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Abstract

Let G be a directed graph with weighted edges, embedded on a
surface of genus g. We describe an algorithm to compute
a shortest directed cycle in G in any given Z2-homology
class in 2O(g)n log n time; this problem is NP-hard even for
undirected graphs. We also present two applications of our
algorithm. The first is an algorithm to compute a shortest non-
separating directed cycle in G in 2O(g)n log n time, improving
the recent algorithm of Cabello et al. [SOCG 2010] for all g =
o(log n). The second is a combinatorial algorithm to compute
minimum (s, t)-cuts in undirected surface graphs in 2O(g)n log n
time, improving on previous combinatorial algorithms, and
in particular the recent of Chambers et al. [SOCG 2009], for
all g = o(log n). Unlike earlier algorithms for surface graphs
that construct and search finite portions of the universal cover,
our algorithms use another canonical covering space, called the
Z2-homology cover.

1 Introduction

Algorithms to find optimal subgraphs with certain prop-
erties in surface-embedded graphs are a basic ingredient
in numerous algorithms in topological graph theory.
Structures of interest include minimum spanning trees,
single- and multiple-source shortest paths [7, 8, 39, 45],
minimum cuts [15, 14], shortest topologically interesting
cycles [6, 8, 9, 30, 46, 56], shortest paths or cycles
homotopic to a given path or cycle [23, 22, 40], shortest
cut graphs [21, 30, 31], and shortest generators for
homotopy or homology groups [26, 31]. Applications of
these basic algorithms include probabilistically embed-
ding high-genus graphs into planar graphs [5, 47, 52],
drawing abstract graphs in the plane with the fewest
possible crossings [44], testing isomorphism between
graphs of fixed genus [43], approximating optimal
traveling salesman tours [24] and Steiner trees [1, 2, 3],
and computing low-distortion surface parametrizations
[54, 57].

∗This research was partially supported by NSF grant CCF 09-15519.
See http://www.cs.uiuc.edu/~jeffe/pubs/homcover.html for the most
recent version of this paper.

In this paper, we describe an algorithm to compute a
shortest directed cycle in a specified Z2-homology class,
in a directed n-vertex graph embedded on a surface
of genus g, in 2O(g)n log n time. (See Section 2 for a
brief overview of Z2-homology.) We are unaware of any
previously published algorithm for this problem; however,
an algorithm of Chambers et al. [13] can be modified
to find shortest homologous cycles in undirected graphs
in gO(g)n log n time. This problem can be shown to be
NP-hard, even for undirected graphs, by a reduction from
the traveling salesman problem in grid graphs [13].

We also describe two applications of our main result.
As an immediate corollary, we obtain an algorithm to
compute a shortest non-separating cycle in a surface-
embedded directed graph in 2O(g)n log n time (Corol-
lary 5.5). Although the corresponding problem in
undirected graphs is well studied, the first nontrivial
results for directed graphs were only recently published
by Cabello et al. [9], who describe an algorithm that runs
in O(g1/2n3/2 log n) time. Our algorithm is faster when
g = o(log n).

Our second application (Section 6) is a combinatorial
algorithm to compute minimum (s, t)-cuts in undirected
surface graphs in 2O(g)n log n time. Like Chambers
et al. [15], we reduce the minimum cut problem to the
more general (and NP-hard) problem of computing a
minimum-cost subgraph in any given Z2-homology class.
We solve this more general problem by combining our
algorithm to find minimum cycles in each homology class
with a straightforward dynamic programming algorithm.
The resulting algorithm is both simpler and faster than
the minimum-cut algorithm of Chambers et al. [15],
which runs in gO(g)n log n time. When g = o(log n),
our algorithm is also faster than the best combinatorial
minimum-cut algorithms for arbitrary sparse graphs,
which run in O(n2 log n) time [53, 35].

Many previous algorithms for finding optimal sub-
structures are based on a common approach, first
suggested by Kutz [46]. An exchange argument implies
an upper bound on the number of times that the target
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structure can cross a shortest path; for example, the
shortest non-separating cycle intersects any shortest path
at most once [12]. Ultimately, this crossing bound
follows from the observation that two shortest paths in
a generic undirected surface graph cross at most once.
The crossing bound implies that the target structure lies
in one of a finite number of homotopy classes. (See
Section 2 for definitions.) For each candidate homotopy
class, these algorithms construct and search a relevant
finite portion of the (infinite) universal cover of the input
surface, using planar shortest-path algorithms [39, 45].

For directed surface graphs, however, this approach
appears doomed from the start. Two directed shortest
paths can cross arbitrarily many times; similarly, a short-
est non-separating directed cycle can cross a directed
shortest path arbitrarily many times. Even for undirected
graphs, finding optimal cycles in a given homology class
by enumerating homotopy classes seems unnecessarily
baroque. In this paper, we abandon crossing bounds
and homotopy methods entirely, and work directly with
homology instead, at every stage of our algorithm and its
analysis. Instead of the universal cover, our algorithms
construct and search another canonical covering space,
called the Z2-homology cover, which we describe in detail
in Section 4. We also use a recent generalization of Klein’s
seminal multiple-source shortest path algorithm [45] to
higher-genus embedded graphs [7, 8].

