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Abstract

We derive a lower bound of 
(n4=3) for the half-

space emptiness problem: Given a set of n points and

n hyperplanes in IR5, is every point above every hyper-

plane? This matches the best known upper bound to

within polylogarithmic factors, and improves the previ-

ous best lower bound of 
(n logn). The lower bound

applies to partitioning algorithms in which every query

region is a polyhedron with a constant number of facets.

1. Introduction

The halfspace emptiness problem asks, given a set
of points and a set of halfspaces, whether any halfspace
contains a point. In this paper, we derive new lower
bounds for the time required to solve this problem,
generalizing earlier lower bounds for Hopcroft's point-

line incidence problem [16].

In this paper, we will consider the following formu-
lation of the problem: Given a set of points and hyper-
planes, is every point above every hyperplane? Using
linear programming [13, 21, 24, 25], we can decide in
linear time whether the union of a set of halfspaces
is IRd. If it is, then every input point must lie in a
halfspace. Otherwise, by aplying an appropriate pro-
jective transformation, which we can also �nd in lin-
ear time, we can ensure that the halfspaces miss the
point (0; 0; : : : ; 0;1). If we use the duality transfor-

mation (a1; a2; : : : ; ad) !
Pd�1

i=1 aixi = ad+xd; then

a point p is above a hyperplane h if and only if the
dual point h� is above the dual hyperplane p�. Thus,
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in this formulation, the halfspace emptiness problem is
self-dual.

The best known algorithms for this problemwere de-
veloped for its online version: Given a set of n points,
preprocess it to answer halfspace emptiness (or report-
ing) queries. In two and three dimensions, we can
easily build a linear-size data structure in O(n logn)
time, that allows halfspace emptiness queries to be an-
swered in logarithmic time [3, 10, 14]. In higher di-
mensions, a randomized algorithm due to Clarkson [12]
answers halfspace emptiness queries in time O(logn)
after O(nbd=2c+")1 preprocessing time. Matou�sek [19]
describes two halfspace emptiness data structures, one
answering queries in time O(n1�1=bd=2c polylogn) time
after O(n logn) preprocessing time, and the other an-
swering queries in time O(n1�1=bd=2c2O(log

� n))2 after

O(n1+") preprocessing time. Combining Clarkson's
and Matou�sek's data structures, for a �xed parame-
ter n � s � n

bd=2c, one can answer queries in time
O((n logn)=s1=bd=2c) after O(s polylogn) preprocessing
time [19, 1, 7]. For extensions and applications of half-

space range reporting, see [1, 2, 6, 7, 22, 20].
Given n points and m halfspaces, we can solve the

o�ine halfspace emptiness problem in time

O
�
n logm+ (nm)bd=2c=(bd=2c+1) polylog(n+m) +m log n

�
;

using either Clarkson's data structure or Matou�sek's
combined data structure, depending on the relative
growth rates of n and m. In two and three dimensions,
the time bound simpli�es to O(n logm + m logn). If
n > m, we actually solve the problem in the dual, by
building a data structure to report if any halfspace con-
tains a query point.

1In bounds of this form, " is an arbitrarily small positive con-
stant. Multiplicative constants hidden by the big-Oh notation
tend to in�nity as " approaches zero.

2The iterated logarithm log� n is de�ned as 1 + log�(lgn)

when n � 2 and 1 when n < 2.



The only lower bound previously known for this
problem is 
(n logm + m logn), in the algebraic de-
cision tree or algebraic computation tree models, by
reduction from set intersection [26, 4]. Thus, the
two- and three-dimensional algorithms are optimal, but
there is still a large gap in dimensions four and higher.

In this paper, we derive a lower bound of 
(n logm+
n
2=3

m
2=3 + m logn) on the complexity of the half-

space emptiness problem in IR5, matching known up-
per bounds up to polylogarithmic factors. We obtain
marginally larger bounds in dimensions 9 and higher.
Our lower bounds apply to polyhedral partitioning al-

gorithms, a restriction of the class of partitioning al-
gorithms introduced in [16]. Informally, a polyhedral
partitioning algorithm covers space with a constant
number of constant-complexity polyhedra, determines
which points and halfspaces intersect each polyhedron,
and recursively solves the resulting subproblems.

The basic approach is the same as the one used to
prove lower bounds for Hopcroft's problem [16]. We
�rst de�ne polyhedral covers, and develop lower bounds
on their combinatorial complexity. Our main result
(Theorem 5.2) states that the running time of a poly-
hedral partitioning algorithm is bounded below by the
polyhedral cover size of its input. The 
(n4=3) lower
bound then follows from the construction of a set of
points and hyperplanes in IR5, with all the points above
all the hyperplanes, whose every polyhedral cover is
that large. Our techniques also imply slightly better
lower bounds for Hopcroft's problem in higher dimen-
sions.

