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Abstract

We establish new lower bounds on the complexity of the following basic geometric

problem, attributed to John Hopcroft: Given a set of n points and m hyperplanes in

IRd, is any point contained in any hyperplane? We de�ne a general class of partitioning

algorithms, and show that in the worst case, for all m and n, any such algorithm requires

time 
(n logm + n
2=3

m
2=3 + m logn) in two dimensions, or 
(n logm + n

5=6
m

1=2 +

n
1=2

m
5=6+m logn) in three or more dimensions. We obtain slightly higher bounds for

the counting version of Hopcroft's problem in four or more dimensions. Our planar

lower bound is within a factor of 2O(log
�(n+m)) of the best known upper bound, due to

Matou�sek. Previously, the best known lower bound, in any dimension, was 
(n logm+

m logn). We develop our lower bounds in two stages. First we de�ne a combinatorial

representation of the relative order type of a set of points and hyperplanes, called a

monochromatic cover, and derive lower bounds on its size in the worst case. We then

show that the running time of any partitioning algorithm is bounded below by the size

of some monochromatic cover. As a related result, using a straightforward adversary

argument, we derive a quadratic lower bound on the complexity of Hopcroft's problem

in a surprisingly powerful decision tree model of computation.

�This research was partially supported by NSF grant CCR-9058440. An earlier version of this paper was published
as Technical Report A/04/94, Fachbereich Informatik, Universit�at des Saarlandes, Saarbr�ucken, Germany, November

1994.
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1 Introduction

In the early 1980's, John Hopcroft posed the following problem to several members of the computer

science community.

Given a set of n points and n lines in the plane, does any point lie on a line?

Hopcroft's problem arises as a special case of many other geometric problems, including collision

detection, ray shooting, and range searching.

The earliest sub-quadratic algorithm for Hopcroft's problem, due to Chazelle [7], runs in time

O(n1:695). (Actually, this algorithm counts intersections among a set of n line segments in the plane,

but it can easily be modi�ed to count point-line incidences instead.) A very simple algorithm, at-

tributed to Hopcroft and Seidel [16], described in [17, p. 350], runs in time O(n3=2 log1=2 n). Cole

et al. [16] combined these two algorithms, achieving a running time of O(n1:412). Edelsbrunner et al.

[20] developed a randomized algorithm with expected running time O(n4=3+")1; see also [19]. A

somewhat simpler algorithm with the same running time was developed by Chazelle et al. [13]. Fur-

ther research replaced the n" term in this upper bound with a succession of smaller and smaller poly-

logarithmic factors. The running time was improved by Edelsbrunner et al. [18] to O(n4=3 log4 n)

(expected), then by Agarwal [1] to O(n4=3 log1:78n), then by Chazelle [9] to O(n4=3 log1=3 n), and

most recently by Matou�sek [30] to n
4=32O(log

� n).2 This is currently the fastest algorithm known.

Matou�sek's algorithm can be tuned to detect incidences among n points and m lines in the plane

in time O(n logm+ n
2=3

m
2=32O(log

�(n+m)) +m logn) [5], or more generally among n points and m

hyperplanes in IRd in time

O
�
n logm+ n

d=(d+1)
m

d=(d+1)2O(log
�(n+m)) +m logn

�
:

The lower bound history is much shorter. The only previously known lower bound is 
(n logm+

m logn), in the algebraic decision tree and algebraic computation tree models, by reduction from

the problem of detecting an intersection between two sets of real numbers [34, 3].

In this paper, we establish new lower bounds on the complexity of Hopcroft's problem. We

formally de�ne a general class of partitioning algorithms, which includes most (if not all) of the

algorithms mentioned above, and prove that any partitioning algorithm can be forced to take time


(n logm+ n
2=3

m
2=3+m logn) in two dimensions, or 
(n logm+ n

5=6
m

1=2+ n
1=2

m
5=6+m logn)

in three or more dimensions. We improve this lower bound slightly in dimensions four and higher

for the counting version of Hopcroft's problem, where we want to know the number of incident

point-hyperplane pairs.

Informally, a partitioning algorithm covers space with a constant number of (not necessarily

disjoint) connected regions, determines which points and hyperplanes intersect each region, and

recursively solves each of the resulting subproblems. The algorithm may apply projective duality3

to reverse the roles of the points and hyperplanes, that is, to partition the input according to which

dual hyperplanes and dual points intersect each region. The algorithm is also allowed to merge

subproblems arbitrarily before partitioning. For purposes of proving lower bounds, we assume that

partitioning the points and hyperplanes requires only linear time, regardless of the complexity of

1In time bounds of this form, " refers to an arbitrary positive constant. For any �xed value of ", the algorithm can

be tuned to run within the stated time bound. However, the multiplicative constants hidden in the big-Oh notation

depend on ", and typically tend to in�nity as " approaches zero.
2The iterated logarithm log� n is de�ned to be 1 for all n � 2 and 1 + log�(lg n) for all n > 2.
3We assume the reader is familiar with point-hyperplane duality. Otherwise, see [17] or [35].
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the regions or how they depend on the input. We give a more formal de�nition of partitioning

algorithms in Section 4.

To develop lower bounds in this model, we �rst de�ne a combinatorial representation of the

relative order type of a set of points and hyperplanes, called a monochromatic cover, and derive

lower bounds on its worst case complexity. A monochromatic cover is a partition of the sign matrix

induced by the relative orientations of the points and hyperplanes into (not necessarily disjoint)

minors, such that all entries in each minor are equal. The size of a cover is the total number of

rows and columns in the minors. Our main result (Theorem 4.2) is that the running time of any

partitioning algorithm is bounded below by the size of some monochromatic cover of its input.

Some related results deserve to be mentioned here. Erd}os constructed a set of n points and

n lines in the plane with 
(n4=3) incident point-line pairs [17, p. 112]. It follows immediately

that any algorithm that reports all incident pairs requires time 
(n4=3) in the worst case. Of

course, we cannot apply this argument to either the decision version or the counting version of

Hopcroft's problem, since the output size for these problems is constant. Our planar lower bounds

are ultimately based on the Erd}os con�guration.

Chazelle [8, 10] has established lower bounds for the closely related simplex range counting

problem: Given a set of points and a set of simplices, how many points are in each simplex? For

example, any data structure of size s that supports triangular range queries among n points in the

plane requires 
(n=
p
s) time per query [8]. It follows that answering n queries over n points requires


(n4=3) time in the worst case. For the o�ine version of the same problem, where all the trian-

gles are known in advance, Chazelle establishes a slightly weaker bound of 
(n4=3= log4=3n) [10],

although an 
(n4=3) lower bound follows immediately from the Erd}os construction using Chazelle's

methods. In higher dimensions, Chazelle's results imply lower bounds of 
(n2d=(d+1)= logd=(d+1) n)

and 
(n2d=(d+1)= log5=2�
 n) in the online and o�ine cases, respectively, where 
 > 0 is a small

constant that depends on d. For related results, see also [6, 12].

These lower bounds hold in the Fredman/Yao semigroup arithmetic model [25]. In this model,

points are given arbitrary weights from an additive semigroup, and the complexity of the algorithm

is given by the number of additions required to calculate the total weight of the points in each

range. Unfortunately, the semigroup model is inappropriate for studying Hopcroft's problem, or

any similar decision problem. If there are no incidences, then we perform no additions; conversely,

if we perform a single addition, there must be an incidence.

Lower bounds in the semigroup model are based on the existence of con�gurations of points

and ranges, such as the planar Erd}os con�guration, whose incidence graphs have no large complete

bipartite subgraphs. Our lower bounds have a similar basis. In Section 3, we develop point-

hyperplane con�gurations of this type, naturally generalizing the Erd}os con�guration to arbitrary

dimensions. These con�gurations also allow us to extend Chazelle's o�ine lower bounds to a

counting version of Hopcroft's problem.

The paper is organized as follows. In Section 2, we derive a quadratic lower bound for Hopcroft's

problem in two decision tree models of computation. In Section 3, we derive lower bounds on the

worst-case complexity of monochromatic covers, using the Erd}os con�guration and its generaliza-

tions to higher dimensions. In Section 4, we formally de�ne the class of partitioning algorithms

and prove our main results. In Section 5, we discuss a number of related geometric problems for

which our techniques yield new lower bounds. Finally, in Section 6, we o�er our conclusions and

suggest directions for further research.
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(a) (b)

Figure 1. A simple quadratic lower bound for Hopcroft's problem (Theorem 2.1). (a) The original adversary
con�guration. (b) The \collapsed" con�guration.

