Indexing Moving Points
(Extended Abstract)

Pankaj K. Agarwal*

Abstract

‘We propose three indexing schemes for storing a set S of N
points in the plane, each moving along a linear trajectory, so
that a query of the following form can be answered quickly:
Given a rectangle R and a real value t4, report all K points
of S that lie inside R at time ¢,. We first present an indexing
structure that, for any given constant ¢ > 0, uses O(N/B)
disk blocks, where B is the block size, and answers a query in
O((N/B)'/?** 4+ K/B) 1/Os. It can also report all the points
of S that lie inside R during a given time interval. A point
can be inserted or deleted, or the trajectory of a point can
be changed, in O(log% N) I/Os. Next, we present a general
approach that improves the query time if the queries arrive
in chronological order, by allowing the index to evolve over
time. We obtain a tradeoff between the query time and
the number of times the index needs to be updated as the
points move. We also describe an indexing scheme in which
the number of I/Os required to answer a query depends
monotonically on the difference between t, and the current
time. Finally, we develop an efficient indexing scheme to
answer approximate nearest-neighbor queries among moving
points.

*Center for Geometric Computing, Department of Computer
Science, Duke University, Box 90129, Durham, NC 27708-0129;
pankaj@cs.duke.edu; http://www.cs.duke.edu/~ pankaj. Sup-
ported in part by National Science Foundation grants EIA—
9870734, EIA-997287, and CCR-9732787, by Army Research
Office MURI grant DAAH04-96-1-0013, by a Sloan fellowship,
by a National Science Foundation NYI award and matching funds
from Xerox Corporation, and by a grant from the U.S.-Israeli
Binational Science Foundation.

fCenter for Geometric Computing, Department of Computer
Science, Duke University, Box 90129, Durham, NC 27708-0129;
largeQcs.duke.edu; http://www.cs.duke.edu/™~large. Supported
in part by National Science Foundation grants EIA-9870734,
EIA-997287, and ETA-9984099.

fDepartment of Computer Science, University of Illinois, Ur-
bana, IL 61801; jeffe@cs.uiuc.edu; http://www.uiuc.edu/~ jeffe.
Supported in part by National Science Foundation grant DMS—
9627683, by U.S. Army Research Office MURI grant DAAHO04—
96-1-0013, and by a Sloan Fellowship.

Lars Arge!

Jeff Erickson?

1 Introduction

Efficient indexing schemes that support range searching
and its variants are central to any large database
system. In relational database systems and SQL, for
example, one-dimensional range searching is a com-
monly used operation [17, 27]. Various two-dimensional
range-searching problems are crucial for the support
of new language features, such as constraint query
languages [17] and class hierarchies in object-oriented
databases [17]. In spatial databases such as geographic
information systems (GIS), range searching obviously
plays a pivotal role, and a large number of external
data structures (indexing schemes) for answering such
queries have been developed (see [15, 22, 35] and
references therein).

The need for storing and processing continuously
moving data arises in a wide range of applications,
including digital battlefields, air-traffic control, and
mobile communication systems [10, 4]. Most of the ex-
isting database systems, which assume that the data is
constant unless it is explicitly modified, are not suitable
for representing, storing, and querying continuously
moving objects because either the database has to be
continuously updated or a query output will be obsolete.
A better approach would be to represent the position
of a moving object as a function f(t) of time, so that
the position changes without any explicit change in the
database system. This way the database needs to be
updated only when the function f(t) changes (e.g., when
the velocity of the object changes). Recently there has
been some work on extending the capabilities of existing
database systems to handle moving-object databases
(MOD) (see e.g. [31, 32, 11]).

In this paper, we focus on developing efficient index-
ing schemes for storing a set of points, each moving in
the zy-plane, so that range queries over their locations
in the future can be answered quickly. An example of
such a spatio-temporal query is: “Report all points that
will lie inside a query rectangle R five minutes from
now.”

1.1 Problem statement

Let S = {p1,p2,--. ,pn} be a set of moving points in the
zy-plane. For any time ¢, let p;(t) denote the position
of p; at time ¢, and let S(¢t) = {p1(¢),...,pn(t)}. We

will assume that each point p; is moving along a straight
line at some fixed speed, or more formally, that p;(t) =
a; -t + b; for some a;,b; € R2. The trajectories of the
points p; can change at any time. We assume that the
objects are responsible for updating the values a; and
b; and that the database system is notified whenever
these values change. We will use the term now to mean
the current time.

We are interested in answering the queries of the
following form:

Q1. Given an axis-aligned rectangle R in the zy-plane
and a time value t,, report all points of S that lie
inside R at time t,, i.e., report S(t,) N R.

Q2. Given arectangle R and two time values ¢; and 3,
report all points of S that lie inside R at any time
between t; and ts, i.e., report Uiitl (S@)NR). In
many applications, either t; = now or t2 = now.

