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Abstract

We propose a hybrid image-space/object-space solution to

the classical hidden surface removal problem: Given n

disjoint triangles in IR3 and p sample points (\pixels") in

the xy-plane, determine the �rst triangle directly behind

each pixel. Our algorithm constructs the sampled visibility

map of the triangles with respect to the pixels, which is the

subset of the trapezoids in a trapezoidal decomposition of

the analytic visibility map that contain at least one pixel.

The sampled visibility map adapts to local changes in image

complexity, and its complexity is bounded both by the

number of pixels and by the complexity of the analytic

visibility map. Our algorithm runs in time O(n1+" +

n
2=3+"

t
2=3 + p), where t is the output size. This is nearly

optimal in the worst case and compares favorably with the

best output-sensitive algorithms for both ray casting and

analytic hidden surface removal. In the special case where

the pixels form a regular grid, a sweepline variant of our

algorithm runs in time O(n1+"+n2=3+"t2=3+t log p), which

is usually sublinear in the number of pixels.

1 Introduction

Hidden surface removal is one of the oldest and most

important problems in computer graphics. Informally,

the problem is to compute the portions of a given

collection of geometric objects, typically composed of

triangles, that are visible from a given camera position

and orientation in IR3. In order to simplify calculation

(and explanation), a projective transformation is ap-

plied so that the camera is at -1 on the z-axis and all

vertices have positive z-coordinates, so that the desired

image is the orthographic projection of the objects onto

the xy-plane. We will follow the computer graphics

convention that the y-axis is vertical, the x- and z-axes

are horizontal, and the positive z-axis points into the

image, directly away from the camera.

Historically, there are two di�erent approaches to

solving the hidden surface removal problem: object
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space and image space [46]. Object-space (or analytic)

hidden surface removal algorithms compute which ob-

ject is visible at every point in the image plane. Image-

space algorithms, on the other hand, compute only the

object visible at a �nite number of sample points. We

will refer to the sample points themselves as \pixels",

since usually there is one sample point per pixel in

the �nal �nite-resolution output image. (Image-space

algorithms that compute sub-pixel features do so by

sampling a small constant number of points within each

pixel area [20].)

The output of an object-space hidden surface removal

algorithm is the projection of the forward envelope1

of the objects onto the image plane. The resulting

planar decomposition is called the visibility map of the

objects. Each face of the visibility map is a maximal

connected region in which a particular triangle, or no

triangle, is visible. McKenna [38] described the �rst

algorithm to compute visibility maps in �(n
2
) time,

where n is the number of input triangles; see also [15].

This is optimal in the worst-case. Unfortunately,

McKenna's algorithm always uses �(n
2
) time and

space, even when the visibility map is much simpler.

This shortcoming led to the development of several

output-sensitive algorithms, whose running time de-

pends not only on n, the number of triangles, but also

on v, the number of vertices of the visibility map. The

fastest algorithm currently known, an improvement by

Agarwal and Matou�sek [2] of an algorithm of de Berg

et al. [6], runs in time O(n1+"+n
2=3+"

v
2=3

). For more

details on these and other object-space algorithms, see

the comprehensive survey by Dorward [17].

The primary disadvantage of the object-space ap-

proach is the potentially high complexity of the visibil-

ity map, which may be much larger than the number of

pixels in the desired output image, even for reasonable

input sizes. Even when the visibility map is not overly

complex, it may contain features that are signi�cantly

smaller than the area of a pixel and thus do not con-

tribute to the �nal image. This is especially problematic

for applications of hidden-surface removal such as form-

factor calculation, where the desired output image may

have very low resolution [45].

1This would be called the \lower envelope" if the z-axis were

vertical.
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For image-space algorithms, on the other hand, the

ultimate goal is to compute, for each pixel in the �nite-

resolution output image, which triangle is visible at

that pixel. The most common image-space approach

is the z-bu�er algorithm introduced by Catmull [9].

This algorithm loops through the triangles, determining

the pixels that each triangle covers in the image plane;

each pixel maintains the smallest z-coordinate of any

triangle covering that pixel. While this algorithm can be

implemented cheaply in hardware, it can still be quite

slow when the number of triangles and number of pixels

are both large.

