
On the Least Median Square Problem∗

Jeff Erickson† Sariel Har-Peled‡

Department of Computer Science
University of Illinois at Urbana-Champaign

{jeffe,sariel}@cs.uiuc.edu
http://www.cs.uiuc.edu/∼{jeffe,sariel}

David M. Mount§

Department of Computer Science and
Institute for Advanced Computer Studies

University of Maryland
mount@cs.umd.edu

http://www.cs.umd.edu/∼mount

ABSTRACT

We consider the exact and approximate computational com-
plexity of the multivariate LMS linear regression estimator.
The LMS estimator is among the most widely used robust
linear statistical estimators. Given a set of n points in IRd

and a parameter k, the problem is equivalent to comput-
ing the narrowest slab bounded by two parallel hyperplanes
that contains k of the points. We present algorithms for
the exact and approximate versions of the multivariate LMS
problem. We also provide nearly matching lower bounds for
these problems, under the assumption that deciding whether
n given points in IRd are affinely nondegenerate requires
Ω(nd) time.

Categories and Subject Descriptors: F.2.2 [Analysis
of algorithms and problem complexity]: Nonnumerical prob-
lems and algorithms—Geometric problems and algorithms;
G.3 [Probability and statistics]: Robust regression

Keywords: LMS regression, robust statistics, approxima-
tion algorithms, lower bounds

General Terms: Algorithms, Theory

1. INTRODUCTION

Fitting a hyperplane to a finite collection of points in space
is a fundamental problem in statistical estimation. Robust
estimators are of particular interest because of their insen-
sitivity to outlying data. The principal measure of the ro-
bustness of an estimator is its breakdown value, that is, the
fraction (up to 50%) of outlying data points that can corrupt

∗See http://www.uiuc.edu/∼jeffe/pubs/halfslab.html for the
most recent version of this paper.
†Partially supported by NSF CAREER award CCR-0093348 and
NSF ITR grants DMR-0121695 and CCR-0219594.
‡Partially supported by NSF CAREER award CCR-0132901.
§Partially supported by NSF grant CCR-0098151.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’04, June 8–11, 2004, Brooklyn, New York, USA.
Copyright 2004 ACM 1-58113-885-7/04/0006 ...$5.00.

the estimator. Rousseeuw’s least median-of-squares (LMS)
linear regression estimator [22] is among the best known and
most widely used robust estimators.

The LMS estimator (with intercept) is defined formally
as follows. Consider a set P = {p1, p2, . . . , pn} of n points
in IRd, where pi = (xi,1, xi,2, . . . , xi,d−1, xi,d). We would like
to compute a parameter vector θ = (θ1, θ2, . . . , θd) that best
fits the data by the linear model

xi,d = xi,1θ1 + xi,2θ2 + · · · + xi,d−1θd−1 + θd + ri

for all i, where r1, r2, . . . , rn are the (unknown) errors, or
residuals. The LMS estimator is defined to be the parameter
vector θ that minimizes the median of the squared residuals.
More generally, given a parameter k, where d + 1 ≤ k ≤ n,
the problem is to find a parameter vector θ that minimizes
the kth smallest squared residual. This more general prob-
lem is also called the least-quantile squared (LQS) estima-
tor [24]. Typically, we are interested in the case where both
k = Ω(n) and n − k = Ω(n).

This estimator is widely used in practice, for example in
finance, chemistry, electrical engineering, process control,
and computer vision [23]. In addition to having a high
breakdown value, the LMS estimator is regression-, scale-,
and affine-equivariant, which means that the estimate trans-
forms properly under these types of transformations [24].
The LMS estimator may be used either alone or as an ini-
tial step in more complex estimation schemes [26].

The LMS estimator has an easy geometric interpretation.
A slab is the volume enclosed by two parallel hyperplanes;
the height of a slab is the vertical separation between its
bounding hyperplanes. Computing the LMS estimator is
clearly equivalent to computing a slab of minimum height
that encloses at least k of the points. The LMS estimator
is obtained as the hyperplane that bisects this slab. In the
dual setting, the problem is equivalent to finding the shortest
vertical segment in IRd that intersects at least k of a set of
n given hyperplanes. We also consider the closely related
problem of computing the slab of minimum width enclosing
k points, where the width of a slab is measured normal to
its bounding hyperplanes. This problem is also called LMS
orthogonal regression [24].

The most efficient exact algorithm for computing the LMS
estimator in the plane is a topological plane-sweep algo-
rithm of Edelsbrunner and Souvaine [7], which runs in O(n2)
time and requires O(n) space. In higher dimensions, an
O(nd+1 log n)-time algorithm has long been known [19, 24].

The LMS problem can also be expressed as a linear pro-
gramming problem with violations; using this formulation,

the problem can be solved in O(n(n − k)d+1) time [18, 4].
An alternative approach that can also be deployed in this
case is an algorithm by Har-Peled and Wang for approxi-
mate shape fitting with outliers [16], which extracts a small
coreset and finds the best possible solution within this core-
set. However, this algorithm excels only when the number of
outliers is small; specifically, the running time is near-linear
only if k ≥ n − o(n1/2d). The case of most interest to us,
where n − k = Ω(n), is the worst case for these algorithms.
It is natural to ask whether either of these approaches can
be extended to handle the case where the number of outliers
is large.

