-
ing subroutine. Given two non-crossing closed walks α1
and α2 in distinct Z2-homology classes, we show how to
compute in gO(g)n log log n time the minimum non-empty
even subgraph σ that separates α1 and α2 if it exists.

We compute the graph G

Q

= G Q(α1 ∪α2) in linear
time. Let Σ

Q

be its underlying surface. The graph G

Q

has
genus g−2 and four boundary cycles α′1, α′′1 , α′2, and α′′2 .
An even subgraph separating α1 and α2 in G corresponds
to an even subgraph in G

Q

that is homologous to α′1⊕α
′′
1 .

Unfortunately, we cannot simply find the smallest even
subgraph of G

Q

homologous to α′1 ⊕α
′′
1 as this subgraph

might correspond to an empty subgraph of G. Instead, we
employ a technique similar to the one used in Lemma 5.3.

Figure 6. The surface obtained after cutting a double torus along α1
and α2.

Let e1, e2 ∈ E(G) be two distinct edges in α1 and α2
respectively. Let e′1, e′′1 , e′2, and e′′2 be their corresponding
edges in G

Q

. Let η11, η12, η21, and η22 be the shortest
even subgraphs homologous to α′1 ⊕α

′′
1 in G

Q

\ {e′1, e′2},
G

Q

\ {e′1, e′′2 }, G
Q

\ {e′′1 , e′2}, and G

Q

\ {e′′1 , e′′2 } respec-
tively if they exist. We can find these even subgraphs
in gO(g)n log log n time using the modification of Italiano
et al. [46] to the algorithm of Chambers, Erickson, and
Nayyeri [16]. Let η′ be the shortest subgraph that exists
of these four. If no such subgraph exists, then we report
there is no non-empty even subgraph that separates α1
and α2 in G.

Suppose without loss of generality that η′ = η11.
Both e′1 and e′2 lie on boundary cycles of G

Q

so they are
incident to unique faces f1 and f2 respectively. Face f1
must lie in the same component of Σ

Q

\ η′ as α′1 ⊕ α
′′
1 ,

because η′ must avoid e′1. Likewise, f2 must lie in the
opposite component of Σ

Q

\η′. Therefore, η′ corresponds
to an even subgraph η of G that separates the surface
so that f1 lies in the same component of Σ \ η as α1
and f2 lies in the same component of Σ \ η as α2. The
subgraph η must be non-empty.

Since σ is weakly simple in G, it must avoid one
of e′1 or e′′1 and one of e′2 or e′′2 in G

Q

. Consequently, σ
is not shorter than η, making η a valid output to our
subroutine. We may now proceed to prove Lemma 6.3.

Proof: We begin by enumerating the 2O(g) pairs of
distinct nontrivial Z2-homology classes in G. For each
pair of classes, we find the minimum even subgraphs η1
and η2 in those classes in gO(g)n log log n time using the
modification of the algorithm of Chambers et al. [16] by
of Italiano et al. [46]. Both even subgraphs η1 and η2



can be decomposed into edge-disjoint, non-crossing,
weakly simple cycles [16, Lemma 3.2]. Let α1 and α2
be arbitrary cycles from some cycle decompositions of
η1 and η2, respectively. If these cycles cross, then we
disregard η1 and η2 and continue with the next pair
of homology classes. Otherwise, we find the minimum
non-empty even subgraph γ that separates α1 and α2 in
gO(g)n log log n time using the subroutine above. After
enumerating all pairs of even subgraphs, return the
smallest subgraph γ found. All of the subgraphs returned
by the subroutine are splitting subgraphs.

Corollary 6.2 implies that at least one pair of even
subgraphs η1 and η2 from the enumeration lie on
opposite sides of some smallest splitting subgraph σ. It
follows that σ also separates the cycles α1 and α2 taken
from the cycle decompositions of η1 and η2 respectively.
As α1 and α2 lie in different components of Σ \σ, they
cannot cross. �

7 Conclusion and Open Problems

By returning the smallest result from the algorithms
described by Lemmas 4.1, 5.3, and 6.3, we immediately
obtain our main results.

Theorem 7.1. A minimum-weight separating subgraph
of an undirected n-vertex graph embedded on an
orientable surface of genus g can be computed in
gO(g)n log log n time.

Corollary 7.2. A global minimum- cut in an undirected
n-vertex graph embedded on an orientable surface of
genus g can be computed in gO(g)n log log n time.

Our algorithm repeatedly applies two recent
O(n log log n)-time algorithms for planar graphs as black
boxes: one due to Łącki and Sankowski for global
minimum cuts [53] and another due to Italiano et al. for
minimum (s, t)-cuts [46]. Indeed, these are the only
subroutines in our algorithm that require more than
linear time when the genus is fixed. Thus, improvements
to both of these algorithms would immediately improve
our algorithm as well.

Although our algorithm works in near-linear time for
graphs of constant genus, the complexity dependence on
the genus is exponential. This exponential dependence is
unavoidable with our current technique, as our algorithm
calls a subroutine that solves an NP-hard problem:
finding the minimum-weight subgraph in a given Z2-
homology class [16]. We optimistically conjecture that
global minimum cuts in surface graphs can be computed
in O(gkn log log n) time for some small constant k, using
different techniques.
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