The paper is organized as follows. In Section 2, we
de�ne projective polyhedra and describe some of their
basic properties. In Section 3, we state an important
technical lemma concerning the separation of points
and hyperplanes by polyhedra; the proof is given in
the Appendix. We develop bounds on the size of poly-
hedral covers in Section 4. In Section 5, we formally de-
�ne polyhedral partitioning algorithms and prove our
main results. Finally, in Section 6, we o�er our conclu-
sions and suggest directions of further research.

2. Projective Polyhedra

Our lower bound argument relies heavily on certain
properties of convex polytopes and polyhedra. Many of
these properties are more easily proved, and have fewer
special cases, if we state and prove them in projective
space rather than a�ne Euclidean space. In particular,

developing these properties in projective space allows
us to more easily deal with unbounded and degenerate
polyhedra and duality transformations. Everything we
describe in this section can be formalized algebraically

in the language of polyhedral cones and linear sub-
spaces one dimension higher; we will give a much less
formal, purely geometric treatment. For more techni-
cal details, we refer the reader to Chapters 1 and 2 of
Ziegler's lecture notes [28].

The projective space IRIPd can be de�ned as the
set of lines through the origin in IRd+1. Every k-
dimensional linear subspace of IRd+1 induces a (k�1)-
dimensional at f in IRIPd, and its orthogonal comple-
ment induces the dual at f�.

A projective polyhedron is a single closed cell, not
necessarily of full dimension, in the arrangement of a
�nite number of hyperplanes in IRIPd. A projective

polytope is a simply-connected polyhedron, or equiva-
lently, a polyhedron that is disjoint from some hyper-
plane. Every projective polyhedron is (the closure of)
the image of a convex polyhedron under some projec-
tive transformation, and every projective polytope is
the projective image of a convex polytope. Every at
is also a projective polyhedron.

The projective span (or projective hull) of any sub-
set X � IRIPd, denoted span(X), is the projective sub-
space of minimal dimension that contains it. The rel-

ative interior of a projective polyhedron is its inte-
rior in the subspace topology of its projective hull. A
hyperplane supports a polyhedron if it intersects the
polyhedron but not its relative interior. A at has no
supporting hyperplanes.

A proper face of a polyhedron is the intersection
of the polyhedron and one or more supporting hyper-
planes. Every proper face of a polyhedron is a lower-
dimensional polyhedron. A face of a polyhedron is ei-
ther a proper face or the entire polyhedron. We write
� � � to denote that a polyhedron � is a face of an-
other polyhedron �. The dimension of a face is the
dimension of its projective hull. The dimension of the

empty set is taken to be �1. The faces of a polyhe-
dron form a lattice under inclusion. Every projective
polyhedron has a face lattice isomorphic to that of a

convex polytope, possibly of lower dimension.
The apex of a polyhedron �, denoted apex(�), is

the intersection of all the supporting hyperplanes, or
equivalently, the unique face of minimum dimension.
The apex is empty if and only if the polyhedron is a
polytope but not a single point; the apex is the whole
polyhedron if and only if the polyhedron is a at.

The dual or polar of a polyhedron �, denoted ��,
is the set of points whose dual hyperplanes intersect �
in one of its faces:

��
4

= fp j (p� \�) � �g:

In other words, p 2 �� if and only if p� either contains
�, supports �, or completely misses �. This de�nition



generalizes both the polar of a convex polytope and the
projective dual of a at. We easily verify that �� is a
projective polyhedron whose face lattice is the inverse
of the face lattice of �. In particular, � and �� have
the same number of faces. See [28, pp. 59{64] and [27,
pp. 143{150] for similar de�nitions.

3. Polyhedral Separation

Let P be a set of points, let H be a set of hyper-
planes, and let � be a projective polyhedron in IRIPd.
We say that � separates P and H if � contains P
and the dual polyhedron �� contains the dual points
H
�; that is, any hyperplane in H either contains �,

supports �, or misses � entirely. Both P and H may
intersect the relative boundary of �. We say that P

and H are r-separable if there is a projective polyhe-
dron with at most r faces that separates them.

The lower bound proofs in [16] relied on the follow-
ing trivial observation: if we perturb a set of points
and hyperplanes just enough to remove any point-
hyperplane incidences, and every point is above ev-
ery hyperplane in the perturbed con�guration, then
no point was below a hyperplane in the original con-
�guration. The following technical lemma establishes
the corresponding, but no longer trivial, property of r-
separable con�gurations. Informally, if a con�guration
is not r-separable, then arbitrarily small perturbations
cannot make it r-separable.

Technical Lemma 3.1. Let H be a set of hyper-

planes in IRIPd. For all r, the set of point con�gura-

tions P 2 (IRIPd)n such that P and H are r-separable

is topologically closed.