1.1 Related Results

Minimum cuts. Minimum cuts and maximum flows
have been studied in planar graphs for more than half
a century, starting with the seminal work of Ford and
Fulkerson [33] and others [37]. A long series of results
eventually led to an algorithm by Reif [50] to compute
minimum (s, t)-cuts in undirected planar networks in
near-linear time; Frederickson [34] later improved the
running time of Reif’s algorithm to O(n log n). The only
efficient method known to compute minimum cuts in
directed planar graphs is to compute a maximum flow [58,
4, 29]. Janiga and Koubek described an adaptation of
Reif’s algorithm, to directed planar networks in near-
linear time [42]; however, their algorithm has a subtle
error [49].

Surprisingly little is known about computing mini-
mum cuts in natural generalizations of planar graphs.
Chambers et al. [15] described an algorithm to compute
a minimum (s, t)-cut in an undirected graph embedded
on a surface of genus g, for any specified vertices s and t,
in gO(g)n log n time. The fastest algorithm to compute
minimum (s, t)-cuts in directed surface graphs, also due
to Chambers et al. [14], computes a maximum (s, t)-
flow in near-linear time for graphs of constant genus and
polynomially-bounded capacities.

Shortest non-trivial cycles. The problem of finding
shortest topologically nontrivial cycles in embedded undi-
rected graphs has a long history. Itai and Shiloach [41]
observed that the minimum (s, t)-cut in an undirected
planar graph G is dual to the minimum-cost cycle that
separates faces s∗ and t∗ in the dual graph G∗. Thus,
Frederickson’s minimum cut algorithm [34] computes
the shortest nontrivial cycle in a combinatorial annulus
in O(n log n) time. Thomassen [56] developed the first
efficient algorithm for graphs on arbitrary surfaces, which
runs in O(n3) time and exploits the so-called 3-path
condition; see also Mohar and Thomassen [48, Sect. 4.3].
Erickson and Har-Peled described a faster algorithm that
runs in O(n2 log n) time [30]. This is the fastest algorithm
known for arbitrary surface-embedded graphs; however,
several faster algorithms are known when the genus g
of the underlying surface is small [12, 6, 46, 7, 8]. For
related results, see [10, 11, 13, 32].

The history for directed embedded graphs is much
shorter, in part because neither Thomassen’s 3-path
condition nor Cabello and Mohar’s crossing condition
hold. The shortest nontrivial directed cycle in an annular
graph is dual to either the minimum (s, t)-cut or the
minimum (t, s)-cut in the directed planar dual graph,
whichever has smaller capacity. Both of these cuts
can be computed in O(n log n) time using planar flow
algorithms.1 Very recently, Cabello et al. [9] describe
an algorithm to find a shortest non-contractible or
non-separating cycle in a directed surface graph in
O(pgn3/2 log n) time, using a subtle generalization of
Thomassen’s 3-path condition.

Shortest equivalent cycles. Several authors have
considered the related question of finding the shortest
cycle in a surface graph that is either homotopic or
homologous to a given cycle. Colin de Verdière and
Erickson [22] describe an algorithm to compute the short-
est cycle homotopic to a given cycle in a combinatorial
surface in O(gnk log nk) time, where k is the number
of edges in the input cycle, improving and generalizing
previous results of Colin de Verdière and Lazarus for
simple cycles [23]. An argument of Chambers et al. [13]
implies that finding the shortest cycle (either simple
or not) in a given homology class in a surface graph
is NP-hard; Chen and Friedman [17, 18] proved that
the corresponding problem in simplicial complexes is
NP-hard to approximate within any constant factor.

The minimum-cut algorithm of Chambers et al. [15]
can be used to compute the minimum-cost even subgraph
in a given Z2-homology class in gO(g)n log n time; this
problem is also NP-hard in general. Chambers et al. [14]

1It appears that Jeniga and Koubeck’s algorithm [42] always
correctly computes the smaller of these two cuts.



described algorithms to find the minimum-cost circu-
lation in a given real or integer homology class in a
directed surface-embedded graph in polynomial time;
Dey et al. [25] generalized this result to arbitrary chains
of arbitrary dimension in arbitrary simplicial complexes.
For other related results, see [19, 26, 31, 59].

2 Notation and Terminology
We begin by recalling several useful definitions related
to surface-embedded graphs. For further background,
we refer the reader to Gross and Tucker [36] or Mohar
and Thomassen [48] for topological graph theory, and to
Hatcher [38] or Stillwell [55] for surface topology and
homology.

Surfaces and curves. A surface (more formally, a
2-manifold with boundary) Σ is a compact Hausdorff
space in which every point has an open neighborhood
homeomorphic to either the plane R2 or a closed
halfplane {(x , y) ∈ R2 | x ≥ 0}. The points with
halfplane neighborhoods make up the boundary of Σ;
the complement of the boundary is the interior of Σ.
Every component of the boundary is homeomorphic
to a circle. A surface is non-orientable if it contains a
subset homeomorphic to the Möbius band, and orientable
otherwise.