Finally, the problem of fitting the data with two slabs
of minimum width seems to be inherently connected to the
problem of LMS; intuitively, we want to find a good clus-
tering for most of the points by the first slab, and also a
good clustering for the remaining (outlier) points. Thus, a
better understanding of the LMS problem might lead to a
better understanding of the two-slab problem, which seems
to be surprisingly hard [15]. Currently no near-linear-time
approximation algorithm is known for d > 3. Thus, LMS
is a fundamental problem, and a better understanding of
it would lead to a better understanding of several central
optimization problems.

Given the high complexity of computing the LMS esti-
mator exactly, it is natural to consider whether more effi-
cient approximation algorithms exist. Mount et al. [20] pre-
sented a practical approximation algorithm for the LMS line
estimator in the plane, based on approximating the quan-
tile and/or the vertical width of the slab. Their algorithm,
however, does not guarantee a better than O(n2) running
time when the quantile is required to be exact. Olson pre-
sented a 2-approximation algorithms for LMS, which runs
in O(n log2 n) time in the plane and in O(nd−1 log n) time
for any fixed d ≥ 3 [21].

In this paper we consider the computational complexity
of the both the exact and approximate versions of the LMS
problem. In Section 3, we describe a randomized algorithm
to compute the exact LMS estimator for n points in IRd in
O(nd log n) time with high probability. We also describe, in
Section 4, a randomized ε-approximation algorithm whose
running time is O((nd/kε) polylog) with high probability.
For the most interesting case k = Ω(n), this is faster than
our exact algorithm by roughly a factor of n/ε.

In Section 5, we provide results suggesting that any exact
algorithm for the LMS problem requires Ω(nd) time, and any
constant-factor approximation algorithm requires Ω(nd−1)
time, thus providing a strong indication that our algorithms
are close to optimal. Specifically, we describe linear-time
reductions from the affine degeneracy problem: Given a set
of n points on the d-dimensional integer1 lattice ZZ

d, do any
d + 1 of the points lie on a common hyperplane? These re-
ductions imply lower bounds if the following widely-believed
conjecture is true.

Conjecture 1.1 Solving the d-dimensional affine degener-
acy problem requires Ω(nd) time in the worst case.

If this conjecture is true, the Ω(nd) lower bound is tight;
the problem can be solved in O(nd) time by constructing
1In the algebraic decision tree model of computation, the restric-
tion to integers can be removed by using formal infinitesimals in
our reductions [10, 11].

the dual hyperplane arrangement. Erickson and Seidel [13,
12] proved an Ω(nd) lower bound on the number of sidedness
queries required to solve this problem; however, the model of
computation in which their lower bound holds is not strong
enough to solve the LMS problem, since it does not al-
low us to compare widths of different slabs. The strongest
lower bound known in any general model of computation is
Ω(n log n), for any fixed dimension, in the algebraic decision
and computation tree models [2, 25], although the prob-
lem is known to be NP-complete when d is not fixed [17,
12]. The planar affine degeneracy problem is one of Gajen-
taan and Overmars’ canonical 3sum-hard problems [14]. (In
higher dimensions, the affine degeneracy problem is actually
(d + 1)-sum-hard [12]; however, the best lower bound that

this could imply is only Ω(nbd/2c+1) [11].)

2. NOTATION AND TERMINOLOGY

Whenever we work in the space IRd, we will refer to the
xd-coordinate direction as vertical and each of the other co-
ordinate directions as horizontal. A hyperplane is vertical if
it contains a vertical line and horizontal if its normal direc-
tion is vertical.

A slab is the non-empty intersection of two closed halfs-
paces whose bounding hyperplanes are parallel. We will dis-
tinguish between two different natural notions of the “thick-
ness” of a slab. The height of a slab σ, denoted ht(σ), is the
length of a vertical line segment with one endpoint on each
bounding hyperplane. If one slab has smaller height than
another, we say that the first slab is shorter and the second
is taller. We denote by ht(P, k) the height of the shortest
slab containing at least k points from a point set P . On
the other hand, the width of a slab σ, denoted wd(σ), is
the distance between the two bounding hyperplanes, mea-
sured along their common normal direction. If one slab has
smaller width than another, we say that the first slab is nar-
rower and the second is wider. We denote by wd(P, k) the
width of the narrowest slab containing at least k points in a
point set P . A slab whose height or width is zero is just a
hyperplane. Vertical slabs, even those with zero width, have
infinite height.