For a proof of this lemma, see the appendix.

4. Incidences and Polyhedral Covers

A r-polyhedral cover of a set P of points and a set
H of hyperplanes is an indexed set of subset pairs
f(Pi;Hi)g, where Pi � P and Hi � H, such that

1. For each index i, Pi and Hi are r-separable.

2. For each point p 2 P and hyperplane h 2 H, there
is some index i such that p 2 Pi and h 2 Hi.

We emphasize that the subsets Pi are not necessarily
disjoint, nor are the subsets Hi. We refer to each subset
pair (Pi;Hi) in a polyhedral cover as a r-polyhedral

minor. The size of a cover is the sum of the sizes of
the subsets Pi and Hi.

Let �r(P;H) denote the size of the smallest r-
polyhedral cover of P and H. Let ��d;r(n;m) denote
the maximum of �r(P;H) over all sets P of n points
andH ofm hyperplanes in IRIPd such that no point lies
on any hyperplane. When the subscript r is omitted,
we take it to be a �xed constant.

Finally, let I(P;H) denote the number of point-
hyperplane incidences between P and H.

Lemma 4.1. Let P be a set of n points and H a set

of m hyperplanes, such that no subset of s hyperplanes

contains t points in its intersection. If P and H are

r-separable, then I(P;H) � r(s+ t)(n+m).

Proof: Let � be a polyhedron with r faces that sepa-
rates P and H. For any point p 2 P and hyperplane
h 2 H such that p lies on h, there is some face f of
� that contains p and is contained in h. For each face
f of �, let Pf denote the points in P that are con-

tained in f , and let Hf denote the hyperplanes in H

that contain f .

Since no set of s hyperplanes can all contain the
same t points, it follows that for all f , either jPf j < t

or jHf j < s. Thus, we can bound I(P;H) as follows.

I(P;H) �
X
f��

I(Pf ;Hf )

=
X
f��

(jPf j � jHf j)

� (s+ t)
X
f��

�
jPf j+ jHf j

�

Since � has r faces, the last sum counts each point and
hyperplane at most r times. �

The next lemma shows that su�ciently small per-
turbations of a point-hyperplane con�guration cannot
decrease its polyhedral cover size.

Lemma 4.2. Let P be a set of n points and H a set

of m hyperplanes in IRIPd. For all Q 2 (IRIPd)n su�-

ciently close to P , �r(Q;H) � �r(P;H).

Proof: Let P 0 be a subset of P , and for any other set
Q of n points, let Q0 be the corresponding subset of
Q. Let H0 be a subset of H. Technical Lemma 3.1
implies that there is an open set U(P 0

;H
0) � (IRIPd)n

such that for any Q 2 U(P;H), if Q0 and H
0 are r-

separable, then P
0 and H

0 are also r-separable.
Let U be the intersection of these 2n2m open sets:

U =
\

P 0�P

\
H0�H

U(P 0
;H

0):

For all Q 2 U , every r-polyhedral minor of Q and H

corresponds to a r-polyhedral minor of P andH. Thus,



for any r-polyhedral cover of Q and H, there is a corre-
sponding r-polyhedral cover of P and H with exactly
the same size. �

Theorem 4.3. ��2(m;n) = 
(n+ n
2=3

m
2=3 +m).

Proof: Let P be a set of n points andH a set ofm lines
in the plane such that I(P;H) = 
(n+n

2=3
m

2=3+m).
Such a point-line con�guration was �rst constructed by
Erd}os; see, for example, [15, p. 112].

Consider any subsets Pi � P and Hi � H such that
Pi and Hi are r-separable. Since two distinct lines
in the plane intersect in at most one point, Lemma
4.1 implies that I(Pi;Hi) � 4r(jPij + jHij). It follows
that any collection of r-polyhedral minors that includes
every incidence between P and H must have size at
least I(P;H)=4r. Thus, �2;r(P;H) = 
(n+n2=3m2=3+
m).

Finally, Lemma 4.2 implies that we can perturb P

slightly, removing all the incidences, without decreas-
ing the polyhedral cover size. �

Our higher-dimensional lower bounds are based on
the following generalization of the Erd}os con�guration,
originally described in [16].

Lemma 4.4. For any bn1=dc < m, there exists a set

P of n points and a set H of m hyperplanes in IRd,

such that I(P;H) = 
(n1�2=d(d+1)m2=(d+1)) and any

d hyperplanes in H intersect in at most one point.

Theorem 4.5. ��d(n;m) =



�Pd

i=1(n
1�2=i(i+1)

m
2=(i+1) + n

2=(i+1)
m

1�2=i(i+1))
�

Since our d-dimensional lower bound only improves
our (d� 1)-dimensional lower bound for certain values
of n and m, we have combined the lower bounds from
all dimensions 1 � i � d into a single expression. If the
relative growth rates of n and m are �xed, the entire
sum can be reduced to a single term.