A path in a surface Σ is a continuous function
p : [0, 1]→ Σ. A loop is a path whose endpoints p(0) and
p(1) coincide; we refer to this common endpoint as the
basepoint of the loop. An arc is a path whose endpoints
lie on the boundary of Σ. A cycle is a continuous function
γ: S1 → Σ; the only difference between a cycle and
a loop is that a loop has a distinguished basepoint.
We collectively refer to paths, loops, arcs, and cycles
as curves. A curve is simple if it is injective, except
for the basepoint in the case of loops; we usually do
not distinguish between simple curves and their images
in Σ. The reversal rev(p) of a path p is defined by
setting rev(p)(t) = p(1− t). The concatenation p · q
of two paths p and q with p(1) = q(0) is the path
created by setting (p · q)(t) = p(2t) for all t ≤ 1/2 and
(p · q)(t) = q(2t − 1) for all t ≥ 1/2.

The genus of a surface Σ is the maximum number
of disjoint simple cycles γ1,γ2, . . . ,γg in the interior of
Σ whose complement Σ \ (γ1 ∪ · · · ∪ γg) is connected.
We will consider only compact, connected, orientable
surfaces. Up to homeomorphism, there is exactly one
such surface with any genus g ≥ 0 and any number of
boundary components b ≥ 0; the Euler characteristic χ
of this surface is χ := 2− 2g + b.

Graphs, embeddings, and duality. An embedding of
an undirected graph G on a surface Σ maps vertices
to distinct points and edges to interior-disjoint curves.

The faces of the embedding are maximal connected
subsets of Σ that are disjoint from the image of the
graph. An embedding is cellular if each of its faces
is homeomorphic to the plane; in particular, in any
cellular embedding, each component of the boundary
of Σ must be covered by a cycle of edges in G. Euler’s
formula implies that any cellularly embedded graph with
n vertices, m edges, and f faces lies on a surface with
Euler characteristic χ = n−m+ f , which implies that
m = O(n + g) and f = O(n + g). We consider only
cellular embeddings of genus g = O(n), so that the
overall complexity of the embedding is O(n).

Any undirected graph G embedded on a surface Σ
with boundary has a dual graph G∗, defined as follows.2

The dual graph G∗ has a vertex f ∗ for each face f of G,
including the boundary cycles, and an edge e∗ for each
edge e in G (including boundary edges) joining the
vertices dual to the faces that e separates. For each
boundary cycle δ of G, we refer to the corresponding
vertex δ∗ of G∗ as a dual boundary vertex. The
dual graph G∗ has a natural cellular embedding in the
surface Σ• obtained from Σ by gluing a disk to each
boundary cycle; each face of this embedding corresponds
to a vertex of G. See Figure 1. (Duality can be extended
to directed graphs [14], but our results do not require
this extension.)

Figure 1. A cellularly embedded graph G (solid lines) on a pair of
pants (genus 0 with 3 boundaries), and its dual graph G∗ (dashed
lines). Dual boundary vertices are indicated by squares.

For any subgraph F = (U , D) of G = (V, E), we
write G \ F to denote the edge-complement (V, E \ D).
Also, when the graph G is fixed, we abuse notation by
writing F∗ to denote the subgraph of G∗ corresponding
to a subgraph F of G∗; each edge in F∗ is the dual of
a unique edge in F . In particular, we have the identity
(G \ F)∗ = G∗ \ F∗.

For most of the problems we consider, the input
consists of a directed edge-weighted graph G with a
cellular embedding on some surface. We use the notation

2Our definition differs slightly from the one proposed by Erickson
and Colin de Verdière [22].



u�v to denote the directed edge from vertex u to
vertex v. Without loss of generality, we consider only
symmetric directed graphs, in which the reversal v�u of
any edge u�v is another edge. We also assume that in
the cellular embedding, the images of any edge and its
reversal coincide (but with different orientations). Thus,
like Cabello et al.[9, Section 2.3], we implicitly model
directed graphs as undirected graphs with asymmetric edge
weights.

Cellular graph embeddings are equivalent to the com-
binatorial surfaces introduced by Colin de Verdière [20]
and used by several authors to formulate optimization
problems for surface-embedded graphs. A combinato-
rial surface consists of an abstract surface Σ together
with a cellularly embedded graph G with (possibly
asymmetrically) weighted edges. Paths and cycles in
a combinatorial surface are directed walks in its graph;
the length of any such walk is the sum of its (directed)
edge weights, counted with appropriate multiplicity.

Homotopy and homology. Two paths α and β in Σ are
homotopic if one can be continuously deformed into the
other. More formally, a homotopy between α and β is a
continuous map h: [0,1]× [0,1]→ Σ such that h(0, ·) =
α, h(1, ·) = β , h(·, 0) = α(0) = β(0), and h(·, 1) = α(1) =
β(1). Homotopy defines an equivalence relation over
the set of paths with any fixed pair of endpoints. The
set of homotopy classes of loops in Σ with basepoint x
defines a group πi(Σ, x) under concatenation, called the
fundamental group of Σ. (For all points x and y, the
groups πi(Σ, x) and πi(Σ, y) are isomorphic.)

A cycle γ is contractible if it is homotopic to a
constant map; a simple cycle γ is separating if Σ \ γ
is disconnected.