The LMS problem has a natural dual formulation, which
is crucial in the development of our algorithms. We use
the standard duality transformation that maps any point
(a1, a2, . . . , ad) to the hyperplane xd = a1x1 + a2x2 + · · · +
ad−1xd−1 − xd and vice versa. Under this duality map, a
point p is above (resp. below) a hyperplane h if and only
if the dual hyperplane p∗ is below (resp. above) the dual
point h∗; moreover, the vertical distance between the point
and the hyperplane is preserved. The dual of a slab σ is a
vertical line segment σ∗ of length ht(σ); a point p lies inside
the slab σ if and only if the dual hyperplane p∗ intersects the
dual segment σ∗. Thus, the LMS problem is equivalent to
finding, given a set H of hyperplanes, the shortest vertical
segment that intersects at least k of them. To be consis-
tent with the primal formulation, we let ht(H,k) denote the
length of this segment.

For any hyperplane h and any real value t, let h + t de-
note the hyperplane resulting from translating h upward by
(vertical) distance t, and let σ(h, t) denote the slab bounded
by h and h + t.

3. EXACT ALGORITHMS

3.1 Minimum Height

In this section, we develop efficient exact algorithms for
computing the LMS estimator in any fixed dimension. The
two-dimensional problem can be solved in O(n2) time using
Edelsbrunner and Souvaine’s dual topological sweep algo-
rithm [7]. Our higher-dimensional algorithm improves the
previous best running time by a factor of n.

Theorem 3.1 Given a set H of n hyperplanes in IRd and
an integer k, we can compute the shortest vertical segment
that stabs k hyperplanes of H in O(nd log n) time with high
probability.

Proof: Clearly, the endpoints of the required segment lie
on at least d + 1 hyperplanes of H . Let T be the (multi)set
of critical values t such that the arrangement of slabs Σ(t) =
{σ(h, t) | h ∈ H} contains a vertex on d+1 bounding hyper-
planes. For notational convenience, let t∗ = ht(H,k). We
easily observe that |T | = O(nd+1) and that t∗ ∈ T .

A vertical line segment of length t stabs k hyperplanes
in H if and only if some point lies in at least k slabs in Σ(t),
or equivalently, if and only if some vertex has depth at least k
in the arrangement of Σ(t). Thus, given a candidate value t,
we can decide whether t < t∗ in time O(nd) by constructing
the arrangement of Σ(t) and computing the depth of every
vertex.

We transform this decision procedure into a search algo-
rithm as follows. We randomly choose a sample R of O(nd)
vertical distances from T , by repeatedly choosing d + 1 hy-
perplanes of H and computing the shortest vertical segment
stabbing all of them. We then use the decision procedure
to guide a binary search through the random sample R. In
O(nd log n) time, this binary search finds an interval [t−, t+]
that contains t∗ but no other elements of R. With high prob-
ability, the interval [t−, t+] contains only O(n log n) values
from T .

To locate t∗ within this interval, we maintain the arrange-
ment of slabs Σ(t) in a kinetic data structure [1] as t varies
continuously from t = t− to t = t+. The combinatorics
of the arrangement changes only at times in T . At each
such critical event, a simplicial cell in the arrangement of
Σ(t) collapses to a point and reverses orientation. We main-
tain a priority queue of collapse times for the simplicial cells
in Σ(t), ignoring any cell that collapses after time t+. We
prepare the initial priority queue by constructing the ar-
rangement of Σ(t−), computing the collapse time of each
simplicial cell (in O(1) time), and inserting only the rele-
vant future events into the queue. Each critical event re-
quires a constant number of priority queue operations, plus
O(1) additional work. Thus, the total cost of the sweep is
O(nd + E log E), where E is the number of critical events.
With high probability, E = O(n log n), so the sweep requires
only O(nd) time. �

Corollary 3.2 Given a set P of n points in IRd and an
integer k, we can compute the shortest slab containing k
points of P in O(nd log n) time with high probability.

Chan [5] observes that his randomized optimization tech-
nique [3] can be used in place of sampling and sweeping,

using a constant-complexity cutting to generate subprob-
lems, as in his other results on linear programming with
violations [4]. Chan’s techniques reduce the expected run-
ning time of our algorithm to O(nd) but do not improve our
high-probability time bound.

3.2 Minimum Width

We can use similar techniques to solve the orthogonal LMS
regression problem. A simple modification of Edelsbrunner
and Souvaine’s topological sweep algorithm [7] solves the
two-dimensional version of this problem in O(n2) time and
O(n) space.

Theorem 3.3 Given a set P of n points in IRd and an inte-
ger k, we can compute the narrowest slab containing k points
of P in O(nd log n) time with high probability.

Proof: We easily observe that the target slab has at least
one point (in fact, d + 1 points) from P on its boundary.
We describe an algorithm to find the narrowest slab that
contains k points in P and has a specific point q ∈ P on
its boundary. To find the narrowest unrestricted slab con-
taining k points in P , we simply run this algorithm once
for every reference points q ∈ P and return the narrowest
result.

We first solve the following decision problem: Is there a
slab of width w, whose boundary contains q, that contains
k points in P ? Any slab with q on its boundary is uniquely
determined by the normal vector pointing into the slab from
the bounding hyperplane that contains q. Thus, we have a
‘duality’ transformation from slabs with q on their boundary
and points on the sphere of directions Sd−1 centered at q.
For any point p ∈ P , the family of slabs of width w that
contain p defines a strip s(p,w) on Sd−1; this strip is the
intersection of Sd−1 and a slab with q on its boundary. Thus,
our decision problem can be rephrased as follows: Is any
point in Sd−1 covered by k of the strips in S(w) = {s(p, w) |
p ∈ P}? This problem can be decided in O(nd−1 + n log n)
time by computing the arrangement of strips S(w).