Another common image-space approach is ray cast-

ing (also known as ray tracing and ray shooting):

Shoot a ray from each pixel in the positive z-direction

and compute the �rst triangle it hits. Using using the

best known unidirectional ray-shooting data structure,

due to Agarwal and Sharir [3], we obtain an algorithm

with running timeO((n+n2=3p2=3+p) log3 n), where n

is the number of triangles and p is the number of pixels.

Erickson's lower bound for Hopcroft's problem [18]

suggests that this algorithm is close to optimal in the

worst case, even for the simpler problem of deciding

whether any ray hits a triangle. In practice, ray-

shooting queries are answered by walking through a

decomposition of space determined by the triangles,

such as an octtree [21], triangulation [4], or binary space

partition [40, 42]. See [4, 29] for related theoretical

results.

Neither z-bu�ers nor ray casting exploit spatial co-

herence in the image. If the visible triangles are

fairly large, then the same triangle is likely to be

visible through several pixels; however, both algorithms

compute the triangle behind each pixel independently.

Spatial coherence is exploited to some extent by more

complex techniques such as Warnock's subdivision al-

gorithm [49], hierarchical z-bu�ers [23], hierarchical

coverage masks [24], and frustum casting [48], which

construct a recursive quadtree-like decomposition of

the image. However, this decomposition can be much

more complex than the visibility map if, for example,

the image contains several long diagonal lines. In

particular, if the pixels lie in a regular
p
p �

p
p grid,

the decomposition can have complexity �(v
p
p).

A few hidden surface removal algorithms work si-

multaneously in both image and object space [28, 50].

The basic idea for these algorithms is to traverse the

objects in order from front to back (i.e., by increasing

\distance" from the camera), decomposing the image

plane using the boundaries of the objects and reverting

to ray casting when any region of the image plane

contains only a single pixel. Of course, there are sets

of triangles do not have a consistent depth order, and

these algorithms will produce incorrect output if such

as set is given as input. While a depth order can always

be guaranteed by �rst decomposing the triangles with

a binary-space partition tree, this could produce �(n2)

triangle fragments in the worst case [42]. One exception

to the depth-order requirement is Weiler and Atherton's

algorithm [50], which decomposes the image plane into

regions within which the triangles can be depth-ordered;

this algorithm can also produce a quadratic number

of fragments. The image decompositions produced by

these algorithms produce cannot be analyzed either in

terms of the complexity of the visibility map, since they

can decompose triangles even when all depth cycles are

invisible, or in terms of the number of pixels, since they

can produce many fragments that do not contain a pixel

at all.

In this paper, we propose another hybrid approach

to hidden surface removal that exploits both spatial

coherence and �nite precision. In Section 2, we de�ne

the sampled visibility map of a set of triangles with re-

spect to a set of pixels. Like other image-decomposition

schemes, the sampled visibility map adapts to local

changes in the image complexity, but unlike previous

approaches its complexity is easily bounded both by

the complexity of the analytic visibility map and by

the number of pixels.

We describe an output-sensitive algorithm to con-

struct the sampled visibility map in Section 4. Our al-

gorithm runs in time O(n1+" + n
2=3+"

t
2=3

+ p), where

t is the number of trapezoids in the output. This

matches the performance of Agarwal and Matou�sek's

visibility map algorithm when t = �(v), and almost

matches Agarwal and Sharir's ray-casting algorithm

when t = �(p). Our algorithm does not require the

triangles to have a consistent depth order, nor does it

decompose the triangles into orderable fragments. A

variant of our algorithm allows a sequence of pixels to

be speci�ed online, at an additional amortized cost of

O(log t) time per pixel.

The algorithms presented in Section 4 assume that

the pixels are just arbitrary points in the xy-plane.

In Section 5, we describe a faster algorithm for the

common special case where the pixels are the vertices of

a rectangular grid. The running time of our improved

algorithm is O(n1+" + n
2=3+"

t
2=3

+ t logp), which is

sublinear in the number of pixels unless the output is

very large.

Finally, in Section 6, we discuss some other applica-

tions of our techniques and suggest directions for further
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research.

