Indexing Moving Points
(Extended Abstract)

Pankaj K. Agarwal* Lars Arge† Jeff Erickson‡

Abstract

We propose three indexing schemes for storing a set S of N points in the plane, each moving along a linear trajectory, so that a query of the following form can be answered quickly:

Given a rectangle R and a real value t_q, report all K points of S that lie inside R at time t_q. We first present an indexing structure that, for any given constant $\varepsilon > 0$, uses $O(N/B)$ disk blocks, where B is the block size, and answers a query in $O((N/B)^{1/2+\varepsilon} + K/B)$ I/Os. It can also report all the points of S that lie inside R during a given time interval. A point can be inserted or deleted, or the trajectory of a point can be changed, in $O(\log B N)$ I/Os. Next, we present a general approach that improves the query time if the queries arrive in chronological order, by allowing the index to evolve over time. We obtain a tradeoff between the query time and the number of times the index needs to be updated as the points move. We also describe an indexing scheme in which the number of I/Os required to answer a query depends monotonically on the difference between t_q and the current time. Finally, we develop an efficient indexing scheme to answer approximate nearest-neighbor queries among moving points.

1 Introduction

Efficient indexing schemes that support range searching and its variants are central to any large database system. In relational database systems and SQL, for example, one-dimensional range searching is a commonly used operation [17, 27]. Various two-dimensional range-searching problems are crucial for the support of new language features, such as constraint query languages [17] and class hierarchies in object-oriented databases [17]. In spatial databases such as geographic information systems (GIS), range searching obviously plays a pivotal role, and a large number of external data structures (indexing schemes) for answering such queries have been developed (see [15, 22, 35] and references therein).

The need for storing and processing continuously moving data arises in a wide range of applications, including digital battlefields, air-traffic control, and mobile communication systems [10, 4]. Most of the existing database systems, which assume that the data is constant unless it is explicitly modified, are not suitable for representing, storing, and querying continuously moving objects because either the database has to be continuously updated or a query output will be obsolete. A better approach would be to represent the position of a moving object as a function $f(t)$ of time, so that the position changes without any explicit change in the database system. This way the database needs to be updated only when the function $f(t)$ changes (e.g., when the velocity of the object changes). Recently there has been some work on extending the capabilities of existing database systems to handle moving-object databases (MOD) (see e.g. [31, 32, 11]).

In this paper, we focus on developing efficient indexing schemes for storing a set of points, each moving in the xy-plane, so that range queries over their locations in the future can be answered quickly. An example of such a spatio-temporal query is: “Report all points that will lie inside a query rectangle R five minutes from now.”

1.1 Problem statement

Let $S = \{p_1, p_2, \ldots, p_N\}$ be a set of moving points in the xy-plane. For any time t, let $p_i(t)$ denote the position of p_i at time t, and let $S(t) = \{p_1(t), \ldots, p_N(t)\}$. We

*Center for Geometric Computing, Department of Computer Science, Duke University, Box 90129, Durham, NC 27708-0129; panka@cs.duke.edu; http://www.cs.duke.edu/~panka.

Partly supported by National Science Foundation grants EIA-9870734, EIA-997287, and CCR-9732787, by Army Research Office MURI grant DAAGH04-96-1-0013, by a Sloan fellowship, by a National Science Foundation NYI award and matching funds from Xerox Corporation, and by a grant from the U.S.-Israel Binational Science Foundation.

†Department of Geometric Computing, Department of Computer Science, Duke University, Box 90129, Durham, NC 27708-0129; large@cs.duke.edu; http://www.cs.duke.edu/~large.

Partly supported by National Science Foundation grants EIA-9870734, EIA-997287, and EIA-9984099.

‡Department of Computer Science, University of Illinois, Urbana, IL 61801; jeffe@cs.uiuc.edu; http://www.cs.uiuc.edu/~jeffe.

Supported in part by National Science Foundation grant DMS-9627683, by U.S. Army Research Office MURI grant DAAH04-96-1-0013, and by a Sloan Fellowship.
will assume that each point \(p_i \) is moving along a straight line at some fixed speed, or more formally, that \(p_i(t) = a_i \cdot t + b_i \) for some \(a_i, b_i \in \mathbb{R}^2 \). The trajectories of the points \(p_i \) can change at any time. We assume that the objects are responsible for updating the values \(a_i \) and \(b_i \) and that the database system is notified whenever these values change. We will use the term \textit{now} to mean the current time.

We are interested in answering the queries of the following form:

Q1. Given an axis-aligned rectangle \(R \) in the \(xy \)-plane and a time value \(t_q \), report all points of \(S \) that lie inside \(R \) at time \(t_q \), i.e., report \(S(t_q) \cap R \).

Q2. Given a rectangle \(R \) and two time values \(t_1 \) and \(t_2 \), report all points of \(S \) that lie inside \(R \) at any time between \(t_1 \) and \(t_2 \), i.e., report \(\bigcup_{t=t_1}^{t_2} (S(t) \cap R) \). In many applications, either \(t_1 = \text{now} \) or \(t_2 = \text{now} \).

Q3. Given a query point \(\sigma \in \mathbb{R}^2 \) and a time value \(t_q \), report a \(\delta \)-approximate nearest neighbor of \(\sigma \) in \(S \) at time \(t_q \), i.e., a point \(p \in S(t_q) \) such that \(d(\sigma,p) \leq (1+\delta) \cdot \min_{r \in S(t_q)} d(\sigma,r) \).

As our main interest is minimizing the number of disk accesses needed to answer a range query, we will consider the problem in the standard external memory model. This model assumes that each disk access transmits a contiguous block of \(B \) units of data in a single input/output operation (or I/O). The efficiency of a data structure is measured in terms of the amount of disk space it uses (measured in units of disk blocks) and the number of I/Os required to answer a range query. As we are interested in solutions that are \textit{output sensitive}, our query I/O bounds are not only expressed in terms of \(N \), the number of points in \(S \), but also in terms of \(K \), the number of points reported by the query. Note that the minimum number of disk blocks we need to store \(N \) points is \(\lceil N/B \rceil \). Similarly, at least \(\lceil K/B \rceil \) I/Os are needed to report \(K \) output points. We refer to these bounds as "linear" and introduce the notation \(n = \lceil N/B \rceil \) and \(k = \lceil K/B \rceil \).