2 Quadratic Lower Bounds

Erickson and Seidel [24] have proven a number of lower bounds on other geometric degeneracy-

detection problems, under a model of computation in which only a limited number of geometric

primitives are allowed. It is natural to ask whether similar lower bounds can be proven for Hopcroft's

problem. The appropriate simple primitive is the relative orientation query: Given a point and

a hyperplane, does the point lie above, on, or below the hyperplane? Surprisingly, we can easily

establish a quadratic lower bound for Hopcroft's problem if this is the only primitive we are allowed.

Theorem 2.1. Any decision tree algorithm that decides Hopcroft's problem in IRd for any d � 1,

using only relative orientation queries, must have depth 
(nm).

Proof: The lower bound follows from a simple adversary argument. The adversary presents the

algorithm with a set of n points and m hyperplanes in which every point is above every hyperplane.

If the algorithm does not perform a relative orientation query for some point-hyperplane pair, the

adversary can move that point onto that hyperplane without changing the relative orientation of

any other pair. See Figure 1. The algorithm cannot tell the two con�gurations apart, even though

one has an incidence and the other does not. Thus, in order to be correct, the algorithm must

perform a relative orientation query for every pair. �

In dimensions higher than one, we can considerably strengthen the model of computation in

which this quadratic lower bound holds. We will explicitly describe only the two-dimensional case;

generalization to higher dimensions is straightforward. Our new model of computation is a decision

tree with three types of primitives: relative orientation queries, point queries, and line queries. A

point query is any decision that is based exclusively on the coordinates the input points. Line

queries are de�ned analogously. We emphasize that point queries can combine information from

any number of points, and line queries from any number of lines. We call a point query algebraic

if the result is given by the sign of a multivariate polynomial evaluated at the point coordinates.

Theorem 2.2. Any decision tree algorithm that solves Hopcroft's problem in the plane, using only

relative orientation queries, algebraic point queries, and (arbitrary) line queries, must make 
(nm)

relative orientation queries in the worst case.

Proof: For any real number x0, let P (x0) denote the set of n points��
x0; x

2
0

�
;
�
x0 + 1; (x0+ 1)2

�
; : : : ;

�
x0 + n� 1; (x0+ n � 1)2

�	
;
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P

Q

Figure 2. The adversary con�gurations for Theorem 2.2. The white point in Q is on the dark line; otherwise,
every point is above every line.

and let L(x0) denote the set of m lines tangent to the unit parabola y = x
2 at the points��

x0 + n; (x0 + n)2
�
;
�
x0 + 2n; (x0 + 2n)2

�
; : : : ;

�
x0 +mn; (x0 +mn)2

�	
:

As before, our lower bound follows from an adversary argument. The adversary initially presents

the points P = P (x0) and the lines L = L(x0), for some real value x0 to be speci�ed later. If the

algorithm does not perform a relative orientation query for the ith point and the jth line, then the

adversary replaces the points with the new set Q = P (x0+ in� j +1). We easily verify that in the

new con�guration, the ith point and the jth line are incident, but otherwise, every point is above

every line. See Figure 2.

Since the adversary does not change the lines, no line query can distinguish between the two

con�gurations. It remains only to consider the point queries. The result of any algebraic point

query in P (x) is given by the sign of a polynomial in x. Let rmax be the largest root of all the

point query polynomials used by the algorithm, ignoring those that are identically zero. If x1 and

x2 are both larger than rmax, then every point query polynomial has the same sign at both P (x1)

and P (x2). Thus, if the adversary �xes x0 > rmax, then the algorithm cannot distinguish between

the original point set P and any of the collapsed point sets Q.

It follows that the algorithm cannot be correct unless it performs a relative orientation query

for every pair. �

Note that our restriction to algebraic point queries is stronger than the result requires. If we

rephrase this argument in the dual space, we get a quadratic lower bound in a model that allows

arbitrary point queries but requires line queries to be algebraic.

These adversary arguments actually give us a quadratic lower bound for the much easier half-

space emptiness checking problem \Is every point above every hyperplane?". Our arguments can

easily be modi�ed to apply to almost any range searching problem, and a wide range of other

related problems, including all the problems listed in Section 5. We leave the details and further

generalizations as exercises for the reader.

Of course, none of the sub-quadratic algorithms listed in the introduction follow the models

considered in this section. Unlike the degeneracy problems considered in [24], there does not

appear to be a small �xed set of primitives that are used by all known algorithms for Hopcroft's
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problem. Many algorithms de�ne several levels of higher-order geometric objects, and some of their

decisions are based on large fractions of the input.

In light of our results, it is clear that higher-order primitives that involve both points and lines,

such as \Is this point to the left or right of the intersection of these two lines?", are necessary to

achieve nontrivial upper bounds. If we allow any primitives of this type, however, it seems unlikely

that the techniques developed in [24] can be used to derive nontrivial lower bounds, either for

Hopcroft's problem or for other range searching problems. We leave the development of such lower

bounds as an interesting open problem.

3 Point-Hyperplane Incidences and Monochromatic Covers

Let P = fp1; p2; : : : ; png be a set of points and H = fh1; h2; : : : ; hmg be a set of hyperplanes

in IRd. These two sets naturally induce a relative orientation matrix M(P;H) 2 f+; 0;�gn�m

whose (i; j)'th entry denotes whether the point pi is above, on, or below the hyperplane hj . Any

minor of the matrix M(P;H) is itself a relative orientation matrix M(P 0
; H

0), for some P 0 � P

and H
0 � H .

We call a sign matrix monochromatic if all its entries are equal. A minor cover of a matrix is

a set of minors whose union is the entire matrix. If every minor in the cover is monochromatic,

we call it a monochromatic cover. The size of a minor is the number of rows plus the number of

columns, and the size of a minor cover is the sum of the sizes of the minors in the cover. Given a

set of points and hyperplanes, a monochromatic cover of its relative orientation matrix provides a

succinct combinatorial representation of the relative order type of the set.

We similarly de�ne a succinct representation for the incidence structure of a set of points and

hyperplanes. An zero cover of P and H is a collection of monochromatic minors that covers all (and

only) the zeros in the relative orientation matrix M(P;H). A zero cover can also be interpreted

as a partition of the incidence graph induced by P and H into (not necessarily disjoint) complete

bipartite subgraphs.

Monochromatic covers for 0-1 matrices have been previously used to prove lower bounds for

communication complexity problems [28]. Typically, however, these results make use of the number

of minors in the cover, not the size of the cover as we de�ne it here.4 Covers of bipartite graphs by

complete subgraphs were introduced by Tarj�an [37] in the context of switching theory. Tuza [38],

and independently Chung et al. [14], showed that every n �m bipartite graph has such a cover of

size O(nm= log(max(m;n))) and that this bound is tight in the worst case, up to constant factors.

These results apply immediately to monochromatic covers of arbitrary sign matrices. See also [2]

for a geometric application of bipartite clique covers.

Relative orientation matrices are de�ned in terms of a �xed (projective) coordinate system,

which determines what it means for a point to be \above" or \below" a hyperplane. This coordinate

system determines which minors of the relative orientation matrix are monochromatic, and therefore

determine the minimum monochromatic cover size. However, we easily observe that the minimum

monochromatic cover size is independent of any choice of coordinate system, up to a factor of two,

as follows. Call a relative orientation matrix simple if it can be changed into a monochromatic

matrix by inverting some subset of the rows and columns. Projective transformations preserve

simple minors. See Figure 3. Every monochromatic minor is simple, and every simple minor can

be partitioned into four monochromatic minors, whose total size is twice that of the original minor.

4Since any row or column can be split into three or fewer monochromatic minors, any sign matrix can be covered
by 3min(m;n) such minors. Furthermore, there are sets of n points andm lines in the plane whose relative orientation

matrices require 3min(m;n) monochromatic minors to cover them.
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Figure 3. Three collections of points and lines with simple relative orientation matrices.

We will use the following notation throughout the rest of the paper. Given a set P of points

and H of hyperplanes, let I(P;H) denote the number of point-hyperplane incidences, �(P;H) the

minimum size of their smallest zero cover, and �(P;H) the size of their smallest monochromatic

cover. Let Id(n;m) denote the maximum of I(P;H) over all sets P of n points and all sets H of

m hyperplanes in IRd, and de�ne �d(n;m) and �d(n;m) similarly. Finally, let ��d(n;m) denote the

maximum of �(P;H) over all sets of n points and m hyperplanes in IRd with no incidences. In the

remainder of this section, we develop asymptotic lower bounds for ��d(n;m) and �d(n;m), which in

turn imply lower bounds for �d(n;m).