2 De�nitions

Let � be a set of n disjoint triangles in IR3, where

every vertex has positive z-coordinate. We say that a

triangle 4 2 � is visible at a point � in the xy-plane

if a ray from � in the positive z-direction hits 4 before

any other triangle in �. The visibility map Vis(�)

is a planar straight-line graph, each face of which is a

maximal connected region in which a particular triangle

in �, or no triangle, is visible. See Figure 1(a). Let v

denote the number of vertices of Vis(�).

The trapezoidal decomposition of Vis(�), denoted

Trap(Vis(�)), is obtained by decomposing each face

into (possibly degenerate) trapezoids, two of whose

edges are vertical (i.e., parallel to the y-axis). The

vertical edges are de�ned by casting segments up and/or

down from each vertex into the face, stopping when the

segment reaches another edge of the face. Faces are

decomposed individually, so only one vertical edge is

added at a \T" vertex where one visible edge appears

to overlap another. See Figure 1(b).

Finally, let P be a set of p points in the xy-plane,

called \pixels". The sampled visibility map of �

with respect to P, denoted Vis(� j P), is the subset

of trapezoids in Trap(Vis(�)) that contain at least

one pixel in P. See Figure 1(d). Let t denote the

number of trapezoids in Vis(� j P). Clearly t � p,

since every trapezoid in Vis(� j P) contains at least one

pixel. Moreover, since Trap(Vis(�)) contains at most

2v trapezoids, t � 2v.

3 Building One Trapezoid in Vis(� j P)

A na��ve algorithm for constructing the sampled visibil-

ity map would start by constructing Vis(�). While this

approach leads to an algorithm that is nearly optimal

in the worst case, it cannot give an output-sensitive

algorithm. To obtain output-sensitivity, we construct

Vis(� j P) one trapezoid at a time. Speci�cally, for

each pixel � 2 P, if it is unmarked, we determine

the trapezoid �� 2 Trap(Vis(�)) that contains it and

then mark all the pixels contained in ��. We construct

each trapezoid in four stages, which are illustrated in

Figure 2.

Stage 1. Forward Ray Shooting. The �rst stage

in constructing the trapezoid �� is to determine the

triangle visible at �; see Figure 2(a). This is done by

answering a unidirectional ray-shooting query, exactly

as in the standard ray-casting algorithm. Agarwal and

Sharir [3] describe a data structure that can answer such

queries in time O((n=
p
s) log3 n) using a data structure

of size O(s log2 n), where s can be chosen anywhere

between n and n
2. The preprocessing time needed to

construct this data structure is O(s log3 n).

Agarwal and Sharir's data structure is actually de-

signed to answer point stabbing queries for a set of

triangles in the plane|How many triangles contain

the query point? Like most geometric range searching

structures, their data structure de�nes a number of

canonical subsets of the set of triangles. For any point

�, the set of triangles that contain � can be expressed

as the disjoint union of O((n=
p
s) log3 n) canonical

subsets; in particular, this implies that the triangles in

any canonical subset have a common intersection. Their

data structure stores the size of each canonical subset,

and a stabbing query is answered by summing up the

sizes of the relevant canonical subsets. To obtain a

unidirectional ray-shooting data structure for our three-

dimensional triangles �, it suÆces to build Agarwal and

Sharir's point-stabbing structure for the xy-projection

of �. Now the triangles in any canonical subset have

a consistent front-to-back ordering, and the triangle

visible through � can be computed by comparing the

front-most triangles in the relevant canonical subsets.

Stage 2. Vertical Ray Dragging. The second stage in

our algorithm �nds the top and bottom edges of ��.