Following the terminology in [16], we say that a
point-hyperplane con�guration in IRd is monochro-

matic if every point lies above every hyperplane. Let
�̂d;r(m;n) denote the maximum of �r(P;H) over all
monochromatic con�gurations of n points and of m
hyperplanes in IRd � IRIPd.

We de�ne the family of functions �d : IRd+1 !
IR(

d+2
2 ) as follows.

�d(x0; x1; : : : ; xd)
4

=

(x20; x
2
1; : : : ; x

2
d;

p
2x0x1;

p
2x0x2; : : : ;

p
2xd�1xd)

For any two vectors u; v 2 IRd+1, we have
h�d(u); �d(v)i = hu; vi2; where h�; �i is the standard

vector inner product. In a more geometric setting,
�d maps points and hyperplanes in IRd, represented in
homogeneous coordinates, to points and hyperplanes
in IRD, also in homogeneous coordinates, where D =�
d+2
2

�
� 1 = d(d + 3)=2. If the point p is incident to

the hyperplane h, then �d(p) is also incident to �d(h);
otherwise, �d(p) is above �d(h).

Applying �2 to the Erd}os point-line con�guration, or
�d to its d-dimensional generalization, gives us a con-
�guration of points and hyperplanes with several inci-
dences, with no point below any hyperplane, and every
d hyperplanes intersecting in at most a single point.
The arguments in Theorem 4.3 immediately imply the
following lower bounds.

Theorem 4.6. �̂5(n;m) = 
(n + n
2=3

m
2=3 +m).

Theorem 4.7. For all D � d(d + 3)=2, �̂D(n;m) =



�PD

i=1(n
1�2=i(i+1)

m
2=(i+1) + n

2=(i+1)
m

1�2=i(i+1))
�

It is clear that �̂3(n;m) = �(n + m), since both
the convex hull of any set of points and the up-
per envelope of any set of lines or planes have lin-
ear size triangulations. We conjecture that �̂d(n; n) =

(nbd=2c=(bd=2c+1)) for all d, but are unable to prove
this when d = 4 or d � 6.

5. Polyhedral Partitioning Algorithms

The de�nitions and proofs in this section are almost
exactly the same as those in Section 4 of [16]. The de-
tails are included here to keep the paper self-contained.

A polyhedral partition graph is a directed acyclic
graph with one source, called the root, and several
sinks, called leaves. Associated with each non-leaf node
v is a set Rv of query regions, satisfying three condi-
tions.

1. The cardinality of Rv is at most some constant
� � 2.

2. Every query region is a projective polyhedron with
at most r faces, for some constant r.

3. The union of the regions in Rv is IR
d.

Typical values for r might be 2d+1 (every query region
is a simplex) or 3d+1 (every query region is a combina-
torial cube). The query regions need not be disjoint. In
addition, every non-leaf note v is either a primal node

or a dual node, depending on whether its query regions
Rv should be interpreted as a partition of primal or
dual space. Each query region in Rv corresponds to an
outgoing edge of v. Thus, the outdegree of the graph
is at most �. There is no restriction on the indegree.



Given sets P of points and H of hyperplanes as in-
put, a polyhedral partitioning algorithm for the half-
space emptiness problem constructs a polyhedral parti-
tion graph, which can depend arbitrarily on the input,
and uses it to drive the following divide-and-conquer
process. The algorithm starts at the root and proceeds
through the graph in topological order. At every node
except the root, points and hyperplanes are passed in
along incoming edges from preceding nodes. For each
node v, let Pv � P denote the points and Hv � H

the hyperplanes that reach v; at the root, we have
Proot = P and Hroot = H. At every non-leaf node v,
the algorithm partitions the sets Pv and Hv into (not
necessarily disjoint) subsets by the query regions Rv

and sends these subsets out along outgoing edges to
succeeding nodes. If v is a primal node, then for ev-
ery query region � 2 Rv, the points in Pv that are
contained in � and the hyperplanes in Hv whose lower
halfspaces intersect � traverse the corresponding out-
going edge. If v is a dual node, then for every � 2 Rv,
the points p 2 Pv whose dual hyperplanes p� intersect
or lie above � and the hyperplanes h 2 Hv whose dual
points h� are contained in � traverse the corresponding
outgoing edge.3 Note that a single point or hyperplane
may enter or leave a node along several di�erent edges.

For the purpose of proving lower bounds, the entire
running time of the algorithm is given by charging unit
time whenever a point or hyperplane traverses an edge.
In particular, we do not charge for the construction of
the partition graph or its query regions. As a result,
partitioning algorithms have the full power of nonde-
terminism. In principle, any partitioning algorithm has
\time" to compute the optimal partition graph for its
input, and even very similar inputs might result in rad-
ically di�erent partition graphs.