Homology is a coarser equivalence relation than
homotopy, with nicer algebraic properties; intuitively,
two cycles are homologous if together they define the
boundary of some subset of the surface. Like several
earlier papers [16, 17, 26, 27, 15], we will consider only
one-dimensional cellular homology with coefficients in
the finite field Z2; this restriction allows us to radically
simplify our definitions.

Fix a cellular embedding of an undirected graph G
on a surface Σ with genus g and b boundaries. An even
subgraph is a subgraph of G in which every node has
even degree, or equivalently, the union of edge-disjoint
cycles. An even subgraph is null-homologous if it is
the boundary of the union of a subset of faces of G.
Two even subgraphs η and η′ are homologous, or in
the same homology class, if their symmetric difference
η ⊕ η′ is null-homologous; See Figure 2. The set
of all homology classes of even subgraphs defines the
first homology group of Σ, denoted H1(Σ;Z2), which
is isomorphic to the finite vector space (Z2)β , where

Figure 2. Pairs of cycles that are homologous but not homotopic.
(Lighter portions of the curves are on the back side of the surface.)

β = 2g +max{b− 1,0}. The rank β is called the first
Betti number of Σ.

We define the carrier of a (not necessarily simple)
cycle γ in G to be the even subgraph of edges that γ
traverses an odd number of times; two cycles are
homologous if their carriers are homologous. A cycle γ
is Z2-minimal if it has minimum total length among
all cycles homologous with γ. Similarly, a loop ` with
basepoint v is Z2-minimal if it has minimum length
among all loops based at v that are homologous with `.
Every Z2-minimal cycle can be regarded as a Z2-minimal
loop through any of its vertices.

Covering maps and covering spaces. A continuous
map π: Σ′→ Σ between two surfaces is called a covering
map if each point x ∈ Σ lies in an open neighborhood
U ⊂ Σ such that (1) π−1(U) is a countable union of
disjoint open sets U1 ∪ U2 ∪ · · · and (2) for each i, the
restriction π|Ui

: Ui → U is a homeomorphism. If there
is a covering map π from Σ′ to Σ, we call Σ′ a covering
space of Σ. The universal cover eΣ is the unique simply-
connected covering space of Σ (up to homeomorphism).
For any path p in Σ such that π(x ′) = p(0) for some
point x ′ ∈ Σ′, there is a unique path p′ in Σ′, called a lift
of p, such that p′(0) = x ′ and π ◦ p′ = p. Conversely, for
any path p′ in Σ′, the path π ◦ p′ is called a projection
of p′.

A deck transformation for a covering map π: Σ′→ Σ
is an automorphism d : Σ′ → Σ′ such that π ◦ d = π;
the set of all deck transformations defines a group
under composition. For any normal subgroup N of the
fundamental group π1(Σ, x), there is a unique path-
connected covering space of Σ (up to homeomorphism)
whose group of deck transformations is isomorphic
to the quotient group π1(Σ, x)/N . For example, the
universal cover eΣ is the unique path-connected covering
space whose deck transformation group is the entire
fundamental group π1(Σ, x). The Z2-homology cover Σ
of Σ is the unique path-connected covering space whose
group of deck transformations is the first homology



group H1(Σ,Z2). We give an equivalent combinatorial
definition in the next section.

3 Homology Signatures
Throughout the paper, we fix a directed graph G = (V, E),
a non-negative weight function w : E→ R, and a cellular
embedding of G on a surface Σ of genus g with b
boundaries. Without loss of generality, we assume that
the underlying surface Σ has at least one boundary;
otherwise, we can remove an arbitrary face of G from Σ
without affecting its homology at all. Let δ1, . . . ,δb
denote the boundary cycles of Σ, and let β = 2g + b− 1
denote the the first Betti number of Σ.

In this section, we describe a standard method for pre-
processing a combinatorial surface in O(βn) time, so that
the Z2-homology class of any cycle γ can be computed
in O(β) time per edge. Our algorithm associates a vector
of β bits with each edge e, called the signature of e;
the homology class of any cycle is characterized by the
bit-wise exclusive-or of the signatures of its edges. These
homology signatures are essentially equivalent to the
crossing parity vectors described by Chambers et al. [15],
but our construction is slightly more flexible.

Our construction is based on one of two natural
generalizations of tree-cotree decompositions [28] to
surfaces with boundary; the second generalization is
introduced in Section 5. We define a tree-coforest
decomposition of G to be any partition (T, F, X ) of the
edges of G into three edge-disjoint subgraphs with the
following properties:

• T is a spanning tree of G.

• F∗ is a spanning forest of G∗, that is, an acyclic
subgraph that contains every vertex.

• Each component of F∗ contains a single dual
boundary vertex δ∗i .

Euler’s formula implies that there are exactly β edges
in X ; arbitrarily index these edges e1, . . . , eβ . For each
edge ei ∈ X , adding the corresponding dual edge e∗i to F∗

creates a new dual path pi , which is either a simple path
between distinct boundary vertices, or a nontrivial loop
from a boundary vertex back to itself; in the second case,
pi may traverse some edges of F∗ twice. We can treat
each path pi as a simple arc in the abstract surface Σ;
cutting along these β arcs transforms Σ into a topological
disk. See Figure 3.

