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Abstract5

A topological quadrilateral mesh Q of a connected surface in R3 can be extended to a6

topological hexahedral mesh of the interior domain Ω if and only if Q has an even number7

of quadrilaterals and no odd cycle in Q bounds a surface inside Ω. Moreover, if such a mesh8

exists, the required number of hexahedra is within a constant factor of the minimum number9

of tetrahedra in a triangulation of Ω that respects Q. Finally, if Q is given as a polyhedron10

in R3 with quadrilateral facets, a topological hexahedral mesh of the polyhedron can be11

constructed in polynomial time if such a mesh exists. All our results extend to domains with12

disconnected boundaries. Our results naturally generalize results of Thurston, Mitchell, and13

Eppstein for genus-zero and bipartite meshes, for which the odd-cycle criterion is trivial.14

Hexita, vexita,
When can we mesh wit’ a

pure topological
complex of cubes?

Hexahedrizable
surface quad meshes are

null-cohomologous
inside the tubes!

15
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1 Introduction1

Many applications in scientific computing call for three-dimensional geometric models to be decomposed2

into a mesh of geometrically simpler pieces. One of the most sought-after types of decomposition is a3

hexahedral mesh, or more colloquially, a hex mesh. In this context, a hexahedron is a convex polyhedron4

that is combinatorially equivalent to a cube: six quadrilateral facets, each in its own plane; twelve edges;5

and eight distinct vertices of degree 3. A hexahedral mesh is a set of hexahedra that cover a specified6

domain, such that any two hexahedra intersect in either the empty set, a vertex of both, an edge of both,7

or a facet of both.8

Now suppose we are given a (not necessarily convex) polyhedron with convex quadrilateral faces.9

When can we construct a hexahedral mesh of the interior of the polyhedron, such that the boundary10

facets of the mesh are precisely the facets of the polyhedron? The hexahedral mesh can have an11

arbitrary finite number of vertices in the interior of the polyhedron, but no subdivision of the boundary12

is permitted. Despite decades of research, this problem is still wide open. No algorithm is known to13

construct hex meshes compatible with an arbitrary given quadrilateral mesh, or even to determine when14

a compatible hex mesh exists, even for the simple examples shown in Figure 1. All known geometric15

meshes for these examples [16,67,74,75] include degenerate, inverted, and/or warped hexahedra.16

Figure 1. An octagonal spindle [27], a bicuboid [8,9], and Schneiders’ pyramid [61,62].

The hex-meshing problem becomes much simpler if we ignore the precise geometry of the meshes17

and focus entirely on their topology. In this more relaxed setting, the input quadrilaterals and output18

hexahedra are not necessarily convex polygons or polyhedra, but rather topological disks and balls19

whose intersection patterns are are consistent with the intersection patterns in geometric hex meshes.20

(We describe the precise intersection constraints in Section 2.) For example, any bicuboid has an obvious21

decomposition into two topological hexahedra sharing a single face.22

This paper offers a complete solution to this topological hex-meshing problem. For example, let Q be23

a topological quadrilateral mesh (more colloquially, a quad mesh) of a connected surface in R3. We prove24

that Q can be extended to a topological hex mesh of the interior domain Ω if and only if (1) Q has an even25

number of quadrilaterals and (2) no odd cycle in Q bounds a surface inside Ω. Moreover, if Q is given as26

a polyhedron in R3 with planar quadrilateral facets, we can either compute a compatible topological27

hex mesh or report correctly that no such mesh exists, in polynomial time. Our characterization and28

algorithm naturally generalize results of Thurston [69], Mitchell [44], and Eppstein [27] for genus-zero29

and bipartite meshes, for which the odd-cycle criterion is trivial.30

Before describing our new results in detail, we first give an overview of these and other prior results.31
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1.1 Previous Results1

Genus-Zero Surface Meshes2

Thurston [69] and Mitchell [44] independently proved that any quadrilateral mesh of a topological3

sphere can be extended to a topological hex mesh of the interior ball if and only if the number of4

quadrilaterals is even. Thus, all the examples in Figure 1 support topological hex meshes. Even parity5

is clearly a necessary condition for any hex mesh; each cube has an even number of facets, and facets6

are identified in pairs in the interior of the mesh. Thurston and Mitchell prove that evenness is also a7

sufficient condition in two stages. First, they show that the dual curves of the input quadrilateral mesh8

can be extended to a set of immersed surfaces in the interior of the ball, using a sequence of elementary9

moves related to regular homotopy [32,72]; similar results were previously derived by Carter [17,18]10

and by Csikós and Szűcs [22]. Second, they argue that the resulting surface immersion can be refined,11

by adding additional closed surfaces in the interior of the ball, into the dual complex of a hex mesh12

whose boundary is Q. We consider dual curves of quad meshes and dual surfaces of hex meshes in more13

detail in Section 2.14

Mitchell’s proof [44] can be translated into an algorithm that constructs a topological hex mesh15

with complexity O(n2), where n is the complexity of the input quad mesh. Eppstein [27] showed that16

carelessly choosing the elementary moves in the first stage of Mitchell’s algorithm can lead to Ω(n2)17

output complexity. More recent results of Nowik [55] imply the same Ω(n2) lower bound even if all18

such choices are made optimally. With some effort, the output complexity can be reduced to O(n) by19

using a larger vocabulary of elementary moves in the first stage of the algorithm; see related results of20

Carter [18] and Csikós and Szűcs [22].21

Eppstein [27] described an algorithm that computes a topological hex mesh with complexity O(n) in22

polynomial time, without first constructing a dual surface arrangement. Eppstein’s algorithm extends23

the input quad mesh into a buffer layer of cubes, triangulates the interior of the buffer layer with O(n)24

tetrahedra, subdivides each interior tetrahedron into four cubes by central subdivision, and finally refines25

the buffer cubes into smaller cubes that meet the subdivided tetrahedra (and each other) consistently.26