1.2 Previous results

A detailed summary of early work on temporal databases can be found in the survey paper by Salzberg and Tsostras [29]. Most early work concentrated on multiversion and/or time-series data. Recently, however, there has been a flurry of activity on developing data models and query languages for supporting continuously moving objects. Sistla and Wolfson [31] developed a temporal query language called \textit{future temporal logic} (FTL) that supports proximity queries on moving objects. Sistla \textit{et al.} [32] later proposed a data model called \textit{moving objects spatio-temporal} (MOST) for moving objects and refined FTL. These models were later extended in [40, 36, 38, 39, 37] to incorporate several important issues, including uncertainty in the motion and communication cost. Other spatio-temporal models can be found in [11, 13, 14].

Although a number of practical methods have been proposed for accessing and searching moving objects [38, 33, 20], they all require \(\Omega(n) \) I/Os in the worst case— even if the query output size is \(O(1) \). Kollrios \textit{et al.} [18] proposed an efficient indexing scheme, based on partition trees [1, 2], for storing a set of points moving on the real line. It uses \(O(n) \) disk blocks, answers a 1-dimensional query of type Q2 using \(O(n^{1/2} + \varepsilon + k) \) I/Os, for an arbitrarily small constant \(\varepsilon > 0 \), and inserts or deletes a point using \(O(\log^2 n) \) I/Os. They also present another scheme that uses \(O(Nn) \) disk blocks and answers a query of type Q1 using \(O(\log n + k) \) I/Os, assuming that the speed of a point never changes. Furthermore, they propose a practical data structure for points moving in \(\mathbb{R}^2 \), but it requires \(\Omega(n) \) I/Os in the worst case to answer a query. In another paper, Kollrios \textit{et al.} [19] proposed a practical data structure for answering nearest-neighbor queries for moving points on the real line, but no bound on the query time was proved. Saltenis \textit{et al.} [28] propose an R-tree based indexing scheme for answering queries of type Q1 and Q2; see also [25].

In the computational geometry community, early work on moving points focused on bounding the number of changes in various geometric structures (e.g., convex hull, Delaunay triangulation) as the points move [30]. In their seminal paper, Basch \textit{et al.} [7] introduced the notion of \textit{kinetic data structures}. Their work has lead to several interesting results related to moving objects, including results on kinetic space partition trees (also known as cell trees) [3]. The main idea in the kinetic framework is that as the points move and their configuration changes, \textit{kinetic updates} are performed on the data structure when certain events occur. Although the points move continuously, the combinatorial structure of the data structure change only at certain discrete times called \textit{events}, and therefore one does not have to update the data structure continuously. In contrast to fixed-time-step methods, in which the fastest moving object determines the update time step for the entire data structure, a kinetic data structure is based on events, which have a natural interpretation in terms of the underlying structure. However, so far all work on kinetic data structures has been done in an internal memory computational model.

1.3 Our results

This paper contains four main results on indexing moving points in the plane. We use two essentially different approaches. The first approach regards time
as the third axis and solves the problem in the xyz-space. The second approach, based on the work on kinetic data structures, regards points in the xy-plane, and the indexing scheme evolves over time. That is, it is modified when certain kinetic events occur, namely when the x- and y-coordinates of two points become equal. (The data structure is not necessarily updated at every one of such $O(N^2)$ events.) To our knowledge, the structures we develop are the first indexing schemes with provable performance bounds for answering range queries on points moving in the xy-plane.

In Section 2, we describe some useful general concepts from computational geometry. Next, in Section 3, we present an indexing scheme based on partition trees that uses $O(n)$ disk blocks and answers a query of type Q1 using $O(n^{1/2+\varepsilon} + k)$ I/Os, for any arbitrarily small constant $\varepsilon > 0$. A point can be inserted or deleted using $O((\log_B n)^2)$ I/Os. The index does not change unless the trajectory of a point changes, and therefore we say that the index is time-oblivious. It can also answer queries of type Q2 within the same I/O bound, though a point may be reported more than once (at most six times). Finally, the indexing scheme can also handle certain forms of uncertainty in the velocity of points, without affecting the asymptotic performance.

While the partition tree scheme is time-oblivious, the cost of a query is relatively high. In Section 4, we show that by allowing the index to evolve over time, we can answer a Q1 query using $O((\log_B n + k))$ I/Os, provided that the queries arrive in chronological order. This is achieved using the kinetic framework on an external range tree [5]. Our structure uses $O(n \log_B n / (\log_B \log_B n))$ disk blocks. Kinetic range trees (with slightly worse performance) were first developed in the internal-memory setting by Basch et al. [8]. We also show how one can combine kinetic range trees with partition trees to obtain a tradeoff between the query time and the number of events at which the kinetic index needs to be updated. Given a parameter $NB \leq \Delta \leq N^2$, we can answer a query in $O(N^{1+\varepsilon}/\sqrt{\Delta} + k)$ I/Os, and provided the trajectories of the points do not change, there are $O(\Delta)$ events.

In many applications, such as air-traffic control, queries in the near future are more critical than queries far away the in future. In such applications, we need an indexing scheme that has fast response time for near-future queries but may take more time for queries that are far away. In Section 5, we propose such an indexing scheme. Using $O(n \log_B \log_B n)$ disk blocks, it answers a query of type Q1 so that the number of I/Os required is a monotonically increasing function of $(t_q - t_{now})$. The query time never exceeds $O(n^{1/2+\varepsilon} + k)$. If the points and their trajectories are uniformly distributed, then a query takes $O((\Delta_q/n)^{1/2} + k)$ I/Os, where $0 \leq \Delta_q \leq \binom{n}{2}$ is the number of kinetic events in the time interval $[\text{now}, t_q]$.

Finally, in Section 6, we describe an indexing scheme for answering Q3 queries. Given a parameter $\delta > 0$, we construct an indexing scheme, based on partition trees, that uses $O(n/\sqrt{\delta})$ disk blocks. For a query point $\sigma \in \mathbb{R}^2$ and a time value t_q it returns a δ-approximate nearest neighbor using $O((n^{1/2+\varepsilon}/\sqrt{\delta}) I/Os. A point can be inserted or deleted in $O((\log_B n)/\sqrt{\delta}) I/Os.

2 Geometric Preliminaries

In order to state our results we need some concepts and results from computational geometry.