To solve the halfspace emptiness problem, the algo-
rithm reports that all the points are above the hyper-
planes if and only if no leaf in the partition graph is
reached by both a point and a hyperplane. It is easy
to see that if some point on or below a hyperplane,
then there is at least one leaf in every partition graph
that is reached by both the point and the hyperplane.
Thus, for any set of points and hyperplanes, a partition
graph in which no leaf is reached by both a point and a
hyperplane provides a proof that every point is above
every hyperplane.

3Alternately, we could let the points whose dual hyperplanes
intersect � and the hyperplane whose dual points intersect or
lie below � traverse the edge. Using this alternate formulation
has no e�ect on our results. In fact, we can allow our partition
graphs to have four types of non-leaf nodes | primal or dual;
point/halfspace or ray/hyperplane | without changing our re-
sults, or even signi�cantly altering their proofs.

Figure 1. Worst case point-line con�guration for halfspace
emptiness; see Theorem 5.1. Tangent points are shown in white.

Theorem 5.1. Any polyhedral partitioning algorithm

that solves the halfspace emptiness problem in IRd, for

any d � 2, must take time 
(n logm +m logn) in the

worst case.

Proof: It su�ces to consider the following con�gura-
tion, where n is a multiple of m. P consists of n points
on the unit parabola xd = x

2
1=2 in IRd, and H consists

of m hyperplanes tangent to the parabola and orthogo-
nal to the (x1; xd) plane, placed so that n=m points lie
between adjacent points of tangency. All the points in
P are above all the hyperplanes in H. The dual points
H
� also lie on the parabola xd = x

2
1=2, and the dual

hyperplanes P � are also tangent to that parabola. See
Figure 1.

For any point, we call the hyperplane whose tan-
gent point is closest in the positive x1-direction the
point's partner. Every hyperplane is the partner of
n=m points. A node v splits a point-hyperplane pair if
both the point and the hyperplane reach v, and none of
the outgoing edges of v is traversed by both the point
and the hyperplane. A hyperplane h is active at level

k if no node in the �rst k levels splits h from any of its
partners.

Suppose v is a primal node. For each hyperplane
h that v splits from one of its partner points p, mark
some query polyhedron � 2 Rv that contains p but
misses h. Since � has at most r faces, the intersection
of � and the parabola consists of at most r arcs, so �
can be marked at most r times. Since there are at most
� polyhedra in Rv, at most r� hyperplanes become
inactive at v. Similarly, if v is a dual node, then v splits
at most r� points from their partners.

Thus, the number of hyperplanes that are inactive
at level k is less than r�k+2. In particular, at level
blog�(m=r)c � 3, at least m(1� 1=�) hyperplanes are
still active. It follows that at least n(1 � 1=�) points



each traverse at least blog�(m=r)c � 3 edges. We con-
clude that the total running time of the algorithm is at
least

n(1� 1=�)(blog�(m=r)c � 3) = 
(n logm):

Symmetric arguments establish a lower bound of

(m logn) when n < m. �

The restriction to polyhedral partitioning algo-
rithms is necessary for the lower bound to hold, since
the problem can be solved in linear time in the generic
partitioning algorithm model. The partition graph
consists of a single primal node with two query regions:
the convex hull of the points and its complement. If
every point is above every hyperplane, then no hyper-
plane intersects the convex hull of the points.

This lower bound is tight, up to constant factors, in
two and three dimensions.

Theorem 5.2. Let A be an polyhedral partitioning

algorithm that solves the halfspace emptiness problem,

and let P be a set of points and H a set of hyperplanes,

such that every point is above every hyperplane. Then

TA(P;H) = 
(�(P;H)).

Proof: Recall that the running time TA(P;H) is de-
�ned in terms of the edges of the partition graph as
follows.

TA(P;H)
4

=
X
edge e

�
#points traversing e +

#hyperplanes traversing e
�

We say that a point or hyperplane misses an edge from
v to w if it reaches v but does not traverse the edge. (It
might still reach w by traversing some other edge.) For
every edge that a point or hyperplane traverses, there
are at most �� 1 edges that it misses.

� � TA(P;H) �X
edge e

�
#points traversing e +#points missing e +

#hyperplanes traversing e+#hyperplanes missing e

�

Call any edge that leaves a primal node a primal edge,
and any edge that leaves a dual node a dual edge.

� � TA(P;H) �X
primal
edge e

�
#points traversing e+#hyperplanes missing e

�
+

X
dual
edge e

�
#hyperplanes traversing e+#points missing e

�

For each primal edge e, let Pe be the set of points
that traverse e, and let He be the set of hyperplanes
that miss e. The edge e is associated with a query
polyhedron �. Every point in Pe is contained in �,
and every hyperplane in He is disjoint from �. Since
� has at most r faces, Pe and He are r-separable.