Only the last stage is not explicitly constructive; the algorithm refines the boundary of each buffer cube27

into either 16 or 18 quadrilaterals and then invokes Mitchell’s algorithm. As Eppstein observes [27], it is28

not difficult to construct meshes for these remaining cases by hand.29

Higher-Genus Surface Meshes30

Both Mitchell and Eppstein consider the problem of hex-meshing domains with nontrivial topology,31

but neither offers a complete solution. Mitchell [44] gives both a necessary condition and a sufficient32

condition for a quad mesh with genus g to be the boundary of an interior hex mesh. First, a compatible33

hex mesh exists if one can find g disjoint topological disks in the interior body, each bounded by an34

cycle of even length in the quad mesh, that cut the interior body into a ball. Thus, at least in principle,35

Mitchell’s algorithm can be applied to any handlebody in R3. Second, a compatible hex mesh does not36

exist if there is a topological disk in the interior whose boundary is a cycle of odd length in the quad37

mesh.38

Mitchell’s conditions imply that the existence of a compatible hex mesh depends not only on the39

combinatorics of the surface quad mesh but also on its embedding in R3. For example, a toroidal 3× 440

grid of quadrilaterals has two natural embeddings in R3, shown in Figure 2. One embedding is the41

boundary of a hex mesh of the solid torus with three cubes; the other is not the boundary of a hex mesh,42

because there are interior disks bounded by triangles.43

On the other hand, Eppstein [27] observed that his algorithm actually constructs an interior hex44

mesh for any bipartite quad mesh, regardless of its genus or its embedding in R3. In particular, Eppstein’s45



Efficiently Hex-Meshing Things with Topology 3

Figure 2. Mitchell’s 3× 4 tori: Only the mesh on the right supports an interior hex mesh [44].

algorithm can be applied to bipartite quad meshes whose interior volumes are not handlebodies; consider,1

for example, a ball with a non-trivially knotted tunnel drilled through it.2

In practice, hex meshes for complex domains are often constructed by partitioning into simply-3

connected subdomains and then meshing each subdomain independently [31,48,49,50,58]. In fact,4

this partitioning strategy is the main practical motivation for our requirement that the given boundary5

mesh cannot be refined. A more theoretical motivation is that topological hex meshing becomes trivial if6

we allow boundary refinement; Eppstein’s results [27] imply that any topological quad mesh can be7

extended to an interior hex mesh if we first split each quad into a 2× 2 grid, because the refined quad8

mesh is always bipartite. In fact, in this setting, we can use Mitchell’s Geode template [45] to transition9

between the refined boundary and an interior triangulation [16], instead of Eppstein’s more complicated10

algorithm.11

Cube Flips and Cubical Polytopes12

Some time before 1995, Nathan Habegger asked [40, Problem 5.13] which pairs of PL-cubulations of13

the same manifold can be connected by a sequence of elementary operations variously called bubble14

moves [33,34] or cube flips [8,9,35,60]. A d-dimensional cube flip replaces a subcomplex B with another15

subcomplex B′, where B and B′ are complementary simply connected subcomplexes of the boundary16

of a (d + 1)-dimensional cube. The four two-dimensional cube flips are illustrated in Figure 3. Cube17

flips were previously considered in the polytope literature, as a special case of a more general operation,18

by Billera and Sturmfels [10]. Reiner [60] asked whether any two cubical decompositions of the same19

zonotope are connected by cube flips.20

Figure 3. The four 2-dimensional cube flips.

Significant progress on Habegger’s question was reported by Funar [33,34,35]. In particular, Funar21

proved that two quadrangulations of the sphere S2 are connected by cube flips if and only if they have22

the same number of facets modulo 2 [33]. It follows that any even quadrangulation of the sphere23
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can be extended to a shellable hex mesh of the ball; the same theorem was proved independently by1

Müller-Hannemann [48,49] and Bern and Eppstein [8,9].2

In a later paper [35], Funar proved that two quadrangulations Q1 and Q2 of the same orientable3

surface Σ are connected by cube flips if and only if they have the same number of facets modulo 2 and4

their dual curves Q∗1 and Q∗2 have the same homology class in H1(Σ;Z2); this theorem and its proof were5

the most direct inspiration for the new results in the current paper. Similar results were proved earlier6

by Nakamoto and Ota [52,53,54] for a different class of elementary moves, which they called diagonal7

transformations.8

Building on earlier work on Banchoff [4], Babson and Chan [3] proved that any self-transverse9

piecewise-linear immersion of a (d−1)-manifold into the d-sphere can be refined into the dual immersion10

of a cube complex; we describe Babson and Chan’s refinement in our proof of Lemma 4.2. Babson11

and Chan call the natural cubical structure on the dual immersion the derivative complex. Using12

a generalization of the Hexhoop template developed by Yamakawa and Shimada for constructing13

hexahedral meshes [74], Schwartz [63] and Schwartz and Ziegler [64] proved that every self-transverse14

piecewise-linear immersion of a (d−1)-manifold into the d-sphere can be refined into the dual immersion15

of a cubical d-polytope. In particular, they construct the first cubical 4-polytope with an odd number16

of facets, by refining Boy’s classical immersion of the projective plane [13] (specifically, an orthogonal17

version of Boy’s surface popularized by Petit [57]).18

1.2 New Results19

Our main theorem characterizes which surface quad meshes can be extended to interior hex meshes in20

terms of the homology (with Z2 coefficients) of certain subgraphs, either of the given quad mesh or its21

dual graph. Loosely, a subgraph is null-homologous in Ω if and only if it is the boundary of a possibly22

self-intersecting surface inside Ω. We define homology more carefully in Section 2.23

Main Theorem. Let Ω be a compact connected subset of R3 whose boundary ∂Ω is a (possibly discon-24

nected) 2-manifold, and let Q be a topological quad mesh of ∂Ω with an even number of facets. The25

following conditions are equivalent:26

(1) Q is the boundary of a topological hex mesh of Ω.27

(2) Every subgraph of Q that is null-homologous in Ω has an even number of edges.28

(3) The dual curve arrangement Q∗ is null-homologous in Ω.29

Our characterization is a natural generalization of Thurston, Mitchell, and Eppstein’s previous results.30

Bipartite quad meshes trivially satisfy condition (2), because every null-homologous subgraph is the31

union of disjoint closed walks. Similarly, genus-zero meshes trivially satisfy condition (3), because every32

closed walk on the sphere is null-homologous in the ball. We emphasize that our result does not require33

the domain Ω to have connected boundary or to be a handlebody.34

Moreover, our condition (2) is closely related to Mitchell’s necessary and sufficient conditions. On35

the one hand, it generalizes Mitchell’s necessary condition (no disks in Ω are bounded by odd cycles36

in Q) by considering arbitrary immersed surfaces instead of only embedded disks. On the other hand,37