3.1 One Dimension

In one dimension, points and hyperplanes are both just real numbers. We can always permute the

rows and columns of the relative orientation matrix of two sets of numbers, by sorting the sets,

so that the number of + (resp. �) entries in successive rows or columns is nonincreasing (resp.

nondecreasing). The matrix can then be split into two \staircase" matrices, one positive and one

negative, and a collection of zero minors of total size at most n+m. We immediately observe that

�1(n;m) = n+m.

Theorem 3.1. ��1(m;n) =

8><
>:
�(n logn=mm) if n > m

�(n logn) if n = m

�(m logm=n n) if n < m

Proof: Without loss of generality, we assume n and m are both powers of two. It su�ces to bound

the cover size of a monochromatic staircase with n rows and m columns.

First consider the simplest case, n = m. To prove the upper bound, we construct a cover of

an arbitrary n � n staircase matrix by partitioning the staircase into an n=2 � k monochromatic

minor and two smaller staircases, where k is the number of entries in the n=2th row of the original

matrix. The total size C(n; n) of this cover is bounded by the recurrence

C(n; n) � max
0�k�n

(n=2 + k + C(n=2; k) + C(n=2; n� k)) � 3n=2 + 2C(n=2; n=2);

whose solution is clearly C(n; n) = O(n logn).

To prove the matching lower bound, it su�ces to consider a triangular matrix, where for all i,

the ith row has i entries. We claim that any cover for this matrix must have size at least (n=2) lgn.
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Fix a cover. Partition the staircase into an n=2 � n=2 rectangle and two n=2 � n=2 staircases. If

a minor in the cover intersects the lower triangle, call it a lower minor; otherwise, call it an upper

minor. The upper (resp. lower) minors induce a cover of the upper (resp. lower) triangle, of size

at least (n=4) lg(n=2), by induction. It remains to bound the contribution of the rectangle to the

total cover size.

If some row in the rectangle is completely contained in lower minors, then those lower minors

have (altogether) n=2 more columns than we accounted for in the induction step. Otherwise, every

row contains an element of an upper minor, and those upper minors have (altogether) n=2 more

rows than we accounted for in the induction step. Thus, the rectangle contributes at least n=2 to

the total cover size. This completes the proof for the case n = m.

Now suppose n > m. An explicit recursive construction gives us a cover of size O(n logn=mm)

for any n � m staircase. An inductive counting argument implies that any cover of the n � m

triangular matrix, whose ith row has dim=ne entries, must have size at least (n=2) logn=mm. In

both arguments, we start by dividing the n rows of the matrix into n=m slabs of m rows each, and

cutting each slab into a maximal rectangle and a smaller staircase.

The �nal case n < m is handled symmetrically. �

This bound simpli�es to �(n+m) when either n = O(mk) orm = O(nk) for any constant k < 1,

and to �(n logn) when n = �(m). In the special case n = m, our upper bound proof is nothing

more than an application of quicksort. The connection between the size of the monochromatic

cover and the running time of the divide-and-conquer algorithm is readily apparent in this case. In

Section 4, we generalize this connection to higher dimensions.

3.2 Two Dimensions

To derive lower bounds for ��2(n;m) and �2(n;m), we use the following combinatorial result of

Erd}os. (See [25] or [17, p.112] for proofs.)

Lemma 3.2 (Erd}os). For all n and m, there is a set of n points and m lines in the plane with


(n+ n
2=3

m
2=3 +m) incident pairs. Thus, I2(n;m) = 
(n+ n

2=3
m

2=3 +m).

Fredman [25] uses Erd}os' construction to prove lower bounds for dynamic range query data

structures in the plane.5 This lower bound is asymptotically tight. The corresponding upper

bound was �rst proven by Szemer�edi and Trotter [36]. A simpler proof, with better constants, was

later given by Clarkson et al. [15]

Theorem 3.3. �2(n;m) = 
(n+ n
2=3

m
2=3 +m)

Proof: It is not possible for two distinct points to both be adjacent to two distinct lines; any

mutually incident set of points and lines has either exactly one point or exactly one line. It follows

that for any set P of points and H of lines in the plane, �(P;H) � I(P;H). The theorem now

follows from Lemma 3.2. �

Theorem 3.4. ��2(n;m) = 
(n+ n
2=3

m
2=3 +m)

Proof: Consider any con�guration of n points and m=2 lines with 
(n+ n
2=3

m
2=3+m) point-line

incidences, as given by Lemma 3.2. Replace each line ` in this con�guration with a pair of lines,

5Perhaps it is more interesting that Chazelle's static lower bounds [8, 10] do not use this construction.
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Figure 4. I3(n;m) = mn. Every point lies on every plane.

parallel to ` and at distance " on either side, where " is chosen su�ciently small that all point-line

distances in the new con�guration are at least ". The resulting con�guration of n points and m

lines clearly has no point-line incidences. We call a point-line pair in this con�guration close if the

distance between the point and the line is ". There are 
(n+ n
2=3

m
2=3 +m) such pairs.

Now consider a single monochromatic minor in the relative orientation matrix of these points

and lines. Let P 0 denote the set of points and H
0 the set of lines represented in this minor. We

claim that the number of close pairs between P
0 and H

0 is small.

Without loss of generality, we can assume that all the points are above all the lines. If a point

is close to a line, the point must be on the convex hull of P 0, and the line must support the upper

envelope of H 0. Thus, we can assume that both P
0 and H

0 are in convex position. In particular,

we can order both the points and lines from left to right.

Either the leftmost point is close to at most one line, or the leftmost line is close to at most one

point. It follows inductively that the number of close pairs is at most jP 0j+ jH 0j, which is exactly

the size of the minor. The theorem follows immediately. �

3.3 Three Dimensions

The technique we used in the plane does not generalize immediately to higher dimensions. Even

in three dimensions, there are collections of points and planes where every points is incident to

every plane. See Figure 4. In order to derive a lower bound for either �3(m;n) or ��3(n;m), we

need a con�guration of points and planes with many incidences, but without large sets of mutually

incident points and planes. In the following lemma, we construct such a con�guration, naturally

generalizing Erd}os' planar construction.

We use the notation [n] to denote the set of integers f1; 2; : : : ; ng, and i ? j to mean that i

and j are relatively prime. We also use (without proof) a number of simple number-theoretic results

concerning the Euler totient function �(n), the number of positive integers less than or equal to n

that are relatively prime to n. We refer the reader to [26] for relevant background.

Lemma 3.5. For all n and m such that bn1=3c < m, there exists a set P of n points and a set H

of m planes, such that I(P;H) = 
(n5=6m1=2) and any three planes in H intersect in at most one

point.

Proof: Fix su�ciently large n and m such that bn1=3c < m. Let h(a; b; c; i; j) denote the plane

passing through the points (a; b; c), (a + i; b+ j; c), and (a + i; b; c+ i � j). Let p = bn1=3c and
q = b�(m=p)1=4c for some suitable constant � > 0. (Note that with n su�ciently large and m in

the indicated range, p and q are both positive integers.)
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Now consider the points P = [p]3 = f(x; y; z) j x; y; z 2 [p]g and the hyperplanes

H =
n
h(a; b; c; i; j)

��� i 2 [q]; j 2 [i]; i? j; a 2 [i]; b 2 [j]; c 2
�
bp=2c

�o
The number of planes in H is

j
p

2

k qX
i=1

i

iX
j=1
j?i

j =
j
p

2

k qX
i=1

i
2
�(i)

2
= O(pq4) = O(m):

By choosing the constant � appropriately and possibly adding in o(m) extra planes, we can ensure

that H contains exactly m planes. We claim that this collection of points and planes satis�es the

lemma.

Consider a single plane h = h(a; b; c; i; j)2 H . Since i, j, and i�j are pairwise relatively prime,

h intersects exactly one point (x; y; z) such that x 2 [i] and y 2 [j], namely, the point (a; b; c).

Thus, for each �xed i and j we use, the planes h(a; b; c; i; j) 2 H are distinct. Since planes with

di�erent \slopes" are clearly di�erent, it follows that the planes in H are distinct.

For all k 2 [bp=2ic], the intersection of h(a; b; c; i; j) 2 H with the plane x = a + ki contains at

least k points of P . It follows that

��P \ h(a; b; c; i; j)
��� bp=2icX

k=1

k >
1

2

j
p

2i

k2
:

Thus, the total number of incidences between P and H can be calculated as follows.