Q3. Given a query point o € R? and a time value t,,
report a J-approrimate nearest meighbor of o in
S at time tg4, é.e., a point p € S(t;) such that
d(Uap) < (1 + 6) . mianS(tq) d(O’, T)-

As our main interest is minimizing the number of
disk accesses needed to answer a range query, we will
consider the problem in the standard external memory
model. This model assumes that each disk access
transmits a contiguous block of B units of data in a
single input/output operation (or I/0). The efficiency
of a data structure is measured in terms of the amount
of disk space it uses (measured in units of disk blocks)
and the number of I/Os required to answer a range
query. As we are interested in solutions that are output
sensitive, our query I/0O bounds are not only expressed
in terms of N, the number of points in S, but also in
terms of K, the number of points reported by the query.
Note that the minimum number of disk blocks we need
to store N points is [N/B]. Similarly, at least [K/B]
I/0Os are needed to report K output points. We refer
to these bounds as “linear” and introduce the notation
n=[N/B] and k = [K/B].

1.2 Previous results

A detailed summary of early work on temporal databases
can be found in the survey paper by Salzberg and Tso-
tras [29]. Most early work concentrated on multiversion
and/or time-series data. Recently, however, there has
been a flurry of activity on developing data models and
query languages for supporting continuously moving
objects. Sistla and Wolfson [31] developed a temporal
query language called future temporal logic (FTL) that
supports proximity queries on moving objects. Sistla et
al. [32] later proposed a data model called mowving
objects spatio-temporal (MOST) for moving objects and

refined FTL. These models were later extended in [40,
36, 38, 39, 37] to incorporate several important issues,
including uncertainty in the motion and communication
cost. Other spatio-temporal models can be found
in [11, 13, 14].

Although a number of practical methods have been
proposed for accessing and searching moving objects [38,
33, 20], they all require (n) I/Os in the worst case—
even if the query output size is O(1). Kollios et
al. [18] proposed an efficient indexing scheme, based on
partition trees [1, 2], for storing a set of points moving
on the real line. It uses O(n) disk blocks, answers a
1-dimensional query of type Q2 using O(n'/?tc + k)
I/Os, for an arbitrarily small constant € > 0, and inserts
or deletes a point using O(logsn) I/Os. They also
present another scheme that uses O(Nn) disk blocks
and answers a query of type Q1 using O(loggn + k)
I/0s, assuming that the speed of a point never changes.
Furthermore, they propose a practical data structure
for points moving in R?, but it requires Q(n) I/Os in
the worst case to answer a query. In another paper,
Kollios et al. [19] proposed a practical data structure for
answering nearest-neighbor queries for moving points
on the real line, but no bound on the query time
was proved. Saltenis et al. [28] propose an R-tree
based indexing scheme for answering queries of type Q1
and Q2; see also [25].

In the computational geometry community, early
work on moving points focused on bounding the number
of changes in various geometric structures (e.g., convex
hull, Delaunay triangulation) as the points move [30].
In their seminal paper, Basch et al. [7] introduced the
notion of kinetic data structures. Their work has lead
to several interesting results related to moving objects,
including results on kinetic space partition trees (also
known as cell trees) [3]. The main idea in the kinetic
framework is that as the points move and their config-
uration changes, kinetic updates are performed on the
data structure when certain events occur. Although the
points move continuously, the combinatorial structure
of the data structure change only at certain discrete
times called events, and therefore one does not have to
update the data structure continuously. In contrast to
fixed-time-step methods, in which the fastest moving
object determines the update time step for the entire
data structure, a kinetic data structure is based on
events, which have a natural interpretation in terms
of the underlying structure. However, so far all work
on kinetic data structures has been done in an internal
memory computational model.

1.3 Our results

This paper contains four main results on indexing
moving points in the plane. We use two essentially
different approaches. The first approach regards time

as the third axis and solves the problem in the zyt-
space. The second approach, based on the work on
kinetic data structures, regards points in the zy-plane,
and the indexing scheme evolves over time. That is, it
is modified when certain kinetic events occur, namely
when the z- and y-coordinates of two points become
equal. (The data structure is not necessarily updated
at every one of such O(N?) events.) To our knowledge,
the structures we develop are the first indexing schemes
with provable performance bounds for answering range
queries on points moving in the zy-plane.

In Section 2, we describe some useful general con-
cepts from computational geometry. Next, in Section 3,
we present an indexing scheme based on partition trees
that uses O(n) disk blocks and answers a query of type
Q1 using O(n'/?*¢ + k) 1/0Os, for any arbitrarily small
constant € > 0. A point can be inserted or deleted using
O(log% n) 1/0s. The index does not change unless the
trajectory of a point changes, and therefore we say that
the index is time-oblivious. It can also answer queries
of type Q2 within the same I/O bound, though a point
may be reported more than once (at most six times).
Finally, the indexing scheme can also handle certain
forms of uncertainty in the velocity of points, without
affecting the asymptotic performance.