2.1 Duality

Duality is a popular and powerful technique used in geometric algorithms; it maps each point in \mathbb{R}^2 to a line in \mathbb{R}^2 and vice-versa. We use the following duality transform: The dual of a point $(a_1, a_2) \in \mathbb{R}^2$ is the line $x_3 = -a_1 x_1 + a_2$, and the dual of a line $x_4 = b_1 x_1 + b_2$ is the point (b_1, b_2). Let σ^* denote the dual of an object (point or line) σ; for a set of objects Σ, let $\Sigma^* = \{\sigma^* \mid \sigma \in \Sigma\}$. An essential property of duality is that a point p is above (resp., below, on) a line h if and only if the dual line p^* is above (resp., below, on) the dual point h^*. See Figure 1. The dual of a strip σ is a vertical line segment σ^* in the sense that a point p lies in σ if and only if the dual line p^* intersects σ^*.

![Figure 1](image_url)
Figure 1. The duality transformation in two dimensions. The duals of two points and a strip are two lines and a vertical line segment.

2.2 External partition trees

Partition trees are one of the most commonly used internal memory data structures for geometric range searching [2, 21]. Our first indexing scheme is based on partition trees, which were originally described in Matoušek [21], and later extended in [1] to the external memory setting. We briefly summarize them here with an emphasis on insertion/deletion operations, as we slightly improve their performance compared to [1].

Let S be a set of N points in \mathbb{R}^2. A simplicial partition of S is a set of pairs $\Pi = \{(S_1, \Delta_1), (S_2, \Delta_2), \ldots, (S_r, \Delta_r)\}$, where the S_i's are disjoint subsets of S, and each Δ_i is a triangle containing the points in S_i. Note that a point of S may lie in many triangles, but it
belongs to only one \(S_i \); see Figure 2. The size of \(\Pi \), here denoted \(r \), is the number of pairs. A simplicial partition is balanced if each subset \(S_i \) contains between \(N/r \) and \(2N/r \) points. The crossing number of a simplicial partition is the maximum number of triangles crossed by a single line.

![Figure 2. A balanced simplicial partition of size 7.](image)

The following lemma states how fast a simplicial partition can be constructed. The I/O bound mentioned here is smaller than the one in [1]. Because of lack of space, we omit the proof.

Lemma 2.1. Let \(S \) be a set of \(N \) points in the plane, and let \(r = O(B) \) be a positive integer. We can construct a balanced simplicial partition \(\Pi \) of size \(r \) for \(S \) in \(O(N) \) expected I/Os, such that the crossing number of \(\Pi \) is \(O(\sqrt{r}) \).\(^1\)

We construct a partition tree as follows: Each node \(v \) in a partition tree \(T \) is associated with a subset \(S_v \subseteq S \) of points and a simplex \(\Delta_v \). For the root \(u \) of \(T \), we have \(S_u = S \) and \(\Delta_u = \mathbb{R}^2 \). Let \(N_v = |S_v| \) and \(n_v = |N_v/B| \). For each node \(v \), we construct the subree rooted at \(v \) as follows. If \(N_v \leq B \), then \(v \) is a leaf and we store all points of \(S_v \) in a single block. Otherwise, \(v \) is an internal node of degree \(r_v = \min\{cB,2n_v\} \), where \(c \geq 1 \) is a constant to be specified later. We compute a balanced simplicial partition \(\Pi_v = \{(S_1,\Delta_1),\ldots,(S_{r_v},\Delta_{r_v})\} \) for \(S_v \) with small crossing number and then recursively construct a partition tree \(T_i \) for each subset \(S_i \). For each \(i \), we store the vertices of \(\Delta_i \) and a pointer to \(T_i \); the root of \(T_i \) is the \(i \)th child of \(v \), and it is associated with \(S_i \) and \(\Delta_i \). We need \(O(c) = O(1) \) blocks to store any node \(v \). Since \(r_v \) was chosen to be \(\min\{cB,2n_v\} \), every leaf node contains \(O(B) \) points. Thus the total number of nodes in the tree is \(O(n) \), so the total size of the partition tree is \(O(n) \). If we apply Lemma 2.1 recursively to build the entire partition tree the total construction time is \(O(N \log_B n) \) expected I/Os.

We want to be able to answer a query of the following type: Find all points inside a query strip \(\sigma \). In order to do so, we visit \(T \) in a top down fashion. Suppose we are at a node \(v \). If \(v \) is a leaf, we report all points of \(S_v \) that lie inside \(\sigma \). Otherwise, we test each triangle \(\Delta_i \) of \(\Pi_v \). If \(\Delta_i \) lies completely outside \(\sigma \), we ignore it; if \(\Delta_i \) lies completely inside \(\sigma \), we report all points in \(S_i \) by traversing the \(i \)th subtree of \(v \); finally, if \(\sigma \) crosses \(\Delta_i \), we recursively visit the \(i \)th child of \(v \). Note that each point in \(\sigma \) is reported exactly once. As shown in [1], a query takes \(O(n^{1/2+\varepsilon} + k) \) I/Os, for any arbitrarily small constant \(\varepsilon > 0 \).

We can make our external partition tree dynamic using the partial rebuilding technique of Overmars [23]. At each node \(v \) in the tree, we store \(N_v \), the number of points stored in its subtree. To insert a new point \(p \) into the subtree rooted at \(v \), we first increment \(N_v \). Then if \(v \) is a leaf, we add \(p \) to the subtree \(S_v \); otherwise, we find a triangle in the simplicial partition \(\Pi_v \) that contains \(p \), and recursively insert \(p \) into the corresponding subtree. If more than one triangle in \(\Pi_v \) contains \(p \), we choose the one whose subtree is smallest. The deletion process is similar.

In order to guarantee the same query time as in the static case, we occasionally need to rebuild parts of the partition tree after an update. A node \(u \) is unbalanced if it has a child \(v \) such that \(N_v < N_u/2r_u \) or \(N_v > 4N_u/r_u \); in particular, the parent of a leaf \(v \) is unbalanced if either \(N_v < B/4 \) or \(N_v > 2B \). (There is nothing special about the constants 2 and 4 in this definition.) To ensure that every node in the tree is balanced after inserting or deleting a point, we rebuild the subtree rooted at the unbalanced node closest to the root.

Rebuilding the subtree rooted at any node \(v \) takes \(O(N_v \log_B n_v) \) expected I/Os, and \(N_v \) must be incremented or decremented \(O(N_v) \) times between rebuilds. Thus, the amortized cost of modifying \(N_v \) is \(O(\log_B n_v) \) expected I/Os. Since each insertion or deletion changes \(\log_B n \) counters, the overall amortized cost of an insertion or deletion is \(O(\log_B^2 n) \) I/Os. Using these bounds in the indexing scheme of Kollios et al. [18], we obtain their result on 1-dimensional range searching, but with improved update performance.