Intuitively, these edges are computed by dragging the

ray through � parallel to the y-axis until the triangle

hit by the ray changes. See Figure 2(b). Let 4� 2 �

be the triangle visible at �, and let �� be the point

on 4� with the same x- and y-coordinates as �. (To

avoid the case where no triangle is visible at �, we can

assume that there is a large \background" triangle.) Let

the curtain of a triangle edge be the set of points on

or directly behind that edge; each curtain is a three-

sided unbounded polygonal slab, two of whose sides are

parallel to the z-axis [6]. We can �nd the top (resp.

bottom) edge of �� by shooting a ray from �� along

the surface of 4� in the positive (resp. negative) y-

direction. In each case, the desired edge is determined

either by an edge of4� or by the �rst curtain hit by the

ray. Agarwal and Matou�sek [2] describe a data structure

of size O(sn"), where s can be chosen anywhere between

n and n
2, that can answer ray shooting queries in a

set of n curtains in time O(n
1+"

=
p
s), after O(sn

"
)

preprocessing time.

Stage 3. Oblique Ray Dragging. Each vertical trape-

zoid edge in Trap(Vis(�)) is de�ned either by a vertex of
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(a) (b)

(c) (d)

Figure 1. (a) The visibility map Vis(�) of a set � of triangles, (b) its trapezoidal decomposition Trap(Vis(�)), (c) with a grid of pixels

P, and (d) the resulting sampled visibility map Vis(� j P).

(a) (b) (c) (d)

Figure 2. Building one trapezoid in Vis(� j P). (a) Shoot a ray into the scene through the pixel to the �rst triangle. (b) Drag rays up and

down to �nd the top and bottom edges. (c) Drag rays along the top and bottom edges to �nd their (potential) endpoints. (d) Narrow

the trapezoid by locating the nearest visible vertices on either side.
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Vis(�) at its top or bottom endpoint, or by a projected

visible vertex of some triangle, which could lie anywhere

in the edge. The third stage looks for the nearest

vertices of Vis(�) along the top and bottom edges of ��.

Let ê and �e be triangle edges whose projections lie

directly above and below �, respectively, and let �̂ 2 ê

and �� 2 �e be the points with the same x-coordinate

as �. Intuitively, we drag rays to the left and right

along ê (resp. �e), starting at �̂ (resp. ��), stopping when

each ray either hits another edge or hits an endpoint

of ê (resp. �e); see Figure 2(c). Just as in the previous

stage, each ray-dragging queries can be answered by

performing a ray-shooting query in the set of curtains in

time O(n1+"=
p
s), using Agarwal and Matou�sek's data

structure [2].

Stage 4. Swath Sweeping. In the �nal stage, we

search for the visible triangle vertices whose projections

lie beneath the top edge and above the bottom edge

of ��, and whose x-coordinates are closest to that of

the pixel �. Since we know that 4� is the only triangle

visible in ��, it suÆces to consider only triangle vertices

in front of the plane containing 4�, and we can assume

that all such vertices are visible. Intuitively, we take

the vertical swath of rays swept in Stage 2, and sweep

it to the left and right until it hits such a vertex.

We will describe only the leftward sweep; the right-

ward sweep is completely symmetric. It suÆces to build

a data structure storing only the rightmost vertex of

each triangle, i.e., the vertex with largest x-coordinate.

To answer a swath-sweep query, we perform a binary

search over the x-coordinates of the rightmost vertices,

looking for the left edge of ��. At each step in

the binary search, we determine whether a particular

query trapezoid � contains the projection of any visible

triangle vertex. Intuitively, at each step, we cast a

trapezoidal beam forward into the triangles and ask

whether it encounters any triangle vertex before it

hits 4�. In fact, since the trapezoid � lies entirely

inside the projection of 4�, it suÆces to check whether

the beam hits a vertex before the plane containing 4�.

We answer this trapezoidal beam query using a

multi-level data structure. Multi-level data structures

allow us to decompose complicated queries into simpler

components and devise independent data structures for

each component. The size (resp. query time) of a

multi-level structure is the size (resp. query time) of its

largest (resp. slowest) component, times an additional

factor of O(logn) per \level". See [1, 37] for detailed

descriptions of this standard technique.

We decompose trapezoidal beam queries by observing

that the beam through a trapezoid � contains a visible

vertex v if and only if

(a) the x-coordinate of v is between the left and right

x-coordinates of �,

(b) the xy-projection of v is below the top edge of �,

(c) the xy-projection of v is above the bottom edge

of �, and

(d) v is in front of the plane containing 4�.

