Indexing Moving Points*

Pankaj K. Agarwalf Lars Arget Jeff Erickson$

Submitted to Journal of Computer and System Sciences: December 13, 2000
Revised and resubmitted: February 6, 2002

Abstract

We propose three indexing schemes for storing a set S of N points in the plane, each moving
along a linear trajectory, so that any query of the following form can be answered quickly: Given
a rectangle R and a real value ¢, report all K points of S that lie inside R at time t. We first
present an indexing structure that, for any given constant € > 0, uses O(N/B) disk blocks and
answers a query in O((N/B)/?*¢ 4 K/B) 1/Os, where B is the block size. It can also report all
the points of S that lie inside R during a given time interval. A point can be inserted or deleted,
or the trajectory of a point can be changed, in O(log2B N) I/Os. Next, we present a general
approach that improves the query time if the queries arrive in chronological order, by allowing
the index to evolve over time. We obtain a tradeoff between the query time and the number of
times the index needs to be updated as the points move. We also describe an indexing scheme in
which the number of I/Os required to answer a query depends monotonically on the difference
between the query time stamp ¢ and the current time. Finally, we develop an efficient indexing
scheme to answer approximate nearest-neighbor queries among moving points.

*An extended abstract of this paper appeared in the Proceedings of the 19th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems [2].

fCenter for Geometric Computing, Department of Computer Science, Duke University, Box 90129, Durham,
NC 27708-0129; pankaj@cs.duke.edu; http://www.cs.duke.edu/~pankaj. Supported in part by National Science
Foundation grants EIA-9870734, EIA-9972879, and CCR-9732787, by Army Research Of fice MURI grant DAAH04—
96-1-0013, by a Sloan fellowship, and by a grant from the U.S.-Israeli Binational Science Foundation.

fCenter for Geometric Computing, Department of Computer Science, Duke University, Box 90129, Durham, NC
27708-0129; large@cs.duke.edu; http://www.cs.duke.edu/~large. Supported in part by National Science Foundation
grants EIA-9870734, EIA-9972879, and CCR-9984099.

$Department of Computer Science, University of Illinois, Urbana, IL 61801; jeffe@cs.uiuc.edu; http://www.uiuc.
edu/~jeffe. Supported in part by National Science Foundation grant DMS-9627683, by U.S. Army Research Office
MURI grant DAAH04-96-1-0013, and by a Sloan Fellowship.

Indexing Moving Points 1

1 Introduction

Efficient indexing schemes that support range searching and its variants are central to any large
database system. In relational database systems, for example, one-dimensional range searching
is a commonly used operation [27, 41]. Various two-dimensional range-searching problems are
crucial for the support of new language features, such as constraint query languages [27] and class
hierarchies in object-oriented databases [27]. In spatial databases such as geographic information
systems (GIS), range searching obviously plays a pivotal role, and a large number of external data
structures (indexing schemes) for answering such queries have been developed (see [25, 36, 43, 7]
and references therein).

The need for storing and processing continuously moving data arises in a wide range of appli-
cations, including digital battlefields, air-traffic control, and mobile communication systems [1, 13].
Most existing database systems assume that the data is constant unless it is explicitly modified.
Such systems are not suitable for representing, storing, and querying continuously moving objects;
either the database has to be continuously updated or a query output will be obsolete. A better
approach is to represent the position of a moving object as a function f(t) of time, so that changes
in object position do not require any explicit change in the database system. With this representa-
tion, the database needs to be updated only when the function f(¢) changes, for example, when the
velocity of an object changes. Recently there has been some work on extending the capabilities of
existing database systems to handle moving-object databases (MOD); see, for example, [45, 46, 15].

This paper focuses on developing efficient indexing schemes for storing a set of points, each
moving in the xy-plane, so that range queries over their locations in the future or in the past can
be answered quickly. An example of such a spatio-temporal query is: “Report all points that will
lie inside a query rectangle R five minutes from now.”

1.1 Problem statement

Let S = {p1,p2,.-.,pn} be a set of moving points in the zy-plane. For any time ¢, let p;(¢) denote
the position of p; at time ¢, and let S(¢) = {p1(t),-..,pn(t)}. We assume that each point p; is
moving at some fixed velocity, or more formally, that p;(t) = a; - t + b; for some a;, b; € R?. The
trajectories of the points p; can change at any time. We assume that the objects are responsible
for updating the values a; and b; and that the database system is notified whenever these values
change. We will use the term now to mean the current time.

We are interested in answering the queries of the following form:

Q1. Given an axis-aligned rectangle R in the zy-plane and a time stamp ¢, report all points of S
that lie inside R at time ¢, i.e., report S(t) N R; see Figure 1(a).

Q2. Given a rectangle R and two time stamps ¢; and to, report all points of S that lie inside
R at any time between ¢; and t9, i.e., report U?:tl(S(t) N R); see Figure 1(b). In many
applications, either t; = now or ts = now, e.g., report all objects that were in R in the last
ten minutes, or the ones that will be inside R within ten minutes.

Q3. Given a query point o € R? and a time stamp ¢, report a §-approzimate nearest neighbor of
o in S at time ¢, that is, a point p € S such that d(o,p(t)) < (1 +6) - minyeg d(o, 7(t)), where
d(-,-) is the Euclidean distance; see Figure 1(c).

Our main interest is minimizing the number of disk accesses needed to answer a range query.
Consequently, we will consider these problems in the standard external memory model. This model

Indexing Moving Points 2

tﬁ/ P4
4
<7éi§

(2)

Figure 1. Instances of Q1, Q2, and Q3 queries, respectively.

assumes that each disk access transmits a contiguous block of B units of data in a single input/output
operation or I/0. The efficiency of a data structure is measured in terms of the amount of disk
space it uses (measured in units of disk blocks) and the number of I/Os required to answer a query.

Since we are also interested in solutions that are output sensitive, our query I/O bounds are
expressed not only in terms of IV, the number of points in S, but also in terms of K, the number
of points reported by the query. Note that we need at least [N/B] blocks to store all N points,
and at least [K/B] blocks to store the output from a range query. We refer to these bounds as
“linear” and introduce the notation n = [N/B] and k = [K/B]|. We also assume that the size of
internal memory is at least B2.

1.2 Previous results

A detailed summary of early work on temporal databases can be found in the survey paper by
Salzberg and Tsotras [42]. Most of the early work concentrated on multiversion and/or time-series
data. Recently, however, there has been a flurry of activity on developing data models and query
languages for supporting continuously moving objects. Sistla and Wolfson [45] developed a temporal
query language called future temporal logic (FTL) that supports proximity queries on moving
objects. Sistla et al. [46] later refined FTL and proposed a data model called moving objects spatio-
temporal (MOST) for moving objects. These models were later extended to incorporate several
important issues, including uncertainty in the motion and communication cost [50, 51, 52, 53, 54].
Other spatio-temporal models can be found in [15, 23, 22].

Although a number of methods have been proposed for accessing and searching moving objects
which seem to work well in practice [24, 30, 31, 47, 52], they all require (n) I/Os in the worst case,
even if the query range is empty. Kollios et al. [29] proposed an efficient indexing scheme, based on
partition trees [3, 5], for storing a set of points moving on the real line. It uses O(n) disk blocks,
answers a 1-dimensional query of type Q1 or Q2 using O(nl/ 2+e 4+ k) I/Os!, and allows a point to
be inserted or deleted in O(log3n) 1/Os. They also present a scheme that uses O(Nn) disk blocks
and answers a query of type Q1 using O(logg n + k) I/0Os, assuming that the speed of a point never
changes. Finally, they propose a data structure that answers queries of type Q1 for points moving
in R?, but it requires 2(n) I/Os to answer a query in the worst case. In another paper, Kollios et
al. [28] proposed a data structure for answering nearest-neighbor queries for moving points on
the real line, but it does not provide any nontrivial bound on the time taken to answer a query.

'In all time bounds of this form, ¢ is an arbitrarily small positive constant. Multiplicative constants hidden by
the big-Oh notation depend on e and typically go to infinity as € goes to zero.

Indexing Moving Points 3

Saltenis et al. [49] propose an indexing scheme based on R-trees for answering queries of type Q1
and Q2; its worst-case query time is also Q(n) I/Os. See also [39].

In the computational geometry community, early work on moving points focused on bounding
the number of changes in various geometric structures such as convex hulls and Delaunay triangula-
tions as the points move [44]. The notion of kinetic data structures, introduced by Basch et al. [10],
has led to several interesting results related to moving objects, including results on kinetic space
partition trees (also known as cell trees) [6]. The main idea in the kinetic framework is that even
though the points move continuously, the relevant combinatorial structure changes only at certain
predictable discrete times. Therefore one does not have to update the data structure continuously.
In contrast to fixed-time-step methods, in which the entire structure is updated periodically at
a fixed rate determined by the fastest moving object in the database, kinetic data structures are
updated only when certain kinetic events occur. These events have a natural interpretation in
terms of the underlying structure, for example, when the trajectory of a point changes or when
the z- or y-projections of two points coincide. Each kinetic update effects only a small part of
the overall data structure, so different portions of the structure can change at different rates. All
previous work on kinetic data structures has been done in the standard RAM model, which ignores
the overwhelming cost of paging large amounts of data.

1.3 Our results

This paper contains four main results on indexing moving points in the plane. We first present three
indexing schemes for answering Q1 queries, by using two different approaches and then by combining
them. The first approach regards time as a third spatial dimension and solves the problem directly
in zyt-space. In the second approach, based on the work on kinetic data structures, we develop a
two-dimensional indexing scheme and describe how to evolve it over time. To our knowledge, the
structures we develop are the first linear-size indexing schemes with provable performance bounds
for answering range queries on moving points in R2.

Our paper is organized as follows. In Section 2, we describe some useful general concepts from
computational geometry. Next, in Section 3, we present an indexing scheme based on partition
trees that uses O(n) disk blocks, answers a query of type Q1 using O(n!/?** + k) 1/Os in the worst
case. The index can be constructed using O(N logp n) I/0s, and the amortized cost of an insertion
or deletion is O(logk n) expected 1/0s.2 It can also answer queries of type Q2 within the same
I/O bound. Finally, we observe that our indexing scheme can handle certain forms of uncertainty
in the velocity of points, without affecting the asymptotic performance. Since this index needs to
be updated only when the trajectory of a point changes, we call it a time-oblivious indez.

While the partition tree scheme is time-oblivious, the cost of a query is relatively high. In
Sections 4 and 5, we show that by allowing an index to evolve over time, we can answer a Q1 query
using O(logg n + k) I/0s, provided that the queries arrive in chronological order. This is achieved
by applying the kinetic data structure framework to an ezternal range tree [8]. Kinetic range trees
(with slightly worse performance) were first developed in the internal-memory setting by Basch et
al. [11]. Our structure uses O(nlogg n/(logg logg n)) disk blocks. If the points move with fixed
velocity, then it processes O(N?) events, each of which can be processed in O(log% n/logg logg n)
I/Os. Our structures works even if the trajectories of the points are polynomials of fixed degree,
provided we can compute in O(1) time when the z- or y-coordinates of two points coincide. We

2Unless we explicitly assume a distribution on the input points and their trajectories, the expectation is taken
over the outcome of the coin flips performed by the algorithm; the expected bounds hold on any input. By amortized,
expected cost of the update time to be 7, we mean that for any r > 1, the expected cost of performing any sequence
of r updates is at most r7.

Indexing Moving Points 4

also show how to combine kinetic range trees and partition trees to obtain a tradeoff between the
query time and the number of events at which the kinetic index needs to be updated. Given a
parameter A such that NB < A < N2, we can answer any query in O(N'*¢/v/A + k) 1/Os, and
provided the trajectories of the points do not change, there are O(A) events.

In many applications, such as air-traffic control, queries in the near future (or recent past) are
more critical than queries far from the present time. In such applications, we need an indexing
scheme that has fast response time for near-future queries but may take more time for queries that
are far away. In Section 6, we propose such an indexing scheme. Using O(nlogg n/(loggloggn))
disk blocks, it answers any query of type Q1 so that the number of I/Os required is a monotonically
increasing function of |t—now|. The query time never exceeds O(n'/?t¢ +-k). If the points and their
trajectories are distributed uniformly at random, then any query takes O((A,/n)"/?n® 4+ k) expected
I/Os (here the expectation is taken over the distribution of input points), where 0 < A, < (3) is
the number of kinetic events in the time interval [now,t] (or [t, now]).

Finally, in Section 7, we describe an indexing scheme for answering approximate-nearest-
neighbor queries. Given a parameter § > 0, we construct an indexing scheme based on partition
trees that uses O(n/+v/d) disk blocks. Then given a query point o € R? and a time stamp #, our
structure returns a d-approximate nearest neighbor using O(n'/?t¢/y/§) 1/Os. A point can be
inserted or deleted in amortized O((log% n)/v/3) expected I/Os.