While the partition tree scheme is time-oblivious,
the cost of a query is relatively high. In Section 4,
we show that by allowing the index to evolve over
time, we can answer a Q1 query using O(loggn + k)
I/0s, provided that the queries arrive in chronological
order. This is achieved using the kinetic framework
on an external range tree [5]. Our structure uses
O(nloggn/(logg loggn)) disk blocks. Kinetic range
trees (with slightly worse performance) were first de-
veloped in the internal-memory setting by Basch et
al. [8]. We also show how one can combine kinetic
range trees with partition trees to obtain a tradeoff
between the query time and the number of events at
which the kinetic index needs to be updated. Given a
parameter NB < A < N2, we can answer a query in
O(N't¢/\/A + k) 1/Os, and provided the trajectories
of the points do not change, there are O(A) events.

In many applications, such as air-traffic control,
queries in the near future are more critical than queries
far away the in future. In such applications, we need an
indexing scheme that has fast response time for near-
future queries but may take more time for queries that
are far away. In Section 5, we propose such an indexing
scheme. Using O(nloggn/(loggloggn)) disk blocks,
it answers a query of type Q1 so that the number of
I/0Os required is a monotonically increasing function of
(t, — now). The query time never exceeds O(n'/2ts 4
k). If the points and their trajectories are uniformly
distributed, then a query takes O((A,/n)Y/?n® + k)
I/0s, where 0 < A, < (}) is the number of kinetic

events in the time interval [now,t,].

Finally, in Section 6, we describe an indexing scheme
for answering Q3 queries. Given a parameter 6 > 0,
we construct an indexing scheme, based on partition
trees, that uses O(n/v/8) disk blocks. For a query point
o € R? and a time value ¢, it returns a d-approximate
nearest neighbor using O(n'/2*< /y/§) 1/Os. A point can
be inserted or deleted in O((logg n)/v/3) 1/Os.

2 Geometric Preliminaries

In order to state our results we need some concepts and
results from computational geometry.

2.1 Duality

Duality is a popular and powerful technique used in
geometric algorithms; it maps each point in R? to a
line in R? and vice-versa. We use the following duality
transform: The dual of a point (a1,as) € R? is the line
Ty = —a1x1 + az, and the dual of a line x4 = byxy + bs
is the point (by,b2). Let o* denote the dual of an

object (point or line) o; for a set of objects X, let
¥* = {0* | 0 € £}. An essential property of duality
is that a point p is above (resp., below, on) a line A if
and only if the dual line p* is above (resp., below, on)
the dual point h*. See Figure 1. The dual of a strip o
is a vertical line segment o* in the sense that a point p
lies in o if and only if the dual line p* intersects o*.

primal dual

Figure 1. The duality transformation in two dimensions. The
duals of two points and a strip are two lines and a vertical line
segment.

2.2 External partition trees

Partition trees are one of the most commonly used
internal memory data structures for geometric range
searching [2, 21]. Our first indexing scheme is based
on partition trees, which were originally described in
Matousek [21], and later extended in [1] to the external
memory setting. We briefly summarize them here with
an emphasis on insertion/deletion operations, as we
slightly improve their performance compared to [1]

Let S be a set of N points in R2. A simplicial
partition of S is a set of pairs II = {(S1, A1), (Sa, Aa),
..oy (Sr,)}, where the S;’s are disjoint subsets of S,
and each A; is a triangle containing the points in S;.
Note that a point of S may lie in many triangles, but it

belongs to only one S;; see Figure 2. The size of II, here
denoted r, is the number of pairs. A simplicial partition
is balanced if each subset S; contains between N/r
and 2N/r points. The crossing number of a simplicial
partition is the maximum number of triangles crossed
by a single line.

Figure 2. A balanced simplicial partition of size 7.

The following lemma states how fast a simplicial
partition can be constructed. The I/O bound mentioned
here is smaller than the one in [1]. Because of lack of
space, we omit the proof.

Lemma 2.1. Let S be a set of N points in the plane,
and let r = O(B) be a positive integer. We can
construct a balanced simplicial partition Il of size r for S
in O(N) expected I/Os, such that the crossing number
of Il is O(/7).!

We construct a partition tree as follows: Each node v
in a partition tree T is associated with a subset S, C S
of points and a simplex A,. For the root u of T', we have
S, =S and A, = R?. Let N, = |S,| and n, = [N,/B].
For each node v, we construct the subtree rooted at v
as follows. If N, < B, then v is a leaf and we store all
points of S, in a single block. Otherwise, v is an internal
node of degree r, = min{cB,2n,}, where ¢ > 1 is a
constant to be specified later. We compute a balanced
simplicial partition II, = {(S1,41),-.-,(Sr,,00,)}
for S, with small crossing number and then recursively
construct a partition tree T; for each subset S;. For
each i, we store the vertices of /\; and a pointer to Tj;
the root of T; is the ¢th child of v, and it is associated
with S; and A;. We need O(c) = O(1) blocks to store
any node v. Since r, was chosen to be min{cB,2n,},
every leaf node contains ©(B) points. Thus the total
number of nodes in the tree is O(n), so the total size
of the partition tree is O(n). If we apply Lemma 2.1
recursively to build the entire partition tree the total
construction time is O(N logg n) expected I/0s.