I(P;H) �
j
p

2

k qX
i=1

i

iX
j=1
i?j

j

2

j
p

2i

k2

�
j
p

2

k3 qX
i=1

iX
j=1
i?j

j

2i

=
j
p

2

k3 qX
i=1

�(i)

4

= 
(p3q2)

= 
(n5=6m1=2)

Finally, If H contains three planes that intersect in a line, the intersection of those planes with

the plane x = 0 must consist of three concurrent lines. It su�ces to consider only the planes passing

through the point (1; 1; 1), since for any other triple of planes in H there is a parallel triple passing

through that point. The intersection of h(1; 1; 1; i; j) with the plane x = 0 is the line through

(0; 1� j=i; 1) and (0; 1; j=i). Since i ? j, each such plane determines a unique line. Furthermore,

since all these lines are tangent to a parabola, no three of them are concurrent. It follows that the

intersection of any three planes in H consists of at most one point. �

Edelsbrunner et al. [19] prove an upper bound of O(n logm+n
4=5+2"

m
3=5�"+m) on the maxi-

mum number of incidences between n points andm planes, where no three planes contain a common

line. Using the probabilistic counting techniques of Clarkson et al. [15], we can improve this upper

bound to O(n+ n
4=5

m
3=5 +m).
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Theorem 3.6. �3(n;m) = 
(n+ n
5=6

m
1=2 + n

1=2
m

5=6 +m)

Proof: Consider the case n1=3 < m � n. Fix a set P of n points and a set H of m hyperplanes

satisfying Lemma 3.5. Any mutually incident subsets of P and H contain either at most one point

or at most two planes. Thus, the number of entries in any zero minor of M(P;H) is at most twice

the size of the minor. It follows that any zero cover of M(P;H) must have size 
(I(P;H)) =


(n5=6m1=2). The dual construction gives us a lower bound of 
(n1=2m5=6) for all m in the range

n � m < n
3, and the trivial lower bound 
(n+m) applies for other values of m. �

Lemma 3.7. Let P be a set of n points and H a set of m planes in IR3, such that every point in

P is either on or above every plane in H , and any three planes in H intersect in at most one point.

Then I(P;H)� 2(m+ n).

Proof: Call any point (resp. plane) lonely if it is incident to less than three planes (resp. points).

Without loss of generality, we can assume that none of the points in P or planes in H is lonely,

since each lonely point and plane contributes at most two incidences.

No point in the interior of of the convex hull of P can be incident to a plane in H . Any point

in the interior of a facet of the convex hull can be on at most one plane in H . Consider any point

p 2 P in the interior of an edge of the convex hull. Any plane containing p also contains the two

endpoints of the edge. There cannot be more than two such planes in H , so p must be lonely. It

follows that every point in P is a vertex of the convex hull of P .

No plane can contain a point unless it touches the upper envelope of H . Any plane that only

contains a vertex of the upper envelope must be lonely. For any plane h that contains only an

edge of the envelope, two other planes also contain that edge, and any points on h must also be

on the other two planes. Then h must be lonely, since any three planes in H intersect in at most

one point. It follows that every plane in H spans a facet of the upper envelope of H . Furthermore,

every point in P is a vertex of this upper envelope.

Construct a bipartite graph with vertices P and H and edges corresponding to incident pairs.

This graph is clearly planar, and thus has at most 2(m+ n)� 4 edges. �

Theorem 3.8. ��3(n;m) = 
(n+ n
5=6

m
1=2 + n

1=2
m

5=6 +m)

Proof: Consider the case 2n1=3 < m � n. Fix a set P of n points and a set H of m=2 hyperplanes

satisfying Lemma 3.5. Replace each plane h 2 H with a pair of parallel planes at distance " on

either side of h, for some suitably small constant " > 0. Call the resulting set of m planes H". We

say that a point is close to a plane if the distance between them is exactly ". There are 
(n5=6m1=2)

close pairs between P and H", and no incidences.

Call a sign matrix loosely monochromatic if either none of its entries is + or none of its entries

is �. For any subsets P
0 � P and H

0 � H , Lemma 3.7 implies that if M(P 0
; H

0) is loosely

monochromatic, then I(P 0
; H

0) = O(jP 0j+ jH 0j).
For every monochromatic minor of the matrix M(P;H"), the corresponding minor of M(P;H)

is loosely monochromatic. Furthermore, there is a one-to-one correspondence between the close

pairs in the �rst minor and the incident pairs in the second. It follows that any monochromatic

minor of M(P;H") orients only a linear number of close pairs. Thus, any monochromatic cover for

P and H" must have size 
(n
5=6

m
1=2).

Similar arguments apply to other values of m. �

For the special case m = �(n), this theorem does not improve the 
(n4=3) bound we derived

earlier for the planar case. For all other values of m between 
(n1=3) and O(n3), however, the new

bound is an improvement. See Figure 5.
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m

n=m n=m2 n=m3n =m23n =m

3/4(nm)

2/3(nm)

5/6(nm)

1/2(nm)

nm
1/21/4 1/3 2/3 3/4

n

1/2 5/6mn 5/6 1/2n m

2/3 2/3n m

log
nm

n

Figure 5. Comparison of lower bounds for ��
2
(n;m) and ��

3
(n;m). See Theorems 3.4 and 3.8.

3.4 Higher Dimensions

In order to generalize Lemma 3.5 to arbitrary dimensions, we need the following rather technical

lemma. Let us de�ne two series fi(t) and Fi(t) of polynomials as f1(t) = 1, fi(t) = t+ i� 2 for all

i > 1, and Fi(t) =
Qi�1

j=1 fj(t) for all i.

Lemma 3.9. Let t1; t2; : : : ; td be distinct real numbers such that fj(ti) 6= 0 for all 1 � i; j � d.

The d� d matrix M , whose (i; j)th entry is 1=fj(ti), is nonsingular.

Proof: Let V be the d � d Vandermonde matrix whose (i; j)th entry is t
j�1
i . Since the ti are

distinct, V is nonsingular. We prove the lemma by converting M into V using elementary row and

column operations. We transform the matrix inductively, one column at a time. Transforming the

�rst column is trivial.

The inductive step is somewhat easier to understand if we focus on a single row ofM , and think

of it as a vector of rational functions in some formal variable t, instead of a vector of real numbers.

Suppose we have already transformed the �rst d� 1 entries inductively, and we are now ready to

transform the last entry. The �rst step is to multiply the entire vector by fd(t); this ensures that

every entry in the vector is a polynomial. By induction, the dth entry is now Fd(t), and for all

j < d, the jth entry is now fd(t) � tj�1 = t
j +(d� 2)tj�1. It remains to show that we can transform

this vector of polynomials into the vector (1; t; t2; : : : ; td�1).

Write the coe�cients of the polynomials into a d� d matrix C, whose (i; j)th entry ci;j is the

coe�cient of ti�1 in the jth polynomial. The only nonzero entries in C are the coe�cients of Fd(t)

in the last column, (d� 2)'s in rest of the main diagonal, and ones in the next lower diagonal. For

example, when d = 4, our vector of polynomials is (t+ 2; t2 + 2t; t3 + 2t2; t2 + t), and

C =

2
664
2 0 0 0

1 2 0 1

0 1 2 1

0 0 1 0

3
775 :

Recall that the determinant of C is de�ned as follows.

detC
4

=
X
�2Sd

 
sgn(�)

dY
i=1

ci;�(i)

!
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The only permutations that contribute to the determinant are those that start down the main

diagonal, jump to the last column, and then �nish along the lower diagonal. It follows that detC =

(�1)dFd(2� d). Since 2� d is not a root of Fd(t), we conclude that C is nonsingular.

Thus, there is a series of column operations that convert C into the identity matrix. Since each

column of C contains the coe�cients of a polynomial in the corresponding column of M , the same

column operations complete the transformation of M into V . �

Lemma 3.10. For any bn1=dc < m, there exists a set P of n points and a set H of m hyperplanes

in IRd, such that I(P;H) = 
(n1�2=d(d+1)m2=(d+1)) and any d hyperplanes in H intersect in at most

one point.

Proof (sketch): We sketch the proof for d = 4; its generalization to higher dimensions is relatively

straightforward. Let h(a; b; c; d; i; j) denote the hyperplane passing through the four points

(a; b; c; d) (a+ i; b+ j; c; d) (a+ i; b; c+ i+ j; d) (a+ i; b; c; d+ 2i+ j):

Let p = bn1=4c and q = b�(m=p)1=5c for some suitable constant � > 0. Then P = [p]4 and H is the

set of hyperplanes h(a; b; c; d; i; j) satisfying the following set of conditions conditions.

i 2 [q]; j 2 [i]; j is odd; i ? j

a 2 [i]; b 2 [j]; c 2 [i+ j]; d 2
�
bp=2c

�
Note that j is odd and relatively prime with i if and only if i, j, i + j, and 2i + j are pairwise

relatively prime. This condition is necessary to establish that the hyperplanes in H are distinct.