Finally, for each edge e in G, we define its signature
[e] to be the β-bit vector whose ith bit is equal to 1 if
and only if e crosses pi (that is, if pi traverses the dual
edge e∗) exactly once. The signature [η] of an even
subgraph η is the bitwise exclusive-or of the signatures
of its edges. Similarly, the signature [γ] of a cycle γ is the

Figure 3. Top: A tree-coforest decomposition of the graph in Figure 1;
doubled lines indicate edges in X . Bottom: The resulting system of
dual arcs. Compare with Figure 5.

bitwise exclusive-or of the signatures of the edges that γ
traverses an odd number of times.

Let h ⊕ h′ denote the bitwise exclusive-or of two
homology signatures h and h′, or equivalently, their sum
as elements of the homology group (Z2)β . The identities
[η⊕ η′] = [η]⊕ [η′] and [γ · γ′] = [γ]⊕ [γ′] follow
directly from the definitions.

Lemma 3.1. We can preprocess G in O(βn) time, so that
the signature [γ] of any cycle can be computed in O(β)
time per edge.

Proof: A tree-coforest decomposition can be computed
in O(n) time as follows. First construct a graph H
by identifying all the dual boundary vertices in G∗ to
a single vertex. Compute a spanning tree of H by
whatever-first search; the edges of this spanning tree
define an appropriate dual spanning forest F∗. Construct
the subgraph G \ F and compute a spanning tree T via
whatever-first search. Finally, let X = G\(T∪F). With the
decomposition in hand, it is straightforward to compute
each path pi in O(n) time, and then compute each edge
signature in O(β) time. �

Lemma 3.2. An even subgraph η of G is null-
homologous in Σ if and only if [η] = 0.

Proof: Let η be a null-homologous even subgraph of G.
Then by definition, η is the boundary of the union of a
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Figure 4. Constructing the Z2-homology cover of a pair of pants (a genus zero surface with three boundaries).

subset Y of faces of G. The boundary of any face f is
contractible in Σ and therefore has signature 0. It follows
immediately that [η] = [

⊕

f ∈Y ∂ f ] =
⊕

f ∈Y [∂ f ] = 0.
Conversely, suppose η crosses each arc pi an even

number of times, so [η] = 0. Let x and y be two
intersection points between η and some arc pi , and let
pi[x , y] be the subpath of pi between those two points.
Replacing tiny segments of η through x and y with
two copies of pi[x , y] does not change the homology
class of η, but does reduce the number of intersection
points between η and pi . It follows by induction that η
is homologous to another even graph η′ that does
not intersect any path pi at all. This even graph lies
entirely within the disk Σ \

⋃

i pi , and is therefore null-
homologous. �

The following corollaries are now immediate.

Corollary 3.3. Two even subgraphs η and η′ of G are
Z2-homologous in Σ if and only if [η] = [η′].

Corollary 3.4. Two cycles γ and γ′ in G are Z2-
homologous in Σ if and only if [γ] = [γ′].

4 The Z2-Homology Cover

With the homology signatures in hand, the Z2-homology
cover of a combinatorial surface can be defined using
a standard voltage construction [36, Chapter 4], as
follows. Let G denote the graph whose vertices are all
ordered pairs (v, h) where v is a vertex of G and h is an
element of (Z2)β , and whose edges are the ordered pairs
(u�v, h) := (u, h)�(v, h⊕ [u�v]) for all edges u�v of G
and all homology classes h ∈ (Z2)β . Let π: G→ G denote
the covering map π(v, h) = v; this map projects any cycle
in G to a cycle in G. To define a cellular embedding
of G, we declare a cycle in G to be a face if and only if
its projection is a face of G. The combinatorial surface
defined by this embedding is the Z2-homology cover Σ.

Our construction can be interpreted more topologi-
cally as follows. Let p1, . . . , pβ denote the system of dual
arcs used to define the homology signatures [e]. The

surface D := Σ\ (p1∪· · ·∪ pβ ) is a topological disk. Each
arc pi appears on the boundary of D as two segments
p+i and p−i . For each signature h ∈ (Z2)β , we create a
disjoint copy (D, h) of D; for each index i, let (p+i , h) and
(p−i , h) denote the copies of p+i and p−i in the disk (D, h).
For each index i, let bi denote the β -bit vector whose ith
bit is equal 1 and whose other β − 1 bits are all equal
to 0. The Z2-homology cover Σ is constructed by gluing
the 2β copies of D together by identifying boundary paths
(p+i , h) and (p−i , h⊕ bi), for every index i and homology
class h. See Figure 4 for an example.

Lemma 4.1. The combinatorial surface Σ has n = 2βn
vertices, genus g = O(2ββ), and b = O(2β b) boundaries,
and it can be constructed in O(2βn) time.

Proof: Let m and f denote the number of edges and
faces of Σ, respectively. Recall that the Euler character-
istic of Σ is χ = n−m+ f = 2− 2g − b = 1− β . The
combinatorial surface Σ has exactly n = 2βn vertices,
2βm edges, and 2β f faces, so its Euler characteristic is
χ = 2β(1− β).