Mitchell’s sufficient condition can be rephrased as follows: There are g disks in Ω, each bounded by an38

even number of edges in Q, such that the homotopy type of any cycle in Ω is determined by its crossing39

pattern with the disks. Our condition (2) has a similar reformulation: There are g immersed surfaces40

in Ω, each bounded by an even number of edges in Q, such that the homology type of any cycle in Ω is41

determined by its crossing pattern with the surfaces. See Section 3 for more details.42
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1.3 Outline1

We prove our Main Theorem in several stages. The implication (1)⇒(3) follows easily by considering2

the dual complex of the hex mesh, which we define carefully in Section 2. We prove the equivalence3

(2)⇔(3) in Section 3 using Poincaré-Alexander-Lefschetz duality. We offer two proofs of the remaining4

implication (3)⇒(1). In Section 4, we sketch a two-stage proof in the same spirit as Thurston and5

Mitchell’s argument for genus-zero meshes. First, essentially following arguments of Funar [35], we6

argue that if Q∗ is null-homologous in Ω, then Q∗ is the boundary of an immersed surface in Ω. Second,7

following arguments of Mitchell [44] and Babson and Chan [3], we show that any surface immersion8

can be refined to the dual of a hex mesh. Finally, in Section 5, we give a more direct proof, which uses a9

modification of Eppstein’s algorithm for bipartite meshes [27].10

Both our proofs are constructive, although the first proof omits some implementation details because11

the resulting algorithm is less efficient. Given an arbitrary polyhedron in R3 with quadrilateral facets,12

our algorithms either construct a compatible topological hex mesh or correctly report that no such13

mesh exists, in polynomial time. Our second proof implies that the minimum number of hexahedra in14

within a constant factor of the minimum complexity of a topological triangulation of Ω that splits each15

quadrilateral facet in Q into exactly two triangles. For example, if Q is the boundary of a non-convex16

polyhedron with n convex quadrilateral facets that supports a hex mesh, then Q supports a hex mesh17

with complexity O(n2) [7,21]. Since any hex mesh can be split into a triangulation with six simplices18

per hexahedron, this complexity bound is the best one can hope for.19

2 Background20

Before describing our results in detail, we first recall some standard definitions from combinatorial and21

algebraic topology. For more detailed background, we refer the reader to Edelsbrunner and Harer [26]22

and Hatcher [37].23

Manifolds24

A d-manifold is a Hausdorff topological space in which every point has a neighborhood homeomorphic25

to the Euclidean space Rd . The integer d is the dimension of the manifold. For example, a 1-manifold is a26

disjoint union of circles. More generally, a d-manifold with boundary is a space Ω in which every point27

has a neighborhood homeomorphic to either Rd or the closed halfspace {(x1, . . . , xd) ∈ Rd | xd ≥ 0}. The28

subspace of points with halfspace neighborhoods is the boundary of the manifold, which we denote ∂Ω.29

The boundary of any d-manifold is a (d − 1)-manifold without boundary. We consider only compact30

3-manifolds that are subsets of R3 in this paper, although most of our results apply to more general31

3-manifolds without significant modification. We use the word surface to mean a compact 2-manifold,32

possibly with boundary and possibly with multiple components. The genus of a connected surface is the33

maximum number of disjoint simple cycles whose deletion leaves the surface connected.34

Singularities and Immersions35

We consider several types of well-behaved functions from surfaces to 3-manifolds with boundary. Fix a36

surface S, a 3-manifold Ω⊂ R3, and a continuous function f : S→ Ω that maps the boundary of S to the37

boundary of Ω. A point f (x) in the image of f is ordinary if it lies in an open neighborhood U such38

that im f ∩ U is homeomorphic to either the plane (if x is in the interior of S) or a closed halfplane (if x39

is on the boundary of S), and singular otherwise.40
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For a generic surface map, every singular point has a neighborhood homeomorphic to one of four1

stable singularities, illustrated in Figure 4. A double point has a neighborhood homeomorphic to two2

coordinate planes or two coordinate halfplanes; a triple point has a neighborhood homeomorphic to3

three coordinate planes; and a branch point has a neighborhood homeomorphic to a a cone over a4

figure-8 (also known as a crosscap or a Whitney umbrella). A standard compactness argument implies5

that a generic surface map has a finite number of triple points, boundary double points, and branch6

points. Classical results of Whitney [73] imply that any surface map f can be continuously deformed to7

a generic surface map arbitrarily close to f .8

@⌦

Figure 4. Stable surface singularities: boundary double point, interior double point, triple point, and branch point.

A (topological) immersion is a generic surface map with no branch points. An embedding is a9

surface map with no singular points at all. Every immersion f is a local embedding; that is, every point10

x ∈ S lies in an open neighborhood U ⊂ S such that the restriction of f to U is an embedding.11

Cube Complexes and Triangulations12

As mentioned earlier, a hexahedron or cube is a convex polyhedron in R3 with eight vertices and six13

quadrilateral facets, combinatorially isomorphic to the standard cube [0, 1]3. A geometric cube complex14

is a finite set of hexahedra, in which any the intersection of any two hexahedra is either a common15

facet, a common edge, a common vertex, or the empty set. The underlying space of a geometric cube16

complex X is the union of its hexahedra; we also call X a geometric hex mesh of its underlying space.17

Formally, a topological cube is (the image of) a continuous injective function q : [0,1]3 → R3.18

A facet of q is (the image of) a function f : [0, 1]2→ R3 obtained by restricting q to one of the facets of19

[0, 1]3 and ignoring the fixed coordinate; edges and vertices of topological cubes are defined similarly.20