We can now transform this decision procedure into a search
algorithm, increasing the running time by a factor of O(log n),
using the same random sampling and sweeping techniques
used to prove Theorem 3.1. We omit the remaining straight-
forward details. �

Again, Chan’s randomized optimization technique [3, 4]
can be used to reduce the expected running time of our
algorithm to O(nd).

4. APPROXIMATION ALGORITHMS

Our algorithm for approximating the LMS estimator rely on
the same techniques used in our exact algorithms. Specif-
ically, we exploit the dual formulation of the problem, we
use random sampling and sweeping to reduce the search to
a decision problem, and we begin by considering only slabs
with a given reference point (or dual hyperplane).

Lemma 4.1 Give a set H of n hyperplanes in IRd, a hyper-
plane g in IRd (not necessarily in H), and an integer k, we
can compute the shortest vertical segment that stabs k hyper-
planes in H and whose midpoint lies on g, in O(nd−1 log n+
n log2 n) time with high probability.

Proof: As usual, we reduce the search problem to a deci-
sion problem: Given a parameter ` ≥ 0, is there a vertical
segment of length `, whose midpoint lies on g, that stabs k
hyperplanes of H?

For every hyperplane h ∈ H , let τ (h, `) be the set of
points on g that lie at vertical distance at most `/2 from h,
or equivalently, the intersection of g with the slab of height `
centered at h. Generically, τ (h, `) is a (d − 1)-dimensional
slab in g; however, if h is parallel to g, then τ (h, `) is either
the empty set or all of g. Finally, let T (`) = {τ (h, `) |
h ∈ H}. Our decision problem can now be rephrased as
follows: Is any point in g covered by k or more regions in
T (`)? This problem can be decided in O(nd−1 + n log n)
time by simply constructing the arrangement of T (`) and
computing the depth of every vertex.

To complete the proof of the theorem, we apply the usual
random sampling and sweeping techniques to our decision
procedure. �

If d > 2, applying this lemma once for every hyperplane
in g ∈ H gives us an alternate proof of Theorem 3.1. Once
again, we can save a factor of O(log n) in the expected run-
ning time using Chan’s randomized optimization technique
[3, 4].

Theorem 4.2 Given a set H of n hyperplanes in IRd, an
integer k, and a real parameter ε > 0, we can compute a
vertical segment of length at most (1 + ε) ht(H,k) that stabs
k hyperplanes of H in O((nd/kε) polylog n) time with high
probability.

Proof: Let s be the shortest vertical segment that stabs k
hyperplanes in H . Let R be a random sample of O((n/k)×
log n) hyperplanes in H . By ε-net theory, s stabs at least
one of the hyperplanes of R with high probability. For every
hyperplane in R, apply the algorithm of Lemma 4.1, and
let s̃ be the shortest segment thus computed. Clearly, the
length of s̃ is at most twice the length of s.

Now let δ = ε|s̃|/4, and consider the set of hyperplanes

R′ = {h + iδ | h ∈ R, i = −d4/εe , . . . , d4/εe} ,

where as usual h+t is the hyperplane resulting by translating
h vertically by distance t. With high probability, at least one
of the hyperplanes of R′ intersects s and is within distance
δ = ε|s̃|/4 < ε|s|/2 = ε ht(H,k)/2 from the midpoint of s.
Thus, the shortest vertical segment computed by applying
the algorithm of Lemma 4.1 to each hyperplane of R′ is the
required (1 + ε)-approximation.

The algorithm of Lemma 4.1 is invoked O((n/kε) log n)
times, so the overall running time is O((n2/kε) log3 n) if
d = 2 and O((nd/kε) log2 n) otherwise. �

The algorithm of Theorem 4.2 clearly also solves the dual
problem of finding an approximately shortest slab containing
k points.

Corollary 4.3 Given a set P of n points in IRd, an inte-
ger k, and a real parameter ε > 0, we can compute a slab of
height at most (1 + ε) ht(P, k) that contains k points of P in
O((nd/kε) polylog n) time with high probability.

In the special case k = Ω(n), we can improve the running
time of our algorithm by a factor of O(log n) using Chazelle’s
deterministic algorithm for constructing ε-nets [6].

Finding an approximately narrowest slab is only slightly
different. Using a similar algorithm to the one described
above, together with the techniques of Theorem 3.3, we ob-
tain the following result. We omit further details.

Theorem 4.4 Given a set P of n points in IRd, an inte-
ger k, and a real parameter ε > 0, we can compute a slab of
width at most (1 + ε)wd(P, k) that contains k points of P
in O((nd/kε) polylog n) time with high probability.