2 Geometric Preliminaries

In order to develop our results, we need a few concepts and results from computational geometry.
For further geometric background, we refer the reader to the textbook of de Berg et al. [18] or the
survey on geometric range searching by Agarwal and Erickson [5]. We assume the reader is familiar
with standard randomized algorithms techniques; see Motwani and Raghavan [35] for details.

2.1 Duality

Duality is a popular and powerful technique used in geometric algorithms [18]; it maps each point
in R? to a line in R? and vice-versa. We use the following duality transform: The dual of a point
(a,b) € R? is the line 9 = az1 — b, and the dual of a line 29 = az; + 3 is the point (o, —3). Let o*
denote the dual of an object (point or line) o, and for any set of objects 3, let 3* denote the set of
dual objects {¢* | 0 € £}. Note that duality is an involution; for any object o, we have (¢*)* = 0.
An essential property of this transformation is that a point p is above (resp., below, on) a line h
if and only if the dual point h* is above (resp., below, on) the dual line p*. The dual of a strip o
is a vertical line segment ¢*, in the sense that a point p lies inside ¢ if and only if the dual line p*
intersects o*. See Figure 2.

primal

Figure 2. The duals of two points and a strip are two lines and a vertical line segment.

Indexing Moving Points 5

2.2 External partition trees

Partition trees are one of the most commonly used internal memory data structures for geometric
range searching [5, 33]. Our first indexing scheme is based on partition trees, which were originally
described in Matousek [33], and later extended in [3] to the external memory setting. We briefly
summarize them here with an emphasis on insertion/deletion operations, as we slightly improve
their performance compared to [3].

In order to describe an algorithm for constructing a partition tree, we need to define two
concepts, (1/r)-cuttings and simplicial partitions, which are interesting in their own rights. Let
L be a set of N lines in the plane. For any integer r, a triangulation3 Z of the plane is called a
(1/r)-cutting of L if at most N/r lines intersect the interior of every triangle in 2. The size of a
cutting Z is just the number of triangles. For a given weight function w : L — R", 2 is called
a weighted (1/r)-cutting if the total weight of the lines intersecting any triangle of Z is at most
w(L)/r, where w(L) is the total weight of all the lines in L. The following lemma follows from the
known results in computational geometry [14, 33].

Lemma 2.1. Let L be a set of N lines in the plane, let w : L — R be a weight function, and
let r = O(B) be a parameter. A weighted (1/r)-cutting of L of size O(r?) can be computed in
expected O(nr) I/Os.

Proof: Matousek [33] showed that by scaling the weights of lines appropriately, the problem of
computing a weighted (1/r)-cutting can be reduced to computing a 1/(2r)-cutting of unweighted
lines. We therefore assume that each line in L has weight 1 and we want to compute a (1/7)-
cutting of L. Choose a random subset R C L of ar lines, where « is a constant; each line is chosen
with equal probability. Compute the arrangement A(R) of R and triangulate each face of A(R).*
Let A*(R) denote the resulting triangulation. For each triangle A € A*(R), compute the subset
L C L of lines that intersect the interior of A. A standard random-sampling argument [17, 14]
implies that |La| < (N/r)logr and the expected value of), |La| is O(Nr). Since we assume
that the size of the internal memory to be at least B2, that is, that |A*(R)| is of size O(M), this
step can be done in O(nr) I/0s.

For each triangle A € A*(R), if i(N/r) <|La| < (i+1)N/r for an integer ¢ > 1, then choose a
random subset Ra C La of «ilogi lines, compute the arrangement A(Ra) within A and compute
a triangulation A*(RA) of A(RA) within A. Set 2 = [Jo A*(Ra). It was shown in [14] that if
the constant « is chosen appropriately, then with high probability, each triangle in = intersects at
most N/r lines and the expected size of Z is cr?, for some constant ¢ > 1. The expected number of
I/Os needed in this step is also O(nr). If our algorithm creates more than 2¢r? triangles, we run
the algorithm again. By Markov’s inequality the probability of this happening is at most 1/2, so
the expected number of times we run the algorithm is at most 2. O

Let S be a set of N points in R2. A simplicial partition of S is a set of pairs IT = {(S1, A1),
(S9,A9),...,(Sr,Ar)}, where the S;’s are disjoint subsets of S, and each A; is a (possibly un-
bounded) triangle containing the points in the corresponding subset S;. A point of S may lie in
many triangles, but it belongs to only one subset S;; see Figure 3. The size of II, here denoted r,
is the number of subset-triangle pairs. A simplicial partition is balanced if each subset S; contains

3A triangulation of any domain is a decomposition of that domain into a finite number of (possibly unbounded)
triangles, such that the intersection of any two triangles is an edge of both, a vertex of both, or empty.

4The arrangement of a set L of N lines in the plane, denoted as A(L), is the planar subdivision whose vertices are
the intersection points of lines, edges are the maximal portions of lines not containing any vertex, and faces are the
maximal connected portions of the plane not containing any line of L. A(L) can be computed using O(nN) I/Os.

Indexing Moving Points 6

between N/r and 2N/r points. The crossing number of a simplicial partition is the maximum num-
ber of triangles crossed by a single line. The following lemma states how fast a simplicial partition
can be constructed. The I/O bound proved here is smaller than the one in [3].

Figure 3. A balanced simplicial partition of size 7.

Lemma 2.2. Let S be a set of N points in the plane, and let r = O(B) be a positive integer. A
balanced simplicial partition II of size r for S can be constructed in O(nr) expected 1/Os, such
that the crossing number of II is O(+/T).

Proof: We construct II using the following simple randomized algorithm. Fix a constant ¢ > 0
and compute a 1/(cr)-cutting of the lines dual to the points in S. Let L be the set of lines dual to
the vertices of the triangles in the cutting. By Lemma 2.1, |L| = O(r?) and this step takes O(nr)
expected I/Os.

Next, we construct the subset/triangle pairs in IT one at a time as follows. Suppose we have
already constructed (S1,Aq)...(Si—1,2A—1) and we want to compute the next pair (S;, A;). Let
Si=258\ U;;ll S;. For each line £ € L, we maintain the number z;(£) of triangles Ay, ..., A;_; that
intersect £; set w;(£) = 2% to be the weight of £. Let r; = |S!|r/N and fix a constant a > 0. We
compute a (a//r;)-cutting E of the set (L, w;) of weighted lines. The value of a is chosen so that
= has at most r; triangles. By construction, at least one triangle of E contains at least

1Sl _ 1Sl _ N

ri |Sir/N o

points. Let A; be one such triangle, and let S; be any [N/r] points in A;. The most time-
consuming step of the construction is determining how many points of S, lie in each triangle in the
arrangement, which requires O(n) I/Os.

Since we iterate the previous process r times, constructing the entire simplicial partition requires
O(nr) I/Os. It is obvious that the resulting partition is balanced. Matousek [33] showed that
crossing number of the resulting partition is at most a+/r, for a constant a > 1, provided that the
constant c is chosen appropriately. O

We are now ready to describe how to construct a partition tree for a set S of points in R?. Each
node v in a partition tree is associated with a subset S, C S of points and a triangle A,. For the
root of the tree, we have Syoor = S and Ayooy = R2. Let N, = |S,| and n, = [N, /B]. We construct
the subtree rooted at node v as follows. If N,, < B, then v is a leaf and we store all points of S, in
a single block. Otherwise, v is an internal node of degree

ry = min{cB, 2n, }, (2.1)

Indexing Moving Points 7

where ¢ > 1 is a constant to be specified later. We compute a balanced simplicial partition
I, = {(S1,2A1),---,(Sr,, Ar,)} for S, with crossing number O(,/7,) and then recursively construct
a partition tree T; for each subset S;. For each i, we store the triangle A\; and a pointer to 7; in
v; the root of T; is the ith child of v, and it is associated with S; and A;. We need O(c) = O(1)
blocks to store any node v. Our choice of 7, ensures that every leaf node contains ©(B) points.
Thus the height of the partition tree is O(loggn) and since the tree contains O(n) nodes it use
O(n) disk blocks. If we apply Lemma 2.2 recursively to build the entire partition tree, then the
total expected construction time is O(N logg n) I/Os.

We want to be able to answer queries of the following type: Find all points inside a query
strip 0. In order to do so, we visit T in a top down fashion. Suppose we are at a node v. If v is a
leaf, we report all points of S, that lie inside 0. Otherwise, we test each triangle A; of II,. If A;
lies completely outside o, we ignore it; if /\; lies completely inside o, we report all points in S; by
traversing the ith subtree of v; finally, if o crosses /\;, we recursively visit the ith child of v. Note
that we spend O(c) I/Os at each node and that each point in ¢ is reported exactly once.

Let ¥1(N,) denote the number of I/Os required to answer a query starting at node v, excluding
the O(K,/B) I/Os used to report the K, output points. Following the analysis in [3], we find that
31 (Ny,) obeys the following recurrence for some constant o > 0 (defined in the proof of Lemma 2.2):

2N,
14+ ayry-% if N, > B,
sy < {1+ o () it (22
1 if N, < B.
Let € be an arbitrarily small positive constant. By induction on N,,, we prove that
$1(Ny) < Aynl/?te (2.3)

for some constant A; > 1, provided we choose ¢ = c(e) sufficiently large in equation (2.1), the
definition of 7,. Inequality (2.3) is obviously true if N, < B. If B < N, < cB?/2, then r, = 2n,
and

S1(N,) < 14 av2n, - £1(B)
=14 av2n,

provided that A; > v/2a + 1. Finally, if N, > ¢B?/2, and thus 7, = cB, then by the induction
hypothesis,

cB
<14 aVceB- A(2n,/cB)Y?*e

2N,
T1(NVy) €1+ aveB- % (”)

2x
<1 Aynl/?te
s+ (cB)e 1My

< Alnql;/2+6
provided we choose ¢ > (4a)/¢ and A; > 2. This completes our induction proof. Putting every-
thing together, we conclude that a query can be answered in O(nl/ 2+¢ 1 k) T/Os; the constant of
proportionality depends on €, as we spend O(c) I/Os at each of the O(n'/?+¢) nodes visited by the
query procedure.

Indexing Moving Points 8

To handle insertions and deletions, we use the partial rebuilding technique of Overmars [37]. At
each node v in the tree, we store N,, the number of points in its subtree. To insert a new point p
into the subtree rooted at v, we first increment N,. Then if v is a leaf, we add p to the subset S;
otherwise, we find a triangle in the simplicial partition IT, that contains p, and recursively insert
p into the corresponding subtree. If more than one triangle in II, contains p, we choose the one
whose subtree is smallest. The deletion procedure is similar except that it has to know the leaf
of the tree that stores the point to be deleted. This is accomplished by maintaining a separate
dictionary that for each point p maintains the index of the leaf containing p; see [9] for details.

In order to guarantee the same asymptotic query performance as in the static case, we occa-
sionally need to rebuild parts of the partition tree after an update. A node u is unbalanced if it
has a child v such that either N, < N,/2r, or N, > 4N,,/ry; in particular, the parent of a leaf v
is unbalanced if either N, < B/4 or N, > 2B. (There is nothing special about the constants 2 and
4 in this definition.) To ensure that every node in the tree is balanced after inserting or deleting
a point, we rebuild the subtree rooted at the unbalanced node closest to the root. Rebuilding
the subtree rooted at any node v takes O(N, logg n,) expected I/Os, and the counter N, is incre-
mented or decremented (NN,) times between rebuilds. Thus, the amortized cost of modifying N, is
O(logp ny) expected I/0s. Since each insertion or deletion changes O(logg n) counters, the overall
amortized cost of an insertion or deletion is O(log% n) expected I/Os.

Theorem 2.3. Given a set S of N points in R?> and a parameter € > 0, we can preprocess S into
an external partition tree of size O(n) blocks so that the points inside a query strip can be found
in O(n'/?*¢ 4 k) I/Os. The index can be constructed in O(N logg n) expected I/Os, and points
can be inserted or deleted at an amortized cost of O(log% n) expected I/Os each.

By exploiting the duality transformation described in Section 2.1, Kollios et al. [29] show that
two-dimensional external partition trees can be used to efficiently answer range queries for linearly-
moving one-dimensional points, as follows. Let S be a set of N moving points in R!. If we interpret
time as a second spatial dimensions, S traces out a set of N lines in the zt-plane. Let P denote the
set of (static) points dual to these lines. A 1-dimensional Q1 query asks which of the lines traced
by S intersect a horizontal line segment, or equivalently, which points in P lie inside a query strip.
This query can be answered using a partition tree over P as described above. Using Theorem 2.3
in this framework, we achieve the same query and space bounds as Kollios et al. [29], but improve
upon their bound of O(logs N') I/Os per insertion or deletion.