A topological cube complex is a finite set X of topological cubes in R3 such that the intersection of any21

two cubes is either a facet of both, an edge of both, a vertex of both, or the empty set. A topological22

cube complex X also called a topological hex mesh of its underlying space (the union of its constituent23

cubes).24

Geometric and topological quad meshes are defined similarly, respectively using convex quadrilat-25

erals or continuous injective maps from the square [0,1]2 instead of cubes; we colloquially refer to26

the constituent quadrilaterals as quads. A boundary facet of a geometric cube complex X is a facet of27

exactly one cube in X ; the boundary ∂X of a (geometric or topological) hex mesh X is the (geometric or28

topological) quad mesh composed of all boundary facets of X . Geometric and topological triangulations29

are also defined similarly, with triangles or tetrahedra in place of quadrilaterals or cubes. Cube complexes30

and triangulations are examples of polyhedral cell complexes.31

Some hexahedral meshing papers consider looser definitions of hexahedra and meshes, allowing, for32

example, inverted or twisted hexahedra, pairs of hexahedra that intersect in more than one common33

face, or hexahedra that are incident to the same face multiple times. However, we prefer the stricter34

definitions, in part to be consistent with geometric cube complexes, and in part because the looser35

definitions allow meshes that are useless in practice.36
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Our proofs implicitly rely on classical theorems of Moise [46, 47] and Bing [11, 12], which state1

that every 3-manifold with boundary is the underlying space of some topological triangulation, and2

therefore of some topological cube complex. Thus, although we rely on techniques from piecewise-linear3

topology, especially in Section 4, we need not assume that our input domain Ω is piecewise-linear or4

otherwise “tame”. Generalizations of our results to higher dimensions would require an explicit tameness5

assumption.6

Dual Complexes7

Any hex mesh X in R3 defines a natural dual complex X∗ of the same underlying space, which can8

be constructed as follows. First subdivide each cube in X into eight smaller cubes by bisecting along9

each axis; the resulting subdivision X� is a cube complex with the same underlying space as X . Then10

merge all subcubes in X� incident to each vertex of X into a single (topological) polyhedron. The dual11

complex X ∗ has a 3-dimensional cell for every interior vertex of X , a 2-dimensional cell for every interior12

edge and boundary vertex of X , an edge for every interior facet and boundary edge of X , and a vertex13

for every cube and boundary facet of X . See Figure 5.14

For any hex mesh X , the union of the interior 2-dimensional cells of the dual complex X ∗ is the image15

of a topological surface immersion. At the risk of confusing the reader, we use the same notation X ∗ to16

denote this dual immersion, which is variously called the spatial twist continuum [51], the derivative17

complex of X [3,33,39,64], and the canonical surface of X [1,2]. The duality between cube complexes18

and immersed surfaces was already observed in the late 1800s, at least in preliminary form, in Fedorov’s19

seminal study of zonotopes [29,30,65].20

Similarly, the dual of any surface quad mesh Q is a cellular decomposition Q∗ with a vertex for each21

facet of Q, an edge for each edge of Q, and a face for each vertex of Q. The vertices and edges of Q∗ are22

the image of an immersion of one or more circles into the surface. In particular, if Q is the boundary of a23

hex mesh X , the dual curve immersion Q∗ is the boundary of the dual surface immersion X ∗.24

We define the duals of more general cell complexes similarly. The dual subdivision of a polyhedron P25

has new vertices at the centroid of P, at the centroid of each facet of P, and at the midpoint of each edge26

of P, and these new vertices are connected with quadrilateral facets. For example, the dual subdivision27

of a tetrahedron consists of four cubes, and the dual subdivision of a pyramid consists of four cubes and28

an octagonal spindle; see Figure 5. Subdividing every cell in a polyhedral complex X in this fashion29

gives us a subdivided complex X�; finally, merging all subcells in X� that share a common vertex in X30

gives us the dual complex X ∗.31

Figure 5. Dual subdivision of a cube, a pyramid, and a tetrahedron.
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Homology1

Homology is an equivalence relation between cycles of various dimensions with a rich and useful2

algebraic structure. Our results specifically rely on cellular (or singular) homology with Z2-coefficients.3

We give here only a brief overview of the most important definitions.4

For the sake of concreteness, fix a cube complex X with underlying space Ω. For any integer k,5

a k-chain is a subset of the k-dimensional cubes in X . The boundary of a k-chain C , denoted ∂C , is the6

set of (k−1)-cubes in X that are facets of an odd number of k-cubes in C . A k-chain is called a k-cycle if7

its boundary is empty. In particular, a 1-cycle is a subgraph of the 1-skeleton of X in which every vertex8

has even degree. A k-cycle is null-homologous if it is the boundary of a (k+ 1)-chain, and two k-cycles9

are homologous, or in the same homology class, if their symmetric difference is null-homologous. The10

homology classes of k-cycles define an abelian group Hk(X), called the kth homology group of X .11

Homology groups are finite-dimensional vector spaces over the finite field Z2.12

Now fix a subcomplex A of X . A k-chain in X is a relative k-cycle if its boundary is a (k− 1)-chain13

in A, and two relative k-cycles are in the same relative homology class if their symmetric difference14

is homologous (in X ) to a k-chain in A. The relative homology classes of relative k-cycles define the15

relative homology group Hk(X , A). Relative homology groups are also finite-dimensional vector spaces16

over the finite field Z2.17

Homology and relative homology are topological invariants of the underlying space Ω, independent18

of the complex X . Thus, for example, we speak of graphs in ∂Ω being null-homologous in Ω without19

specifying any particular cell complex. This independence can be formalized using singular homology;20

we refer the interested reader to Hatcher [37] for further details.21

3 No Odd Bounding Cycles22

For the remainder of the paper, we fix a compact connected domain Ω ⊂ R3 whose boundary is a23

2-manifold, possibly with multiple components, and a topological quadrilateral mesh Q of ∂Ω with an24

even number of facets.25

In this section, we prove that conditions (2) and (3) in our Main Theorem are equivalent. Our proof26

relies on standard tools from algebraic topology, most notably Poincaré-Alexander-Lefschetz duality,27

which are explained in detail by Edelsbrunner and Harer [26, Chapters IV and V] and Hatcher [37].28