It follows from relatively straightforward algebraic manipulation that jH j = O(pq5) = O(m) and

I(P;H) = 
(p4q2) = 
(n9=10m2=5).

To establish that no four hyperplanes in H intersect in a common line, we examine the inter-

section of each hyperplane h(1; 1; 1; 1; i; j) 2 H with the hyperplane x1 = 0. This intersection is

the plane
1

i
+
x2 � 1

j
+
x3 � 1

i+ j
+
x4 � 1

2i+ j
= 0:

It follows from Lemma 3.9, by setting tk = jk=ik, that no four of these planes are concurrent. �

Note that the lower bound for dimension d only improves the bound for dimension d� 1 when

n = 
(m(d�1)=2). Again, using probabilistic counting techniques [15], we can prove an upper bound

of I(P;H) = O(n+n
(2d�2)=(2d�1)

m
d=(2d�1)+m) if any d hyperplanes in H intersect in at most one

point.

The previous lemma immediately gives us the following lower bound for �d(n;m).

Theorem 3.11. �d(n;m) = 


�
dP

i=1

�
n
1�2=i(i+1)

m
2=(i+1) + n

2=(i+1)
m

1�2=i(i+1)
��

Since our d-dimensional lower bound only improves our (d � 1)-dimensional lower bound for

certain values of n and m, we have combined the lower bounds from all dimensions 1 � i � d into a

single expression. If the relative growth rates of n and m are �xed, the entire sum can be reduced

to a single term.

Unfortunately, we are unable to generalize Lemma 3.7 even into four dimensions. Consequently,

the best lower bound we can derive for ��d(n;m) for any d > 3 derives trivially from Theorem 3.8.
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The best upper bound we can prove for the number of incidences between n points and m hyper-

planes in IR4, where every point is above or on every hyperplane and no four hyperplanes contain a

line, is O(n+n
2=3

m
2=3+m). (See [21] for the derivation of a similar upper bound.) No superlinear

lower bounds are known in any dimension, so there is some hope for a linear upper bound.

However, we can achieve a superlinear number of incidences in �ve dimensions, under a weaker

combinatorial general position requirement. Thus, unlike in lower dimensions, some sort of geo-

metric general position requirement is necessary to keep the number of incidences small.

Lemma 3.12. For all n and m, there exists a set P of n points and a set H of m hyperplanes in

IR5, such that every point is on or above every hyperplane, no two hyperplanes in H contain more

than one point of P in their intersection, and I(P;H) = 
(n+ n
2=3

m
2=3 +m).

Proof: De�ne the function � : IR3 ! IR6 as follows.

�(x; y; z) = (x2; y2; z2;
p
2 xy;

p
2 yz;

p
2xz)

For any v; w 2 IR3, we have h�(v); �(w)i = hv; wi2, where h�; �i denotes the usual inner product
of vectors. In a more geometric setting, � maps points and lines in the plane, represented in

homogeneous coordinates, to points and hyperplanes in IR5, also represented in homogeneous co-

ordinates [35]. For any point p and line ` in the plane, the point �(p) is incident to the hyperplane

�(`) if and only if p is incident to `; otherwise, �(p) lies above �(`). Thus, we can take P and H

to be the images under � of any sets of n points and m lines with 
(n+n
2=3

m
2=3+m) incidences,

as given by Lemma 3.2. �

3.5 A Lower Bound in the Semigroup Model

Our results immediately imply a lower bound for a variant of the counting version of Hopcroft's

problem, in the Fredman/Yao semigroup arithmetic model. The lower bound follows from the

following result of Chazelle [10, Lemma 3.3]. (Chazelle's lemma only deals with the case n = m,

but his proof generalizes immediately to the more general case.)

Lemma 3.13. If A is an n�m incidence matrix with I ones and no p� q minor of ones, then the

complexity of computing Ax over a semigroup is 
(I=pq � n=p).

Theorem 3.14. Given n weighted points and m hyperplanes in IRd,




 
dX

i=1

�
n
1�2=i(i+1)

m
2=(i+1) + n

2=(i+1)
m

1�2=i(i+1)
�!

semigroup operations are required to determine the sum of the weights of the points on each

hyperplane, in the worst case.

Proof: The lower bound follows immediately from Lemma 3.10. �

As in Theorem 3.11, we have combined the best lower bounds from several dimensions into

a single expression. When m = �(n), this bound simpli�es to 
(n4=3), which already follows

immediately from Chazelle's lemma and the Erd}os construction. For all other values of m between


(n1=d) and O(nd), however, the new bound is an improvement over any previously known lower

bounds for this problem. The best known upper bound is given by Matou�sek's algorithm [30].



14 Je� Erickson

4 Partitioning Algorithms

A partition graph is a directed acyclic graph, with one source, called the root, and several sinks, or

leaves. Associated with each non-leaf node v is a setRv of query regions, satisfying three conditions.

1. The cardinality of Rv is at most some constant � � 2.

2. Each region in Rv is connected.

3. The union of the regions in Rv is IR
d.

(We do not require the query regions to be disjoint, convex, simply connected, semi-algebraic, or

of constant combinatorial complexity.) In addition, every non-leaf note v is either a primal node

or a dual node, depending on whether its query regions Rv should be interpreted as a partition of

primal or dual space. Each query region in Rv corresponds to an outgoing edge of v. Thus, the

out-degree of the graph is at most �.

Given sets P of points and H of hyperplanes as input, a partitioning algorithm constructs

a partition graph, which can depend arbitrarily on the input, and uses it to drive the following

divide-and-conquer process. The algorithm starts at the root and proceeds through the graph

in topological order. At every node except the root, points and hyperplanes are passed in along

incoming edges from preceding nodes. For each node v, let Pv � P denote the points and Hv � H

the hyperplanes that reach v; at the root, we have Proot = P and Hroot = H . At every non-leaf

node v, the algorithm partitions the sets Pv and Hv into (not necessarily disjoint) subsets by the

query regions Rv and sends these subsets out along outgoing edges to succeeding nodes. If v is a

primal node, then for every query region R 2 Rv, the points in Pv that are contained in R and the

hyperplanes in Hv that intersect R traverse the outgoing edge corresponding to R. If v is a dual

node, then for every query region R 2 Rv, the points p 2 Pv whose dual hyperplanes p
� intersect R

and the hyperplanes h 2 Hv whose dual points h� are contained in R traverse the corresponding

outgoing edge. Note that a single point or hyperplane may enter or leave a node along several

di�erent edges.

For the purpose of proving lower bounds, the entire running time of the algorithm is given by

charging unit time whenever a point or hyperplane traverses an edge. In particular, we do not

charge for the construction of the partition graph or its query regions, nor for the time that would

be required in practice to decide if a point or hyperplane intersects a query region. As a result,

partitioning algorithms are e�ectively nondeterministic. In principle, the algorithm has \time" to

compute the optimal partition graph for its input, and even very similar inputs might result in

radically di�erent partition graphs.

To solve Hopcroft's problem, the algorithm reports an incidence if and only if some leaf in the

partition graph is reached by both a point and a hyperplane. It is easy to see that if some point

and hyperplane are incident, then there is at least one leaf in every partition graph that is reached

by both the point and the hyperplane. Thus, for any set P of points and set H of hyperplanes, a

partition graph in which no leaf is reached by both a point and a hyperplane provides a proof that

there are no incidences between P and H .

In this section, we derive lower bounds for the worst-case running time of partitioning algorithms

that solve Hopcroft's problem. With the exception of the basic lower bound of 
(n logm+m logn),

which in light of Theorem 3.1 we must prove directly, our lower bounds are derived from the cover

size bounds in Section 3. At the end of the section, we describe how existing algorithms for

Hopcroft's problem �t into our computational framework.
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4.1 The Basic Lower Bound

Theorem 4.1. Any partitioning algorithm that solves Hopcroft's problem in any dimension must

take time 
(n logm+m logn) in the worst case.

Proof: It su�ces to consider the following con�guration, where n is a multiple of m. P consists of

n points on some vertical line in IRd, say the xd-axis, and H consists of m hyperplanes normal to

that line, placed so that n=m points lie between each hyperplane and the next higher hyperplane,

or above the top hyperplane. (We implicitly used a one-dimensional version of this con�guration

to prove the lower bound in Theorem 3.1.) For each point, call the hyperplane below it its partner.