!Matousek [21] describes a more complicated deterministic
algorithm that constructs a balanced simplicial partition with
crossing number O(+/7), but his algorithm requires more I/Os,
and our simpler construction leads to the same asymptotic query
bounds.

We want to be able to answer a query of the following
type: Find all points inside a query strip ¢. In order
to do so, we visit T in a top down fashion. Suppose we
are at a node v. If v is a leaf, we report all points of S,
that lie inside 0. Otherwise, we test each triangle A;
of II,. If A; lies completely outside o, we ignore it;
if A\; lies completely inside o, we report all points in S;
by traversing the ith subtree of v; finally, if o crosses A\;,
we recursively visit the ith child of v. Note that each
point in o is reported exactly once. As shown in [1], a
query takes O(n!/2*¢ 4 k) 1/0O, for any arbitrarily small
constant € > 0.

We can make our external partition tree dynamic
using the partial rebuilding technique of Overmars [23].
At each node v in the tree, we store N,, the number of
points stored in its subtree. To insert a new point p into
the subtree rooted at v, we first increment N,. Then if
v is a leaf, we add p to the subset S,; otherwise, we find
a triangle in the simplicial partition II,, that contains p,
and recursively insert p into the corresponding subtree.
If more than one triangle in IT, contains p, we choose
the one whose subtree is smallest. The deletion process
is similar.

In order to guarantee the same query time as in the
static case, we occasionally need to rebuild parts of the
partition tree after an update. A node u is unbalanced
if it has a child v such that either N, < N,/2r, or
N, > 4N,/ry; in particular, the parent of a leaf v is
unbalanced if either N, < B/4 or N, > 2B. (There
is nothing special about the constants 2 and 4 in this
definition.) To ensure that every node in the tree is
balanced after inserting or deleting a point, we rebuild
the subtree rooted at the unbalanced node closest to the
root.

Rebuilding the subtree rooted at any node v takes
O(Nylogg ny) expected I/0s, and N, must be incre-
mented or decremented Q(N,) times between rebuilds.
Thus, the amortized cost of modifying N, is O(logg ny)
expected I/Os. Since each insertion or deletion changes
O(loggn) counters, the overall amortized cost of an
insertion or deletion is O(logyn) I/Os. Using these
bounds in the indexing scheme of Kollios et al. [18],
we obtain their result on 1-dimensional range searching,
but with improved update performance.

Theorem 2.2. Given a set S of N linearly moving
points in R and a parameter € > 0, we can preprocess S
into an index of size O(n) blocks so that a Q2 query can
be answered in O(n'/?*¢ 4 k) I/Os. The data structure
can be constructed in O(N loggn) expected I/0s, and
points can be inserted into or deleted at an amortized
cost of O(logk n) expected I/Os each.

3 Time-Oblivious Indexing

We now describe our first indexing scheme to answer Q1
queries for points in R?. The indexing scheme can easily

. N | ,\I/ A -
— AN e

/Vy

Figure 3. Decomposing a rectangle query among moving two-dimensional points into two strip queries among static two-dimensional
points, by dualizing the zt- and yt-projections. A line intersects the rectangle if and only if both corresponding points lie inside their

strips.

be generalized to higher dimensions, but for brevity we
will describe only the two-dimensional case.

Let S be a set of N linearly-moving points in the
zy-plane. These points trace out N lines in three-
dimensional space-time; in this setting, a Q1 query asks
which lines intersect a rectangle R on the plane t = t,,
parallel to the zy-plane. We can map each line to a
point in R* and use a four-dimensional partition tree
to answer a Q1 query as in [18], but that would be
very expensive. Instead, we use a multi-level partition
tree. We observe that a line £ intersects R if and
only if their projections onto the zt- and yt-planes both
intersect. We apply a duality transformation to the xt-
and yt-planes. Each moving point p in the zy-plane
now induces two static points p* and pY in the dual
zt-plane and the dual yt-plane, respectively. For any
subset P C S, let P* and PY respectively denote the
corresponding points in the dual zt-plane and the dual
yt-plane. Any query rectangle induces two query strips
o”® and o¥, and the result of a query is the set of points
p € S such that p* € ¢ and p¥ € o¥. See Figure 3.

We construct our data structure 7 as follows. First,
we build a primary partition tree T for the points S*.
Then at certain nodes v of T*, we attach a secondary
partition tree TY for the points SY. Specifically, we
attach secondary trees to every node whose depth is a
multiple of aloggn, where 0 < a < 1 is a constant
to be determined later. Since the size of a single
secondary tree TV is O(n,) blocks, the total size of
all the secondary trees is O(n/a) = O(n) blocks, we
can construct them all in O(N loggn) expected I/0s,
and we can still insert or delete a point in O(log® B)
(amortized) expected 1/0s.?