Theorem 2.2. Given a set \(S \) of \(N \) linearly moving points in \(\mathbb{R}^2 \) and a parameter \(\varepsilon > 0 \), we can preprocess \(S \) into an index of size \(O(n) \) blocks so that a Q2 query can be answered in \(O(n^{1/2+\varepsilon} + k) \) I/Os. The data structure can be constructed in \(O(N \log_B n) \) expected I/Os, and points can be inserted into or deleted at an amortized cost of \(O(\log_B^2 n) \) expected I/Os each.

3 Time-Oblivious Indexing

We now describe our first indexing scheme to answer Q1 queries for points in \(\mathbb{R}^2 \). The indexing scheme can easily
be generalized to higher dimensions, but for brevity we will describe only the two-dimensional case.

Let S be a set of N linearly-moving points in the xy-plane. These points trace out N lines in three-dimensional space-time; in this setting, a Q1 query asks which lines intersect a rectangle R on the plane $t = t_q$, parallel to the xy-plane. We can map each line to a point in \mathbb{R}^4 and use a four-dimensional partition tree to answer a Q1 query as in [18], but that would be very expensive. Instead, we use a multi-level partition tree. We observe that a line l intersects R if and only if their projections onto the xt- and yt-planes both intersect. We apply a duality transformation to the xt- and yt-planes. Each moving point p in the xy-plane now induces two static points p^x and p^y in the dual xt-plane and the dual yt-plane, respectively. For any subset $P \subseteq S$, let P^x and P^y respectively denote the corresponding points in the dual xt-plane and the dual yt-plane. Any query rectangle induces two query strips σ^x and σ^y, and the result of a query is the set of points $p \in S$ such that $p^x \in \sigma^x$ and $p^y \in \sigma^y$. See Figure 3.

We construct our data structure \mathcal{T} as follows. First, we build a primary partition tree T^x for the points S^x. Then at certain nodes v of T^x, we attach a secondary partition tree T^y_v for the points S^y_v. Specifically, we attach secondary trees to every node whose depth is a multiple of $\log_B n$, where $0 < \alpha < 1$ is a constant to be determined later. Since the size of a single secondary tree T^y_v is $O(n_v)$ blocks, the total size of all the secondary trees is $O(n/\alpha) = O(n)$ blocks, we can construct them all in $O(N \log_B n)$ expected I/Os, and we can still insert or delete a point in $O(\log^2 B)$ (amortized) expected I/Os.\footnote{We could attach secondary partition trees at every node in T^x, but the resulting index would require $O(n \log_B n)$ block and would have the same asymptotic query bound as this structure.}

The algorithm for answering a query is nearly the same as for the undecomed partition tree. Given two query strips σ^x and σ^y, we search through the primary partition tree for the points in $P^x \cap \sigma^x$. If we find a triangle Δ_t that lies completely inside σ^x, we do not perform a complete depth-first search of the corresponding subtree. Instead, we search only to the next level where secondary structures are available, and for each node v at that level, we use the secondary tree T^y_v to report all points of $P^y_v \cap \sigma^y$.

Let $\Sigma_1(N_v)$ denote the number of I/Os required to answer a query in some secondary partition tree T^y_v over N_v points, excluding the $O(K_v/B)$ I/Os used to report the K_v points inside the query range. In [1], it was shown that $\Sigma_1(N)$ obeys the recurrence

$$\Sigma_1(N_v) = 1 + O(\sqrt{r_v}) \cdot \Sigma_1(2n_v/r_v),$$

which has the solution $\Sigma_1(N) = O(n^{1/2+\varepsilon})$ for arbitrary small $\varepsilon > 0$. Similarly, let $\Sigma_2(N_v)$ denote the number of I/Os to answer a query in the entire two-level data structure, excluding the $O(k)$ I/Os required to report the output. Among the descendants of any node in T^x that we visit recursively, we perform $O((cB)^{\alpha \log_B n}) = O(n^{\alpha \log_B (cB)}) = O(n^{2\alpha})$ secondary queries, each on at most n_v points. Thus, $\Sigma_2(N)$ obeys the following recurrence:

$$\Sigma_2(N_v) = \alpha(n^{2\alpha}) \cdot \Sigma_1(n_v) + O(\sqrt{r_v}) \cdot \Sigma_2(2n_v/r_v) = o(n^{2\alpha}) \cdot O(n_v^{1/2+\varepsilon}) + O(\sqrt{r_v}) \cdot \Sigma_2(2n_v/r_v).$$

The solution to this recurrence is $\Sigma(N) = O(n^{1/2+\varepsilon'})$, where $\varepsilon' < 2(\varepsilon + \alpha)$. We can make ε' arbitrarily close to ε by choosing α appropriately.

Theorem 3.1. Given a set S of N linearly moving points in \mathbb{R}^2 and a parameter $\varepsilon > 0$, we can preprocess S into an index of size $O(n)$ blocks so that a Q1 query can be answered in $O(n^{1/2+\varepsilon} + k)$ I/Os. The index
can be constructed in $O(N \log_B n)$ expected I/Os, and points can be inserted or deleted at an amortized cost of $O(\log_B^2 n)$ expected I/Os each.

Remarks.

(i) We can generalize our construction to any (constant) number of dimensions by building more levels of partition trees. The space, preprocessing time, query time, and update time of this multilevel partition tree only increase by a constant factor with each additional dimension.

(ii) If the points in S are distributed uniformly in some rectangular domain, then we can simplify our construction considerably by using a a regular $\sqrt{T} \times \sqrt{T}$ square grid instead of a simplicial partition. Details will appear in the full paper.

(iii) The external partition tree can also handle certain forms of uncertainty in the velocity of the location of points with the same query performance.

A query of type Q2—report all points lying in a rectangle R in the xy-plane at any time during the interval $[t_1, t_2]$—is equivalent to reporting all lines that intersect the box $B = R \times [t_1, t_2]$. We can report all such lines by separately reporting the lines intersecting the top facet of B, the left facet of B, and the front facet of B, using three separate copies of our earlier index.