A query of type Q2 in one dimension — report all points lying in an interval I at any time during
the interval [t1,%2]—is equivalent to reporting all lines that intersect the rectangle B = I x [t1, 2]
We can report all such lines by separately reporting the lines intersecting the bottom, top, and left
edges of B, using three separate copies of our two-level partition tree. Note that the same moving
point may be reported more than once, but never more than twice. Hence, we obtain the following.

Corollary 2.4. Given a set S of N linearly moving points in R and a parameter € > 0, we can
preprocess S into an index of size O(n) blocks so that a Q1 or Q2 query can be answered in
O(n'/?t¢ + k) I/Os. The index can be constructed in O(N logg n) expected I/Os, and points can
be inserted or deleted at an amortized cost of O(log% n) expected 1/Os each.

2.3 Simplified partition trees for random points

In this section, we describe a simplified version of the partition tree data structure. Although
the worst-case query time for this structure is Q(n), we expect it to be efficient in most practical
situations. To support our intuition, we analyze the expected query time when the points in S are

Indexing Moving Points 9

distributed uniformly and independently in some rectangular domain. Without loss of generality,
we assume the points all lie in the unit square 0 = [0, 1]2. Although the above model on distribution
of points and their trajectory is not realistic in many applications, the uniform distribution is widely
used to analyze the expected performance of various algorithms.

For simplicity, assume that B = 4° for some integer s > 0. We call our simplified data structure
a grid tree; it is a variant of the so-called hierarchical grid file [36]. At a high level, the grid tree G
is a B-ary tree of depth loggzn. Each node v in G is associated with a square O,; the root is
associated with the original square 0. Set S, = SN 0O, and N, = |S,|. If the depth of v is loggn
or N, < B, then v is a leaf. Otherwise, we partition [, into B equal squares by drawing a regular
VB x /B grid. Each resulting square is associated with a child of v. G uses O(n) blocks and can
be constructed recursively in O(nlogg n) I/Os. The squares associated with the leaves of G induce
a partition of OJ. For any leaf v, the square [J, has area B/N. Thus, if the points S are uniformly
distributed, the expected size of any leaf subset S, is B, and so the expected number of blocks need
to store any leaf subset is O(1).

The algorithm for finding the points of S in a strip o is exactly the same as for standard
partition trees. We visit G in a top-down fashion. If v is a leaf, we report all points of [J, N o using
[N,/B] I/Os. At any internal node v, we examine whether o intersects OJ,. If 00, C o, then we
report all the points in S,; if the boundary of ¢ intersects [, then we recursively visit the children
of v. Since the boundary of o intersects O(\/ﬁ) squares associated with nodes of G at level 7, the
algorithm visits at most O(y/n) nodes v such that O, intersects the boundary of . We examine
the points in S, for such a node only if v is a leaf, in which case the expected size of S, is B.
Therefore we spend O(y/n) I/Os at such nodes. Next, suppose the procedure visits ;1 nodes whose
squares [, are contained in o. Since the area of each square [J, is at least B/N, the area of o is
at least uB/N, so the expected size of 0 N S is at least uB. Consequently, the expected number of
I/Os spent in answering a query is O(y/n + k). Using Chernoff’s bound [35], we can prove that the
query time is O(y/n + k) with probability at least 1 — 1/N.

Finally, similarly to partition trees above, we can make the grid tree fully dynamic using the
partial rebuilding technique of Overmars. The expected amortized cost to insert or delete a random
point is only O(logg n) I/0s, in part because we can directly compute which cell of a grid contains
a given point at each node.

Theorem 2.5. Given a set S of N uniformly distributed points in [0, 1]2, we can preprocess S into
an index of size O(n) blocks so that the points inside a query strip can be found in O(y/n+k) I/Os
with probability at least 1 —1/N. The index can be constructed in O(nlogg n) I/Os, and random
points can be inserted or deleted at an expected amortized cost of O(loggn) I1/Os each.

Corollary 2.6. Given aset S of N linearly moving points in R whose initial positions and velocities
are uniformly distributed in the interval [0, 1], we can preprocess S into an index of size O(n) blocks
so that a QI or Q2 query can be answered in O(y/n + k) I/Os with probability at least 1 — 1/N.
The index can be constructed in O(nloggn) I/Os, and points can be inserted or deleted at an
expected amortized cost of O(logg) I/Os each.

Remark. Unlike the index presented in the previous subsection, the query time of the grid tree is
only provably efficient for queries over random point sets. In the worst case, the query time for a
grid tree can be Q(n) I/0s, even if the query strip is empty.

Indexing Moving Points 10

3 Time-Oblivious Indexing

We now describe our first indexing scheme to answer Q1 queries for points in the plane. Let S be a
set of N linearly-moving points in the zy-plane. These points trace out IV lines in three-dimensional
space-time; in this setting, a Q1 query asks which lines intersect a rectangle R parallel to the zy-
plane. Kollios et al. [29] proposed mapping each line to a point in R* and using four-dimensional
partition trees to answer Q1 queries, but the resulting query time is quite large. Instead, we use a
multilevel partition tree. Multilevel data structures are a general technique that allows us to answer
complex queries by decomposing them into several simpler components and by designing a separate
data structure for each component. See [5] for a general discussion of this powerful technique.

Observe that a line £ intersects R if and only if their projections onto the zt- and yt-planes both
intersect. We apply a duality transformation to the xt- and yi-planes, as described in Section 2.1.
Thus, each moving point p in the zy-plane induces two static points p* and p¥ in the dual xt-plane
and the dual yt-plane, respectively. For any subset P C S, let P® and PY respectively denote
the corresponding points in the dual zt-plane and the dual yt-plane. Any query rectangle (query
segments in the zt- and yt-planes) induces two query strips o and o¥, and the result of a query is
the set of points p € S such that p® € ¢% and p¥ € g¥. See Figure 4.

|

e
\
R]

Figure 4. Decomposing a rectangle query among moving two-dimensional points into two strip queries among static
two-dimensional points, by dualizing the zt- and yt-projections. A line intersects the rectangle if and only if both
corresponding points lie inside the strips.

In the following, we first describe a multilevel partition tree that answers a query efficiently
for an arbitrary set of moving points in the plane. We then describe a simpler indexing scheme
that works well for uniformly distributed point sets. Finally, we discuss a few extensions of these
schemes.

3.1 Multilevel partition trees

We construct our multilevel partition tree 7 as follows. Let § < 1/2 be an arbitrarily small positive
constant. First, we build a primary partition tree T% for the points P*, where the fanout of each
node v is defined as

Ty = min{n®, ¢B, 2n,}. (3.1)

Then at certain nodes v of T, we attach a secondary partition tree T}/ for the points S§. Specifically,
if n’ > ¢B, we attach secondary trees to every node whose depth is a multiple of § log, g n; otherwise,

Indexing Moving Points 11

we attach secondary trees to every node of T%.° In either case, we attach secondary trees to
0O(1/48) = O(1) levels of T®. Each secondary tree T, requires O(n,) blocks, so the total size of all
the secondary trees is O(n/d) = O(n) blocks. Moreover, we can construct all the secondary trees
in O(N logg n) expected I/Os, and using the partial rebuilding technique, we can insert or delete
a point in O(log% n) amortized expected I/Os. See Figure 5.

partition tree

Figure 5. Schematic of our multilevel partition tree structure. Each node in certain levels of the primary tree points
to a secondary structure. Only two secondary structures are shown.

The algorithm for answering a query is nearly the same as for the basic partition tree. Given
two query strips o and o¥, we first search through the primary partition tree for the points in
P®No® If we find a triangle A; that lies completely inside o%, we do not perform a complete
depth-first search of the corresponding subtree. Instead, we search only to the next level where
secondary structures are available, and for each node v at that level, we use the secondary tree Ty
to report all points of PY N oY.

As in Section 2, let ¥1(N,) denote the number of I/Os required to answer a query in some
secondary partition tree T}/ over N, points, excluding the O(K,/B) I/Os used to report the K,
points inside the query range. Similarly, let (N,) denote the number of I/Os to answer a query
at the multilevel data structure 7)Y over N, points, excluding the O(K,/B) output I/Os.

Lemma 3.1. 33(N,) = O(n‘anl,/”g).

Proof: Let v be a node in T? and let w be one of its proper descendants in T%. We call w
an important descendant of v if w has a secondary structure Ty, but no node between v and w
has a secondary structure. Each node v has at most n important descendants, whose secondary
structures collectively store all N, points in S,. Whenever we visit v recursively during a query, we
perform secondary queries at a subset of the important descendants of v; we perform at most n’
secondary queries, each over at most N, /na points. Thus, ¥o(N,) obeys the following recurrence
for some constant a > 0:

N, 2N,
Yo(N,) <nl -3 (n—j;) +a\/r7,-z:2(”) :

Ty

By equation (2.3), this expands to

So(N,) < A1 (n0) /251 /246 4 o frr - 5 (ZN") (3.2)

Ty

SIf we always use fanout ¢B and attach a secondary structure to every node, the resulting data structure uses
O(nlogy n) blocks and answers queries in O(n'/2N¢ + k) 1/Os.

Indexing Moving Points 12

for some constant A;. The base case for the recursion is N, < Bn‘s, when no descendant of v has
an attached secondary structure. In this case, the query algorithm may visit every descendant of v,
s0 Ba(N,) = O(ny) = O(n°).
We solve this recurrence similarly to recurrence (2.2) for ¥;(N,). Specifically, we prove by
induction on N, that
Yo (Ny) < Agnonl/?te (3.3)

for some constant A, > 0, provided we choose ¢ = c(e, §) sufficiently large in the definition of r,
(equation (3.1)).

First suppose that ¢B < n’. Inequality (3.3) is obviously true when N, < Bn?, provided Ay
is sufficiently large, so assume N, > Bn’. In this case, we have r, = ¢B, so by the induction
hypothesis,

EQ(NU) < Al(n6)1/2—5n11]/2+5 + /CB_- 5, (201211)

2, \ /e
< A1n‘5/2_’5‘5n11,/2+£ + aVeB - Agn® <—v)

cB
Ay 20 5, 1/2+4e
= (A2n5/2+55 + (cB)E) Aon’n

S A2n6n11)/2+85

provided we choose ¢ > (4a)'/¢ and Ay > 2A4,.
On the other hand, suppose that ¢cB > n’. Again, equation (3.3) is trivial if N, < Bn®. If
Bnd < N, < 2¢B2?, then r, = 2n,, so
To(Ny) < A1(n)V/2=enl/2+e 4 o /iy Sy (B)
— A1n6/2_65n111/2+5 + a\/n_,,
< Ayndnl/?e 4 annl/?

S A2n6n11)/2+53

provided Ay > A; + «. Finally, if N, > 2¢B2, then r, = n°, so by the induction hypothesis,

ZQ(Nv) < Al(n6)1/2_5n11}/2+8 + aVv 77,5 . 22 (2::?})

d\1/2—¢,.1/2 / 5 (2 Ve
SAl(n)/ 5nv/+g+a nd - Aon (nd)
< (A2n6/2+56 t (né)s) Agn’n/ "
< Agn‘sn},/Q"'E
provided Ao > 2A;. This completes our inductive proof. O

Theorem 3.2. Given a set S of N points in R?, each moving linearly with a fixed velocity, and a
parameter € > 0, we can preprocess S into an index of size O(n) blocks so that a Q1 query can be
answered in O(n'/>*¢ + k) I/Os. The index can be constructed in O(N logg n) expected 1/Os, and
points can be inserted or deleted at an amortized cost of O(logh n) expected 1/Os each.

Indexing Moving Points 13

Recall that a query of type Q2—report all points lying in a rectangle R in the zy-plane at
any time during the interval [t1,?2]—is equivalent to reporting all lines that intersect the box
B = R X [t1,t2]. As in the one dimensional case, we can report all such lines by separately reporting
the lines intersecting the top, bottom, left, right, and front facets of B, using five separate copies of
our earlier index. Again, the same moving point may be reported more than once, but never more
than twice.

Theorem 3.3. Given a set S of N points in R?, each moving linearly with a fixed velocity, and a
parameter € > 0, we can preprocess S into an index of size O(n) blocks so that a Q2 query can be
answered in O(n'/?*¢ + k) I/Os. The index can be constructed in O(N logg n) expected 1/Os, and
points can be inserted or deleted at an amortized cost of O(logh n) expected 1/Os each.

3.2 Multilevel grid trees

We can simplify our multilevel structure by using a grid tree, as in Section 2.3. For purposes of
analysis, we assume that both the initial position and velocity of each point are chosen uniformly
at random from the unit square [0, 1]?.