Similarly, for each dual edge e, let He be the hy-
perplanes that traverse it, and Pe the points that miss
it. The associated query polyhedron � separates the
dual points H�

e and the dual hyperplanes P �

e . By the
de�nition of dual polyhedra, �� separates Pe and He.

For every point p 2 P and hyperplane h 2 H, there
is node that splits them, since otherwise the algorithm
would return the wrong answer, and thus some edge
e such that p 2 Pe and h 2 He. It follows that the
collection of subset pairs f(Pe;He)g is an r-polyhedral
cover of P and H whose size is at least � � TA(P;H)
and, by de�nition, at most �r(P;H). �

We emphasize that every point must be above every
hyperplane for this lower bound to hold. If some point
lies below a hyperplane, then the trivial partitioning
algorithm, whose partition graph consists of a single
leaf, correctly \detects" the pair at no cost. This is
consistent with the intuition that it is trivial to prove
that some point lies below a hyperplane, but proving
that every point lies above every hyperplane is more
di�cult.

Corollary 5.3. The worst-case running time of any
polyhedral partitioning algorithm that solves the

halfspace emptiness problem in IRD is 
(n logm +

n
2=3

m
2=3 +m logn) for all D � 5 and




 
n logm+

DX
i=2

(n
1� 2

i(i+1)m
2

i+1 + n
2

i+1m
1� 2

i(i+1) ) +m log n

!

for all D � d(d+ 3)=2.

Proof: Theorems 5.1 and 5.2 together imply that the
worst case running time is 
(n logm + �d(n;m) +
n logm). The lower bounds then follow immediately
from Theorem 4.6 and 4.7. �

Partitioning algorithms for the halfspace emptiness
problem can (and do [12, 19]) apply a version of the
\containment shortcut" described in [16]. If some
query region lies entirely in a hyperplane's lower half-
space, then the hyperplane need not traverse the cor-
responding edge. Instead, if any point lies in that re-
gion, we immediately halt and report that some point is
below a hyperplane. Although this shortcut decreases
the running time of the algorithm, we easily verify that
Theorem 5.2 still applies in the faster model.



Our techniques allow us to slightly improve earlier
lower bounds for Hopcroft's problem in higher dimen-
sions [16]: Given a set of points and hyperplanes, does
any point lie on a hyperplane?

Theorem 5.4. Let A be an polyhedral partitioning

algorithm that solves Hopcroft's problem, and let P be

a set of points and H a set of hyperplanes such that

I(P;H) = 0. Then TA(P;H) = 
(�(P;H)).

Combining this theorem with Theorem 4.5, we con-
clude:

Corollary 5.5. The worst-case running time of
any polyhedral partitioning algorithm that solves

Hopcroft's problem in IRd is




 
n logm+

dX
i=2

(n
1� 2

i(i+1) m
2

i+1 + n
2

i+1m
1� 2

i(i+1) ) +m log n

!
:

This matches earlier lower bounds for the counting

version of Hopcroft's problem.

6. Conclusions and Open Problems

We have proven a lower bound of 
(n4=3) on the
complexity of the halfspace emptiness problem in �ve
or more dimensions. Our lower bounds apply to a
broad class of geometric divide-and-conquer algorithms
that recursively partition their input by divisions of
space into constant-complexity polyhedra.

The most obvious open problem is to improve
our results in dimensions other than �ve. The cor-
rect complexity in d dimensions is almost certainly
�(n2�2=bd=2c), but we achieve this bound only when
d = 5. In particular, the four dimensional case is
wide open. It is not even known whether the four-
dimensional halfspace emptiness problem is harder (or
easier) than Hopcroft's problem in the plane [17].

The inner product doubling maps �d can be used to
reduce Hopcroft's problem in IRd to halfspace empti-
ness in IRd(d�3)=2 in linear time. Is there an e�cient
reduction from Hopcroft's problem to halfspace empti-
ness that only increases the dimension by a constant
factor (preferably two)?

Our lower bounds are ultimately based on the con-
struction of point-hyperplane con�gurations whose in-
cidence graphs have several edges but no large com-
plete bipartite subgraphs. Better such con�gurations
would immediately lead to better lower bounds. Lower
bounds in the Fredman/Yao semigroup arithmetic
model have a similar basis. For example, Chazelle's
lower bounds for o�ine simplex range searching [9] is
based on a similar con�guration of points and slabs.

(See also [11].) Can we derive better polyhedral cover
size bounds for points and hyperplanes from these con-
�gurations?