Theorem 3.2. Given a set S of N linearly moving points in \mathbb{R}^2 and a parameter $\varepsilon > 0$, we can preprocess S into an index of size $O(n)$ blocks so that a Q2 query can be answered in $O(n^{1/2+\varepsilon} + k)$ I/Os. The index can be constructed in $O(N \log_B n)$ expected I/Os, and points can be inserted or deleted at an amortized cost of $O(\log_B^2 n)$ expected I/Os each.

4 Chronological Queries

In this section, we discuss how we can improve on the $O(n^{1/2+\varepsilon} + k)$ query bound presented in the previous section if we allow the data structure to change over time, and if we allow queries only at the current time.

The approach can be extended to handle queries in future time as long as they arrive in chronological order. Our so-called kinetic range tree is based on an internal-memory data structure with suboptimal query time developed by Basch et al. [8] and a query-optimal external range tree developed in [5]. We will present our range tree in the primal setting. We give a brief overview of the external range tree in Section 4.1, and then discuss how to kineticize it in Section 4.2. The main idea will be to store only a snapshot of the moving points at any time; whenever the “sorted order” of the points changes, we perform a kinetic update on the data structure. Finally, in Section 4.3, we discuss a tradeoff between the query cost and the cost of updating the data structure.

4.1 External range trees

The external range tree K presented in [5] is a three-level structure. The primary structure is a tree over the x-coordinates of the points in S, similar to a B-tree with fan-out $\log_B n$. This tree has height $O(\log_{\log_B n} n) = O(\log_B n/(\log_B \log_B n))$, and a point p is stored in secondary structures of all the nodes on the path from the root to the leaf storing p. These secondary structures use linear space, so the structure use $O(n \log_B n/(\log_B \log_B n))$ blocks in total. The secondary structures are external versions of a priority search tree, which can be used to answer three-sided range queries, i.e., reporting the points lying in a rectangle of the form $[a, b] \times [c, \infty)$. The basic structure of the external priority search tree is that of a B-tree, in which each node v has an auxiliary structure A_v containing B^2 points. A_v uses linear space, and supports three-sided queries and updates in $O(1 + k)$ I/Os and $O(1)$ I/Os, respectively. For brevity, we only discuss the B^2 structure below. The full description of the external range tree appears in [5], where the following is proved.

Lemma 4.1 ([5]). A set of N points in \mathbb{R}^2 can be stored in an index using $O(n \log_B n/(\log_B \log_B n))$ disk blocks, so that a range query can be answered in $O(\log_B n + k)$ I/Os. Points can be inserted or deleted at an amortized cost of $O(\log_B^2 n)$ I/Os each.

Consider a set S of B^2 points (x_i, y_i) ordered in increasing order of their x-coordinates. The structure A for answering 3-sided range queries on S consists of $2B - 1$ blocks $b_1, b_2, \ldots, b_{2B-1}$ storing the points, plus a constant number of catalog blocks. An x-interval $[x_{i_1}, x_{i_2}]$ and a y-interval $[y_{i_1}, y_{i_2}]$ are associated with each block b_i. The catalog blocks store these $2B - 1$ x- and y-intervals. The block b_i contains a point (x_j, y_j) of S whenever the following condition holds:

$$x_{i_1} \leq x_j \leq x_{i_2} \quad \text{and} \quad y_{i_1} \leq y_j$$

(♠)

The blocks are constructed as follows. Initially, we create B blocks b_1, b_2, \ldots, b_B. For each $i \leq B$, the x-interval of b_i is $[x_{(i-1)B+1}, x_{iB}]$, and the lower endpoint y_{i1} of b_i is $-\infty$. Hence b_i contains the points $(x_{(i-1)B+1}, y_{(i-1)B+1}), \ldots, (x_{iB}, y_{iB})$. Next, we sweep a horizontal line upwards from $y = -\infty$, and for each block b_i, we keep track of the number of points in b_i lying above the sweep line. When the sweep line reaches a point (x_j, y_j) such that two consecutive blocks b_i and b_{i+1} both have fewer than $B/2$ points lying above the line $y = y_j$, a new block b_j is created with y_j as the lower endpoint of its y-interval and with $[x_{i1}, x_{i+1}]$ as its x-interval. That is, b_i contains the (at most B) points of b_i and b_{i+1} that lie above the line $y = y_j$. The upper endpoints of the y-intervals of b_i and b_{i+1} are set to y_j.

and we no longer keep track of \(b_i \) and \(b_{i+1} \) during the sweep. The sweep continues in this manner until the line reaches \(+\infty \). At that point at most \(B+(B-1)=2B-1 \) blocks have been created. In [5] it is shown how the above structure can be constructed in \(O(B) \) I/Os.

To answer a 3-sided query \([a,b] \times [c,\infty)\), we first load the catalog blocks into main memory using \(O(1) \) I/Os. We then identify all blocks whose \(y \)-interval includes \(c \) (i.e., the blocks under consideration when the sweep line was at \(y = c \)) and whose \(x \)-range intersects the interval \([a,b]\). We load these blocks into main memory one at a time and report the relevant \(K \) points. It is shown in [5] that the query takes \(O(1 + K/B) \) I/Os. See Figure 4.

![Figure 4](image-url)

Figure 4. Answering query \(q = (a,b,c) \). Dotted lines indicate the \(B \) initial blocks (before the vertical sweep). Solid blocks are active when the sweep line is at \(y = c \); the \(y \)-interval of each active block is indicated to its left. All active blocks are loaded to answer \(q \), and except for the blocks containing \(a \) and \(b \), every consecutive pair of blocks contributes at least \(B/2 \) points to the output.

The structure can easily be made dynamic using global rebuilding [23]. Updates are simply logged in an extra block \(B \). After \(B \) updates, when \(B \) becomes full, the entire structure is rebuilt from scratch in \(O(B) \) I/Os. Thus, the amortized cost of any insertion or deletion is \(O(1) \) I/Os. At every query, we spend one extra I/O examining \(B \) to ensure that query results are consistent with recorded updates.

Lemma 4.2. A set of \(B^2 \) points can be stored in an index of size \(O(B) \) blocks, so that a 3-sided range query can be answered in \(O(1 + k) \) I/Os. The index can be constructed in \(O(1) \) I/Os, and points can be inserted or deleted at an amortized cost of \(O(1) \) I/Os each.

4.2 Kinetic range trees

We now discuss how the external range tree [5] can be modified to work on moving points such that range queries at the current time can be answered quickly. We will only explain the modifications needed on the structure \(\mathcal{A} \) for answering 3-sided queries on \(B^2 \) points. Further details will appear in the full paper.