Our multilevel grid tree consists of a primary grid tree 7% for the points P® with secondary
grid trees T for the points P attached to all nodes whose depth is an integer multiple of
dlog.gn. Each node v in the primary grid tree that stores N, points has fanout 4°, where
s = [log4 min{n‘s,cB,2nv}1. If a node v has at most B points or if it is at depth loggn, v is
a leaf. Nodes in the secondary trees have fanout B as before. Unlike our earlier structure, however,
each secondary tree is constructed as though it contained ezactly its expected number of points.
By similar arguments as above, our multilevel grid tree uses O(n/J) = O(n) blocks of space, can
be built in O(nloggn) I/0s, and allows random insertions and deletions in O(logg n) expected
(amortized) I/0Os.

A query is answered similarly to a multilevel partition tree. Given two query strips % and o¥,
the query algorithm recursively visits O(nl/ 2+9) nodes in the primary tree and possibly searches
the secondary structures at these nodes. A secondary query at a node v uses O(y/n, + K,/B)
expected I/Os. Adapting the analysis in the previous subsection, we can prove that the total
expected number of expected I/Os required by the query procedure is O(nl/ 2+ Jog, n + k).

Theorem 3.4. Given a set S of N linearly moving points in R> whose initial positions and velocities
are uniformly distributed in [0,1]2, we can preprocess S into an index of size O(n) blocks so that
a QI query can be answered in O(nl/ 2+¢ 1+ k) expected I/Os. The index can be constructed in
O(nlogg n) expected I/0s, and points can be inserted or deleted at an amortized cost of O(logg n)
expected I/0s each.

Remark. We can establish a tradeoff between the size of the multilevel grid tree and the query
time by changing the fanout of the primary tree. If we use fanout r, the resulting structure uses
O(nlog, n) blocks and answers queries in O(y/rnlog, n + k) expected I/Os. For example, if we use
fanout 4 for the primary tree (i.e., T? is a quad tree), then the resulting structure uses O(n log, n)
blocks and answers queries in O(y/nlogy n + k) expected 1/0s.

3.3 Further extensions

To conclude this section, we briefly sketch a few extensions of our data structures. As these
extensions combine the results of this section with existing techniques from computational geometry
[5], we will omit most of the details.

Indexing Moving Points 14

Higher dimensions. By building further levels of partition trees, we can generalize our results to
any (constant) number of dimensions. In particular, let S be a set of N points in R?, each moving
with a fixed velocity. Each point traces a line in (d + 1)-dimensional space-time (z1,...,z4,t). As
earlier, a line £ intersects an orthogonal d-rectangle R in the (d+ 1)-dimensional space if and only if
their projections onto the two-dimensional z;i-plane intersect for all 1 < ¢ < d. We therefore map
each point p € S to a two-dimensional point p’ in the dual z;t-plane, and map a query rectangle
R to a strip o' in the dual z;t-plane. A point p(t) lies in R if and only if p € o' for every
1 <7 < d. We therefore construct a d-level partition tree, one for each z;t-plane, and proceed as in
the two-dimensional case. The asymptotic query time remains O(n'/2 4 k) I/Os, but the constant
of proportionality increases exponentially with dimension. A Q2 query can also be answered in an
analogous manner.

Theorem 3.5. Given a set S of N points in R%, each moving with a fixed velocity, and a parameter
e > 0, we can preprocess S into an index of size O(n) blocks so that a Q1 or Q2 query can be
answered in O(n/?*¢ + k) I/Os. The index can be constructed in O(N logg n) expected I/Os, and
points can be inserted or deleted at an amortized cost of O(logh n) expected I/Os each.

Higher-degree motion. Returning to the two-dimensional case, we can modify our external
partition tree to handle algebraic motion of higher degree, by using the so-called linearization
technique. Suppose the position of each point p € S is given by a polynomial of degree D in the
time parameter ¢t. Each point now traces out an algebraic curve in zyt-space-time. As in the case
of linear motion, a curve + intersects a horizontal rectangle R if and only if their projections onto
the zt-plane and yt-plane both intersect. We map any polynomial curve v with equation z =
ag + ayt + agt’ + .. aptP to the point v* = (a1,...,ap, —ag) € RP*! and a point p = (o, §) € IR?
to the hyperplane p* : 4,1 = -0+ ZZ’; 1 o'z; in RPTL. A vertical segment ¢ = pg maps to a slab
o* in RP*!, bounded by the hyperplanes p* and ¢*. Then ~ intersects a vertical line segment o if
any only if the point v* € ¢*. Thus, we can reduce a query of type Q1 to a pair of slab queries
among static points in RPT1.

To answer high-dimensional slab queries, we can construct an external partition tree based on
cuttings, exactly as in the two-dimensional case. However, the performance of the data structure
deteriorates with the dimension. Combining our earlier analysis with techniques of Matousek [33],
as described in [3], we can show that the query time for a (D + 1)-dimensional slab query is
O(nlfl/ (D+1)te 4 k) 1/0Os. Finally, we can combine these higher-dimensional partition trees into a
multilevel data structure exactly as we did for linear motion.

Theorem 3.6. Given a set S of N points in R?, each moving according to a polynomial funcion
of degree D, and a parameter € > 0, we can preprocess S into an index of size O(n) blocks so that
a QI or Q2 query can be answered in O(n'~Y/(P+)+e 4 k) I/Os. The index can be constructed in
O(N logg n) expected I/Os, and points can be inserted or deleted at an amortized cost of O(logg n)
expected I/Os each.

Uncertainty. Returning to linear motion in the plane, the external partition tree can also handle
certain forms of uncertainty in the velocity, without affecting its asymptotic performance. More
precisely, let § be an uncertainty parameter, defined as follows. Suppose a moving point in the
plane is represented as p(t) = at + b, where a = (az,ay) is its velocity and b = (bs, by) is its initial
position. Because of uncertainty, the actual position of point p at time ¢ is p(t) = at + b, where
@ = (Gz,Gy), Gz € [ag — 6,05 + 6], and @y € [ay — J,ay + 6]. The actuial velocity vector @ could
change with time, but the uncertainty ¢ is fixed. If we denote by p the rectangle of size 26 centerted
at the origin, then p(t) € pt + p(t). Set y,(t) = pt + p(t). We now restate a Q1 query as follows:

Indexing Moving Points 15

1’. Given an axis-aligned rectangle R in the zy-plane and a time value ¢, report all points of S
g g
that potentially lie inside R at time ¢, i.e., all points p € S such that 7,(t) intersects R.

We again work in the dual zt- and yt-planes. For a rectangle R, define the strips ¢® and o¥
as earlier. For a point p € S, we define two intervals I = [(az — §,b;), (az + J,b;)] and I =
[(ay — 0,by), (ay + 0,by)] in the dual xt- and yt-planes, respectively. We want to report p if I7
intersects 0@ and I} intersects o¥. Let £% (resp. £%) be the halfplane lying to the right (resp. left)
of the left (resp. right) boundary of 0. Then I intersects o” if and only if (a; — d,b;) € £ and
(az+6,b;) € £%. In other words, the condition “o” intersecting I7” can be stated as the conjunction
of two halfspace containment conditions. Similarly, we can state the condition “I} intersecting o¥”
as the conjunction of two halfspace containments. We construct a 4-level partition tree in which
each level of the tree filters out the points that satisfy one of the halfspace containment conditions.
Omitting further details, we conclude the following.

Theorem 3.7. Given a set S of N points in R?, each moving linearly with a fixed velocity, an
uncertainty parameter ¢, and a parameter € > 0, we can preprocess S into an index of size O(n)
blocks so that a Q1' query can be answered in O(n'/?t¢ +k) I/Os. The index can be constructed in
O(N logg n) expected I/Os, and points can be inserted or deleted at an amortized cost of O(log% n)
expected I/0s each.

4 One-Dimensional Chronological Queries

In the next two sections, we describe how to significantly improve the query time if we allow the
data structure to change over time, and if we allow queries only at the current time. The approach
can be extended to handle queries in future time as long as they arrive in chronological order. We
develop our results in the kinetic data structure framework of Basch et al. [10, 11]. The main idea
is to store only a “combinatorial snapshot” of the moving points at any time. Although the points
are moving continuously, the data structure itself only depends on certain combinatorial properties
(such as sorted order of points along z- and y-axes) and changes only at discrete instants, called
events. When an event occurs, we perform a kinetic update on the data structure. Since we know
how the points move, we can predict when any event will occur. The evolution of the data structure
is driven by a global event queue, which is a priority queue containing all future events.

In Section 4.1, we develop a data structure called the kinetic B-tree to efficiently answer current
Q1 queries for moving one-dimensional points. In Section 4.2, we discuss a tradeoff between the
query time and the total cost of maintaining the data structure. Section 5 extends these results to
the more difficult two-dimensional case.

4.1 Kinetic B-trees

Let S = {p1,...,pn} be a set of n points in R, each moving with a fixed velocity, and let S(¢) denote
the point set at time t. We store S in sorted order in a B-tree 7, which is updated periodically so
that at all times ¢, 7(¢) is a valid B-tree for S(¢). If 7 is valid at time ¢, then it remains valid as
long as the ordering of points in S does not change, so T' has to be updated only when the ordering
of points changes. We therefore define the events to be time instances t;; at which p;(t;;) = pj(ts;)-
For every adjacent pair of points p;,p; in S(t), we store the time ¢;; in an external priority queue
B, so that insert, delete, and delete-min operations on B can be performed in O(logg n) I/0s. Let
t* = t;; be the minimum value stored in B; the current tree remains valid for the interval [now, t*).
At now = t*, we delete t* from B and swap p; and p; in 7. If the ordering of S before the swap

Indexing Moving Points 16

Was ...,Pa,Pi,Pj,Pb; - - -, then (pa,p;) and (pj,py) are no longer adjacent pairs after the swap, so
we delete t,; and ¢, from B. We also insert t,; and t; because (p,,p;) and (p;, pp) now become
adjacent pairs. We thus spend O(logg n) I/Os at each event. A trajectory change can be handled
in O(loggn) I/O0s in a similar way. A query at current time is answered using O(loggn + k) I/Os
in a straightforward manner.

Lemma 4.1. Let S be a set of N linearly moving points in R. We can store S in an index of size
O(n) blocks, so that a current range query can be answered in O(loggn + k) I/Os. The cost of
any kinetic event or trajectory change is O(loggn) I/Os. If the trajectories of the points do not
change, there are at most (];[) events.

Remark. The kinetic B-tree works within the same I/O bounds even if the points move along
more complex trajectories, provided we can quickly compute when two moving points become equal.
For rational motion of fixed degree there are still O(N?) events, where the constant depends on the
degree of the motion.

4.2 Query/update tradeoffs

If we are going to perform only a few queries, it is inefficient to spend O(N? logg n) I1/Os evolving
the kinetic B-tree through O(N?) events. We can combine the kinetic B-tree with the external
partition tree to obtain a tradeoff between the cost of answering queries and the total number
of kinetic events. Our construction is similar to a general technique used to establish tradeoffs
between data structure size and query time [5].

Let S be a set of N linearly moving points in R. We convert S into a set of lines in the xt-plane,
and let P denote the set of points dual to these lines. We construct a partition tree 7 on P as
described in Section 2.2. Each node v of 7 is associated with a subset P, C P of points. Let
Sy C S be the set of points corresponding to P,; set |S,| = N,.

Let A be a parameter between BN and (g]) We discard all nodes of 7 whose parents are
associated with at most A/N points. By equation (2.1), every remaining node in 7 has fanout
r = cB. The depth of the truncated tree is at most £ = log, ,(N 2/A). For each leaf v of the
truncated tree, we construct a kinetic B-tree on S,. See Figure 6. The total number of events
processed by all the kinetic range trees is at most N2, where the summation is taken over all
the leaves of the truncated tree. Since N, < A/N and), N, < N, we obtain Y, NZ = O(A).

Figure 6. Schematic picture of our one-dimensional query/update tradeoff structure.

Indexing Moving Points 17

A query is answered in the same way as earlier. Let 31(IN,) by the number of I/Os need to
answer a query excluding the O(K/B) 1/0s needed to report the points. We obtain the following
recurrence for ¥ (N,), similar to recurrence (2.2).

. (2N,
. 1+aﬁ-21(”) if N, > A/N,
T

XJ1(*7\/711) < (4'1)
O(logg ny) if N, <A/N.

Since the depth of the truncated partition tree is at most ¢, the query procedure visits at most

(cy/7)¢ leaves of the truncated tree, and it spends O(loggz n) I/Os at each such node. Hence, the

total number of I/Os used is

N 1+10gr/2 2&2 N 1+E
logT/Q(N2/A)1 () 1 < ()
aN/T (0] n = (0] n ;

(av/T) gB A g T > A

provided that the constant ¢ is chosen so that r = ¢B > 2(2a)'/¢. Hence, we conclude the following.

Theorem 4.2. Let S be a set of N linearly moving points in R. Given a parameter A such that
BN <AL (g]) , we can store S in an index of size O(n) blocks, so that a current range query can be
answered in O(N'*¢ //A + k) I/Os. The amortized cost of a kinetic event is O(logg(A/N)) I/0Os,
and the amortized cost of inserting or deleting a point is O(log%(N?/A) + logg(A/N)) expected
I/Os. If the trajectories of the points do not change, there are O(A) events.