5. HARDNESS RESULTS

In this section, we prove relative lower bounds for both
the exact and approximate LMS hyperplane-fitting prob-
lems. Our reductions suggest that computing the exact
LMS estimator requires Ω(nd) time and that computing any
constant-factor approximation requires Ω(nd−1) time, in the
worst case. Thus, it is unlikely that our LMS algorithms can
be sped up by more than polylogarithmic factors, at least
when k and n − k are both Ω(n). Our reductions also di-
rectly imply Ω(n log n) lower bounds for both the exact and
approximate LMS problems in any fixed dimension, in the
algebraic decision tree model; they also imply that when the
dimension is not fixed, even the approximate LMS problem
is NP-hard.

Our reductions rely on the following observations. We
say that a slab is minimal for a set of points if its boundary
contains at least d + 1 affinely independent points from the
set. For any set P of more than d points, the shortest and
narrowest slabs containing P are both minimal.

Lemma 5.1 Let P be a set of d + 1 affinely independent
points on the integer grid [−M .. M]d, and let σ be any min-
imal slab containing P .

(a) ht(σ) can be written as a ratio of integers p/q, where
p and q are both O(Md).

(b) Either ht(σ) = 0 or ht(σ) = Ω(1/Md).

(c) Either wd(σ) = 0 or wd(σ) = Ω(1/Md).

(d) σ has an integer normal vector ~n(σ) whose coefficients
have absolute value O(Md).

(e) wd(δ)2 can be written as a ratio of integers p′/q′, where
p′ and q′ are both O(M4d).

(All these bounds hide constant factors exponential in d.)

Proof: Without loss of generality, we assume the slab σ is
not vertical. We refer to d-dimensional Lebesgue measure as
volume and (d − 1)-dimensional Lebesgue measure as area.

(a) Let 4 denote the convex hull of P and let V denote the
volume of 4. We can express V as the ratio A·ht(σ)/d,
where A is the sum of the signed areas of the vertical
projections of certain facets of 4 onto IRd−1. Specif-
ically, a facet contributes its area to A if it touches
the lower bounding hyperplane of σ, positively if 4
is locally above that facet and negatively otherwise.
Clearly, V = O(md), and the projected area of each

facet is at most O(Md−1). Moreover, since every co-
ordinate is an integer, V is an integer multiple of 1/d!,
and the projected area of each facet is an integer mul-
tiple of 1/(d − 1)!. We conclude that

ht(σ) =
dV

A
=

d! V

(d − 1)! A
,

where the integers d! V and (d−1)!A are both O(Md).

(b) This follows immediately from part (a).

(c) Consider a line through the origin normal to the hyper-
planes bounding σ. This line forms an angle of at most
45◦ with at least one coordinate axis. If necessary, re-
flect P and σ across some hyperplane xi = xd so that
that axis is vertical. We now have wd(σ) ≥ ht(σ)/

√
2,

and the result follows from part (b).

(d) Write P = {p0, p1, . . . , pk, qk+1, . . . , qd}, where each
point pi lies on the lower bounding hyperplane of σ and
each point qi lies on the upper bounding hyperplane
of σ. We define d−1 integer vectors ~v1, . . . , ~vd−1 paral-
lel to σ as follows: if i ≤ k, we take ~vi = pi −pi−1, and
if i > k, we take ~vi = qi − qi+1. These vectors are lin-
early independent, since otherwise P would be affinely
degenerate. The exterior product ~v1 ∧ ~v2 ∧ · · · ∧ ~vd is
a vector normal to σ. Each component of this exterior
product is the determinant of a (d − 1) × (d − 1) mi-
nor of the (d− 1) × d matrix of coordinates ~vij . Since
each of these coordinates is an integer with absolute
value O(M), each component of the normal vector is
an integer with absolute value O(Md−1).

(e) This follows immediately from the identity wd(σ) =
ht(σ)nd(σ)/‖~n(σ)‖, where ~n(σ) is the vector normal
to σ constructed in part (d), and nd(σ) is its vertical
component. �

5.1 Exact Height

We now establish our (relative) lower bounds for computing
minimum-height slabs exactly.

Theorem 5.2 Conjecture 1.1 implies that computing the
shortest slab containing d + 1 points from a given set of n
points in ZZ

d requires Ω(nd) time in the worst case.

Proof: The given points are affinely degenerate if and only
if the shortest slab containing d+1 points has height zero. �

Theorem 5.3 Conjecture 1.1 implies that computing the
shortest slab containing n/2 points from a given set of n
points in ZZ

d requires Ω(nd) time in the worst case.

Proof: Suppose we are given a set P of m = n/2 − d − 1
points in ZZ

d. Let x+

d and x−
d be the largest and smallest xd-

coordinates of any point in P , respectively. In O(n) time,
we can construct a new set Q of 2m + 2(d + 1) = n points
by taking the union of P , a copy of P shifted upward by
2(x+

d − x−
d), and a set of n − 2m = 2(d + 1) extra points at

least 5(x+

d − x−
d) above everything else. The original set P

contains d + 1 points on a common hyperplane if and only
if the shortest slab that contains n/2 points in Q has height
exactly 2(x+

d − x−
d). �

This reduction can be generalized easily to either larger
or smaller numbers of points in the target slab, as follows:

Theorem 5.4 Conjecture 1.1 implies that computing the
shortest slab containing k points from a given set of n points
in ZZ

d requires Ω(min{k, n − k}d) time in the worst case.