Recall that the endpoints of the \(x \)- and \(y \)-intervals of each block \(b_i \) in \(\mathcal{A} \) were defined by four points of \(S \). If \([x_{i_1}, x_{i_2}]\) and \([y_{i_1}, y_{i_2}]\) are the \(x \)- and \(y \)-intervals of \(b_i \), then we call the 4-tuple \((i_1, i_2, u_i, v_i)\) the **signature** of \(b_i \). In the case of moving points, we define the \(x \)- and \(y \)-intervals of \(b_i \) at time \(t \) to be \([x_{i_1}(t), x_{i_2}(t)]\) and \([y_{i_1}(t), y_{i_2}(t)]\). Thus the \(x \)- and \(y \)-intervals of each block change continuously with time. However, a point \(p_j = (x_j, y_j) \) in \(b_i \) continues to satisfy condition (a) until some time \(t \) when either \(x_j(t) = x_{i_1}(t), x_j(t) = x_{i_2}(t), \) or \(y_j(t) = y_{i_1}(t) \). Consequently, the content of blocks change only at discrete instants. The time values \(t \) at which one of the above three equalities holds are called **kinetic events**.

We handle kinetic events exactly as we handle dynamic updates, by global rebuilding. We maintain an extra update block \(B \), and whenever a point \(p \) leaves a block \(b_i \), we delete \(p \) from \(b_i \) and add it to \(B \). When \(B \) becomes full (after \(B \) events), we reconstruct the entire data structure from scratch. The amortized cost of each event is thus \(O(1) \) I/Os. For each point \(p_j \) in \(b_i \), we compute the first time \(t_{ij} \) when it will leave \(b_i \). We store these time values in a priority queue, called the **event queue**, and keep track of the next event \(t^* = \min_{i,j} t_{ij} \). At \(t = t^* \), we update the data structure as described above and update the priority queue. Whenever a point leaves a block, it enters another one, and this requires computing another failure time \(t_{ij} \) and storing that in the event queue. The event queue can be updated using \(O(1) \) I/Os at each event. By modifying the above scheme slightly, we can also change the trajectory of a point in \(O(1) \) I/Os. We omit the details.

To answer a query \(q = [a,b] \times [c,\infty) \) at time \(t_q \), we simply load the catalog blocks and calculate the \(x \)- and \(y \)-intervals of the blocks at time \(t_q \). We then load \(B \) and those blocks whose \(x \)-intervals intersect the interval \([a,b]\) at time \(t_q \) and whose \(y \)-intervals intersect \(c \) at time \(t_q \). We then report the points that lie in the query rectangle. As previously, the query procedure takes \(O(1 + K/B) \) I/Os to report \(K \) points.

Lemma 4.3. Let \(S \) be a set of \(B^2 \) points in \(\mathbb{R}^2 \), each moving with a fixed velocity. We can store \(S \) in an index of size \(O(B) \) blocks, so that a current 3-sided range query can be answered in \(O(1 + k) \) I/Os. Amortized cost of each event is \(O(1) \) I/Os. If the trajectories of points do not change over time, then there are a total of \(O(B^2) \) events.

Using similar ideas, we can evolve the primary and secondary structures of the external range tree. Events are now defined to be the time instances at which the \(x \)- or \(y \)-coordinates of two points become equal. These events can be calculated efficiently and stored in a global priority queue so that the next event can be computed in \(O(\log B n) \) I/Os. The data structure can be updated in \(O(\log B^2 n) \) I/Os at each such event. Our approach is similar to the techniques of Basch et al. [8] for kinetizing internal-memory range trees. Details will appear in the full paper.

Theorem 4.4. Given a set \(S \) of \(N \) linearly moving points in \(\mathbb{R}^2 \), we can preprocess \(S \) into a kinetic range
tree \(K \) of size \(O(n \log_B n / (\log_B n \log_B n)) \) blocks so that a
current Q1 query can be answered in \(O(\log_B n + k) \) I/Os.
The amortized cost of a kinetic event is \(O(\log_B^2 n) \) I/Os.
if the trajectories of points do not change over time, the
total number of events is \(O(N^2) \).

Remark. The kinetic range tree works with in the same
I/O bounds even if the points move along more complex
trajectories, provided we can quickly determine when a
moving point crosses a given horizontal or vertical line.

4.3 Query/update tradeoffs

If we are going to perform only a few queries, it is
not efficient to spend a total of \(O(N^2 \log_B^2 N) \) time
evolving the kinetic range tree. We can combine the
kinetic range tree \(K \) with our external partition tree \(T \) to
obtain a tradeoff between the cost of answering queries
and the total number of events. Our construction is
similar to a general technique used to establish tradeoffs
between data structure size and query time [2]. We
will first describe the tradeoff structure for moving one-
dimensional points, and then briefly describe how to
generalize it to two dimensions. Many details will be
defered to the full paper.

Let \(\Delta \) be a parameter between \(B^2 N \) and \(N^2 \). Our
structure for moving one-dimensional points consists of the
top \(\ell \) levels of an external partition tree, where \(\ell = \log_B / (N^2 / \Delta) \) and \(r = cB \) is the fanout of the tree.
This tree clearly has \(r^\ell \) leaves. At each leaf \(v \), we store
the corresponding subset of \(N_v \leq N/(r/2)^\ell \) points in a
kinetic one-dimensional range tree. See Figure 5.

![Figure 5. Schematic picture of our query/update tradeoff structure.](image)

Each kinetic range tree undergoes \(O(N^2 (2/r)^{2\ell}) \) kinetic events, so the total number of kinetic events
for the entire structure is \(O(N^2 (4/r)^\ell) = O(\Delta) \). To compute the number of I/Os required to answer a query,
we modify our earlier recurrence for \(\Sigma_1(N_v) \) by adding
a new base case \(\Sigma_1(N_v) = O(\log_B n) \) for all \(N_v \leq N/(r/2)^\ell \).
The solution for the modified recurrence is
\(\Sigma_1(N) = O((r^\ell)^{1/2 + \epsilon}) \).

5 Time-Responsive Indexing

The partition tree \(T \) has the advantage that it can an-
swer Q1 queries in any order, but the cost of answering a
query is high. On the other hand, the kinetic range tree
\(K \) answers a query quite fast, but it can handle queries
only in chronological order. In this section, we present
an indexing scheme that combines the advantages of both schemes—it can answer queries in any order, and
the number of I/Os need to answer a query is small if the
query time \(t_q \) is close to the current time. We first
describe how to answer a Q1 query in near future or in
near past in \(O(\log_B^2 n + k) \) I/Os, and then extend our
approach to arbitrary query times.