The algorithm for answering a query is nearly the

2We could attach secondary partition trees at every node
in T, but the resulting index would require O(nlogg n) block and
would have the same asymptotic query bound as this structure.

same as for the unadorned partition tree. Given
two query strips ¢® and o¥%, we search through the
primary partition tree for the points in P* N ¢®. If
we find a triangle A; that lies completely inside o7,
we do not perform a complete depth-first search of the
corresponding subtree. Instead, we search only to the
next level where secondary structures are available, and
for each node v at that level, we use the secondary tree
TY to report all points of PY No¥.

Let ¥1(N,) denote the number of I/Os required to
answer a query in some secondary partition tree T} over
N, points, excluding the O(K,/B) I/Os used to report
the K, points inside the query range. In [1], it was
shown that ¥; (V) obeys the recurrence

E1(Ny) =14+ O0(y/ry) - Z1(2Ny /1),

which has the solution £; (N) = O(n'/?*¢) for arbitrary
small € > 0. Similarly, let ¥5(N) denote the number
of I/Os to answer a query in the entire two-level data
structure, excluding the O(k) I/Os required to report
the output. Among the descendants of any node in T*
that we visit recursively, we perform O((cB)®!°8z") =
O(n2'egs(cB)) = o(n2*) secondary queries, each on
at most n, points. Thus, Xo(NN) obeys the following
recurrence:

22(-N-v)

o(n*®) - B1(Ny) + O(y/1y) - B2(2Nu /1)
o(n*®) - O(n,/***) + O(v/10) - £2(2Nu /).

The solution to this recurrence is £(N) = O(nl/2+<'),
where €' < 2(e +). We can make &' arbitrarily close
to € by choosing a appropriately.

Theorem 3.1. Given a set S of N linearly moving
points in R? and a parametere > 0, we can preprocess S
into an index of size O(n) blocks so that a Q1 query
can be answered in O(n'/?>*¢ 4+ k) I/Os. The index

can be constructed in O(N loggn) expected 1/0Os, and
points can be inserted or deleted at an amortized cost
of O(log’ n) expected I/Os each.

Remarks.

(i) We can generalize our construction to any (con-
stant) number of dimensions by building more
levels of partition trees. The space, preprocessing
time, query time, and update time of this mul-
tilevel partition tree only increase by a constant
factor with each additional dimension.

(ii) If the points in S are distributed uniformly in
some rectangular domain, then we can simplify
our construction considerably by using a a regu-
lar +/r x /7 square grid instead of a simplicial
partition. Details will appear in the full paper.

(iii) The external partition tree can also handle certain
forms of uncertainty in the velocity of the location
of points with the same query performance.

A query of type Q2—report all points lying in a
rectangle R in the zy-plane at any time during the
interval [t1, t2]—is equivalent to reporting all lines that
intersect the box B = R X [t1,t2]. We can report all
such lines by separately reporting the lines intersecting
the top facet of B, the left facet of B, and the front facet
of B, using three separate copies of our earlier index.

Theorem 3.2. Given a set S of N linearly moving
points in R? and a parameter e > 0, we can preprocess S
into an index of size O(n) blocks so that a Q2 query
can be answered in O(n'/?>*¢ 4+ k) I/Os. The index
can be constructed in O(N logg n) expected 1/0s, and
points can be inserted or deleted at an amortized cost
of O(log% n) expected I/Os each.

4 Chronological Queries

In this section, we discuss how we can improve on the
O(n'/?*¢ + k) query bound presented in the previous
section if we allow the data structure to change over
time, and if we allow queries only at the current time.
The approach can be extended to handle queries in
future time as long as they arrive in chronological
order. Our so-called kinetic range tree is based on an
internal-memory data structure with suboptimal query
time developed by Basch et al. [8] and a query-optimal
external range tree developed in [5]. We will present
our range tree in the primal setting. We give a brief
overview of the external range tree in Section 4.1, and
then discuss how to kinetize it in Section 4.2. The main
idea will be to store only a snapshot of the moving
points at any time; whenever the “sorted order” of the
points changes, we perform a kinetic update on the data
structure. Finally, in Section 4.3, we discuss a tradeoff
between the query cost and the cost of updating the
data structure.

4.1 External range trees

The external range tree K presented in [5] is a three-
level structure. The primary structure is a tree over
the z-coordinates of the points in S, similar to a
B-tree with fan-out loggn. This tree has height
O(10g10g,, nn) = O(loggn/(loggloggn)), and a point
p is stored in secondary structures of all the nodes on
the path from the root to the leaf storing p. These
secondary structures use linear space, so the structure
use O(nloggn/(loggloggn)) blocks in total. The
secondary structures are external versions of a priority
search tree, which can be used to answer three-sided
range queries, i.e., reporting the points lying in a
rectangle of the form [a, b] X [¢, 00). The basic structure
of the external priority search tree is that of a B-
tree, in which each node v has an auxiliary structure
A, containing B? points. A, uses linear space, and
supports three-sided queries and updates in O(1 + k)
I/0s and O(1) I/0Os, respectively. For brevity we only
discuss the B? structure below. The full description
of the external range tree appears in [5], where the
following is proved.