Lemma 3.1. The dual graph Q∗ is null-homologous in Ω if and only if every subgraph of Q that is29

null-homologous in Ω has an even number of edges.30

Proof: Following Dey et al. [23,24,25], we call a subgraph of Q that is null-homologous in Ω a handle31

cycle. Let H = {η1,η2, . . . ,ηg} be a set of handle cycles in ∂Ω whose homology classes form a basis for32

the homology group H1(S3 \Ω). We call H a handle basis for Q. Each handle cycle ηi is the boundary33

of a 2-chain σi in Ω, and the relative homology classes of σ1,σ2, . . . ,σg form a basis for the relative34

homology group H2(Ω,∂Ω). Lefschetz duality implies that the homology class of any cycle γ in Ω35

is determined by the 2-chains σi that γ crosses an odd number of times. In particular, a cycle γ is36

null-homologous in Ω if and only if γ crosses each 2-chain σi an even number of times. It follows that37

any cycle in ∂Ω is a handle cycle if and only if it crosses each handle cycle ηi an even number of times.38

Suppose every handle cycle in Q has an even number of edges. Then in particular, every subgraph ηi39

in the handle basis H has an even number of edges. By definition, the dual graph Q∗ crosses each edge40

of Q exactly once, so Q∗ crosses every subgraph in H an even number of times. We conclude that Q∗ is41

null-homologous in Ω.42
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On the other hand, suppose Q∗ is null-homologous in Ω. Then every subgraph ηi ∈ H crosses Q∗ an1

even number of times and thus has an even number of edges. Every handle cycle in Q is the symmetric2

difference of a subset of subgraphs in H and a subset of facet boundaries (each with four edges). Thus,3

every handle cycle in Q has an even number of edges. �4

A similar—in fact simpler—argument implies that a quadrilateral mesh Q of a connected surface Σ5

is bipartite if and only if its dual graph Q∗ is null-homologous on the surface Σ.6

Recent work of Dey, Fan, and Wang [23] implies an efficient algorithm to quickly test whether a7

connected polyhedral quad mesh Q satisfies the conditions of Lemma 3.1. Dey et al. describe an algorithm8

to compute a handle basis H for any polyhedron with connected boundary, genus g, and complexity n in9

O(g2n2) time. The handle cycles in ηi ∈ H may pass through the interiors of facets of Q, but we can10

easily deform them onto the 1-skeleton of Q in O(gn) time if necessary. Q satisfies the conditions of11

Lemma 3.1 if and only if each basis cycle ηi has an even number of edges. Euler’s formula implies that12

the genus of Q is at most half the number of facets, so the running time of this algorithm is O(n4).13

Theorem 3.2. Given a connected polyhedron Q in R3 with genus g and n quadrilateral facets, we can14

determine whether Q∗ is null-homologous in the interior of Q in O(g2n2) = O(n4) time.15

4 An Inefficient Proof16

To complete the proof of our Main Theorem, it remains only to show that if Q∗ is null-homologous in Ω,17

then Q is the boundary of a topological hex mesh of Ω. In this section we give a proof of this result in18

the spirit of Thurston’s original argument for quad meshes of spheres [69]. Our proof is constructive,19

and it can be translated without much effort into an algorithm for constructing a topological hex mesh if20

one exists. However, in light of the more efficient algorithm in Section 5, we omit some implementation21

details and we do not attempt to analyze or reduce the complexity of the resulting mesh.22

Lemma 4.1. Suppose Q∗ is null-homologous in Ω. Then Q∗ is the boundary of a surface immersion23

into Ω.24

Proof: Because Q∗ is null-homologous in Ω, classical results of Whitney [73] and Papakyriakopoulos [56]25

imply that there is a generic surface map f : S→ Ω such that f (∂S) = Q∗. In fact, we can construct26

a suitable generic surface map as follows. First, decompose Ω into a cell complex X that contains a27

pyramid over each facet of Q and otherwise contains only simplices, and let X ∗ be the dual complex of X .28

Let Σ be a 2-chain in X ∗ whose boundary is Q∗; such a 2-chain must exist because Q∗ is null-homologous29

in Ω. Without loss of generality, we can assume that Σ∩ ∂Ω =Q∗. Each pyramid in X intersects exactly30

six facets of Σ, including all four facets touching the base of the pyramid, and each tetrahedron in X31

intersects either zero, three, or four facets of Σ; see Figures 6 and 7. It follows that Σ is the image of a32

generic surface map f : S→ Ω with no triple points and one branch point per vertex of Q∗.33

We transform this generic surface map into an immersion following an argument of Funar [35],34

which is based in turn on results of Hass and Hughes [36] for immersions of surfaces without boundary.35

The singular points of f are the image of an immersion of a finite number of paths and cycles, where36

each path endpoint is either a vertex of Q∗ or a branch point of f . (In particular, in our construction,37

the singular points consist of disjoint simple paths from vertices of Q∗ to centroids of pyramids in X .)38

Because Q∗ has an even number of vertices, f has an even number of branch points. We can transform f39

into a generic immersion (of a different surface) by canceling all the branch points in pairs. To cancel40

any pair of branch points, we can delete small neighborhoods of both points and paste in a cylinder over41

a figure-8, which intersects the rest of the image of the surface transversely; see Figure 10. �42
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Figure 6. Intersection pattern of Σ with a boundary pyramid of X .

Figure 7. Possible intersection patterns of Σ with interior tetrahedra of X .

Lemma 4.2. Any generic surface immersion in Ω whose boundary is Q∗ can be refined to the dual of a1

hex mesh whose boundary is Q.2

Proof: We essentially follow the proof strategy suggested by Mitchell [44]. Let φ : Σ→ Ω be a generic3

immersion such that φ(∂Σ) =Q∗. We extend φ to the dual of a hex mesh by adding a finite number of4

new surface components, each embedded transversely to each other and to the image of φ.5

First we add a buffer surface, parallel to and just inside ∂Ω, that separates every triple point of φ6

from the boundary of Ω. This buffer surface ensures that later modifications do not change the boundary7

curves Q∗. Let Ω◦ denote the portion of Ω inside the buffer surface.8

Let T ◦ be a topological triangulation of Ω◦ that contains (a triangulation of) imφ ∩ Ω◦ in its 2-9

skeleton; such a triangulation always exists. To finish the construction, we “bubble-wrap” φ by inserting10

spherical bubbles around each simplex in T ◦, following an algorithm of Babson and Chan [3]. First11

add disjoint spheres around each vertex of the triangulation; then add disjoint spheres around the12

portion of each edge outside the vertex bubbles; then add disjoint spheres around the subset of each13

triangle outside the vertex and edge bubbles; and finally add disjoint spheres around the subset of each14

tetrahedron outside the vertex, edge, and triangle bubbles. See Figure 9 for a two-dimensional example.15