5.1 Recent-past and near-future queries

As observed in the previous section, the combinatorial
structure of the kinetic range tree \(K \) does not change
until the \(x \)- and \(y \)-coordinates of two points become
equal. At some of these events, we update the data
structure using \(O(\log_B^2 n) \) I/Os. Let \(e_1, e_2, \ldots \) be the
sequence of events at which \(K \) is updated, let \(t_e \) be
the time at which the event \(e_i \) occurs, and let \(K_i \) be
the version of \(K \) between the events \(e_{i-1} \) and \(e_i \).
(For notational convenience, we define \(t_1 = -\infty \) for
Theorem 5.1. Given a set S of N linearly moving points in \mathbb{R}^2, we can preprocess S into an index of size $O(n \log_B n / (\log_B \log_B n))$ blocks, so that a Q1 query can be answered in $O(\log_B n + k)$ I/OS, provided there are at most $n / \log_B n$ events between t_q and the current time. The amortized cost per event is $O(\log_B^2 n)$ I/OS. If a point p is stored at T places in the index, we can update the trajectory of p using $O((1 + T) \log_B n)$ I/OS.

A significantly simpler data structure can be developed if S is a set of points in \mathbb{R}^1. In this case we can directly apply the ideas of [12, 9, 34] and obtain the following result. Details will appear in the full paper.

Theorem 5.2. Given a set S of N linearly moving points in \mathbb{R}^1, we can preprocess S into an index A of size $O(n)$ blocks, so that a Q1 query can be answered in $O(\log_B n + k)$ I/OS, provided there are at most N events between t_q and the current time. The amortized cost per event is $O(\log_B^2 n)$ I/OS. If a point p is stored at T places in the index, we can update the trajectory of p using $O((1 + T) \log_B n)$ I/OS.

5.2 Answering distant-future queries

We now combine the partition tree with the interim persistent index to obtain an index whose query cost is a function of $|t_q - now|$. The combination is similar to the multilevel partition trees discussed in Section 3. For simplicity, we describe the indexing scheme in \mathbb{R}^1 only; a similar approach works in \mathbb{R}^2.

Let S be a set of N points in \mathbb{R}^1, each moving with fixed velocity. We convert S into a set of lines in the xt-plane, and let P denote the set of points dual to these lines. We construct a partition tree T on P as described in Section 2.2. Each node v of T is associated with a subset $P_v \subseteq P$ of points. Let $S_v \subseteq S$ be the set of input points corresponding to P_v.

For each node v whose depth is a multiple of $\alpha \log_B n$, where $\alpha > 0$ is a small constant, we construct an interim persistent index K_v on S_v (Theorem 5.2). We also maintain the time interval $[t_v^-, t_v^+]$ in which
\(\mathcal{K}_v \) is valid. The total size of the resulting structure is \(O(n) \) disk blocks. An event is now defined to be a time instance at which two points stored in some secondary structure collide. At each such event point, the data structure can be updated using \(O(\log B n) I/Os \).

A 1-dimensional Q1 query—report all points of \(S(t_q) \) that lie in an interval \(I \)—can be answered as follows. We traverse \(\mathcal{T} \), starting from the root, as in Section 2.2. Suppose we are at a node \(v \). If \(v \) has a secondary structure \(\mathcal{K}_v \) and \(t_q \in [t_v^-, t_v^+] \), then we report all points of \(S_v(t_q) \cap I \) using \(\mathcal{K}_v \). This requires \(O(\log B n + K_v / B) \) I/Os, where \(K_v = |S_v(t_q) \cap I| \). Otherwise, we visit the children of \(v \) exactly as in Section 2.2.

The maximum number of I/Os needed to answer a query, independent of \(t_q \), is \(O(n^{1/2+\varepsilon} + k) \); in the worst case, we never use any secondary structure \(\mathcal{K}_v \). However, if \(t_q \) is close to the current time, the query procedure will visit only a few levels of the partition tree and then it will switch to the secondary kinetic structures. It is difficult to bound the query time in the worst case without assuming any distribution on the trajectories of points, since several events can occur in a short period of time. If we assume that the points and their trajectories are uniformly distributed (i.e., the points in \(P \) are uniformly distributed in a unit square), then we can simplify the partition tree and prove the following.

Theorem 5.3. Given a set \(S \) of \(N \) linearly moving points in \(\mathbb{R}^2 \), we can preprocess \(S \) into an index of size \(O(n) \) blocks so that the cost of a Q1 query at time \(t_q \) is a monotonically increasing function of \(|t_q - \text{now}| \). If the points and their trajectories in \(S \) are uniformly distributed, then a query takes \(O((\Delta / n)^{1/2} n^\varepsilon + k) \) expected I/Os, where \(0 \leq \Delta \leq \binom{n}{2} \) is the number of events between \(t_q \) and \(\text{now} \).

In \(\mathbb{R}^2 \) we can prove a similar result, with a slightly worse bound on the size of the data structure and update time. Details will appear in the full version of this paper.

Theorem 5.4. Given a set \(S \) of \(N \) linearly moving points in \(\mathbb{R}^2 \), we can preprocess \(S \) into an index of size \(O(n \log B n / (\log B \log_B n)) \) blocks so that the cost of a Q1 query at time \(t_q \) is a monotonically increasing function of \(|t_q - \text{now}| \). If the points and their trajectories in \(S \) are uniformly distributed, then a query takes \(O((\Delta / n)^{1/2} n^\varepsilon + k) \) expected I/Os, where \(0 \leq \Delta \leq \binom{n}{2} \) is the number of events between \(t_q \) and \(\text{now} \).

6 Almost-Nearest Neighbor Searching

In this section we briefly sketch an indexing scheme for answering Q3 queries. The main idea is to approximate the Euclidean metric with a metric whose unit ball is a regular polygon with few edges.

For any polygon \(P \) that contains the origin, we define the distance function \(d_P : \mathbb{R}^2 \times \mathbb{R}^2 \rightarrow \mathbb{R}^+ \) as \(d_P(a,b) = \inf\{ \lambda \mid b \in \lambda P + a \} \). We can easily verify that this function is a metric if and only if the polygon \(P \) is centrally symmetric about the origin.