The �rst level of our data structure is a range tree [5]

over the x-coordinates of the triangle vertices, which

lets us (implicitly) �nd the vertices between the left

and right sides of � in O(logn) time. This level requires

O(n) space and O(n logn) preprocessing time.

The next two levels let us (implicitly) �nd all the

vertices whose xy-projections lie in the wedge deter-

mined by the top and bottom edges of �. One level

�nds the points below the top edge; the other �nds

the points above the bottom edge. For each level, we

can use a two-dimensional halfplane query structure of

Agarwal and Sharir [3], which answers queries in time

O((n=
p
s) logn) using space O(s) and preprocessing

time O(s logn), for any s between n and n
2.

Finally, in the last level, we need to determine

whether any vertex lies in front of the plane containing

4�. We can answer this three-dimensional halfspace

emptiness query in O(logn) time, O(n) space, and

O(n logn) preprocessing time using (for example) a

Dobkin-Kirkpatrick hierarchy [16].

Combining all four levels, we obtain a data structure

of size O(s log3 n), with preprocessing time O(s log4 n),

that can answer any trapezoidal beam query in

time O((n=
p
s) log4 n), for any n � s � n

2. Thus,

the overall time to answer a swath-sweep query is

O((n=
p
s) log4 n).

Putting all four stages together, we obtain the following

result. The time and space bounds are dominated by

the curtain ray-shooting data structure in the second

and third stages.

Lemma 3.1. Let � be a set of n disjoint triangles in IR3,

and let s be a parameter between n and n
2. We can

build a data structure of size O(sn") in time O(sn"), so

that for any point � in the xy-plane, we can construct

the trapezoid �� 2 Trap(Vis(�)) containing � in time

O(n
1+"

=
p
s).
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4 All Trapezoids

4.1 Guessing the Output Size

Lemma 3.1 implies that for any positive integer t, the

total time to build our data structure and construct t

trapezoids is

O

��
s+

tn
p
s

�
n
"

�
:

If we know the number of trapezoids in advance, we

can minimize the total running time by setting s =

max(n; t2=3n2=3); the resulting time bound isO(n1+"+

t
2=3

n
2=3+"

)

In our application, however, t is the number of

trapezoids in Vis(� j P), which is not known in advance.

We can obtain the same overall running time in this case

using the following standard doubling trick, previously

used in several output-sensitive analytic hidden surface

removal algorithms [41, 3, 6]. Our algorithm runs

in several phases. In the ith phase, we build the

data structures from scratch with s = 2
2i=3

n, and

then construct the next 2
i
p
n trapezoids. The time

for the ith phase is O(2
2i=3

n
1+"

), and the algorithm

goes through dlog2(t=
p
n)e phases before it builds all t

trapezoids.

4.2 Avoiding Redundant Queries

To construct the entire collection of trapezoids

Vis(� j P), we loop through the pixels, constructing

the trapezoid containing each pixel. Of course, if we

have already built the trapezoid containing a pixel, we

want to avoid building it again. There are at least two

methods for avoiding this redundancy.

In one method, after we construct each new trapezoid,

we search for and mark all the pixels it contains. This

can be done in O((n=
p
s) log3 n + k) time using a

two-dimensional range searching data structure similar

to the one used in the last stage of our trapezoid-

construction algorithm [3]. Here, s is as usual an

arbitrary parameter between n and n
2, and k is the

number of pixels marked. Since the leading term is

dominated by the time to construct the trapezoid in

the �rst place, this approach adds only an O(p) term to

the overall running time of our hidden-surface removal

algorithm.

Theorem 4.1. Let � be a set of n disjoint triangles in

IR3, and let P be a set of of p points in the xy-plane. We

can construct Vis(� j P) in time O(n1+"+t
2=3

n
2=3+"

+

p), where t is the number of trapezoids in Vis(� j P).

Alternately, before querying a new pixel, we could

�rst check whether it is contained in an earlier trapezoid

by performing a point location query. We can maintain

a semi-dynamic set of t interior-disjoint vertical trape-

zoids and answer point-location queries in O(log t) time

per query and O(log t) amortized time per insertion,

using a data structure of size O(t log t) based on a

segment tree with fractional cascading [10, 11, 39].