If b > 1, then each boundary cycle δi has a non-
zero homology signature; at least one arc p j has exactly
one endpoint on δi . Thus, Σ has exactly b = 2β−1 b
boundary cycles, each of which is a double-cover (in
fact, the Z2-homology cover) of some boundary cycle δi .
It follows that Σ has genus g = 1 − (χ + b)/2 =
2β−2(4g + b− 4) + 1. (Somewhat surprisingly, Σ may
have positive genus even when Σ does not!) On the
other hand, when b = 1, the boundary cycle δ1 is null-
homologous, so Σ has b = 2β b boundary cycles, and
thus Σ has genus g = 1− (χ + b)/2= 2β(g − 1) + 1.

After computing the homology signatures for Σ in
O(βn) time, following Lemma 3.1, it is straightforward
to construct Σ in O(n) = O(2βn) time. �

We assign weights to the directed edges of G by
setting w(u�v, h) := w(u�v) for each edge u�v of G
and each homology class h. In other words, each directed
edge in Σ inherits the weight of its projection in Σ.



Now consider an arbitrary path p in G, with (possibly
equal) endpoints u and v. A straightforward induction
argument implies that for any homology class h ∈ (Z2)β ,
the path p is the projection of a unique path from (u, h)
to (v, h⊕ [p]), which we denote (p, h). Moreover, this
lifted path has the same length as its projection: w(p) =
w(p, h). The following lemmas are now immediate.

Lemma 4.2. Every lift of a shortest directed path in G is
a shortest directed path in G.

Lemma 4.3. A loop ` in G with basepoint v is Z2-
minimal if and only if, for every homology class h ∈ (Z2)β ,
the lifted path (`, h) is a shortest directed path in G from
(v, h) to (v, h⊕ [`]).

5 Computing Z2-Minimal Cycles

The results in the previous section immediately suggest
imply an algorithm to compute the shortest directed
cycle in a given Z2-homology class h in time 2O(β)n2:
construct the Z2-homology cover, and then compute the
shortest path from (v, 0) to (v, h), for every vertex v in
the original graph. In this section, we describe a more
complex algorithm that runs in time 2O(β)n log n.

Lemma 5.1. In O(n log n+ βn) time, we can construct
a set S of O(β) directed shortest paths in G, such that
every non-null-homologous cycle in G intersects at least
one path in S.

Proof: Following Chambers et al. [13], we construct
a greedy system of arcs, using a variant of Erickson
and Whittlesey’s algorithm to construct optimal systems
of loops [31]. Our algorithm uses a natural general-
ization of tree-cotree decompositions [28] to surfaces
with boundary, essentially dual to the tree-coforest
decompositions described in Section 3. A forest-cotree
decomposition of G is any partition (∂G, F, C , X ) of the
edges of G into four edge-disjoint subgraphs with the
following properties:

• ∂G is the set of all boundary edges of G.

• F is a spanning forest of G, that is, an acyclic
subgraph of G that contains every vertex.

• Each component of F contains a single boundary
vertex.

• C∗ is a spanning tree of G∗ \(∂ G)∗, that is, a subtree
of G∗ that contains every vertex except the dual
boundary vertices δ∗i .

Euler’s formula implies that there are exactly β edges
in X ; arbitrarily label these edges e1, e2, . . . , eβ . For each
edge ei ∈ X , the subgraph F ∪ {ei} contains a single

nontrivial arc αi , which is either a simple path between
distinct boundary cycles, or a nontrivial loop from a
boundary cycle back to itself; in the second case, αi may
traverse some edges of F twice. Cutting along the arcs
α1, . . . ,αβ transforms Σ into a topological disk. Thus,
every non-null-homologous cycle in G must cross at least
one arc αi . See Figure 5.

Figure 5. Top: A forest-cotree decomposition of the graph in Figure 1;
thick doubled lines indicate edges in X . Bottom: The resulting system
of arcs. Compare with Figure 3.

We can easily construct an arbitrary forest-cotree
decomposition in O(n) time using whatever-first search,
as in Lemma 3.1, but we require a decomposition with a
particular forest F . Let G/∂ G denote the graph obtained
from G by contracting the entire subgraph ∂ G—both
vertices and edges—to a single vertex x . Using Dijkstra’s
algorithm, we compute the single-source shortest-path
tree T in G/∂ G rooted at x in O(n log n) time. Let F be
the subgraph of G corresponding to T . Each component
of F is a tree of shortest paths from a boundary vertex
to a subset of the non-boundary vertices of G. With the
shortest-path forest F in hand, we can easily construct
the rest of the forest-cotree decomposition in O(n) time.

Finally, for each edge ei ∈ X , let σi and τi denote the
unique directed paths in F from the boundary of G to
the endpoints of ei , and let S := {σ1, . . . ,σβ ,τ1, . . . ,τβ}.
By construction of F , every element of S is a (possibly
empty) shortest directed path. Moreover, because αi =
σi ·ei ·rev(τi) for each index i, every non-null-homologous
cycle in G must intersect at least one path in S. We can
easily compute each path in S in O(n) time. �



Recall that any path σ from u to v in G is the
projection of a unique path (σ, 0) from (u, 0) to (v, [σ])
in G.