Each hyperplane is a partner of n=m points.

Let G be the partition graph generated by some partitioning algorithm. Recall that the out-

degree of every node in G is at most �. The level of any node in G is the length of the shortest

path from the root to that node. There are at most �k nodes at level k. We say that a node v

separates a point-hyperplane pair if both the point and the hyperplane reach v, and none of the

outgoing edges of v is traversed by both the point and the hyperplane. In order for the algorithm

to be correct, every point-hyperplane pair must be separated. Finally, we say that a hyperplane h

is active at level k if none of the nodes in the �rst k levels separates h from any of its partners.

Suppose v is a primal node. For each hyperplane h that v separates from one of its partner

points p, mark some query region in Rv that contains p but misses h. The marked region lies

completely above h, but not completely above any hyperplane higher than h. It follows that the

same region cannot be marked more than once. Since there are at most � regions, at most �

hyperplanes become inactive. By similar arguments, if v is a dual node, then v separates at most

� points from their partners.

Thus, the number of hyperplanes that are inactive at level k is less than �k+2. In particular,

at level blog�mc � 3, at least m(1 � 1=�) hyperplanes are still active. It follows that at least

n(1 � 1=�) points each traverse at least blog�mc � 3 edges. We conclude that the total running

time of the algorithm is at least

n(1� 1=�)(blog�mc � 3) = 
(n logm):

Similar arguments establish a lower bound of 
(m logn) when n < m. �

4.2 The Lower Bound for the Decision Problem

Let TA(P;H) denote the running time of an algorithm A that solves Hopcroft's problem in IRd for

some d, given points P and hyperplanes H as input.

Theorem 4.2. Let A be a partitioning algorithm that solves Hopcroft's problem, and let P be a

set of points and H a set of hyperplanes such that I(P;H) = 0. Then TA(P;H) = 
(�(P;H)).

Proof: Recall that the running time TA(P;H) is de�ned in terms of the edges of the partition

graph as follows.

TA(P;H)
4

=
X
edge e

�
#points traversing e+ #hyperplanes traversing e

�

We say that a point or hyperplane misses an edge from v to w if it reaches v but does not traverse

the edge. (It might still reach w by traversing some other edge.) For every edge that a point or
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hyperplane traverses, there are at most �� 1 edges that it misses.

� � TA(P;H) �
X
edge e

�
#points traversing e+ #hyperplanes traversing e+

#points missing e+ #hyperplanes missing e
�

Call any edge that leaves a primal node a primal edge, and any edge that leaves a dual node a dual

edge.

� � TA(P;H) �
X

primal edge e

�
#points traversing e+#hyperplanes missing e

�
+

X
dual edge e

�
#hyperplanes traversing e +#points missing e

�

Consider, for some primal edge e, the set Pe of points that traverse e and the set He of hy-

perplanes that miss e. The edge e is associated with some query region R, such that every point

in Pe is contained in R, and every hyperplane in He is disjoint from R. Since R is connected, it

follows immediately that the relative orientation matrix M(Pe; He) is simple. Similarly, for any

dual edge e, the relative orientation matrix of the set of points that miss e and hyperplanes that

traverse e is also simple.

Now consider any point p 2 P and hyperplane h 2 H . Since A correctly solves Hopcroft's

problem, no leaf is reached by both p and h. It follows that some node v separates p and h. If v is

a primal node, then h misses the outgoing primal edges that p traverses. If v is a dual node, then

p misses the outgoing dual edges that h traverses.

Thus, we can associate a simple minor with every edge in the partition graph, and this collection

of minors covers the relative orientation matrix M(P;H). Furthermore, the size of this simple

cover is exactly the lower bound we have for � � TA(P;H) above. Splitting each simple minor

into monochromatic minors at most doubles the size of the cover. Since the size of the resulting

monochromatic cover must be at least �(P;H), we conclude that TA(P;H) � �(P;H)=2�. �

Corollary 4.3. The worst-case running time of any partitioning algorithm that solves Hopcroft's

problem in IRd is 
(n logm+n
2=3

m
2=3+m log n) for d = 2 and 
(n logm+n

5=6
m

1=2+n
1=2

m
5=6+

m logn) for all d � 3.

Proof: Theorems 4.1 and 4.2 together imply that the worst case running time is 
(n logm +

�
�

d(n;m) + n logm). Thus, Theorem 3.4 gives the planar lower bound, and Theorem 3.8 gives us

the lower bound in higher dimensions. �

We emphasize that the condition I(P;H) = 0 is necessary for this lower bound to hold. If there

is an incidence, then the trivial partitioning algorithm \detects" it. The partition graph consists

of a single leaf, and since that leaf is reached by every point and every hyperplane, the algorithm

correctly reports an incidence.

4.3 The Lower Bound for the Counting Problem

Every partitioning algorithm assumes that a point and hyperplane are incident if they reach the

same leaf in its partition graph. Thus, the number of incidences associated with a leaf is the product

of the number of points that reach it and the number of hyperplanes that reach it. To solve the

counting version of Hopcroft's problem, a partitioning algorithm returns as its output the sum of
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these products over all leaves in its partition graph. In order for this output to be correct, the

algorithm must ensure that every non-incident point-hyperplane pair is separated and that every

incident pair reaches exactly one leaf. Since every incident point-hyperplane pair is guaranteed to

reach at least one leaf, it is not possible for a partitioning algorithm to count too few incidences.

Theorem 4.4. Let A be a partitioning algorithm that solves the counting version of Hopcroft's

problem, and let P be a set of points and H a set of hyperplanes. Then TA(P;H) = 
(�(P;H)).

Proof: We follow the proof for the decision lower bound almost exactly. We associate a simple

minor with every edge just as before. We also associate a monochromatic minor with every leaf,

consisting of all points and hyperplanes that reach the leaf. Every non-incident point-hyperplane

pair is represented in some edge minor, and every incident pair in exactly one leaf minor. Thus,

the minors form a simple cover. The total size of the leaf minors is certainly less than TA(P;H),

since every point and hyperplane that reaches a leaf must traverse one of the leaf's incoming edges.

The total size of the edge minors is at most � �TA(P;H), as established previously. Splitting each

edge minor into monochromatic minors at most doubles their size. Thus, we get a monochromatic

cover of size at most (2� + 1)TA(P;H), which implies TA(P;H) � �(P;H)=(2�+ 1). �

Corollary 4.5. The worst-case running time of any partitioning algorithm that solves the counting

version of Hopcroft's problem in IRd is




 
n logm+

dX
i=2

�
n
1�2=i(i+1)

m
2=(i+1) + n

2=(i+1)
m

1�2=i(i+1)
�
+m logn

!
:

See the remark after Theorem 3.11.

We can prove the following stronger lower bound by only paying attention to the minors induced

at the leaves. We de�ne an unbounded partition graph to be just like a partition graph except that

we place no restrictions on the number of query regions associated with each node. Call the resulting

class of algorithms unbounded partitioning algorithms. Note that such an algorithm can solve the

decision version of Hopcroft's problem in linear time.

Theorem 4.6. Let A be an unbounded partitioning algorithm that solves the counting version of

Hopcroft's problem, and let P be a set of points and H a set of hyperplanes. Then TA(P;H) =


(�(P;H)).

Proof: We associate a zero minor with every leaf, and these minors form a zero cover. The total

size of the leaf minors is less than TA(P;H), since every point and hyperplane that reaches a leaf

must traverse one of the leaf's incoming edges. �

The following corollary is now immediate.

Corollary 4.7. The worst-case running time of any unbounded partitioning algorithm that solves

the counting version of Hopcroft's problem in IRd is
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Figure 6. Getting rid of containment shortcuts.

4.4 Aside: Containment Shortcuts Don't Help

We might consider adding the following containment shortcut to our model. Suppose that while

partitioning points and hyperplanes at a primal node, the algorithm discovers that a query region R

is completely contained in some hyperplane h. Then we know immediately that any point contained

in R is incident to h. Rather than sending h down the edge corresponding to R, the algorithm

could increment a running counter for each point in R. We can apply a symmetric shortcut at

each dual node, potentially reducing the number of points traversing each dual edge. In addition

to charging for edge traversals, we now also charge unit time whenever an algorithm discovers that

a hyperplane (either primal or dual) contains a query region.

Clearly, adding this shortcut can only decrease the running time of any partitioning algorithm.

However, for any algorithm that uses this shortcut, we can derive an equivalent algorithm without

shortcuts that is slower by only a small constant factor, as follows.