If know in advance how many queries we need to answer, we can balance the number of 1/Os
required to answer the queries with the number of I/Os required to maintain the data structure.
For g queries, we get the minimum total number of I/Os when A ~ N 2/342/3,

Corollary 4.3. Given a set S of N linearly moving points in R and a parameter q, we can answer
any chronological sequence of q range queries using O(N?/3t¢¢?/3 + k) 1/Os and O(n) blocks.

4.3 Tradeoffs for grid trees

If the initial positions and velocities of the points are uniformly distributed, we can obtain similar

tradeoffs by using grid trees instead of partition trees. Given a parameter BN < A < (];7), set

g= (];) /A. Our structure consists of a grid tree up to level £ =logg g. At each leaf v, if |S,| > B,
we construct a kinetic B-tree on S,. The truncated grid tree has O(g) = O(N?/A) leaves, each
associated with a point set of expected size O(A/N). Two points lie in the same cell of G with
probability 1/g, so the expected number of kinetic events for the entire data structure is at most A.
The query algorithm recursively visits O(n/v/A) nodes of the truncated grid tree, and the expected
search time for any of the kinetic B-trees is O(logg(A/N)) I/Os, so the total expected query time
is O((N/vVA)logz(A/N) + k) 1/Os.

Theorem 4.4. Let S be a set of N linearly moving points in R, whose initial positions and
velocities are uniformly distributed in [0,1]. Given a parameter A such that BN < A < (g]),
we can store S in an index of size O(n) blocks, so that a current range query can be answered
in O((N/VA)logg(A/N) + k) expected I/Os. The expected amortized cost of a kinetic event
or trajectory change is O(logg(A/n)) I/Os. If the trajectories of the points do not change, the

expected number of events is A.

Indexing Moving Points 18

5 Two-Dimensional Chronological Queries

This section extends the results of Section 4 to the more complex case of moving points in the plane.
Our so-called kinetic external range tree is based on a kinetic range tree developed by Basch et
al. [11] and an external range tree with optimal query cost developed by Arge et al. [8]. We give
a brief overview of the external range tree in Section 5.1, and then discuss how to kinetize it in
Section 5.2. Finally, in Section 5.3, we discuss a query update tradeoff similar to the one-dimensional
case.

5.1 External range trees

The external range tree K presented in [8] is a three-level structure. The primary structure is a
tree over the z-coordinates of the N points in S, similar to a B-tree, with fan-out loggn. An
z-range X, is associated with each node v in the tree in a natural way, and this range is subdivided
into logg n slabs by v’s children vy, v, . .., Viog, n- We store the z-coordinates of slab boundaries in
a B-tree so that the slab containing a query point can be determined in O(loggloggn) I/Os. Let
Sy C S be the set of points whose z-coordinates lie in the z-range X,; set N, = |S,|. S, is stored
in four secondary data structures associated with v. One of the structures is a B-tree B, on S,,
using the y-coordinates of its points as the keys. The three other structures are external versions
of the priority search tree [34]. An external priority search tree is used to answer three-sided range
queries, i.e., reporting the points lying in a rectangle of the form [a,b] X [¢,00), in O(loggn + k)
I/Os. We discuss priority search trees in detail in the next subsection.

The first two priority search trees, P-(v) and P%(v), store the points in S, such that queries
of the forms (—o0,a] x [b,c] and [a,00) X [b,c] can be answered in O(loggn + k) I/Os. The third
priority search tree P~ (v) stores points derived from the y-coordinates of the points in S, as
follows. Let p = (zp,yp) € Sy be a point lying in the jth slab (i.e., p € Sy;). If p is not the point
with the maximum y-coordinate in S,,, then let ¢ = (z4,7,) € S,; be the successor of p in the
+y-direction. We map p to the point p* = (yp,y,). Let S; be the resulting set of points. We
construct P~ (v) so that all ¢ points lying in a range of the form (—o0,a] X [a,00) can be reported
in O(loggn +t/B) 1/Os. Note that a point p* = (yp,yq) lies in such a range if and only if the
y-interval [yp, vy, intersects the horizontal line y = ¢; see Figure 7. Since there is only one such
interval within each slab, we have t = loggn. For each point p* stored in P~ (v), we also store
a pointer to the leaf of B,, that stores the corresponding point p of S,;. Since external priority
search trees and B-trees use linear space [8], and each point p is stored in secondary structures of
all the O(logyog,, ,) = O(loggn/(logp logp n)) nodes on the path from the root to the leaf storing
the z-coordinate of p, the structure use O(nloggn/(logglogg n)) blocks in total.

External range trees can be used to find the points inside a query rectangle ¢ = (a,b,¢,d) in
O(loggn + k) I/Os as follows [8]. We first find, in O(loggn/(loggloggn)) x O(loggloggn) =
O(loggn) I/0Os, the highest node v in K so that a and b lie in different slabs of v. Suppose a lies
in the z-range of v; and b in the z-range of v;. The query rectangle g is naturally decomposed into
three parts: ¢=- = ([a, 0] N X’ui) x [c, d], g7 = (la, 0] N ij) x [c,d], and g = g\ (qj U qE)' See
Figure 7. The points contained in ¢~ and ¢~ can be reported in O(logg n + k) I/Os using P-(v;)
and P-(v;), respectively. To report the points in ¢=, we first query P~ (v) with (—oo,¢c] X [¢, 00)
to find the lowest point in each S,,, for ¢ < [< j, that lies in ¢ (and thus the pointer to the
corresponding point in B,,). Using the B-trees B,,, we report all the points of S, N ¢~. The total
number of I/Os needed is O(loggn + k) 1/Os.

To perform an update on the external range tree we need to perform O(1) updates on the
secondary structures on each of the O(logn/(logg logp n)) levels of the base tree. These updates

Indexing Moving Points 19

a b
e e N
o o A T
U A KT B i, P
PUREE Y R R B O Bl
R S
e
° ° E o o * . e ° °
. 1 e o o
A Vy V3 v, Vg

Figure 7. Slabs corresponding to a node v in the primary tree. To find the points in the rectangle, we answer
three-sided queries using P (v2) and P~ (vs), find the lowest point in each slab above the bottom of the rectangle
using P~ (v), and then walk upwards through the points inside slabs vs and va.

take O(logg N) I/Os each, since the external priority search tree can be updated in O(logg n) I/Os.
One also needs to update the primary structure. Arge et al. [8] discuss how this can also be done
in O(log% n/(logg logg n)) amortized I/Os using a weight-balanced B-tree [9].

Lemma 5.1 (Arge et al. [8]). A setof N pointsinR? can be stored in an index using O(nlogg n/
(logplogg n)) blocks, so that a range query can be answered in O(logg n+ k) I/Os. Points can be
inserted or deleted at an amortized cost of O(logg n/loggloggn) I/Os each.

External priority search trees. We now discuss the linear space external priority search tree
for answering queries of the form [a,b] X [¢,00) on a set S of N points in O(loggn + k) I/Os. As
in the range tree discussed above, the structure consists of a base B-tree on the z-coordinates of
the points in S. The fanout of the tree is B. As above, each internal node v is associated with an
z-range X,, which is divided into slabs by the z-ranges of its children. For each child v; of v, we
store the highest B points in the corresponding slab (if any) that have not been stored in ancestors
of v. We store these O(B?) points in an auxiliary catalog structure A, that uses O(B) blocks and
supports three-sided queries and updates in O(1 + k) I/Os. We will describe the catalog structure
in detail below. Since every point is stored in precisely one catalog structure, the external priority
search tree can be stored in O(n) blocks.

To answer a three-sided query ¢ = (a, b, c), we start at the root of the external priority search
tree and proceed recursively to the appropriate subtree. At each node v, we first query the catalog
structure A, to report the points of A, Ngq. If a or b lies in X,,, or if the x-coordinates of at least B
points of A,Ngq lie in X, we recursively query at v;. See Figure 8. The query procedure visits only
O(logg n) nodes v because a or b lies in X,,. For every other node v visited by the query procedure,
it reported at least B points at the parent of v whose z-coordinates lie in X,,. It follows that the
query procedure reports all K points in ¢ in O(loggn + k) 1/0s.

Using the fact that a catalog structure can be updated in O(1) I/Os, Arge et al. [8] showed how
to update the external priority search tree in O(logg n) I/Os and thus obtained the following.

Lemma 5.2 (Arge et al. [8]). A set of N points in R? can be stored in an external priority
search tree of size O(n) blocks, so that a three-sided range query can be answered in O(loggn + k)
I/0s. Points can be inserted or deleted using O(loggn) I/Os.

Indexing Moving Points 20

a b
. "o . .
. 0 0 0
° vo|l 0O A I
° o o . 0o © 109 e Lo 1o
(] e o' [) u o u (] o
, o e , , .
1 1 o, 1
S IR) PSR PO S S B O
. o 5 . 5 0 o ;
. ! * e . L ie
° o . o ' ' " e !
' : ' ' ® o :
' e [\ 1 ° ' o
L . . | .
° 4 o ® e e °« &
o« ° ’ o P% . * e
. 1 e o, o
A A A v, Vg

Figure 8. Slabs corresponding to a node v in a priority search tree. The highest B points in each slab (shown here
in white) are stored in the catalog structure A,; the other (black) points are stored recursively. To answer the query,
we query A, to find the relevant white points and then recursively query in vz, v3, and vs for the relevant black
points.

Catalog structure. We now describe the so-called catalog structure for answering three-sided
range queries on a set S of B2 points using O(1 + k) I/Os. Let S consist of points (x;,y;) sorted in
increasing z-coordinate order. The catalog structure A consists of 2B — 1 blocks by, b, ...,bap_1
storing the points, plus a constant number of catalog blocks. We associate a rectangle [z, z,,] X
[yd;> Yu;] With each block b;; the catalog blocks store these 2B — 1 rectangles. Block b; contains a
point (z;,y;) € S if and only if the point lies inside or directly above the block’s rectangle:

The blocks b; are constructed as follows. Initially, we create B blocks b1, bs,...,bp. For each
1 <14 < B, the rectangle of b; has left z-coordinate z(;_1)p41, right z-coordinate z;p, and bottom
y-coordinate —oo. Hence b; contains the points (T(—1)B+1;Y(i—1)B+1)s---» (TiB, Yin). Next, we
sweep a horizontal line upwards from y = —oo, and for each block b;, we keep track of the number
of points in b; lying above the sweep line. When the sweep line reaches a point (z;,y;) such that
two consecutive blocks b; and b;11 both have fewer than B /2 points lying above the line y = y;, the
top y-coordinate of the rectangles of b; and b; 1 are set to y;, and we no longer keep track of b; and
bi+1 during the sweep. Instead, a new block b, is created whose rectangle has left z-coordinate z;,,
right z-coordinate z,, ,, and bottom y-coordinate y;. Thus, b, contains the (at most B) points of
b; and b; 41 that lie above the line y = y;. The sweep continues in this manner until the line reaches
+00, at which point at most B + (B —1) = 2B — 1 blocks have been created. See Figure 9(a). The
entire catalog structure can be constructed in O(B) I/Os [8].

To answer a three-sided query (a, b, ¢), we first load the catalog blocks into main memory using
O(1) I/Os. We then identify all blocks whose rectangle intersects the bottom edge [a,b] X ¢ of the
query range. We load these blocks into main memory one at a time and report the relevant points.
The query takes O(1+ k) I/Os since every consecutive pair of blocks, except possibly for the blocks
containing a and b, contributes at least B/2 points to the output. See Figure 9(b).

The structure can easily be made dynamic using global rebuilding [37]. Updates are simply
logged in an extra block U. After B updates, when U becomes full, the entire structure is rebuilt
from scratch in O(B) I/Os. Thus, the amortized cost of any insertion or deletion is O(1) I/Os. At
every query, we spend one extra I/O examining U to ensure that query results are consistent with
recorded updates.

Indexing Moving Points 21

0
. hd .
L] L]
. o >
. . . .
0 0
. o B o
. ° . .
. . . o
. 0
L] . ° o o .
° L] Ld ° L] o
L] L] L]
o L] o L] ® ® o
L] L] L] L] L] L] L] o
L] L] L] C
L] L] © .. ° L]
.)
- — 0 O
. o® |® . . L O o
. 0 . Q)
. .) . o o o o
° S
. . °le® . o . o lo® o
° . ° o® . . © 5 © 0° o o
. 3 o : .
. o
. . o o
o |o
. °|® 5 o o . o
. . o~ |o
. ol® . © ol® i o
° o © o
o ° . . ° o - o o
. . o o
. .
(a) (b)

Figure 9. (a) An example catalog structure with B = 10. Each block contains the points inside or above its rectangle.
(b) The blocks loaded by the query algorithm are indicated by the bold rectangles and contain the solid points.