Straightforward case analysis implies that the bubble-wrapped surface immersion is dual to a16

topological hex mesh whose boundary is Q. See Babson and Chan [3], Bern and Eppstein [8, 9],17

Schwartz [63], and Schwartz and Ziegler [64] for similar analysis; we omit further details here. �18

As part of his proof for genus-zero meshes, Mitchell [44] describes an algorithm to transform a19

surface immersion into the dual of a hex mesh that introduces fewer new surfaces, and therefore20

produces smaller meshes, than Babson and Chan’s algorithm [3]. Unfortunately, his algorithm appears21

to have a subtle flaw. Specifically, Mitchell’s algorithm correctly computes a surface immersion X ∗ that is22

dual to a cube complex X , but the components of Ω \ X ∗ are not necessarily topological balls, which23

implies that X is not necessarily a mesh of any 3-manifold, including Ω. Several later papers make24

similar omissions [31,42,51,66,67].25
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Figure 8. Surgery to cancel two branch points.

Figure 9. Bubble-wrapping a curve immersion, after Babson and Chan [3]. Top row: The original curves, a topological
triangulation, bubble-wrapping vertices. Bottom row: Bubble-wrapping edges, bubble-wrapping triangles, the final immersion.

5 An Efficient Proof1

Instead of fleshing out the details of the previous argument, we give in this section a second constructive2

proof, which translates directly into an efficient algorithm to construct a topological hex mesh for any3

polyhedron in R3 with quadrilateral facets. This algorithm does not rely on the results in Sections 34

and 4.5

Our high-level strategy closely resembles Eppstein’s algorithm for bipartite quad meshes [27]. After6

some mild preprocessing, we first separate the boundary of Ω from its interior with a buffer layer B of7

cubes joining the input quad mesh Q to a parallel copy of Q just inside the boundary. We then compute a8

triangulation T of the inner domain Ω\B that splits each inner boundary quad in B into two triangles. As9

in Eppstein’s algorithm, our final hex mesh is a refinement of the convex decomposition B ∪ T , obtained10

by splitting each buffer cube in B and each tetrahedron in T into a bounded number of smaller cubes.11

However, our refinement strategy is different from Eppstein’s.12

5.1 Connecting Odd Components13

Recall that the input mesh Q has an even number of facets, and that the dual graph Q∗ is null-homologous14

in Ω. For domains with disconnected boundaries, our meshing strategy requires a slightly stronger15

condition: Each component of Q must have an even number of facets. Fortunately, this stronger condition16

is easy to enforce by connecting odd components of Q in pairs as follows.17
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Fix two odd components Q1 and Q2 of Q, and let q1 and q2 be arbitrary quads in those components.1

Let κ be a cube in Ω with opposite facets q1 and q2; such a cube must exist because Ω is connected. Let2

Ω′ be the closure of Ω \ κ, and let Q′ be the quad mesh of ∂Ω′ obtained from Q by deleting q1 and q23

and adding the other four facets of κ. See Figure 10. Given any hex mesh of Ω′ whose boundary is Q′,4

inserting the cube κ yields a hex mesh of Ω whose boundary is Q.5

Figure 10. Connecting two components of Q with a cubical tunnel.

Lemma 5.1. (Q′)∗ is null-homologous in Ω′.6

Proof: Let ∂κ∗ denote the dual graph of the 1-skeleton of κ; this graph consists of three cycles on7

the boundary of κ. The graph (Q′)∗ is the symmetric difference of Q∗ and ∂κ∗, which are both null-8

homologous in Ω. It follows that (Q′)∗ is null-homologous in Ω.9

As in the proof of Lemma 4.1, decompose Ω′ into a cell complex X ′ that contains a pyramid over10

each facet of Q′ and otherwise contains only simplices, and let X = X ′ ∪ κ be the corresponding cellular11

decomposition of Ω. Let Σ be a 2-chain in the dual complex X ∗ such that ∂Σ = (Q′)∗; without loss of12

generality, we can assume that Σ∩ ∂Ω′ = (Q′)∗. If Σ is a 2-chain in X ′, the proof is complete.13

Otherwise, Σ∩κ must be a disk δ that separates q1 and q2. Let κ1 be the component of κ\δ with q114

on its boundary, and let Σ′ be the symmetric difference Σ⊕ ∂κ1⊕Q1. Then Σ′ is a 2-chain in Ω′ whose15

boundary is (Q′)∗, so again the proof is complete. �16

More generally, let κ1,κ2, . . . ,κr be disjoint cubes in Ω, such that each cube κi has two opposite17

facets in Q and each odd component of Q contains exactly one facet of one cube κi . Let Ω′ be the closure18

of Ω \ (κ1 ∪ · · · ∪ κr) and let Q′ =Q⊕ ∂κ1⊕ · · · ⊕ ∂κr . Every component of Q′ has an even number of19

facets, and Lemma 5.1 implies inductively that (Q′)∗ is null-homologous in Ω′. Given any hex mesh of Ω′20

compatible with Q′, inserting the cubes κ1, . . . ,κr yields a hex mesh of Ω compatible with Q.21

Thus, for the remainder of this section, we assume without loss of generality that every component22

of the input mesh Q has an even number of facets.23

5.2 Refining the Interior Triangulation24

Let B be a buffer layers of cubes separating the boundary of Ω from its interior, obtained by joining the25

input quad mesh Q to a parallel copy of Q just inside ∂Ω. Then let T be a triangulation of the inner26

domain Ω \ B that splits each inner boundary quad in B into two triangles. Let ∂T denote the induced27

triangulation of the inner surface of B.28

The dual complex T ∗ can be constructed by first splitting each tetrahedron in T into four cubes29

meeting at that tetrahedron’s centroid, and then merging all subsets of cubes incident to each vertex30

of T , all quadrilaterals incident to each edge of T , and all pairs of segments meeting at a face of T . The31

restriction of T ∗ to the inner surface of B is the usual combinatorial dual of the surface triangulation ∂T ;32

that is, we have (∂T )∗ = ∂(T ∗).33



Efficiently Hex-Meshing Things with Topology 13

Figure 11. A portion of the quad mesh Q, its triangulation ∂T , the dual curves Q∗, and the homologous curves Γ⊂ ∂T ∗.