Lemma 5.2. Let γ be a Z2-minimal cycle in G, and let σ
be any shortest path in G that intersects γ. There is a Z2-
minimal cycle γ′ homologous to γ, which is the projection
of a shortest path (γ′, h) in G that starts with a subpath
of (σ, 0) but does not otherwise intersect (σ, 0).

Proof: Let v be the vertex of σ∩γ closest to the starting
vertex of σ, and let (v, h) be the corresponding vertex of
the lifted path (σ, 0). Think of γ as a loop based at v.
Lemma 4.3 implies that the lifted path (γ, h) is a shortest
path from (v, h) to (v, h⊕ [γ]).

Now let (w, h′) be the last vertex along (γ, h) that is
also a vertex of (σ, 0). Let (γ′, h) be the path obtained
from (γ, h) by replacing the subpath from from (v, h)
to (w, h′) with the corresponding subpath of (σ, 0). By
construction, (γ′, h) starts with a directed subpath of
(σ, 0) but does not otherwise intersect (σ, 0). Because
both (γ, h) and (σ, 0) are shortest paths in Σ, the new
path (γ′, h) has the same length as (γ, h). Thus, the
projected cycle γ′ has the same length and homology
class as γ, which implies that γ′ is Z2-minimal. �

We emphasize that the modified cycle γ′ may in-
tersect σ arbitrarily many times; however, all such
intersections lift to intersections between (γ′, h) and lifts
of σ other than (σ, 0).

Our algorithm uses a recent generalization of Klein’s
seminal multiple-source shortest path algorithm [45] to
higher-genus embedded graphs:

Lemma 5.3 (Chambers et al. [7, 8]). Let G be a di-
rected graph with non-negative edge weights, cellularly
embedded on a surface Σ of genus g with b > 0
boundaries, and let f be an arbitrary face of G. We
can preprocess G in O(gn log n) time 3 and O(n) space,
so that the length of the shortest path from any vertex
incident to f to any other vertex can be retrieved in
O(log n) time.

Theorem 5.4. Let G be a directed graph with non-
negative edge weights, cellularly embedded on a sur-
face Σ with first Betti number β , and let γ be a cycle
in G with k edges. A shortest directed cycle in Σ
that is Z2-homologous with γ can be computed in
O(βk+ 4ββ2 n log n) time.

3The published version of this algorithm [7] proves a weaker time
bound of O(g2n log n); using this version increases the running time of
our algorithms by a factor of 2β .

Proof: We begin by computing homology signatures
for the edges of G in O(βn) time, as described in
Section 3. In O(βk) time, we then compute the homology
signature [γ]. If [γ] = 0, we return the empty walk and
halt.

Next, we construct the Z2-homology cover G in
O(2βn log n) time, as described in Section 4, as well
as the set S of directed shortest paths described in
Lemma 5.1. We then look for the shortest path in G of the
canonical form described in Lemma 5.2, by considering
each shortest path σ ∈ S in turn as follows.

Let us write (σ, 0) = (v0, 0)�(v1, h1)� · · ·�(vt , ht).
We construct the combinatorial surface Σ Q(σ, 0) by
splitting the path (σ, 0) into two parallel paths from
(v0, 0) to (vt , ht), which we denote (σ, 0)+ and (σ, 0)−.
For each index 1 ≤ i ≤ t − 1, let (vi , hi)+ and (vi , hi)−

denote the copies of vertex (vi , hi) on the paths (σ, 0)+

and (σ, 0)−, respectively. The paths (σ, 0)+ and (σ, 0)−

bound a new common face f(σ,0) in Σ Q(σ, 0).
Lemma 5.2 implies that if any Z2-minimal cycle

homologous to γ intersects σ, then some Z2-minimal
cycle homologous to γ is the projection of a shortest
path in Σ Q (σ, 0) from some vertex (vi , hi)± to the
corresponding vertex (vi , hi ⊕ [γ]). To compute these
shortest paths, we implicitly compute the shortest path in
Σ Q(σ, 0) from every vertex on the boundary of f(σ,0) to
every vertex of Σ Q(σ, 0), using Lemma 5.3. The resulting
algorithm runs in O(g n log n) = O(4ββ2 n log n) time, by
Lemma 4.1. �

By running this algorithm 2β times, we can compute
the shortest directed cycle in Σ in every Z2-homology
class, in O(8ββ2 n log n) time. In particular, we can com-
pute the shortest directed cycle in Σ that has nontrivial
Z2-homology. When the original surface has no boundary,
this is just the shortest non-separating cycle in Σ. Very
recently, Cabello et al. [9] described an algorithm to
compute the shortest non-separating cycle in any surface-
embedded directed graph in O(g1/2n3/2 log n) time; our
new algorithm is faster whenever g ≤ (lg n)/13.

Corollary 5.5. Given a directed graph G with n vertices
with non-negative edge weights, cellularly embedded on
a surface with genus g, we can compute the shortest
directed cycle in G that is non-separating in Σ in
O(64g g2n log n) time.

Cabello et al. [9] also described an algorithm to
find the shortest non-contractible cycle in an embedded
directed graph in O(g1/2n3/2 log n) time. Our approach
does not lead to a faster algorithm for this problem;
contractibility is inherently a property of homotopy, not
homology.