Lemma 5.3 (Arge et al. [8]). A set of B? points can be stored in an index of size O(B) blocks,
so that a three-sided range query can be answered in O(1+ k) I/Os. The index can be constructed
in O(B) 1/0s, and points can be inserted or deleted at an amortized cost of O(1) I/Os each.

5.2 Kinetic external range trees

We now discuss how to kinetize the external range tree, so that it can store moving points and
quickly answer range queries at the current time. We explain the necessary modifications from
the bottom up—first for the catalog structure A, then for the external priority search tree P, and
finally for the top-level structure. Our techniques are similar to the method used by Basch et al.
[11] to kinetize internal-memory range trees.

First consider the catalog structure .A. Recall that the rectangle of each block b; in A was
defined by four points of S. In the case of moving points, we define the rectangle of b; at time ¢ to
be [z, (t), zr;(t)] X [yd, (t); Yu, (t)]. Thus the rectangle of each block changes continuously with time.
However, a point p;(t) = (z;(t),y;(t)) in b; continues to satisfy condition (5.1) until some time ¢
when z;(t) = x;,(t), zj(t) = zr,(t), or y;(t) = yq4,(t). We can thus continue to use A to answers
queries until time ¢, at which we will have to update the structure.

To detect exactly when condition (5.1) is violated, we maintain two kinetic B-trees B, and By
over the z- and y-coordinates of the points in S, respectively, with a common event queue Q. Recall
that a kinetic B-tree undergoes a swap event when two of its values become equal, so we observe a
swap event whenever two points p;(¢) and p; (t) have the same z- or y-coordinate. At each swap
event, we check whether condition (5.1) still holds for p;(¢) and pj; (¢); if not, we simply remove the
offending point from A and reinsert it using O(1) I/Os (Lemma 5.3). In total we handle a swap
event in O(logg B?) = O(1) I/Os. We can also change the trajectory of a point p in O(1) I/Os,
simply by first deleting p from A, B;, and By, deleting the O(1) event times in Q involving p, and
then inserting p and the O(1) new event times again. If the trajectories of the points never change,
there are O(B*) events.

We answer a query ¢ = (a, b, c) at time ¢, exactly as on the non-kinetic catalog structure, except
that when considering the rectangles stored in the catalogue blocks, as well as when considering
points in the loaded blocks b;, we calculate the relevant z- and y-coordinates at time t. As previously,
the query procedure takes O(1 + k) I/Os.

Indexing Moving Points 22

Lemma 5.4. Let S be a set of B? linearly moving points in R?. We can store S in an index of size
O(B) blocks, so that a current three-sided query can be answered in O(1+ k) I/Os. The amortized
cost of each event or trajectory change is O(1) I/Os. If the trajectories of the points do not change,
there are O(B*) events.

Recall that an external priority search tree P on a set S of N points consists of a z-coordinate
base B-tree with points stored in auxiliary catalog structures of the internal nodes based on y-
coordinates. Since the definition of the structure is based only on the z- and y-coordinates of the
points in S, it is easy to see that if P is a valid structure for a set of moving points at time ¢, it
will remain a valid structure until the next swap event. Like the catalog structure, we can update
P after a swap event simply by performing two deletions and two insertions in O(loggn) 1/0s
(Lemma 5.2). To determine the kinetic event times, we maintain kinetic coordinate B-trees B, and
By, on S, as well as an event queue B-tree Q. Just like the catalog structure, these structures can
all be maintained in O(logp n) I/Os per event. In fact, we can maintain one global version of each
of the three structures for the base priority search tree and all its auxiliary catalog structures A,.
As previously, we can also easily change the trajectory of a point.

Lemma 5.5. Let S be a set of N linearly moving points in R?. We can store S in a kinetic external
priority search tree of size O(n) blocks, so that a current three-sided query can be answered in
O(loggn + k) I/Os. The amortized cost of each event or trajectory change is O(loggn) I/Os. If
the trajectories of the points do not change, there are of O(N?) events.

Like the external priority search tree, the primary structure of the external range tree only
depends on the z- and y-coordinates of the N points. Thus as previously, the structure remains valid
until the z- or y-coordinates of two points become equal. When a kinetic event occurs, we update
the structure simply by performing two deletions and two insertions, in O(logg n/loggloggn)
I/Os (Lemma 5.1). The kinetic event times can be determined in O(logg n) I/Os using three global
B-trees as previously. Thus, we obtain the main result of this section.

Theorem 5.6. Let S be a set of N linearly moving points in R?. We can store S in a kinetic
external range tree of size O(nloggn/(logglogg n)) blocks, so that a current QI query can be
answered in O(loggn + k) I/Os. The amortized cost of a kinetic event or trajectory change is
O(log% n/logg logg n) 1/Os. If the trajectories of the points do not change, the total number of
events is O(N?).

Remark. Like kinetic B-trees, kinetic range trees work within the same asymptotic I/O bounds
when the points move along more complex trajectories, provided we can quickly compute when two
points lie on a common horizontal or vertical line.

5.3 Query/update tradeoffs

Just as in the one-dimensional case, the O(N?log% n/ logg logg 1)) 1/Os spent evolving the kinetic
range tree through N? events is excessively high if we only need to answer a few queries. We
can obtain tradeoffs between the query cost and the number of events using the technique of
Section 4.2; Attaching kinetic range trees to the nodes at certain levels in the multi-level external
partition tree 7.

Recall that 7 consists of a primary partition tree 7% with secondary partition trees T}y attached
to certain nodes v € T®. As before, let A be a parameter between BN and N2, and let r = ¢B be
the fanout of a node in the primary tree T%. As in Section 4.2, we discard the nodes of the primary

Indexing Moving Points 23

structure 7% whose parents are associated with at most A/N points and construct kinetic external
range trees at each leaf of the truncated tree. The depth of the tree is at most £ = log, »(IN 2/A).
Let v be a node in T at level [at which we want to store a secondary structure T;y. We construct
the tradeoff structure described in Section 4.2 on S, with A, = A/rl as the number of events
processed by the secondary structure. Since there are at most ! nodes at level I, at most A events
are processed by all the secondary structures at level /. Hence, the total number of events processed
by all the secondary structures is O(A/é) = O(A). The same analysis as in Section 4.2 can be used
to show that O(A) events are processed by the kinetic range trees stored at the bottom of T%.

.'.'.
range tree

Figure 10. Schematic of our two-dimensional query/update tradeoff structure. Each node in certain levels of the
primary tree points to a secondary structure. Only one secondary structure is shown.

Suppose the query procedure visits a node v of 7. If |S,| < B, we examine all the points
in S, to determine which of them lie in the query rectangle R. If the level of v is £, then we use
the kinetic range tree stored at v to answer the query. Otherwise, the query is processed using the
algorithm of Section 3.1. Let X5(NN,) be the number of I/Os taken by the query procedure at a.
node v of T,. The query procedure visits at most n® secondary structures, each over at most N, / n?
points and with at most AN,/(Nn’) events. Using Theorem 4.2, the total number of I/Os spent
is O(n%/2te N, /2+e /V/A). Following the analysis in Section 3.1, we obtain the following recurrence
for 3p(N,).

. O(m/2+ N [/B) + an/r - (”;’

o(N) <
O(logg n) if N, <A/N.

) if N, > A/N,

Combining the analysis in Sections 3.1 and 4.2, we solve this recurrence and obtain the following.

Theorem 5.7. Given a set S of N points in R?, each moving linearly with a fixed velocity, and
a parameter BN < A < N2, we can preprocess S into an index of size O(nloggn/(logg logg n))
blocks, so that a current QI query can be answered in O(N'*¢/\/A + k) I/Os. A point can be
inserted or deleted in O(logh(N?/A) + logh(A/N)/logglogg(A/N)) amortized, expected I/0s,
and the amortized cost of processing a kinetic event is O(logh(A/N)/logglogg(A/N)) 1/0Os. If
the trajectories of the points do not change, the number of kinetic events is O(A).

6 Time-Responsive Indexing

Partition trees can answer an arbitrary sequence of timed range queries, but the cost of answering
each query is high. On the other hand, kinetic range trees answer queries very quickly, but only

Indexing Moving Points 24

if the queries arrive in chronological order. In this section, we present an indexing scheme that
combines the advantages of both schemes—it can answer queries in any order, and the number of
I/Os need to answer a query is small if the query’s time stamp ¢ is close to the current time. We
first describe how to answer a Q1 query in near future or in near past in O(logg n + k) I/Os, and
then extend our approach to arbitrary query times. As with our earlier results, we first explain our
ideas for moving points on the real line and then extend them to the more complex two-dimensional
case.

6.1 Recent-past and near-future queries

As observed in the previous section, the combinatorial structure of a kinetic data structure K is
fixed until there is an event. For kinetic B-trees, an event occurs when two points have the same
value; for kinetic range trees, an event occurs when some pair of points share a common z- or
y-coordinate. At some of these events, we update the kinetic data structure, using O(log2B n) I/0s.
Let t1,t2,... be the sequence of event times at which K is updated, and let X; be the version of K
between time t;_; and time ¢;. (For notational convenience, we define ¢y = —o0.) If the current
time is between ¢; 1 and ¢;, our idea is to maintain the versions X; ., i y41,...,Kit, of K for
some parameter u, that is, we maintain y past versions and p future versions of K. Note that the
future versions K;, ... K;y, are tentative, since they are built by anticipating future events based
on the current trajectories of the points. If the trajectory of a point changes, the future versions
of the structure will also change.

Instead of storing each K; explicitly, we store the “differences” between K;_; and K;, using
the ideas of persistent data structures [12, 20, 48]. There are two main differences between our
structures and standard persistent data structures. First, instead of storing all the past versions, we
maintain only a few past versions and we delete a past version when it becomes too old. Second,
we also maintain several future versions of the data structure, which we must update when the
trajectory of a point changes.

Multiversion kinetic B-trees. In the case of one-dimensional moving points, we can directly
apply the ideas of Driscoll et al. [20], Becker et al. [12], and Varman and Verma [48] to obtain a
persistent (or multiversion) B-tree. Roughly speaking, each data element is augmented with a life
span consisting of the time at which the element was inserted and (possibly) the time at which it
was deleted. Similarly, each node in the B-tree is also augmented with a life span. We say that
an element or a node is alive during its life span. Apart from the normal B-tree constraint on
the number of elements in a node, we also maintain that a node contains ©(B) alive elements (or
children) in its life span. This means that for a given time ¢, the nodes with life span containing ¢
make up a B-tree on the elements alive at that time. An insertion in a persistent B-tree is performed
almost like a normal insertion. We first find the relevant leaf z and insert the elements if there
is room for it. Otherwise we have an overflow. In this case we first copy all alive elements in z
and make the current time the death time of z (i.e., z becomes inactive). Depending on how many
elements we copied, we either split them into two equal size groups and construct two new leaves
on them, construct one new leaf on them, or we copy the alive elements from one of the siblings of
z and construct one or two leaves out of all the copied elements. In all cases we ensure that there
is room for ©(B) future updates in each of the new leaves. We then insert the new element into
the relevant leaf and set the birth time of all new leaves to the current time. Finally, we insert
pointers to the new leaves at the parent of z and (persistently) delete the reference to z. This
may result in similar overflow operations cascading up one path in the tree; these are handled in
a similar manner. We refer to this procedure as the persistent node copying (or pointer updating)

Indexing Moving Points 25

procedure. A deletion is performed similarly. Becker et al. [12] show that each update operation
takes O(loggn) I/0s, and that v update operations require O(v/B) additional disk blocks.

If we want to maintain y = N past and future version of the tree, we store the death times of
all nodes in a global priority queue. Let ¢; denote the time at which the ¢th event occurs, then at
time t;, we delete all nodes of the tree whose death times are in the range [t;—n,t;—nt1]. Since
there are O(logp n) such nodes, this step requires O(logg n) I/Os. The analysis of Becker et al. [12]
implies that the total size of the structure remains O(n) blocks.

There is also a simpler alternative method. Suppose we have a multiversion B-tree for the time
interval [t;— n,t;4+n]- During the time interval [¢;, t;4 n], we construct a separate multiversion B-tree
for the time interval [¢t;, t;+2n], using O(logg n) I/Os per event. At time ¢;, 41, we discard the old
multiversion B-tree, begin using the just-finished tree to answer queries, and begin constructing a
new multiversion B-tree for the time interval [t;1 n,%;+3n5]. This approach avoids the usage of the
global event queue for storing the death times and guarantees O(logp n) processing time at each
event. The disadvantage is that we have to maintain two multiversion B-trees. We will refer to
this scheme of maintaining a partial multiversion B-tree as the replication method.