Proof: If k < n/2, we start with a set P of m = k − d − 1
points. We construct a new set Q containing two copies
of P , one directly above the other, with n−2m extra points
far above both copies.

Similarly, if k > n/2, we start with a set P of m =
n − k + d + 1 points. We construct a new set Q contains
two copies of P , one directly above the other, with n − 2m
extra points directly between the two copies.

In both cases, the shortest slab containing k points of Q
has height equal to the vertical distance between the two
copies of P if and only if P is affinely degenerate. Thus,
Conjecture 1.1 implies that computing the shortest slab con-
taining k points in Q requires Ω(md) time. In the first case,
the extra points lie above the shortest slab; in the second
case, the extra points are inside the shortest slab. �

Theorem 5.5 Conjecture 1.1 implies that computing the
shortest slab containing k points from a given set of n points
in ZZ

d requires Ω((n/k)d) time in the worst case.

Proof: Suppose we are given a set P of m = n(d + 1)/k
points in ZZ

d. In linear time, we compute an upper bound
M on the absolute value of every coordinate. Choose an
appropriate constant δ = O(1/kMd+1). We construct a
new set P ′ consisting of k/(d+1) copies of P , where the ith
copy is shifted upward a distance of iδ.

If some hyperplane h contains d + 1 points in P , then the
slab σ(h, (k/(d + 1)− 1)δ) contains k points in P ′, and thus
ht(P ′, k) ≤ (k/(d + 1) − 1)δ = O(1/Md+1).

On the other hand, suppose P is affinely nondegenerate.
Let σ′ be any slab containing k points in P ′. This slab
contains copies of at least d + 1 points in P , so its height
is at least ht(P, d + 1) − (k/(d + 1) − 1)δ = Ω(1/Md) by
Lemma 5.1. �

These reductions suggest Ω(nd) lower bounds for exact
LMS for the most interesting case, when both k and n − k
are Ω(n), as well as the simplest nontrivial case k = O(1).
We conjecture that the true complexity is Ω((n − k)d) for
any k, but there is still a gap between the upper and lower
bounds for most small values of k.

Since the affine degeneracy problem is NP-hard when the
dimension d is not fixed [17, 12], our reductions imply a
similar NP-hardness result for the LMS estimator.

Corollary 5.6 For any k ≤ n−Ω(nc) for some constant c,
computing the shortest slab containing k points from a given
set of n points in ZZ

n is NP-hard.

5.2 Approximate Height

Theorem 5.7 Conjecture 1.1 implies that computing a slab
of height at most 2 ht(P, k) containing k points from a given
set P of n points in ZZ

d requires Ω((n − k)d−1) time in the
worst case.

Proof: Suppose we are given a set P of m = n/2 − k/2 −
d−1 points on the integer lattice ZZ

d−1. Let M be an upper
bound the maximum absolute value of any coordinates in P ,
and let δ = 1/(d−2)!(2M)d−2; we can compute these values
in O(m) time.

In O(n) time, we construct a new set Q comprised of
three subsets: (1) a copy of P on the vertical hyperplane
x1 = 1, (2) a set of k − 2(d + 1) points within distance
δ/10 of the origin, all on the hyperplane x1 = 0, and (3) a
copy of −S (the reflection of P through the origin) on the
hyperplane x1 = −1. For any non-vertical slab σ, let σx

denote the intersection of σ with the hyperplane x1 = x;
this is a (d− 1)-dimensional slab with the same height as σ.

If any d points of P lie on a common (d−2)-flat, then there
is a slab of height at most δ/5 containing k points of Q. Oth-
erwise, let σ be any slab containing k points of Q. Without
loss of generality, σ1 contains at least d + 1 points of P , so
by Lemma 5.1(1), we have ht(σ) = ht(σ1) ≥ δ. Thus, by ap-
proximating Hk(S′) within a factor of 2, we can determine
whether the original set P contains a degeneracy. Conjec-
ture 1.1 implies that this requires Ω(md−1) = Ω((n − k)d−1)
time in the worst case. �

The proof of Theorem 5.5 implies an even stronger hard-
ness result when k is small.

Theorem 5.8 Conjecture 1.1 implies that for any function
f(n, k), computing a slab of height at most f(n, k) ht(P, k)
containing k points from a given set P of n points in ZZ

d

requires Ω((n/k)d) time in the worst case.

Proof: Suppose we are given a set P of m = n(d + 1)/k
points in the finite integer lattice [−M .. M]d. Following the
proof of Theorem 5.5, we can construct a set P ′ of n points
in O(n) time, such that approximating ht(P ′, k) up to a
factor of M tells us whether P is affinely degenerate. We
can replace this factor M by any function f(n, k) by setting
δ = 1/kMdf(n, k)d in the reduction. �

Our reductions strongly suggest that our approximation
algorithm is within a polylogarithmic factor of optimal, at
least when k = Ω(n) or k = O(1). They also imply that the
approximate LMS problem is NP-hard when the dimension
is not fixed.