Let ∆ denote the diagonals used to refine Q into ∂T , and let ∆∗ denote the corresponding edges1

of the dual graph ∂T ∗. Finally, let Γ denote the subgraph ∂T ∗ \∆∗; see Figure 11. Every vertex in Γ2

has degree 2, which implies that Γ is a collection of disjoint simple cycles. Contracting all the edges3

in ∆∗ transforms Γ into the dual complex Q∗ of the original quad mesh Q. Thus, Γ is homotopic to a4

covering of Q∗ by edge-disjoint circuits, which implies that Γ and Q∗ are homologous. In particular, Γ is5

null-homologous in Ω.6

Now let Σ be any 2-chain in T ∗ such that ∂Σ = Γ; if no such 2-chain exists, then Q∗ is not null-7

homologous in Ω. We easily observe that Σ is the union of disjoint embedded quadrangulated surfaces.8

In particular, each interior vertex of Σ is incident to either three or four quadrangular facets of T ∗, and9

the intersection of Σ with any tetrahedron in T is either empty or a disk. See Figure 7.10

Next, we refine T into a hex mesh Y by splitting each tetrahedron into either four, seven, or eight11

cubes, depending on whether the tetrahedron intersects zero, three, or four facets of Σ, as shown in12

Figure 12. Equivalently, we partition each tetrahedron in T into four cubes by central subdivision, and13

then expand the surface Σ into a layer of cubes.14

Figure 12. Templates for refining tetrahedra into cubes; compare with Figure 7.

5.3 Refining the Buffer Cubes15

It remains only to refine the buffer cubes in B to conform to the boundary of the refined triangulation Y .16

Each buffer cube has an outer facet in Q, an inner facet on the boundary of Ω \ B, and four transition17

facets. The interior mesh Y subdivides the inner facet of each buffer cube into ten quadrilaterals, as18

shown in Figure 13, and each edge of that inner facet into three segments. Thus, the transition facets19

of B are combinatorially hexagons.20
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Figure 13. Refinement of the inner facet of each buffer cube.

Following Eppstein [27, Lemma 1], we find a subgraph R of Q such that every facet of Q is incident1

to either one or three edges of R. We can compute such a subgraph in polynomial time by computing a2

perfect matching in the shortest-path metric on Q∗. (Here we require every component of Q to have an3

even number of facets.) Each edge in this matching is a path in Q∗. Let R∗ be the subset of edges of Q∗4

that appear in an odd number of these paths. Because vertex is an endpoint of exactly one path, each5

vertex of Q∗ lies on an odd number of edges in R∗. Finally, let R be the subgraph of Q dual to R∗.6

Alternatively, we can apply a classical result of Berge [5,6, Chapter 18, Theorem 7], which states7

that every (k− 1)-edge-connected k-regular graph with an even number of vertices contains a perfect8

matching. Each component of Q∗ is 3-edge-connected, because every separating cycle (in fact, every9

cycle) in Q has length at least 3; it follows immediately that Q∗ contains a perfect matching. (For a more10

recent independent proof, see Carbonera and Shepherd [15,16].) Let R be the subgraph of Q dual to11

this matching.12

We then subdivide each transition facet of B into either two or three quadrilaterals, depending on13

whether that facet is bounded by an edge of R or not. Because each facet of Q is incident to either one14

or three edges of R, the boundary of each buffer cube is refined into either 20 or 22 quads, as shown in15

Figure 14. To complete our construction, we refine each boundary cube into a hex mesh compatible with16

its boundary subdivision. The existence of such a hex mesh is guaranteed by Thurston and Mitchell’s17

original proof; alternatively, as in Eppstein’s proof [27], it is not difficult to construct explicit hex meshes18

for these subdivided cubes by hand.19

Figure 14. Boundary refinement of the buffer cubes; bold edges are in the odd subgraph R.

5.4 Analysis20

We analyze both the running time of our algorithm and the complexity of the output hex mesh in terms21

of two parameters n and t, which respectively denote the number of quadrilateral facets in the input22

mesh Q and the number of tetrahedra in the interior triangulation T . We trivially have t = Ω(n), but23
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without further assumptions, t cannot be upper-bounded by any function of n. For example, suppose Ω is1

homeomorphic to the complement of a knot K . The boundary of Ω is a torus, which can be decomposed2

into a 4×4 grid of quadrilaterals (to guarantee the existence of a compatible hex mesh). The hyperbolic3

volume of Ω is a lower bound on the complexity of any triangulation of Ω, and there are knots K whose4

complements have arbitrarily large hyperbolic volume [41,59].5

Our algorithm constructs a topological hex mesh with complexity O(n+ t) = O(t), which is optimal6

up to constant factors; any hex mesh can be refined to a triangulation by decomposing each cube into7

six tetrahedra.8

Lemma 5.2. Suppose Q is the boundary of a topological hex mesh of Ω. The minimum number of9

cubes in a hex mesh of Ω whose boundary is Q is within a constant factor of the minimum number of10

tetrahedra in a topological triangulation of Ω whose boundary splits each facet of Q into two triangles.11

Moreover, if we are given an interior triangulation T , we can compute a hex mesh with complexity12

O(t), or determine correctly that no such mesh exists, in O(t3) time. Only two stages of the algorithm13

have nontrivial running time: computing the 2-chain Σ and computing the subgraph R.14

We can compute the 2-chain Σ by solving a O(t)×O(t) system of linear equations in Z2, with a15

variable for each 2-cell in T ∗ indicating whether that 2-cell is or is not in Σ, and an equation for each16

edge e in T ∗ indicating whether the number of 2-cells incident to e that lie in Σ is even (if e 6∈ Γ) or odd17

(if e ∈ Γ). We can solve this system of linear equations in O(t3) time using Gaussian elimination; this18

time bound can be improved using fast matrix multiplication [14,38]. If this system of equations has no19

solution, then Γ is not null-homologous in Ω, which implies that there is no hex mesh compatible with Q.20