Theorem 6.1. Let S be a set of N linearly moving points in R. We can store S in an index of
size O(n) blocks, so that a Q1 query can be answered in O(logg n + k) 1/Os, provided there are at
most N events between t and the current time. The amortized cost of a kinetic event is O(logg n)
I/Os. If a point p is stored at T places in the index, we can update the trajectory of p using
O((1+T)loggn) I/0s.

Multiversion external kinetic range trees. Recall that an external range tree has three
levels. The primary and secondary structures are variants of B-trees, and we can store their
different versions by adapting standard techniques as above [20, 12, 48]. Before discussing them,
we first describe the third level structure, namely the catalog structure A, stored at each node v
of a priority search tree. This structure answers 3-sided range queries on a set of O(B?) points.

Recall that A, maintains an extra update block U that records updates (kinetic events); after
B kinetic events have occurred, A, is reconstructed and the old version of A, is discarded. To
maintain multiple versions of A,, we modify the update and query procedures as follows. First,
whenever a point enters or leaves a block, we record the time of the event in the update block I/ in
addition to the identity of the point. When A, is reconstructed, we do not discard the old version,
but instead declare it inactive. During T kinetic events we thus maintain a sequence of versions
AL A2 Z/ B of Ay, only the last of which is active. For each inactive version .A%, we store its
death time d;, the time at which A} became inactive. To maintain the T' versions of A,, we need
O(T) disk blocks. .

To report all points of A, that lie in a 3-sided rectangle R at time ¢, we first find the version A7,
that is active at time ¢, i.e., such that d; ; <t < d;. Since we also maintain multiple versions of
the primary and secondary structures of the kinetic range tree, A? can be found using O(1) I/Os.
Then we simply query A7 as in Section 5, except that we report only those points in the update
block that were inserted before ¢, and we do not report points deleted before ¢. In total we use
O(1 + K,/B) 1/0s, where K, is the number of reported points.

Next, we describe how to maintain multiple versions of a priority search tree P. Suppose we
want to insert a point into 7P. The insertion procedure follows a path II from the root to a leaf
of P and possibly inserts (and/or deletes) a point into the catalog structure at each node on II.
Whenever a new copy of a catalog structure A, is constructed at a node v, we keep the old copy of v
and attach the new copy at v, in the persistent manner described above. The insertion procedure
also updates the priority search tree in the same way as the insertion procedure for a multiversion

Indexing Moving Points 26

B-tree, as sketched earlier. Since the insertion of a point in P causes a constant number of updates
at most O(logp n) catalog structures, it follows from the above discussion and the analysis in [12]
that the total size of the structure for maintaining p versions of P is O(ulogg(n)). Each query can
still be answered using O(logg n + k) I/Os.

Finally, the primary tree is also maintained as a multiversion B-tree. Whenever a new copy of
the root of one of the priority search trees or the B-tree is made at a node v, we copy the new root
persistently at v, as described earlier. The primary tree itself is updated using partial rebuilding.
Whenever the subtree rooted at a node v is reconstructed, we keep the old copy of the subtree and
attach the new copy of the subtree at the parent of v in a persistent manner. The subtree rooted
at v is reconstructed after Q(N,) update operations, and the insertion or deletion of a point in
inserts or deletes a point in the secondary structures at all the ndoes along a path from the root
to a leaf. Therefore it performs O(logg n/logg logp n) update operations on secondary structures.
Therefore maintaining y = n/logg n versions of the overall structure requires

0 (n_ loggn -loan) _0 (nloggn)
loggn loggloggn logg loggn
blocks. We still spend O(log% n) amortized I/Os at each event to update K. A query is answered
in the same way as described in Section 5.1 except that at each node we use the procedure for
multiversion B-trees to decide which child or which secondary structures of a node we should visit.
We omit the remaining straightforward but tedious details.

Finally, we store the death times of all versions of all auxiliary structures in a global priority
queue. When the ith kinetic event occurs, at time t;, we delete all the versions of auxiliary structures
whose death times lie in the interval [¢;_,,%;_,41). Again, we can also use the alternative method,
which is simpler but maintains two structures at any time. Either way, we obtain the following.

Theorem 6.2. Given a set S of N linearly moving points in R?, we can preprocess S into an index
of size O(nlogg n/(logg logg n)) blocks, so that a Q1 query can be answered in O(logg n+k) I/Os,
provided there are at most n/loggn events between t and the current time. The amortized cost
per event is O(logg n) I/Os. If a point p is stored at T places in the index, we can update the
trajectory of p using O((1 + T')loggn) I/0s.

6.2 Answering distant-future queries

We now combine partition trees with multiversion kinetic data structures to obtain an index whose
query cost is a monotone function of |t — now|. The combination is similar to the multilevel data
structures discussed in Sections 3 and 5.3. For simplicity, we describe the indexing scheme for
one-dimensional points only; a similar approach works in R?.

Let S be a set of N linearly moving points in R, and let P denote the corresponding set of
static points in the dual zt-plane. We construct a partition tree 7 on P as described in Section 2.2.
Each node v of T is associated with a subset P, C P; let S, C S be the corresponding subset of S.
Let 0 be an arbitrarily small constant. For each node v whose depth is a multiple of ¢ log.gn,
we construct a multiversion kinetic B-tree K, on S, (Theorem 6.1) that stores N, versions of the
B-tree. See Figure 11. We also maintain the time interval [t ,¢}] during which K, is valid. The
total size of the resulting structure is O(n/§) = O(n) blocks. Note that deeper secondary structures
store fewer points, and thus maintain fewer versions; for the same reason, however, the events that
define those versions are typically more spread out through time, so the valid time interval may
actually be longer.

Indexing Moving Points 27

" partitiontree multiversion
frultiversion 000000000000 Q kinetic
Kpsucamss 3 /- 1 B-tree
B-tree

Figure 11. Schematic of our data structure for distant queries. Each node in certain levels of the partition tree
points to a multiversion kinetic B-tree. Only two secondary structures are shown.

An event is now defined to be the moment when two points stored in some secondary structure
collide. The kinetic B-trees stored at level d process O(N%/N%) events, so the total number
of events processed is O(N?). At each event, the secondary data structures can be updated in
O(loggn) I/0s.

A 1-dimensional Q1 query—report all points of S(t) that lie in an interval I—can be answered
as follows. We traverse 7T, starting from the root, as in Section 2.2. Suppose we are at a node v.
If v has a secondary structure K, and t € [, ,], then we report all points of S,(t) N I using /C,.
This requires O(logg n + K, /B) 1/0s, where K, = |S,(t) N I|. Otherwise, we visit the children of
v exactly as in Section 2.2. The maximum number of I/Os needed to answer a query, independent
of the timestamp £, is O(nl/ 2+¢ 1 k); in the worst case, we do not use any of the secondary kinetic
structures K. However, if ¢ is close to the current time, the query procedure will visit only a few
levels of the partition tree and then it will switch to the secondary kinetic structures. It is difficult
to bound the query time in the worst case without assuming any distribution on the trajectories of
points, since several events can occur in the same secondary structure in a short period of time.

Theorem 6.3. Let S be a set of N linearly moving points in R. We can store S in an index of
size O(n) blocks so that the cost of a Q1 query at time t is a monotonically increasing function of
|t — now|, and it is O(n'/?>* + k) I/Os in the worst case.

For random points, however, we can simplify the structure and prove a bound on the query
time as a function of the number of events between ¢ and now. For simplicity, we describe only the
modifications necessary to handle queries in the past; similar modifications also allow us to handle
queries in the future in the same I/O bounds. As usual for random points, we replace the partition
tree with a grid tree. Let § be an arbitrarily small constant. For simplicity of exposition, assume
that the grid tree has fanout n?. (If nd > B, we can represent each “node” of this grid tree with a
smaller grid tree with fanout B and depth ¢log, n.) We attach a multiversion kinetic B-tree K, at
every node v of the grid tree. Queries are answered exactly as for partition trees above.

In order to get a guarantee on the query cost, we modify the indexing scheme as follows. A global
event occurs whenever two points of S collide. Let ¢; denote the time at which the sth global event
occurs. An event at which two points p and ¢ collide is called local at a node v if both p and ¢
belong to S,. Let d be the depth of a node v. K, maintains every version of the kinetic B-tree on
S, for 2Nn% = 24 global events, using the replication method described above. More precisely,
during the interval [t;;,(i19),], we maintain all versions of the B-tree on S, corresponding to the
local events that occur in that interval. The replication method will construct K, for the window
[t(i+1)us t(i+3)u) during the interval [t 1),,%(i12),]- For any 4, computing the time #; of the ith
global event is equivalent to computing the ith leftmost intersection point in the arrangement of a

Indexing Moving Points 28

set of N lines. Adapting a randomized algorithm by Matousek [32] to the external memory model,
we can compute #; in O(N loggn) 1/0s. We compute the value of t; O(N2/Nn%%) times, so we
compute a total of O(N) t;’s. Hence, we spend O(logg n) time in computing them at each event.
Recall that an event is local for v if and only if both of the relevant points lie in the square O,.
Since the points are distributed randomly, it can be shown that ¢; is local for v with probability
n=20¢_ Thus, the expected number of versions of K, that we must maintain is N / nd%®. The expected
size of S, is N/n%, so K, uses O(n'~%?) expected blocks. Tt follows that the expected total size of
all the secondary structures is O(n) blocks.

Now consider a query whose time stamp is A global events into the past, and let ¢ be the
smallest integer such that A < Nn%. The query algorithm uses the first £ levels of the grid tree,
and then switches to the secondary kinetic B-trees, exactly as in the query/update tradeoff data
structure in Section 4.2. The query algorithm recursively visits O(n‘%/ 2) nodes in the grid tree and
performs O(n%/?) kinetic B-tree queries, so the total time is O(n%/?logz n) = O(\/A/n logg n).

Theorem 6.4. Let S be a set of N linearly moving points in R whose initial positions and velocities
are uniformly distributed in [0,1]. We can store S in an index of expected size O(n) blocks so that
a QI query at time t can be answered in O(y/A/n loggn + k) expected I1/Os, where 0 < A < (];])
is the number of events between t and now.

In R? we can prove a similar result, with slightly worse bounds on the size of the data structure
and its update time.

Theorem 6.5. Let S be a set of N linearly moving points in R2. We can store S in an index of
size O(nloggn/(loggloggn)) blocks so that the cost of a Q1 query at time t is a monotonically
increasing function of |t — now|. If the initial positions and velocities of the points are uniformly
distributed in [0,1]?, then a query takes O((A/n)'/?n® + k) expected 1/Os, where 0 < A < (¥) is
the number of events between t and now.

7 Approximate Nearest-Neighbor Searching

In this section we briefly sketch an indexing scheme for answering Q3 queries. The main idea is to
approximate the Euclidean metric with a polyhedral metric whose unit ball is a regular polygon
with few edges. For any polygon P that contains the origin, we define the distance function
dp : R2 xR? — R* as dp(a,b) = inf{\ | b € AP +a}. It is well known that this function is a metric
if and only if the polygon P is centrally symmetric about the origin.

Let m =2 [2 / \/5-|, and let P be the regular m-gon of circumscribing radius 1, centered at the

origin and with a vertex on the z-axis; see Figure 12(i). Let v1,..., v, be the sequences of vertices
in counterclockwise order, with v; lying on the z-axis. Let C; be the cone formed by the rays ov;
and ov;41; here v,11 = v1. Since m is even, dp is a metric, and an easy trigonometric calculation
shows that dp(a,b) < (1 + d§)d(a,b); see Figure 12(ii).

Decompose P into m triangles Ay, ..., A, by connecting every vertex of P to the origin. Note
that da,(a,b) is finite if and only if b € C; + a. It is easily seen that

dp(a,b) = 1213?19 da,(a,b).

Thus, to find a nearest neighbor in the dp metric, it suffices to compute the nearest neighbor of a
query point under the distance function da;. Our indexing scheme for approximate nearest neighbor
queries consists of a separate data structure for each A;. Without loss of generality, consider A;.

Indexing Moving Points 29

(i) (iii)

Figure 12. (i) A regular m-gon P centered at the origin. (ii) The difference between the Euclidean and dp metrics.
(iii) The wedge Q. and the nearest neighbor to a under the distance function da, .

For a point a, let (a) be the cones formed by the rays emanating from a in directions ov; and
ovg; see Figure 12 (iii). The nearest neighbor of a point o under the distance function da, is the
point in Q(c) NS nearest to o in the direction normal to vyve; see Figure 12(iii). For any point
p € S, let f(p) be the dot product of p with the vector normal to v;v3. The nearest da,-neighbor
in SN Q(a) of a point a € R? is the point p € S minimizing f(p).

We thus have the following problem at hand. We want to preprocess a set S of N moving points
in the plane to answer queries of the following form:

Q3’. Given a point ¢ and a time ¢, compute the point in p(t) € Q(c) minimizing f(p(t)).