If a hyperplane h contains a query region R, then it must also contain a�(R), the a�ne hull

of R. We can reverse the containment relation by applying a duality transformation | the dual

point h
� is contained in the dual 
at (a�(R))�. Similarly, if a point p is contained in R, then

(a�(R))� 2 p
�.

For each node v in the partition graph of the shortcut algorithm, and each query region R 2 Rv,

we modify the graph as follows. Let e(R) be the edge of the partition graph corresponding to R,

and let w be the destination of this edge. We introduce two new nodes, a \test" node t(R) and a

leaf `(R). If v is a primal node, then t(R) is a dual node, and vice versa. The query subdivision

Rt(R) consists of exactly two regions: (a�(R))
� and IRdn(a�(R))�, whose corresponding edges point

to `(R) and w, respectively. Finally, we redirect e(R) so that it points to t(R). See Figure 6. The

new algorithm A0 uses this modi�ed partition graph, without explicitly checking for containments.

The new node t(R) strictly separates the hyperplanes that contain R from the hyperplanes that

merely intersect it. Any point contained in R reaches both w and `(R). Thus, the new algorithm

reports or counts exactly the same incidences as the original shortcut algorithm. We easily verify

that the running time of the new algorithm is at most three times the running time of the shortcut

algorithm.

4.5 Existing Algorithms

Existing algorithms for Hopcroft's problem all employ roughly the same divide-and-conquer strat-

egy. Each algorithm divides space into a number of regions, determines which points and hy-

perplanes intersect each region, and recursively solves the resulting subproblems. In some cases

[7, 20, 13], the number of regions used at each level of recursion is a constant, and these algorithms

�t naturally into the partitioning algorithm framework.
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For most algorithms, however, the number of regions is a small polynomial function of the input

size, and not a constant as required by the de�nition of the partitioning model. However, we can

still model most, if not all, of these algorithms by partitioning algorithms.

In order to determine which points lie in which regions, each of these algorithms constructs a

(possibly trivial) point location data structure. Each node in this data structure partitions space

into a constant number of simple regions, and for each region, there is a pointer to another node

in the data structure. Each leaf in the data structure corresponds to one of the high-level query

regions. Composing all the point location data structures used by the algorithm in all recursive

subproblems gives us the algorithm's partition graph. Many of these algorithms alternate between

primal and dual spaces at various levels of recursion [9, 30]. The data structures used in primal

space give us the primal nodes in the partition graph, and the data structures used in dual space

give us the dual nodes.

What about the hyperplanes? Many algorithms also use the point location data structures to

determine the regions hit by each hyperplane. Algorithms of this type �t into our model perfectly.

In particular, Matou�sek's algorithm [30], which is based on Chazelle's hierarchical cuttings [9] and

is the fastest algorithm known, can be modeled this way. Matou�sek's algorithm and Theorem 4.4

immediately give us the following theorem.

Theorem 4.8. �d(n;m) = O
�
m logn+ n

d=(d+1)
m

d=(d+1)2O(log
�(n+m)) + n logm

�
However, other algorithms do not use the point location data structure to locate hyperplanes,

at least not at all levels of recursion. In these algorithms [18, 1], the query regions form a decompo-

sition of space into cells of constant complexity, typically simplices or trapezoids. The algorithms

determine which cells a given hyperplane hits by iteratively \walking" through the cells. At each

cell that the hyperplane intersects, the algorithm can determine in constant time which of the

neighboring cells are also intersected, by checking each of the boundary facets.

In many cases, modifying such an algorithm to directly use the point location data structure

instead of the iterative procedure increases the running time by only a constant factor. If the

current point location data structure locates the hyperplanes too slowly, we may be able to replace

it with a di�erent data structure that supports fast hyperplane location, again without increasing

the asymptotic running time. We could use, for example, the randomized incremental construction

of Seidel [32] in the plane, or the hierarchical cuttings data structure of Chazelle [9] in higher

dimensions. The modi�ed algorithm can then be described as a partitioning algorithm.

Other algorithms construct a point location data structure for the arrangement of the entire set

of hyperplanes [16, 20, 9]. Usually, this is done only when the number of hyperplanes is much smaller

than the number of points. In this case, the algorithm doesn't need to locate the hyperplanes at

all! Again, however, we can modify the algorithm so that it uses a point location data structure

that allows e�cient hyperplane location as well, and arti�cially locates the hyperplanes. If we use

an appropriate data structure, the running time will only increase by a constant factor.

These arguments are admittedly ad hoc. Modifying the partitioning model to naturally include

algorithms that use di�erent strategies for point and hyperplane location, or strengthening our lower

bounds to a similar model that does not require constant-degree partitioning, is an interesting open

problem.

Finally, a few algorithms partition the points or the hyperplanes arbitrarily into subsets, without

using geometric information of any kind [17, p. 350],[16]. In this case, every hyperplane becomes

part of every subproblem. In order to take algorithms of this kind into account, we must strengthen

our model of computation by adding a new type of node that partitions either the points or the
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hyperplanes (but not both!) into arbitrary subsets at no cost. Lemmas 4.2 and 4.4 still hold in this

stronger model, since the new nodes cannot separate any point from any hyperplane. However,

Lemma 4.1 does not hold in this model; for example, we can solve Hopcroft's problem in IRd in

time O(n + m
d+1) by \arbitrarily" partitioning the points so that each subset is contained in a

single cell of the hyperplane arrangement.

5 Related Problems

In this section, we list a number of related problems for which we have new lower bounds in the

partitioning model, either by reduction to Hopcroft's problem, or from direct application of our

earlier proof techniques. No lower bound bigger than 
(n logm +m logn) was previously known

for any of these problems.

Extreme caution must be taken when applying reduction arguments to partitioning algorithms.

It is quite easy to apply a \standard" reduction argument, only to �nd that the reduction changes

essential properties of our model of computation. A simple example illustrates the di�culty. Con-

sider the problem of detecting incidences between a set of points and a set of lines in three dimen-

sions. This problem is clearly harder than Hopcroft's problem; nevertheless, there is an extremely

simple partitioning algorithm that solves this problem in linear time. The partition graph consists

of a single primal node with two query regions, one of which contains all the points but does not

intersect any of the lines.

On the other hand, we can easily derive an 
(n4=3) lower bound for this problem if we consider

only partitioning algorithms whose query regions are convex. We leave the proof of this lower

bound as a simple exercise.

5.1 Line Segment Intersection

The following lower bounds follow from a straightforward reduction argument.

Theorem 5.1. Any partitioning algorithm that detects bichromatic line segment intersections in

the plane requires time 
(n logm+ n
2=3

m
2=3 +m logn) in the worst case.

Theorem 5.2. Any partitioning algorithm that counts line segment intersections in the plane

requires time 
(n4=3) in the worst case.

The dual of a line segment is a double wedge, consisting of a contiguous set of lines passing

through a single apex. Two line segments intersect if and only if each of their double wedges

contains the other's apex. If a line segment is just a single point, the dual double wedge is the dual

line of the point. Conversely, if the segment is in�nitely long, then its dual double wedge covers

the entire plane, and its apex is the dual point of the line.

Now consider what happens when we apply the standard reduction argument to reduce Hopcroft's

problem to the line segment intersection problem. We consider each point to be a line segment of

zero length, and each line to be a line segment of in�nite length. The primal nodes partition the

points and lines just as we expect. The dual nodes are practically worthless, however, since the

dual wedge of every line intersects every dual query region. In applying the reduction argument,

we have lost the inherent self-duality of the problem. Indeed, the most e�cient algorithms for line

segment intersection do not use duality at all. Since the model is weaker than we expect, the lower

bounds still hold.
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A simple sweep-line algorithm determines the presence of line segment intersections in time

O(n logn). The fastest deterministic algorithm for counting line segment intersections, due to

Chazelle [9], runs in time O(n4=3 log1=3n). A randomized output sensitive algorithm of de Berg

and Schwarzkopf [5] runs in expected time O(n log n + n
2=3

A
2=3 log1=3n), where A is the number

of intersections, matching Chazelle's algorithm in the worst case. Their algorithm can be modi�ed

to detect bichromatic intersections in the same amount of time, where A now denotes the number

of monochromatic intersections.

5.2 Lines in 3-Space

An easy variant of Theorem 4.6 gives us the following lower bound.

Theorem 5.3. Any (unbounded) partitioning algorithm that counts pairs of intersecting lines in

IR3 requires time 
(n4=3) in the worst case.