Corollary 5.9 For any k ≤ n−Ω(nc) for some constant c,
computing a 2-approximation of the shortest slab containing
k points from a given set of n points in ZZ

n is NP-hard.

5.3 Reducing Height to Width

Finally, we describe a general reduction from computing
slabs with minimum height to computing slabs of minimum
width. This reduction implies that all our lower bounds
for minimizing height apply verbatim to the corresponding
width problem. The key observation is that horizontally
scaling ZZ

d does not change the height of any slab, although
it does change the width. If we scale any point set P far
enough, then sorting the non-vertical minimal slabs by width
would be the same as sorting them by height; in particular,
the narrowest non-vertical slab containing k points of P will
also be the shortest slab containing k points of P . There
are two main technical difficulties: quantifying the amount

of scaling required and eliminating vertical slabs from con-
sideration.

Suppose we want to find the shortest slab containing k ≥
d + 1 points from a given set P of n points on the integer
lattice [−M .. M]d. If M is not given, we can easily compute
it in O(n) time. Let P ′ be the set obtained by scaling P
horizontally (that is, in every direction except vertically) by
a large integer factor ∆ := Ω(M6d). Scaling any slab σ
horizontally by ∆ gives us a slab σ′ with the same height,
containing the corresponding subset of points.

Fix a minimal non-vertical slab σ containing at least d+1
points of P . Let ~n be the integer normal vector of σ de-
scribed by Lemma 5.1(c). To obtain a normal vector ~n′

for the scaled slab σ′, we can simply scale ~n in the verti-
cal direction by a factor of ∆. We can decompose ~n′ into
a vertical component ~n′

v and a horizontal component ~n′
h.

Lemma 5.1(c) implies that ‖~n′
h‖ = O(Md), and since σ is

not vertical, ‖~n′
v‖ ≥ ∆ = Ω(M6d). We have the following

bound on the width of σ′ in terms of its height:

ht(σ′) = wd(σ′)

p

‖~n′
v‖2 + ‖~n′

h‖2

‖~n′
v‖

≤ wd(σ′)

s

1 +
1

Ω(M5d)

= wd(σ′)

„

1 +
1

Ω(M5d)

«

= wd(σ′) +
1

Ω(M3d)

Lemma 5.1(a) implies that the heights of any two min-
imal slabs σ1 and σ2 either are equal or differ by at least
Ω(1/M2d). It follows that ht(σ1) < ht(σ2) implies wd(σ′

1) <
wd(σ′

2); the height order and width order of the non-vertical
minimal slabs is the same, except that some equal-height
pairs may not have equal width. In particular, the narrow-
est non-vertical slab containing k points in P ′ is also the
shortest such slab. The entire reduction requires only linear
time, and increases the bit length of the input by at most a
factor of O(d).

This completes the reduction from finding the shortest
slab containing k of n given points to finding the narrowest
such slab that is not vertical, but what about vertical slabs?
Lemma 5.1(c) implies that the narrowest vertical slab σv

containing k points of P ′ is either a single hyperplane or
it has width Ω(∆/Md−1) = Ω(M5d). Thus, if no vertical
hyperplane contains k points in P , the narrowest slab con-
taining k points in P ′ is not vertical, since the entire point
set fits in a slab of width 2M , so our reduction is complete.
However, if k points in P lie on a vertical hyperplane, the
shortest and narrowest slabs containing k points in P ′ may
not coincide.

To avoid this problem, we first perturb the initial set P ,
essentially following the infinitesimal perturbation method
of Emiris and Canny [8, 9]. Let δ = 1/M4d. For any point
p ∈ P , let p̃ denote a point at distance at most δ from P , and
let P̃ = {p̃ | p ∈ P}. For any minimal slab σ containing some
subset of P , we define a corresponding slab σ̃ that is minimal
for the corresponding subset of P̃ . Lemma 5.1 implies that
ht(σ) ≤ O(Md)wd(σ), so ht(σ̃) ≤ ht(σ) + O(1/M3d), and
that two minimal slabs for P differ in height by at least
1/M2d. It follows that if σ1 is shorter than σ2, then σ̃1 is
shorter than σ̃2. In other words, the shortest slab containing

k points in P̃ has the same combinatorial description as some
shortest slab containing k points in P .

Arbitrarily index the points in P as p1, p2, . . . , pn, and
let q be the smallest prime number larger than n (and there-
fore less than 2n). We choose the specific perturbation
p̃i = pi + δµq(i), where µq is the modular moment curve

µq(t) :=
1

q
(t, t2 mod q, t3 mod q, . . . , td mod q).

We can express the volume of any simplex in P̃ as a polyno-
mial in δ. Lemma 5.1 implies that the sign of this polynomial
is determined by the sign of the largest term. Moreover, the
coefficient δd term is the volume of a simplex whose ver-
tices are integer points on the modular moment curve, and
is therefore not equal to zero. We conclude that no d + 1
points in P̃ lie on a common hyperplane; in particular, no k
points lie on a vertical hyperplane.