For simplicity, we assume that ovs is the y-axis. We map S to a set of points P? in the dual zt-plane
and to another set PY in the dual yt-plane. We construct a two-level partition tree 7 described
in Section 3. Let TY be a second level partition tree, and let P/ C PY be the subset of points
associated with a node v of TY. Let S, be the corresponding subset of points in S; set N, = |S,|-
If the depth of v in TY is an integer multiple of constant a > 0. Define F,(t) = min,cgs, f(p(t))
to be the lower envelope of the functions f(p(t)). If p is moving linearly, then f(p(¢)) is a linear
function, so the graph of F), is a convex chain with at most IV, vertices, and it can be computed
in O(n, loggn,) I/O0s [26]. We store this chain at v. For a given value of ¢, we can compute F,(t)
in O(logg n) I/0s. We can also insert or delete a point in S, and update the graph of F,, at an
amortized cost of O(logy, nloggn) I/0s [3, 38]. The three-level data structure requires O(N,/B)
blocks.

Given a query point ¢ and time value ¢, we answer a Q3' query as follows. We first search
the primary and secondary partition trees to compute the set of points that lie inside Q(c). Let v
be a node of the secondary tree visited by the query procedure so that A, lies inside Q(c) and a
tertiary data structure is stored at v. Instead of reporting all the points in S,, we use the tertiary
structure stored at v and compute F,(t) using O(loggn) I/Os. Let p, be the point such that
f(py(t)) = F,(t). Otherwise, we the query procedure proceeds as earlier. Among all points p,
returned by the algorithm, we choose the one that is nearest to ¢ at time ¢. The total number of
I/Os taken by this procedure is O(n!/?*¢). Hence, we obtain the following.

Lemma 7.1. Given a set S of N linearly moving points in R? and two parameters ¢ > 0, we can
preprocess S into an index of size O(n) blocks so that a Q3 query can be answered in O(n'/?1)
I/0s. The index can be constructed in O(N logg N) expected 1/0Os, and points can be inserted or
deleted at an amortized cost of O(logy nlogg n) expected 1/0s each.

Since our data structure for Q3 queries consists of ©(1/y/8) separate copies of the Q3' index,
one for each triangle A;, we conclude:

eferences 30

Theorem 7.2. Given a set S of N linearly moving points in R? and two parameters £,6 > 0, we
can preprocess S into an index of size O(n/+/§) blocks so that a Q3 query can be answered in
O(n'/?*¢ /\/§) I/Os. The index can be constructed in O(N logg N/v/8) expected I/Os, and points
can be inserted or deleted at an amortized cost of O(log, nlogg n) expected 1/0s each.

Remark. This approach can be extended to higher dimensions. Each new dimension requires a
new level of partition tree, and in order to maintain the same approximation error, we must also
increase the number of facets in the polyhedron used to approximate the unit sphere. Specifically,
using a scheme of Dudley [21], we can d-approximate the sphere by a polytope with O(1/8(¢1)/2)
facets; see [11, 16] for similar results. Using a separate data structure for each facet of this polytope,
similar to the Q3' structure above, we can compute d-approximate nearest neighbors among moving
points in R?, using an index of size O(n/§(@1)/2) blocks, in O(n'/?*¢ /§(¢=1)/2) 1/Os per query point.
We omit further details.

8 Conclusions

In this paper we presented various efficient schemes for indexing moving points in the plane so that
queries of type Q1 and Q2 can be answered efficiently. We proposed tradeoffs between the query
time and the time spent in updating the indexing scheme as the points move. We also presented
an efficient indexing scheme for answering Q3 queries. We conclude by mentioning a few open
problems:

1. Most of the indexing schemes presented in the paper are too complex to be of practical use.
Can one develop simpler indexing scheme with similar provable bounds? Some progress in
this direction has been made in [40], but the problem remains largely open.

2. In many applications the trajectories of points is updated frequently. Can one update the
index more efficiently than simply deleting and re-inserting a point? Can one obtain a tradeoff
between the time spent in answering queries and in updating the trajectories?

3. Develop an efficient indexing scheme for answering exact nearest-neighbor queries for moving
points. Even the best known internal-memory data structures are either prohibitively large
or have very slow query times [19].

4. Can the indexing scheme described in Section 6.2 be extended so that the bounds in Theo-
rem 6.5 hold in the worst case, not just for random points and trajectories? We believe the
more recent techniques of the authors [4] may be helpful in answering this question.

References

[1] Arcview gis, arcview tracking analyst, 1998.

[2] P. K. Agarwal, L. Arge, and J. Erickson. Indexing moving points. In Proc. 19th Annu. ACM Sympos.
Principles Database Syst., pages 175-186, 2000.

[3] P. K. Agarwal, L. Arge, J. Erickson, P. G. Franciosa, and J. S. Vitter. Efficient searching with linear
constraints. J. Computer and System Sciences, 61:194-216, 2000.

[4] P. K. Agarwal, L. Arge, and J. Vahrenhold. A time responsive indexing scheme for moving points. In
Proc. 7th Workshop on Algorithms and Data Structures, 2001.

eferences 31

[5]

P. K. Agarwal and J. Erickson. Geometric range searching and its relatives. In B. Chazelle, J. E.
Goodman, and R. Pollack, editors, Advances in Discrete and Computational Geometry, volume 223 of
Contemporary Mathematics, pages 1-56. American Mathematical Society, Providence, RI, 1999.

P. K. Agarwal, J. Erickson, and L.Guibas. Kinetic binary space partitions for intersecting segments
and disjoint triangles. In Proc. ACM Symp. on Computational Geometry, pages 107-116, 1998.

L. Arge. External memory data structures. In J. Abello, P. M. Pardalos, and M. G. C. Resende, editors,
Handbook of Massive Data Sets. Kluwer Academic Publishers, 2002. (To appear).

L. Arge, V. Samoladas, and J. S. Vitter. On two-dimensional indexability and optimal range search
indexing. In Proc. 18th ACM Symp. Principles of Database Systems, pages 346-357, 1999.

L. Arge and J. S. Vitter. Optimal dynamic interval management in external memory. In Proc. 37th
IEEE Symp. on Foundations of Comp. Sci., pages 560-569, 1996.

J. Basch, L. J. Guibas, and J. Hershberger. Data structures for mobile data. In Proc. 8th ACM-SIAM
Sympos. Discrete Algorithms, pages 747-756, 1997.

J. Basch, L. J. Guibas, and L. Zhang. Proximity problems on moving points. In Proc. 13th Annu. ACM
Sympos. Comput. Geom., pages 344-351, 1997.

B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. An asymptotically optimal multiversion
B-tree. VLDB Journal, 5(4):264-275, 1996.

S. Chamberlain. Model-based battle command: A paradigm whose time has come. In 1st Intl. Sympos.
Command and Control Research and Technology, pages 31-38, 1995.

B. Chazelle and J. Friedman. A deterministic view of random sampling and its use in geometry.
Combinatorica, 10(3):229-249, 1990.

J. Chomicki and P. Z. Revesz. A geometric framework for specifying spatiotemporal objects. In Proc.
6th Intl. Workshop on Time Representation and Reasoning, pages 41-46, 1999.

K. L. Clarkson. An algorithm for approximate closest-point queries. In Proc. 10th Annu. ACM Sympos.
Comput. Geom., pages 160-164, 1994.

K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry, II.
Discrete Comput. Geom., 4:387-421, 1989.

M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry: Algorithms
and Applications. Springer-Verlag, Berlin, 1997.

O. Devillers, M. Golin, K. Kedem, and S. Schirra. Queries on Voronoi diagrams of moving points.
Comput. Geom. Theory Appl., 6:315-327, 1996.

J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. Tarjan. Making data structures persistent. Journal of
Computer and System Sciences, 38:86—124, 1989.

R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries. J. Approz. Theory,
10:227-236, 1974.

M. Erwig, R. H. Giiting, M. Schneider, and M. Vazirgiannis. Abstract and discrete modeling of spa-
tiotemporal data types. In ACM GIS Symposium, pages 131-136, 1998.

M. Erwig and M. Schneider. Developments in spatio-temporal query languages. DEXA Workshop,
1999.

L. Forlizzi, R. Giiting, E. Nardelli, and M. Schneider. A data model and data structures for moving
objects databases. In Proc. SIGMOD Intl. Conf. Management of Data, pages 319-330, 2000.

eferences 32

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

V. Gaede and O. Giinther. Multidimensional access methods. ACM Computing Surveys, 30(2):170-231,
1998.

M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-memory computational geometry.
In Proc. 34th Annu. IEEE Sympos. Found. Comput. Sci., pages 714-723, 1993.

P. C. Kanellakis, S. Ramaswamy, D. E. Vengroff, and J. S. Vitter. Indexing for data models with
constraints and classes. Journal of Computer and System Sciences, 52(3):589-612, 1996.

G. Kollios, D. Gunopulos, and V. J. Tsotras. Nearest neighbor queries in a mobile environment. In
Proc. Intl. Workshop on Spatio- Temporal Database Management, LNCS 1678, pages 119-134, 1999.

G. Kollios, D. Gunopulos, and V. J. Tsotras. On indexing mobile objects. In Proc. ACM Symp.
Principles of Database Systems, pages 261-272, 1999.

M. Koubarakis. The complexity of query evaluation in indefinite temporal constraint databases. The-
oretical Computer Science, 171:25-60, 1997.

M. Koubarakis and S. Skiadopoulos. Tractable query answering in indefinite constraint databases:
Basic results and applications to querying spatiotemporal information. In Proc. Intl. Workshop on
Spatio-Temporal Database Management, pages 204223, 1999.

J. Matousek. Randomized optimal algorithm for slope selection. Inform. Process. Lett., 39:183-187,
1991.

J. Matousek. Efficient partition trees. Discrete Comput. Geom., 8:315-334, 1992.
E. M. McCreight. Priority search trees. SIAM J. Comput., 14(2):257-276, 1985.

R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, New York, NY,
1995.

J. Nievergelt and P. Widmayer. Spatial data structures: Concepts and design choices. In M. van
Kreveld, J. Nievergelt, T. Roos, and P. Widmayer, editors, Algorithmic Foundations of GIS, pages
153-197. Springer-Verlag, LNCS 1340, 1997.

M. H. Overmars. The Design of Dynamic Data Structures. Springer-Verlag, LNCS 156, 1983.

M. H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane. J. Comput. Syst.
Seci., 23:166-204, 1981.

D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel approaches in query processing for moving objects.
In Proc. Intl. Conf. on Very Large Databases, 2000.

C. M. Procopiuc, P. K. Agarwal, and S. Har-Peled. Star-tree: An efficent self-adjusting index for moving
points. In Proc. 4th Workshop on Algorithm Engineering and Experiments, 2002.

S. Ramaswamy and S. Subramanian. Path caching: A technique for optimal external searching. In
Proc. ACM Symp. Principles of Database Systems, pages 25—-35, 1994.

B. Salzberg and V. J. Tsotras. Comparison of access methods for time-evolving data. ACM Computing
Surveys, 31(2):158-221, 199.

H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS.
Addison Wesley, MA, 1990.

M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their Geometric Applications. Cam-
bridge University Press, New York, 1995.

eferences 33

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

A. P. Sistla and O. Wolfson. Temporal conditions and integrity constraints in active database systems.
In Proc. ACM SIGMOD Intl. Conf. Management of Data, pages 269-280, 1995.

A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and querying moving objects. In Proc.
IEEE Intl. Conference on Data Engineering, pages 422-432, 1997.

J. Tayeb, O. Ulusoy, and O. Wolfson. A quadtree-based dynamic attribute indexing method. The
Computer Journal, 41(3):185-200, 1998.

P. J. Varman and R. M. Verma. An efficient multiversion access structure. IEEE Transactions on
Knowledge and Data Engineering, 9(3):391-409, 1997.

S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lépez. Indexing the positions of continuously
moving objects. In Proc. SIGMOD Intl. Conf. Management of Data, pages 331-342, 2000.

0. Wolfson, S. Chamberlain, L. Jiang, and G. Mendez. Cost and imprecision in modeling the position
of moving objects. In Proc. IEEE Intl. Conference on Data Engineering, pages 588-596, 1998.

O. Wolfson, L. Jiang, A. P. Sistla, S. Chamberlain, and M. Deng. Databases for tracking mobile units
in real time. In Proc. Intl. Conference on Database Theory, pages 169—-186, 1999.

O. Wolfson, A. P. Sistla, S. Chamberlain, and Y. Yesha. Updating and querying databases that track
mobile units. Distributed and Parallel Databases, 7(3):257-287, 1999.

0. Wolfson, A. P. Sistla, B. Xu, S. J. Zhou, and S. Chamberlain. DOMINOQO: Databases for moving
objects tracking. In Proc. SIGMOD Intl. Conf. Management of Data, pages 547-549, 1999.

O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Moving objects databases: Issues and solutions. In
Intl. Conf. on Scientific and Statistical Database Management, pages 111-122, 1998.