Another open problem is to prove tight lower
bounds for online halfspace range query problems.
Br�onnimann, Chazelle, and Pach [5] have proven time-
space tradeo�s for halfspace counting data structures
in the Fredman/Yao semigroup model. Speci�cally,
they prove that any data structure that uses space
n � s � n

d has worst-case query time




 
(n= logn)

1� d�1
d(d+1)

s1=d

!
:

Results of Matou�sek [23] imply the upper bound

O((n=s1=d) polylogn), which is almost certainly opti-
mal (except possibly for the polylog factor), so the
lower bounds have signi�cant room for improvement.
Chazelle and Rosenberg [11] have developed quasi-
optimal tradeo�s for simplex reporting data struc-
tures in Tarjan's pointer machine model, but no
lower bounds are known for halfspace reporting. No
lower bounds are known for online halfspace emptiness
queries in any model of computation. One possible ap-
proach, suggested by Pankaj Agarwal (personal com-
munication), is to model range query data structures
with partition graphs, and to prove tradeo�s between
the total size of the graph (space) and the size of the
subgraph induced by a query range (time).

A problem closely related to halfspace range search-
ing is linear programming. The best known data struc-
tures of linear programming queries are based on data
structures for halfspace emptiness [22] and halfspace
reporting queries [6]. However, no nontrivial lower
bounds are known for linear programming queries in
any model of computation. One application of partic-
ular interest is deciding, given a set of points, whether
every point is a vertex of the set's convex hull. Bounds
for this problem closely match the best known bounds
for halfspace emptiness [7], but the best known lower
bound is 
(n logn). It seems unlikely that lower
bounds can be derived for this problem in the parti-
tioning algorithmmodel, since the extremity of a point
depends on several other points arbitrarily far away.

Finally, extending our lower bounds into more tra-
ditional models of computation, such as algebraic de-
cision trees or algebraic computation trees, is an im-

portant and extremely di�cult open problem. A lower
bound bigger than 
(n logm+m logn) for any o�ine
range searching problem in these models would be a
major breakthrough.
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Appendix: Proof of Technical Lemma

3.1

There are two cases to consider | either the hy-
perplanes in H do not have a common intersection, or
they intersect in a common at. The proof of second
case relies on the �rst.

Case 1 (
T
H = ;):

Any polyhedron that separates P and H must be
completely contained in a closed full-dimensional cell
of the arrangement of H. It su�ces to show, for each
closed d-cell C, that the set of n-point con�gurations
contained in C and r-separable from H is topologically
closed. Our approach is to show that this set is actually
a compact semialgebraic set.

Fix a cell C. Since the hyperplanes in H do not
have a common intersection, both C and any polyhe-
dra it contains must be polytopes. By choosing an



appropriate hyperplane \at in�nity" that misses C, we
can treat C and any polytopes it contains as convex

polytopes in IRd.
Let A = fa1; a2; : : : ; avg and B = fb1; b2; : : : ; bvg

be two indexed sets points in IRd, for some integer v.
We say that A is simpler than B, written A v B, if
for any subset of B contained in a facet of conv(B),
the corresponding subset of A is contained in a facet
of conv(A).4 Equivalently, A v B if and only if for
any subset of d + 1 points in B, d of whose vertices
lie on a facet of conv(B), the corresponding simplex
in A either has the same orientation or is degenerate.
Simpler point sets have less complex convex hulls |
if A v B, then conv(A) has no more vertices, facets,
or faces than conv(B). If both A v B and B v A,
then the convex hulls of A and B are combinatorially
equivalent.

IfB is �xed, then the relationA v B can be encoded
as the conjunction of at most O(vbd=2c+1) algebraic in-
equalities of the form���������

1 ai01 ai02 � � � ai0d

1 ai11 ai12 � � � ai1d

...
...

...
. . .

...
1 aid1 aid2 � � � aidd

���������
� 0;

where � is either �, =, or �. In every such inequality,
the points bi1 ; bi2; : : : ; bid all lie on a facet of conv(B).
For every d-tuple of points in B contained in a facet of
conv(B), there are v�d such inequalities, one for every
other point. (If we replace the loose inequalities �;�
with strict inequalities <;>, the resulting expression
encodes the combinatorial equivalence of conv(A) and
conv(B).)

We can encode the statement \P is contained in C
and is r-separable fromH" as the following elementary
formula:

r_
v=1

_
B2(IRd)v

conv(B) has at most r faces8>>>>>>><
>>>>>>>:

9 a1; a2; : : : ; av 2 C :

9 �1; �2; : : : ; �n 2 [0; 1]v :

(A v B) ^

n̂

i=1

 
vX

j=1

aj�ij = pi ^

vX
j=1

�ij = 1

!