6 Faster Minimum Cuts

We now apply our algorithm for computing Z2-minimal
cycles to the classical minimum cut problem for undi-
rected surface-embedded graphs. Our approach is
motivated by the following lemma of Chambers et al. [15,
Lemma 3.1]:

Lemma 6.1. Let H be an undirected graph with non-
negative edge capacities, embedded on a surface Π
without boundary, and let s and t be vertices of H.
Finally, let X be the minimum-capacity (s, t)-cut in H.
Then X ∗ is the minimum-weight even subgraph of H∗

that is Z2-homologous with the boundary of s∗ in the
surface Π \ (s∗ ∪ t∗).

We must emphasize that this characterization applies
only to undirected graphs, or equivalently, symmetric
directed graphs where the capacity of any edge is equal
to the capacity of its reversal. Even for directed planar
graphs, where the dual of the minimum cut is a simple
cycle, the characterisation is incorrect: The minimum-
weight cycle Z2-homologous to ∂ s∗ in the annulus Π \
(s∗∪ t∗) is either the dual of the minimum (s, t)-cut or the
dual of the minimum (t, s)-cut. (Of course, if the graph H
is undirected, the minimum (s, t)-cut and the minimum
(t, s)-cut coincide.)

Like Chambers et al. [15], we actually describe
an algorithm to compute the minimum-weight even
subgraph in every Z2-homology class. Theorem 5.4 imme-
diately implies that we can compute a minimum-weight
cycle in every Z2-homology class in O(8ββ2 n log n) time.
However, the minimum weight even subgraph in a given
homology class may not be (the carrier of) a Z2-minimal
cycle. In particular, if a Z2-minimal cycle γ traverses any
edge more than once, then every minimum-weight even
subgraph with signature [γ] must be disconnected.

However, any connected Z2-minimal even subgraph is
the carrier of a Z2-minimal cycle, and the components
of any Z2-minimal even subgraph are themselves Z2-
minimal even subgraphs. Thus, we can assemble a
Z2-minimal even subgraph in any homology class from
a subset of the Z2-minimal cycles we have already
computed. The following lemma puts an upper bound
on the number of cycles we need.

Lemma 6.2. Every Z2-minimal even subgraph of G has
at most g + b− 1 components.

Proof: Let γ1, . . . ,γg+b be disjoint simple cycles on an
abstract surface Σ of genus g with b boundaries, and
consider the surface Σ′ = Σ \ (γ1 ∪ · · · ∪ γg+b). The
definition of genus implies that Σ′ cannot be connected;
indeed, Σ′ must have at least b+ 1 components. So the

pigeonhole principle implies that some component Σ′′

of Σ does not contain any of the boundary cycles of Σ.
The boundary of Σ′′ is therefore null-homologous.

Following Chambers et al. [15], call a cycle in G
weakly simple if it traverses each edge of G at most once
and never crosses itself. Any weakly simple cycle in G
can be perturbed into a simple cycle in an arbitrarily
small neighborhood of G. A cycle decomposition of an
even subgraph η is a set of edge-disjoint, non-crossing,
weakly simple cycles whose union is η. It is easy to prove
that every even subgraph has a cycle decomposition [15,
Lemma 3.2].

Now let η be an even subgraph of G with more than
g + b − 1 components. Each component has a cycle
decomposition, so η must have a cycle decomposition
with more than g + b− 1 elements. Thus, the argument
in the first paragraph implies that some subgraph of η
must be null-homologous. We conclude that η is not
Z2-minimal. �

Theorem 6.3. Let G be an undirected graph with non-
negative edge weights, cellularly embedded on a sur-
face Σ with first Betti number β . A minimum-weight
even subgraph of G in each Z2-homology class can be
computed in O(8ββ2 n log n) time.

Proof: Our algorithm computes a minimum-weight
cycle γh in every Z2-homology class h in O(8ββ2 n log n)
time, via Theorem 5.4, and then assemble these Z2-
minimal cycles into Z2-minimal even subgraphs using
dynamic programming.

For each homology class h ∈ (Z2)β and each integer
1 ≤ k ≤ g + b − 1, let C(h, k) denote the minimum
total weight of any set of at most k cycles in G whose
homology classes sum to h. Lemma 6.2 implies that
the minimum weight of any even subgraph in homology
class h is exactly C(h, g + b− 1). This function obeys the
following straightforward recurrence:

C(h, k) =min
¦

C(h1, k− 1) + C(h2, 1)
�

� h1 ⊕ h2 = h
©

.

This recurrence has two base cases: C(0, k) = 0 for
any integer k, and for any homology class h, the value
C(h, 1) is just the length of γh. A standard dynamic
programming algorithm computes C(h, g + b − 1) for
all 2β homology classes h in O(4ββ) time. We can then
assemble the actual minimum-weight even subgraphs in
each homology class in O(βn) time. The total time for
this phase of the algorithm is O(4ββ + 2ββn), which is
dominated by the time to compute all the Z2-minimal
cycles. �

Lemma 6.1 and Theorem 6.3 immediately give us the
following result:



Corollary 6.4. Given an undirected graph H with non-
negative edge capacities, embedded on a surface Σ with
genus g, and two vertices let s and t, we can compute a
minimum (s, t)-cut in H in O(16g g2n log n) time.
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