Lemma 4.1 ([5]). A set of N points in R* can be
stored in an index using O(nloggn/(logg logg n)) disk
blocks, so that a range query can be answered in
O(loggn + k) I/0s. Points can be inserted or deleted
at an amortized cost of O(logg n) I/Os each.

Consider a set S of B? points (z;,%;) ordered in
increasing order of their z-coordinates. The structure
A for answering 3-sided range queries on S consists
of 2B — 1 blocks by,bs,... ,bop_1 storing the points,
plus a constant number of catalog blocks. An z-interval
[21,, 2] and a y-interval [y,,,yy;| are associated with
each block b;. The catalog blocks store these 2B — 1 z-
and y-intervals. The block b; contains a point (z;,y;)
of S whenever the following condition holds:

Xy, S Zj S Tr; and Yu; S Yj (*)

The blocks are constructed as follows. Initially,
we create B blocks bi,bs,...,bp. For each i < B,
the z-interval of b; is [2(;_1)B+1,ZiB], and the lower
endpoint y,, of b; is —oco. Hence b; contains the points
(T(i—1)B+1>Y(i—1)B+1)s - - » (TiB,YiB). Next, we sweep
a horizontal line upwards from y = —oo, and for each
block b;, we keep track of the number of points in b;
lying above the sweep line. When the sweep line reaches
a point (x;,y;) such that two consecutive blocks b; and
bi+1 both have fewer than B/2 points lying above the
line y = y;, a new block b, is created with y; as the lower
endpoint of its y-interval and with [x;,,z,,,,] as its -
interval. That is, b, contains the (at most B) points of
b; and b;41 that lie above the line y = y;. The upper
endpoints of the y-intervals of b; and b;y; are set to y;,

and we no longer keep track of b; and b;y; during the
sweep. The sweep continues in this manner until the line
reaches +o00. At that point at most B+(B—1) = 2B—1
blocks have been created. In [5] it is shown how the
above structure can be constructed in O(B) I/Os.

To answer a 3-sided query [a, b] x [¢, 00), we first load
the catalog blocks into main memory using O(1) I/Os.
We then identify all blocks whose y-interval includes ¢
(i.e., the blocks under consideration when the sweep line
was at y = ¢) and whose z-range intersects the interval
[a,b]. We load these blocks into main memory one at a
time and report the relevant K points. It is shown in [5]
that the query takes O(1 + K/B) I/Os. See Figure 4.

a b

i

——

Figure 4. Answering query ¢ = (a,b,c). Dotted lines indicate
the B initial blocks (before the vertical sweep). Solid blocks are
active when the sweep line is at y = c¢; the y-interval of each
active block is indicated to its left. All active blocks are loaded
to answer ¢, and except for the blocks containing a and b, every
consecutive pair of blocks contributes at least B/2 points to the
output.

The structure can easily be made dynamic using
global rebuilding [23]. Updates are simply logged in an
extra block B. After B updates, when B becomes full,
the entire structure is rebuilt from scratch in O(B) I/Os.
Thus, the amortized cost of any insertion or deletion is
O(1) I/Os. At every query, we spend one extra I/O
examining B to ensure that query results are consistent
with recorded updates.

Lemma 4.2. A set of B2 points can be stored in an
index of size O(B) blocks, so that a 3-sided range query
can be answered in O(1 + k) I/Os. The index can be
constructed in O(B) I/O0s, and points can be inserted
or deleted at an amortized cost of O(1) I/Os each.

4.2 Kinetic range trees

We now discuss how the external range tree [5] can
be modified to work on moving points such that range
queries at the current time can be answered quickly.
We will only explain the modifications needed on the
structure A for answering 3-sided queries on B? points.
Further details will appear in the full paper.

Recall that the endpoints of the z- and y-intervals
of each block b; in A were defined by four points
of S. If [z;,,z,,] and [yu;,Ys,] are the z-and y-intervals
of b;, then we call the 4-tuple (I;,7;,u;,v;) the signature
of b;. In the case of moving points, we define the z-
and y-intervals of b; at time ¢ to be [z, (t), z,, (t)] and

[Yu; (1), Yo, (t)]. Thus the z- and y- intervals of each
block change continuously with time. However, a point
pj = (x;,y;) in b; continues to satisfy condition (&) until
some time t when either x;(t) = xy, (t), z;(t) = zr, (t),
or y;(t) = yu,;(t). Consequently, the content of blocks
change only at discrete instants. The time values ¢ at
which one of the above three equalities holds are called
kinetic events.