Let \(m = 2 \left\lceil \sqrt{2/\sqrt{3}} \right\rceil \), and let \(P \) be the regular \(m \)-gon of circumscribing radius 1, centered at the origin and with a vertex on the \(x \)-axis; see Figure 6(i). Since \(m \) is even, \(d_P \) is a metric, and an easy trigonometric calculation shows that \(d_P(a, b) \leq (1 + \delta) d(a, b) \); see Figure 6(ii).

![Figure 6](image.png)

Figure 6. (i) A regular \(m \)-gon \(P \) centered at the origin. (ii) The difference between the Euclidean and \(d_P \) metrics. (iii) The wedge \(Q_a \) and the nearest neighbor to \(a \) under the distance function \(d_{\Delta_1} \).

Decompose \(P \) into \(m \) triangles \(\Delta_1, \ldots, \Delta_m \), by connecting every vertex of \(P \) to the origin. Obviously, \(d_P(a, b) = \min_{1 \leq i \leq m} d_{\Delta_i}(a, b) \). Thus, to find a nearest neighbor in the \(d_P \) metric, it suffices to compute the nearest neighbor of a query point under the distance function \(d_{\Delta_i} \). Our indexing scheme for approximate nearest neighbor queries consists of a separate data structure for each \(\Delta_i \). Without loss of generality, consider \(\Delta_1 \). For a point \(a \), let \(Q(a) \) be the wedge formed by the rays emanating from \(a \) in directions \(ow_1 \) and \(ow_2 \); see Figure 6(iii). The nearest neighbor of a point \(a \) under the distance function \(d_{\Delta_1} \) is the point in \(Q(a) \cap S \) nearest to \(a \) in the direction normal to \(v_1 v_2 \); see Figure 6(iii). For any point \(p \in S \), let \(f(p) \) be the dot product of \(p \) with the vector normal to \(v_1 v_2 \). It is easy to prove that the nearest \(d_{\Delta_1} \)-neighbor in \(S \) of a point \(a \in \mathbb{R}^2 \) is the point \(p \in S \) minimizing \(f(p) \).

We thus have the following problem at hand. We want to preprocess a set \(S \) of \(N \) moving points in the plane to answer queries of the following form:

Q3’. Given a point \(\sigma \) and a time \(t_q \), compute the point \(p(t_q) \in Q(\sigma) \) minimizing \(f(p(t_q)) \).

To solve this problem, we use a modification of the two-level partition tree \(T \) described in Section 3. First we construct a partition tree \(T \) over the projections of \(S \) onto the line \(ow_1 \). At certain nodes \(v \) of \(T \), we construct a secondary partition tree \(T_v^* \) over the projections of the subset \(S_v \) onto the line \(ow_2 \). Finally, we attach tertiary structures to certain nodes in \(T_v^* \).

Specifically, let \(v \) be a node in some secondary partition tree whose depth in that tree is a multiple
of $\alpha \log_B n$, for some small constant $\alpha > 0$, and let S_v be the subset of N_v points stored in its subtree. Define $F_v(t) = \min_{p \in S_v} f(p(t))$ to be the lower envelope of the functions $f(p(t))$. The graph of F_v is a convex chain with at most N_v vertices, and it can be computed in $O(n_v \log_B n_v)$ I/Os [16]. We store this chain at v. For a given value of t, we can compute $F_v(t)$ in $O(\log_B n)$ I/Os. We can also insert or delete a point in S_v and update the graph of F_v at an amortized cost of $O(\log_B n \log_B n)$ I/Os [1, 24]. The total size of our three-tier data structure is $O(n)$ blocks.

Given a query point σ and time value t_q, we answer a Q^3 query as follows. We first compute $O(n^{1/2+\varepsilon})$ nodes v_1, v_2, \ldots, v_m in the secondary trees so that $S(t_q) \cap Q(\sigma) = \bigcup_{i=1}^m S_{v_i}$, using the query algorithm described in Section 3. Then for each v_i, we compute $F_{v_i}(t_q)$, and finally we return the point p of $S(t)$ that attains $\min_{1 \leq i \leq m} F_{v_i}(t_q)$.

Omitting further details, we obtain the following.

Lemma 6.1. Given a set S of N linearly moving points in \mathbb{R}^2 and two parameters $\varepsilon > 0$, we can preprocess S into an index of size $O(n)$ blocks so that a Q^3 query can be answered in $O(n^{1/2+\varepsilon})$ I/Os. The index can be constructed in $O(N \log_B N)$ expected I/Os, and points can be inserted or deleted at an amortized cost of $O(\log_B n \log_B n)$ expected I/Os each.

Since our data structure for Q^3 queries consists of $\Theta(1/\sqrt{\delta})$ separate copies of the Q^3 index, one for each triangle Δ_i, we conclude:

Theorem 6.2. Given a set S of N linearly moving points in \mathbb{R}^2 and two parameters $\varepsilon, \delta > 0$, we can preprocess S into an index of size $O(n/\sqrt{\delta})$ blocks so that a Q^3 query can be answered in $O(n^{1/2+\varepsilon}/\sqrt{\delta})$ I/Os. The index can be constructed in $O(N \log_B N/\sqrt{\delta})$ expected I/Os, and points can be inserted or deleted at an amortized cost of $O(\log_B n \log_B n)$ expected I/Os each.

This approach can be extended to higher dimensions. Each new dimension requires a new level of partition tree, and in order to maintain the same approximation error, we must also increase the number of facets in the polyhedron used to approximate the unit sphere. Specifically, we can compute δ-approximate nearest neighbors among moving points in \mathbb{R}^d, using an index of size $O(n/\delta^{(d-1)/2})$ blocks, in $O(n^{1/2+\varepsilon}/\delta^{(d-1)/2})$ I/Os per query point. Details will appear in the full paper.

7 Conclusions

In this paper we presented various efficient schemes for indexing moving points in the plane so that queries of type Q1 and Q2 can be answered efficiently. We proposed tradeoffs between the query time and the time spent in updating the indexing scheme as the points move. We also presented an efficient indexing scheme for answering Q^3 queries. We conclude by mentioning a few open problems:

1. Develop efficient indexing schemes for points moving along nonlinear trajectories.
2. Develop an efficient indexing scheme for answering exact nearest-neighbor queries.
3. Can the indexing scheme described in Section 5.2 be extended so that Theorem 5.4 hold for any distribution of points and their trajectories.

References