This approach adds O(p log t) to the overall running

time of our hidden-surface removal algorithm; the total

insertion time O(t log t) is dominated by other terms.

Although this approach is slower than pixel-marking, it

can be used when the set of pixels is presented online

instead of being �xed in advance.

Theorem 4.2. Let � be a set of n disjoint triangles in

IR3, and let P be a sequence of p points in the xy-plane.

We can maintain Vis(� j P) as points in P are inserted,

in total time O(n1+"+ t
2=3

n
2=3+"

+p log t), where t is

the number of trapezoids in Vis(� j P).

5 A Faster Sweepline Algorithm

(\Traps and Gaps")

The algorithms described in the previous section work

for arbitrary sets of pixels. However, in most appli-

cations of hidden surface removal, the pixels form a

regular integer grid. In this case, we can improve the

performance of our algorithm using the following sweep-

line approach, suggested by Pavan Desikan and Sariel

Har-Peled[14].

Without loss of generality, we assume that the pixel

lattice is aligned with the coordinate axes. Our im-

proved algorithm sweeps a vertical line ` across the

image plane from left to right. At any position, `

intersects several trapezoids in Vis(� j P). Between any

pair of such trapezoids is a gap, which is a possibly

unbounded, possibly empty triangle bounded on the

left by `, bounded above by the line through the bottom

edge of the higher trapezoid, and bounded below by the

line though the top edge of the lower trapezoid. Gaps

can intersect each other, as well as other trapezoids that

hit `. See Figure 3 (a).

We store the traps and gaps in two data structures: a

balanced binary search tree and a priority queue. The

binary tree stores the traps and gaps in sorted order

from top to bottom along `. For the priority queue,

the priority of a trap is the x-coordinate of its right

edge, and the priority of a gap is the x-coordinate of

the leftmost pixel(s) inside the gap, or 1 if the gap

contains no pixels. Since the sweepline clearly crosses
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(a) (b)

Figure 3. (a) Just before and (b) just after the sweepline crosses

the right edge of a trapezoid and its neighboring gaps are merged.

Leftmost pixels in each gap, if any, are circled.

at most t trapezoids, the cost of inserting or deleting a

trap or gap from the sweep structures is O(log t). Note

that this is bounded by both O(logp) and O(logn).

To �nd the leftmost pixel inside a gap, we use the

following two-dimensional integer programming result

of Kanamaru et al. [31]; see also [32, 19]. For related

results on enumerating integer points in convex poly-

gons, see [34, 35, 26, 27].

Lemma 5.1 (Kanamaru et al. [31]). Given a convex

m-gon �, we can �nd the lowest leftmost integer point

in �, or determine that � contains no integer points, in

time O(m+ log Æ), where Æ is the length of the shortest

edge of the axis-aligned bounding box of �.

Corollary 5.2. We can �nd a leftmost pixel in any gap,

or determine that there is no such pixel, in O(logp)

time.

We do not require that the sweepline structures

always contain every trapezoid in Vis(� j P) that in-

tersects `. Instead we maintain the following weaker

invariant: whenever ` reaches a pixel �, the trapezoid

�� 2 Vis(� j P) containing � must be stored in the

sweepline structures. We initialize the sweep structure

with a single gap that contains the entire pixel grid.

When the sweepline ` reaches the right edge of a

trap �, we delete it from the sweep structure. We

also delete the gaps immediately above and below �

and insert the new larger gap. Manipulating the sweep

structure requires O(log t) time, and �nding a leftmost

pixel in the new gap requires O(logp) time, so the total

time required to kill a single trap is O(logp).

When ` reaches a leftmost pixel � in a gap 
,

we perform a trapezoid query to �nd the trap �� 2

Vis(� j P) containing �. We then delete 
 from the

sweep structure, insert ��, and insert the two smaller

gaps 
+ and 

- immediately above and below ��. The

new trap �� may not contain all the leftmost pixels in 
;

any omitted pixels will now be a leftmost pixel in either



+ or 
-. If some new gap contains a leftmost pixel

of 
, it will be (recursively) �lled before the sweepline

moves again. (We can avoid creating such \transient"

gaps by storing the highest and lowest leftmost pixels

in each gap 
, at an additional cost of O(1) time when


 is created, but this improves the running time of our

algorithm by at most a constant factor.) For each new

trap inserted, our algorithm spends O(logp) time and

creates at most two new gaps.