We handle kinetic events exactly as we handle
dynamic updates, by global rebuilding. We maintain
an extra update block B, and whenever a point p leaves
a block b;, we delete p from b; and add it to B. When B
becomes full (after B events), we reconstruct the entire
data structure from scratch. The amortized cost of each
event is thus O(1) I/Os. For each point p; in b;, we
compute the first time ¢;; when it will leave b;. We store
these time values in a priority queue, called the event
queuve, and keep track of the next event ¢* = min; ; ¢;;.
At now = t*, we update the data structure as described
above and update the priority queue. Whenever a point
leaves a block, it enters another one, and this requires
computing another failure time ¢;; and storing that in
the event queue. The event queue can be updated
using O(1) I/Os at each event. By modifying the above
scheme slightly, we can also change the trajectory of a
point in O(1) I/Os. We omit the details.

To answer a query q = [a, b] X [c,00) at time t,, we
simply load the catalog blocks and calculate the z- and
y-intervals of the blocks at time #,. We then load B and
those blocks whose z-intervals intersect the interval [a, b]
at time ¢, and whose y-intervals intersect ¢ at time ;.
We then report the points that lie in the query rectangle.
As previously, the query procedure takes O(1 + K/B)
I/0s to report K points.

Lemma 4.3. Let S be a set of B? points in R?, each
moving with a fixed velocity. We can store S in an index
of size O(B) blocks, so that a current 3-sided query can
be answered in O(1 + k) I/Os. Amortized cost of each
event is O(1) I/Os. If the trajectories of points do not
change over time, then there are a total of O(B?) events.

Using similar ideas, we can evolve the primary and
secondary structures of the external range tree. Events
are now defined to be the time instances at which the
x- or y-coordinates of two points become equal. These
events can be calculated efficiently and stored in a global
priority queue so that the next event can be computed
in O(logg n) I/0s. The data structure can be updated
in O(logy n) 1/0s at each such event. Our approach is
similar to the techniques of Basch et al. [8] for kinetizing
internal-memory range trees. Details will appear in the
full paper.

Theorem 4.4. Given a set S of N linearly moving
points in R?, we can preprocess S into a kinetic range

tree K of size O(n logg n/(logg logg n)) blocks so that a
current Q1 query can be answered in O(logg n+k) I/Os.
The amortized cost of a kinetic event is O(logg n) I/Os.
if the trajectories of points do not change over time, the
total number of events is O(N?).

Remark. The kinetic range tree works within the same
I/0 bounds even if the points move along more complex
trajectories, provided we can quickly determine when a
moving point crosses a given horizontal or vertical line.

4.3 Query/update tradeoffs

If we are going to perform only a few queries, it is
not efficient to spend a total of O(N?logg N) time
evolving the kinetic range tree. We can combine the
kinetic range tree K with our external partition tree 7 to
obtain a tradeoff between the cost of answering queries
and the total number of events. Our construction is
similar to a general technique used to establish tradeoffs
between data structure size and query time [2]. We
will first describe the tradeoff structure for moving one-
dimensional points, and then briefly describe how to
generalize it to two dimensions. Many details will be
deferred to the full paper.

Let A be a parameter between B2N and N2. Our
structure for moving one-dimensional points consists of
the top £ levels of an external partition tree, where £ =
log,/4(N?/A) and r = ¢B is the fanout of the tree.
This tree clearly has r¢ leaves. At each leaf v, we store
the corresponding subset of N, < N/(r/2)¢ points in a
kinetic one-dimensional range tree. See Figure 5.

Figure 5. Schematic picture of our query/update tradeoff

structure.

Each kinetic range tree undergoes O(NZ2(2/r)%)
kinetic events, so the total number of kinetic events
for the entire structure is O(N2(4/r)%) = O(A). To
compute the number of I/Os required to answer a query,
we modify our earlier recurrence for ¥; (N,) by adding
a new base case ¥1(N,) = O(loggn) for all N, <
N/(r/2)*. The solution for the modified recurrence is
Y1(N) = O((rt)'/?*¢). Note that r¢ = (N?/A)'*+*,
where A = 1/(logyr — 2); by setting the constant c
appropriately, we can make A arbitrarily small. Thus,

the overall query time for this combined structure is
O(N't¢/v/A + k) 1/Os, where ¢’ < € + A.

Theorem 4.5. Given a set S of N linearly moving
points in R! and a parameter BN < A < N2, we can
preprocess S into an index of size O(n) blocks so that a
current Q1 query can be answered in O(N't¢ /\/A + k)
I/0s. If the trajectories of the points do not change,
there are at most O(A) events, and the amortized cost
per event is O(loggn) 1/0s.

To generalize these results to moving points in
the plane, we use the multi-level partition tree from
Section 3. We modify the primary structure 7% by re-
placing all subtrees at level £ (including their secondary
structures) with kinetic two-dimensional range trees.
For each node v € T that has a secondary structure T,
we modify T by replacing all subtrees at level ¢ — d,
with kinetic one-dimensional range trees, where d, is
the depth of v in T%. Omitting the analysis from this
extended abstract, we conclude:

Theorem 4.6. Given a set S of N linearly moving
points in R’ and a parameter BN < A < N2, we
can preprocess S into an index of size O(nloggmn/
(log g log g n)) blocks so that a current Q1 query can be
answered in O(N't¢ /\/A + k) I/Os. If the trajectories
of the points do not change, there are at most O(A)
events, and the amortized cost per event is O(logg n)

I/0s.