To compute the odd subgraph R, it suffices to arbitrarily pair up the vertices of Q, compute the21

shortest path connecting each pair, and define R be the subset of edges in an odd number of these22

shortest paths. This construction requires O(n3) = O(t3) time. Alternatively, we can find a perfect23

matching in Q∗ in O(n3/2) = O(t3/2) time using the classical algorithm of Micali and Vazirani [43,70,71],24

but this improvement is dominated by the time to compute Σ.25

Theorem 5.3. Let Ω be a compact connected subset of R3 whose boundary ∂Ω is a (possibly dis-26

connected) 2-manifold. Suppose we are given a topological quad mesh Q of ∂Ω with n facets and a27

topological triangulation T of Ω with complexity t, such that T splits each facet of Q into two triangles.28

Then we can either compute a topological hex mesh of Ω whose boundary is Q, or report correctly that29

no such mesh exists, in O(t3) time. Moreover, if we return a hex mesh, its complexity is O(t).30

We can modify our algorithm to return a null-homologous subgraph of Q with an odd number of31

edges when Q is not compatible with a hex mesh, in O(t3) additional time, as follows. If Q∗ is not32

null-homologous, then Lemma 3.1 implies that every handle basis in Q contains at least one handle cycle33

of odd length. We can compute a handle basis in O(t3) time using standard homology algorithms [24,25]34

or in O(g2n2) time using the recent algorithm of Dey et al. [23] if Q is a connected polyhedron. (Again,35

the O(t3) time bound can be improved using fast matrix multiplication.)36

When the facets of Q are actually planar convex quadrilaterals, results of Chazelle and Palios [20],37

Bern [7], and Chazelle and Shouraboura [21] imply that we can compute a triangulation with complexity38

t = O(n2) in O(n2 log n) time.39

Theorem 5.4. Given a polyhedron Q in R3 with n quadrilateral facets, we can either compute a40

topological hex mesh of the interior of Q whose boundary is Q, or report correctly that no such mesh41

exists, in O(n6) time. Moreover, if we return a hex mesh, its complexity is O(n2).42
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The upper bound t = O(n2) is tight for geometric triangulations of polyhedra, even with genus1

zero [19], but it appears to be an open question whether this bound can be improved for topological2

triangulations. A heuristic argument of Thurston and Thurston suggests that the lower bound t = Ω(n3/2)3

is plausible [68], but the only lower bound actually known is the trivial t = Ω(n).4

If we only want to determine whether a compatible hex mesh exists, we can use the faster algorithm5

from Theorem 3.2.6

Corollary 5.5. Given a connected polyhedron Q in R3 with genus g and n quadrilateral facets, we can7

either report correctly that there is a topological hex mesh of the interior of Q whose boundary is Q, or8

compute a handle cycle in Q with odd length, in O(g2n2) = O(n4) time.9

6 Geometric Hex Meshing?10

We conclude by describing some implications of our results for the construction of geometric hex meshes11

for domains with complex topology.12

Bern and Eppstein [8, 9] reduce the geometric hex meshing problem from arbitrary genus-zero13

polyhedra to a specific family of polyhedra called bicuboids. A bicuboid is a convex polyhedron with ten14

quadrilateral facets, combinatorially isomorphic to the boundary of two cubes joined along a common15

facet; see the middle of Figure 1. Although Bern and Eppstein explicitly claim the following result only16

for connected genus-zero quad meshes, their argument applies verbatim for geometric quad meshes17

with arbitrary topology.18

Lemma 6.1 (Bern and Eppstein [8, Theorem 2]). If every bicuboid has a geometric hex mesh, then19

any polyhedron in R3 that is the boundary of a topological hex mesh is also the boundary of a geometric20

hex mesh.21

Corollary 6.2. Let Q be a polyhedron in R3 with an even number of quadrilateral facets, whose dual22

graph Q∗ is null-homologous in the interior. If every bicuboid is the boundary of a geometric hex mesh,23

then Q is the boundary of a geometric hex mesh.24

Bern and Eppstein’s result does not imply any bounds on the complexity of geometric hex meshes.25

Eppstein [27, Section 5] sketches a different reduction of the genus-zero geometric hex-meshing problem26

to a larger finite set of polyhedra, each obtained by refining the boundary of a cube into at most 3027

quads. If each of those boundary-refined cubes has a geometric hex mesh with bounded complexity, then28

Eppstein’s reduction implies that any convex polytope with 2n quadrilateral facets has a geometric hex29

mesh with complexity O(n).30

Our algorithm supports a similar reduction to a more complex set of refined cubes, each with at31

most 40 facets. Following Eppstein, we compute a slightly more complex buffer layer B, containing32

one flat beveled cube incident to each facet of Q, two long skinny cubes incident to each edge of Q,33

and 2 deg(v)− 2 cubes incident to each vertex v of Q. We then compute a triangulation T of the inner34

volume Ω \ B, which includes a triangulation ∂T of the inner buffer facets. The inner boundary of this35

more complex buffer has O(n) facets, so this triangulation has complexity O(n2). Following our earlier36

algorithm, we find a set Γ of simple cycles in ∂T ∗ that is homologous with Q∗, compute a 2-chain Σ37

in T ∗ whose boundary is Γ, and then refine each tetrahedron in T into cubes using the templates in38

Figure 12. This refinement splits each inner boundary facet of each buffer cube into at most 10 quads39

and introduces two new vertices to the boundary of each transition facet. Using Eppstein’s matching40

technique, as in our earlier algorithm, we can subdivide each transition facet into a small number of41

quads, so that buffer cube has an even number of boundary quads. We omit further details, which are42

straightforward modifications of Eppstein’s and our earlier arguments.43
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Theorem 6.3. Let Q be a polyhedron in R3 with 2n quadrilateral facets, whose dual graph Q∗ is null-1

homologous in the interior. If every subdivision of the boundary of a cube into k convex quadrilaterals,2

for any even integer k ≤ 40, is the boundary of a geometric hex mesh with bounded complexity, then Q3

is the boundary of a geometric hex mesh with complexity O(n2).4

However, we conjecture that if these subdivided cubes (and the other polyhedra in Figure 1) support5

geometric hex meshes at all, their complexity depends on the precise geometry of the polyhedra and can6

be arbitrarily large. We leave the proof or disproof of this conjecture as an interesting open problem.7
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