Detecting line intersections in IR3 is at least as hard as detecting point-line incidences in the

plane, at least in the algebraic decision tree model [23]. However, the following straightforward

partitioning algorithm detects line intersections in only O(n logn) time. If there is an intersection,

the trivial algorithm \detects" it. Otherwise, our algorithm arbitrarily splits the lines into two

classes of n=2 lines each, say \red" lines and \blue" lines. For each class, the algorithm constructs

a query region consisting of the union of the lines with enough line segments to connect them. If

the connecting segments are chosen correctly, the red lines do not intersect the blue query region,

and the blue lines do not intersect the red query region. Thus, separating the red and blue lines

requires only linear time. To separate every pair of lines in each class, the algorithm then proceeds

recursively.

Typically, algorithms for problems involving lines in IR3 map the lines to points and hyperplanes

in IR5 using Pl�ucker coordinates [35]. Thus, the line intersection problem is just a special case of

Hopcroft's problem in IR5. Any partitioning algorithm that uses this approach can be forced to

take time 
(n4=3), even to solve the decision version of this problem. More generally, we could

consider algorithms that use a mixture of these approaches, sometimes using Pl�ucker coordinates,

and sometimes staying in IR3. Theorem 5.3 also applies to such algorithms.

The fastest known deterministic algorithm for detecting or counting line intersections in IR3,

due to Chazelle et al. [11], runs in time O(n8=5+"). Pellegrini [31] describes a randomized algorithm

with the same running time.

5.3 O�ine Range Searching

Chazelle [8] has developed lower bounds for the query time required by a simplex or halfspace

range query data structure, given an upper bound on its size. However, his results only apply to

range searching problems in which the data structure must be built to handle arbitrary queries

online. More recently, Chazelle [10] proves a lower bound of 
(n2d=(d+1)= log5=2�
 n), where 
 > 0

is a small constant that depends on the dimension, on the complexity of the o�ine simplex range

searching problem in IRd, in the Fredman/Yao semigroup arithmetic model. Both lower bounds

match known upper bounds up to polylogarithmic factors.

These lower bounds are unsatisfying for two reasons. Algorithms in the semigroup model must

work for arbitrarily weighted points, and are not allowed to \look at" the weights. In practice,

however, the points are often unweighted (or equivalently, the weights are all one), and in principle,

there is nothing preventing an algorithm from exploiting this fact. More seriously, the semigroup
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model cannot be used to bound the complexity of range checking problems, where we only want to

know whether any range contains a point. Previously, no lower bounds larger than 
(n logn) were

known for any unweighted range counting or range checking problem.

A straightforward reduction to the counting version of Hopcroft's problem gives us the following

lower bound.

Theorem 5.4. Any partitioning algorithm that computes, given n points and m halfplanes, the

sum over all halfplanes of the number of points contained in each halfplane, requires time 
(n logm+

n
2=3

m
2=3 +m logn) in the worst case.

E�cient partitioning algorithms for the o�ine halfplane counting problem use the containment

shortcut described in Section 4.4. That is, if a query region is completely contained in a halfplane,

then the halfplane does not traverse the corresponding edge. Rather, a running total is incremented

whenever a point is found inside the region.

Similar arguments apply to other o�ine range searching problems, such as the following.

Theorem 5.5. Any partitioning algorithm that determines, given n points andm triangles, whether

any triangle contains a point, requires time 
(n logm+ n
2=3

m
2=3 +m logn) in the worst case.

Theorem 5.6. Any partitioning algorithm that determines, given n line segments and m rays,

whether any ray hits a line segment, requires time 
(n logm + n
2=3

m
2=3 +m logn) in the worst

case.

5.4 Circles and Unit Distances

By applying a linear fractional transformation to the plane, we can map the con�guration described

in Lemma 3.2 to a set of points and circles. This observation and a straightforward reduction

argument give use the following lower bound.

Theorem 5.7. Any partitioning algorithm that detects incidences between n points and m circles

in the plane requires time 
(n logm+ n
2=3

m
2=3 +m logn) in the worst case.

Since there are no incidences in the con�guration described in Lemma 3.4, we can approximate

it by a set of points and unit circles, where the unit distance is much larger than the distance

between any two points. We can further guarantee that no two circle centers are a unit distance

apart. Starting with this con�guration of points and unit circles, we can easily prove the following

lower bound.

Theorem 5.8. Any partitioning algorithm that detects unit distances among n points in the plane

requires time 
(n4=3) in the worst case.

Algorithms for detecting unit distances, or more generally point-unit circle incidences, often

exploit the natural duality between points and unit circles, where the dual of a unit circle is its

center, rather than the duality between points and lines that we used in the de�nition of our model.

We can easily verify that altering the de�nition to use point-unit circle duality does not change our

lower bound.

Our lower bound is somewhat surprising given known bounds on the maximum number of unit

distances among n points in the plane. Spencer et al. [33] and Clarkson et al. [15] prove an upper
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bound of O(n4=3). Erd}os [22] proves a lower bound of n1+
(1= log logn), which is achieved by a regularp
n�

p
n square lattice, and conjectures an upper bound of O(n1+").6

The fastest known algorithm for detecting incidences between n points and n unit circles runs

in time O(n4=3 log2+"
n) [27].

5.5 A \Convex" Version of Hopcroft's Problem

The following lower bound follows directly from Lemma 3.12 and Theorem 4.6.

Theorem 5.9. Any (unbounded) partitioning algorithm that counts incidences between n points

and m hyperplanes in IR5, where every point lies on or above every hyperplane, requires time


(n+ n
2=3

m
2=3 +m) in the worst case.

In this case, we do not inherit the 
(n logm+m log n) lower bound from Theorem 4.1, since all

the points lie on one side of the hyperplanes. In fact, the decision version of this problem | Is every

point above every hyperplane? | can be solved by a partitioning algorithm in time O(n+m), by

using the convex hull of the points as a query region.

For the special case n = m, the best upper bound known for this problem in both four and �ve

dimensions is O(n4=3 logO(1) n), using the half-space emptiness query structure of Matou�sek and

Schwarzkopf [29]. In two and three dimensions, this problem can be solved in linear time in the

partitioning model, or in O(n logn) time in the algebraic decision tree model, using any optimal

convex hull algorithm. Proving nontrivial lower bounds for the four-dimensional case remains an

open problem.

6 Conclusions and Open Problems

We have proven new lower bounds on the complexity of Hopcroft's problem that apply to a broad

class of geometric divide-and-conquer algorithms. Our lower bounds were developed in two stages.

First, we derived lower bounds on the minimum size of a monochromatic cover in the worst case.

Second, we showed that the running time of any partitioning algorithm is bounded below by the

size of some monochromatic cover of its input.

A number of open problems remain to be solved. The most obvious is to improve the lower

bounds, in particular for the case n = m. The true complexity almost certainly increases with the

dimension, but the best lower bound we can achieve in higher dimensions comes trivially from the

two-dimensional case. Is there a con�guration of n points and n planes in IR3 whose minimum

monochromatic cover size is 
(n3=2)?

One possible approach is to consider restrictions of the partitioning model. Can we achieve

better bounds if we only consider algorithms whose query regions are convex? What if the query

regions at every node are distinct? What if the running time depends on the complexity of the

query regions?

The class of partitioning algorithms is general enough to directly include many, but not all,

existing algorithms for solving Hopcroft's problem. The model requires that a single data structure

be used to determine which points and hyperplanes intersect each query region, but many algorithms

use a tree-like structure to locate the points and an iterative procedure to locate the hyperplanes.

We can usually modify such algorithms so that they do �t our model, at the cost of only a constant

factor in their running time, but this is a rather ad hoc solution. Any extension of our lower bounds

6Erd}os has o�ered $500 for a proof or disproof of this conjecture.
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to a more general model, which would explicitly allow di�erent strategies for locating points and

hyperplanes, would be interesting.

The partitioning algorithm model is speci�cally tailored to detect intersections or containments

between pairs of objects. There are a number of similar geometric problems for which the partition-

ing algorithm model simply does not apply. We mention one speci�c example, the cyclic overlap

problem. Given a set of non-intersecting line segments in IR3, does any subset form a cycle with

respect to the \above" relation? The fastest known algorithm for this problem, due to de Berg

et al. [4], runs in time O(n4=3+"), using a divide-and-conquer strategy very similar to algorithms

for Hopcroft's problem. In the algebraic decision tree model, the cyclic overlap problem is at least

as hard as Hopcroft's problem [23]. Apparently, however, this problem cannot even be solved by

a partitioning algorithm, since the answer might depend on arbitrarily large tuples of segments,

arbitrarily far apart. Extending our lower bounds into more traditional models of computation

remains an important and very di�cult open problem.
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