9>>>>>>>=
>>>>>>>;

(�)

Equivalently, in English:

For some integer v, and for some set B of v points

whose convex hull has at most r faces, there exists

4Every set of points is simpler than itself. It would be more
correct, but also more awkward, to say \A is at least as simple
as B".

a set A of v points in C, such that A is simpler
than B (so conv(A) has at most r faces) and every

point in P is a convex combination of points in A

(with barycentric coordinates �).

Since there are only a �nite number of combinatorial
equivalence classes of convex polytopes with v vertices
[18], the formula is actually �nite, and therefore de�nes
a semi-algebraic set. It remains only to show that this
set is closed.

For any �xed v and B, the set of con�gurations
P � A � � 2 (IRd)n � Cv � ([0; 1]v)n satisfying the
subexpression

(A v B) ^
n̂

i=1

0
@ vX

j=1

aj�ij = pi ^
vX

j=1

�ij = 1

1
A

is the intersection of the closed convex polytope Cn+v�
[0; 1]vn, vn hyperplanes, vn quadratic surfaces, and at
most (v � d)r closed algebraic halfspaces of degree d,
and is therefore both closed and bounded. It follows
that the set of point con�gurations P satisfying the
subexpression of (�) in braces is the projection of a
compact set, and is therefore also compact. Finally,
the set of con�gurations P satisfying the entire formula
(�) is the union of a �nite number of compact sets, and
therefore must be compact.

This completes the proof of Case 1.

Case 2 (
T
H 6= ;):

The previous argument will not work in this case,
because the cells in the arrangement of H are not sim-
ply connected, and thus are not polytopes.

Let P be an arbitrary set of n points in IRIPd, such
that P andH are not r-separable. To prove the lemma,
it su�ces to show that there is an open neighborhood

U � (IRIP)d with P 2 U , such that for all Q 2 U ,
Q and H are not r-separable.

For any subset X � IRIPd and any at f , the sus-

pension of X by f , denoted suspf (X), is formed by
replacing each point in X by the span of that point
and f :

suspf (X)
4

=
[
p2X

span(p [ f):

The suspension of a subset of projective space roughly
corresponds to an in�nite cylinder over a subset of
an a�ne space, at least when the apex of suspension
is \at in�nity". The projection of X by f , denoted
projf (X), is the intersection of the suspension and the
dual at f�:

projf (X)
4

= suspf (X) \ f�;



f

f*

Π

f
(Π)proj

f
(Π)susp

Figure 2. The suspension (double wedge) and projection (line
segment) of a polygon by a point.

In particular, suspf (X) is the set of all points in IRIPd

whose projection by f is in projf (X). The projection
of a subset of projective space corresponds to the or-
thogonal projection of a subset of a�ne space onto a
at. See Figure 2.

Let f =
T
H, and let f� be its dual at. Without

loss of generality, suppose the points p1; p2; : : : ; pm 2 P
are disjoint from f , and the points pm+1; : : : ; pn 2 P

are contained in f . Denote these two subsets of P by
P n f and P \ f , respectively. Note that either subset
may be empty.

If any polyhedron � separates P and H, then
its projection projf (�) separates the projected points
projf (P ) and the lower dimensional hyperplanes
H \ f�. Conversely, if any polyhedron � � f

�

separates projf (P ) and H \ f
� then the suspension

suspf (�) separates P and H. Thus, P and H are r-
separable if and only if projf (P ) and H \ f� are r-
separable.

Since P and H are not r-separable, neither are
projf (P ) and H \ f�. The lower-dimensional hyper-
planes H \ f

� do not have a common intersection.
Thus, Case 1 implies that the set of con�gurations
P
0 2 (f�)m such that P 0 and H \ f� are r-separable is

closed. It follows that there is an open set U 0 � (f�)m,
with projf (P ) 2 U 0, such that for all Q0 2 U 0, Q0 and
H \ f� are not r-separable.

Let U 00 � (IRIPd)m be the set of m-point con�gura-
tions P 00 such that projf (P

00) 2 U 0. Clearly, U 00 is an
open neighborhood of P n f , and no con�guration in
Q
00 2 U 00 is r-separable from H.

Finally, if Q00 and H are not r-separable, then no
superset of Q00 is r-separable from H. Let U = U 00 �
(IRIPd)n�m. Then U is an open neighborhood of P .
Since every con�guration Q 2 U has a subset Q00 that
is not r-separable from H, no Q 2 U is r-separable
from H.

This completes the proof of Case 2, and thus the
entire technical lemma. �

The method we used to encode the condition
\conv(A) has at most r faces" may seem somewhat
convoluted. If we replace A v B with \conv(A) is
combinatorially equivalent to conv(B)", we get exactly
the same semi-algebraic set, without needing to de�ne
the partial order v. Unfortunately, testing whether
two convex polytopes are combinatorially equivalent
requires strict inequalities, whose corresponding semi-
algebraic sets are open.