Every gap except the initial one is created when a trap

is inserted or deleted. We can charge at most three gaps

to each trap: the gaps immediately above and below

when the trap is inserted, and the gap left behind when

the trap is deleted. The total number of gaps created

over the entire algorithm is therefore at most 3t+ 1. It

follows that the total time spent �nding leftmost pixels

is O(t logp), and the total time spent manipulating the

sweep structures is O(t log t). All the remaining time is

spent on trapezoid queries, as in our earlier algorithms.

Theorem 5.3. Let � be a set of n disjoint triangles

in IR3, and let P be a regular lattice of p points in

the xy-plane. We can construct Vis(� j P) in time

O(n
1+"

+ t
2=3

n
2=3+"

+ t logp), where t is the number

of trapezoids in Vis(� j P).

Note that this time bound is sublinear in p unless t =


(p= logp). Moreover, theO(t logp) term is dominated

by other terms unless either t is nearly quadratic in n

or p = 2

(nc) for some positive constant c.

6 Discussion and Open Problems

One interesting special case of hidden-surface removal

is the so-called window rendering problem, where the

objects are axis-aligned horizontal rectangles. A simple

modi�cation of our algorithm solves this problem in

time O(n log2 n+ t logn+p) which compares favorably

with the best analytic solutions [8, 22]. If the pixels

form a regular grid, we can improve the running time

to O(n log2 n + t logn) using the sweepline approach.

(Note that this time bound does not depend at all on the

number of pixels!) Similar improvements can be made
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for c-oriented polyhedra [7]. It seems likely that our

techniques can also be extended to other special cases

of hidden surface removal with faster analytic solutions,

such a polyhedral terrains [43] and objects whose union

has small complexity [33, 25].

Perhaps the most interesting open question is

whether sampled visibility maps, or some other similar

image decomposition, can be constructed eÆciently in

practice. As we mentioned in the introduction, ray-

shooting queries are already answered in practice by

walking through a spatial decomposition de�ned by the

input objects. The same spatial decomposition can

also be used to answer ray-dragging queries [40] and

trapezoidal beam queries. Since curved models are

often polygonalized (and complex polyhedral models

are often simpli�ed) so that each polygonal facet covers

only a few pixels, a practical implementation may

require the sampled visibility map to be rede�ned in

terms of higher-level objects, such as convex polyhedra

or algebraic surface patches, instead of triangles.

A practical implementation of our ideas would have

other interesting applications. By changing the order

in which our algorithm processes pixels, we can make it

suitable for progressive rendering, where the quality of

the image improves smoothly over time as �ner and �ner

details are computed, or foveated rendering, where �ne

details are more important in certain areas of the image

than others. Another possible application is occlusion

culling [12, 13, 30, 36, 47]. By sampling the visibility

map at a small number of random points, we can quickly

establish a set of simple occluders that can be used

for conservative visibility tests. The occlusion tests

themselves would be slightly simpler than in earlier

approaches: A triangle is invisible if its projection is

contained in some trapezoid.

Sampled visibility maps exploit spatial coherence well

in a global sense; the number of regions is never much

larger than the size of the visibility map. In a more local

sense, however, there is clearly room for improvement.

Consider an image that contains mostly empty space,

except for a large number of small triangles near the

boundary. The sampled visibility map consists of

several tall thin trapezoids, but a better decomposition

would have a single region covering most of the image.

It would be interesting to develop decompositions with

better local behavior|perhaps where the expected

size of the component containing a random pixel is

maximized, or where the size of a component is tied

to the local feature size [44] of the visibility map near

that component|but with the same global properties

as sampled visibility maps.

Acknowledgment. I thank Pavan Desikan and Sariel

Har-Peled for suggesting the sweep-line approach de-

scribed in Section 5 and pointing out several relevant

references [26, 27, 34].
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