Scaling the set P̃ by a factor of q/δ gives us an integer
point set, where every coordinate has absolute value at most
O(M5d). Thus, to find the shortest slab containing k points

in P , we can apply our earlier reduction to P̃ . The entire re-
duction requires only linear time and increases the bit length
of the input by at most a factor of O(d2).

Theorem 5.10 Conjecture 1.1 implies that computing the
narrowest slab containing k points from a given set of n
points in ZZ

d requires time Ω(min{k, n−k}d) and Ω((n/k)d)
in the worst case.

Theorem 5.11 Conjecture 1.1 implies that computing a slab
of width at most 2 wd(P, k) containing k points from a given
set P of n points in ZZ

d requires time Ω((n − k)d−1) and
Ω((n/k)d) in the worst case.

Corollary 5.12 For any k ≤ n−Ω(nc) for some constant c,
computing a 2-approximation of the thinnest slab containing
k points from a given set of n points in ZZ

n is NP-hard.

Acknowledgments

We thank Timothy Chan for suggesting the use of his ran-
domized optimization technique.

References

[1] J. Basch, L. J. Guibas, and J. Hershberger. Data struc-
tures for mobile data. Proc. 8th ACM-SIAM Sympos.
Discrete Algorithms, 747–756, 1997.

[2] M. Ben-Or. Lower bounds for algebraic computation
trees. Proc. 15th Annu. ACM Sympos. Theory Comput.,
80–86, 1983.

[3] T. M. Chan. Geometric applications of a random-
ized optimization technique. Discrete Comput. Geom.
22:547–567, 1999.

[4] T. M. Chan. Low-dimensional linear programming with
violations. Proc. 43th Annu. IEEE Sympos. Found.
Comput. Sci., 570–579, 2002.

[5] T. M. Chan. Personal communication, Feb. 2004.

[6] B. Chazelle. The Discrepancy Method. Cambridge Uni-
versity Press, 2000.

[7] H. Edelsbrunner and D. L. Souvaine. Computing
median-of-squares regression lines and guided topolog-
ical sweep. J. Amer. Statist. Assoc. 85:115–119, 1990.

[8] I. Emiris and J. Canny. A general approach to removing
degeneracies. SIAM J. Comput. 24:650–664, 1995.

[9] I. Z. Emiris, J. F. Canny, and R. Seidel. Efficient per-
turbations for handling geometric degeneracies. Algo-
rithmica 19(1–2):219–242, 1997.

[10] J. Erickson. On the relative complexities of some ge-
ometric problems. Proc. 7th Canad. Conf. Comput.
Geom., 85–90, 1995.

[11] J. Erickson. Lower bounds for linear satisfiability prob-
lems. Chicago J. Comput. Sci. 1999(8), 1999.

[12] J. Erickson. New lower bounds for convex hull prob-
lems in odd dimensions. SIAM J. Comput. 28:1198–
1214, 1999.

[13] J. Erickson and R. Seidel. Better lower bounds on de-
tecting affine and spherical degeneracies. Discrete Com-
put. Geom. 13:41–57, 1995.

[14] A. Gajentaan and M. H. Overmars. On a class of O(n2)
problems in computational geometry. Comput. Geom.
Theory Appl. 5:165–185, 1995.

[15] S. Har-Peled. On core-sets and slabs. Manuscript, 2003.
[16] S. Har-Peled and Y. Wang. Shape fitting with outliers.

Proc. 19th Annu. ACM Sympos. Comput. Geom., 29–
38, 2002.

[17] L. Khachiyan. On the complexity of approximating
determinants in matrices. J. Complexity 11:138–153,
1995.

[18] J. Matoušek. On geometric optimization with few vio-
lated constraints. Discrete Comput. Geom. 14:365–384,
1995.

[19] P. Meer, D. Mintz, A. Rosenfeld, and D. Y. Kim. Ro-
bust regression methods for computer vision: A review.
Int. J. Computer Vision 6:59–70, 1991.

[20] D. M. Mount, N. S. Netanyahu, K. R. Romanik, R. Sil-
verman, and A. Y. Yu. A practical approximation algo-
rithm for the LMS line estimator. Proc. 8th ACM-SIAM
Sympos. Discrete Algorithms, 473–482, 1997.

[21] C. F. Olson. An approximation algorithm for least
median of squares regression. Inform. Process. Lett.
63:237–241, 1997.

[22] P. J. Rousseeuw. Least median of squares regression. J.
Amer. Statist. Assoc. 79(388):871–880, 1984.

[23] P. J. Rousseeuw. Introduction to positive breakdown
methods. Handbook of Statistics, Vol. 15: Robust In-
ference, 101–121, 1997. Elsevier.

[24] P. J. Rousseeuw and A. M. Leroy. Robust Regression
and Outlier Detection. John Wiley & Sons, New York,
1987.

[25] A. C. Yao. Lower bounds for algebraic computation
trees with integer inputs. SIAM J. Comput. 20(4):655–
668, 1991.

[26] V. J. Yohai. High breakdown-point and high efficiency
robust estimates for regression. Ann. Stat. 15:642–656,
1987.