5 Time-Responsive Indexing

The partition tree 7 has the advantage that it can an-
swer Q1 queries in any order, but the cost of answering a
query is high. On the other hand, the kinetic range tree
K answers a query quite fast, but it can handle queries
only in chronological order. In this section, we present
an indexing scheme that combines the advantages of
both schemes—it can answer queries in any order, and
the number of I/Os need to answer a query is small if
the query time ¢, is close to the current time. We first
describe how to answer a Q1 query in near future or in
near past in O(loggn + k) I/O0s, and then extend our
approach to arbitrary query times.

5.1 Recent-past and near-future queries

As observed in the previous section, the combinatorial
structure of the kinetic range tree K does not change
until the z- and y-coordinates of two points become
equal. At some of these events, we update the data
structure using O(logg n) I/Os. Let ej,es,... be the
sequence of events at which K is updated, let ¢; be
the time at which the event e; occurs, and let K;
be the version of K between the events e;_; and e;.
(For notational convenience, we define t; = —oo for

i = 0.) K; is valid for the time interval [t;_1,t;). Let
A = n/loggn. If the current time now € [ti_1,t;),
we maintain the versions K;—a,Ki—at1,.-.,Kira of
K, that is, we maintain A past versions and A future
versions of K. Note that the future versions IC;, . .. Kiyra
are tentative since they are built by anticipating future
events, based on the current trajectories of the points.
If the trajectory of a point changes, the future versions
of the structure might also change.

Now, instead of storing each KC; explicitly, we store
the “differences” between K;_; and K;, using the
ideas of persistent data structures (see, for example,
[12, 9, 34]). We call our data structure an interim-
persistent data structure. Recall that K has three levels.
The primary and secondary structures are variants of B-
trees, and we can store the different version of them by
adapting the standard techniques [12, 9, 34]. Because
of lack of space we will not discuss the modifications
needed to tailor these techniques for our purposes. We
will instead focus on the auxiliary structure A, stored
at each node v of the secondary B-tree, which answers
a 3-sided range query on a set A of O(B?) points.

Recall that A maintains an extra update block B
that records kinetic events; after B kinetic events have
occurred, A is reconstructed and the old version of A
is discarded. To maintain multiple versions of A4, we
modify the update and query procedures as follows.
First, whenever a point enters or leaves a block, we
record the time of the event in the update block B
in addition to the identity of the point. When A is
reconstructed, we do not discard the old version, but
instead declare it inactive. During T kinetic events we
thus maintain a sequence of versions A, A2, ..., AT/B
of A, only the last of which is active. For each inactive
version A7, we store its death time d;, the time at which
AJ became inactive; for notational convenience we set
dg = —o0 and ds = oo, where Ay is the active version.
To maintain the T versions of A, we need O(T) disk
blocks.

To report all points of A that lie in a 3-sided
rectangle R at time t,, we first find the version A7 that
is active at time ¢4, i.e., such that d;_1 <, < d;. Since
we also maintain multiple versions of the primary and
secondary structures of the kinetic range tree, A’ can
be found using O(1) I/Os. Then we simply query A’ as
in Section 4, except that we report only those points
from the update block that were inserted before t,,
and that we do not report the points that were deleted
before t;. In total we use O(1 + K,/B) I/Os, where
K, = |A(ty) N R|.

Finally, we store the death times of all versions of all
auxiliary structures in a global priority queue. When
the ith kinetic event occurs, at time t;, we delete all
the versions of auxiliary structures whose death times
lie in the interval [t;—a,t;—a+1). We maintain A =

n/logg n versions of K and at each event we perform at
most four update operations on K, which in turn implies
performing O(logk n/(logy logz n)) update operations
on auxiliary structures. Thus, the total size of the data
structure is O(nlogg n/(logglogg n)). We still spend
O(log% n) amortized I/Os at each event to update K.

To change the trajectory of a point p, we must
update it in every version of every auxiliary structure
that stores p. If p is stored in T different auxiliary
structures, then O(T logg n) I/Os are needed to update
the data structure. In the worst case T = Q(n), but
in practice it will be much smaller. Omitting further
details, we conclude:

Theorem 5.1. Given a set S of N linearly moving
points in R?, we can preprocess S into an index of size
O(nloggn/(loggloggn)) blocks, so that a Q1 query
can be answered in O(logg n + k) 1/0s, provided there
are at most n/logg n events between t, and the current
time. The amortized cost per event is O(logs n) I/Os.
If a point p is stored at T places in the index, we can
update the trajectory of p using O((1+7T)logg n) I/0s.

A significantly simpler data structure can be devel-
oped if S is a set of points in R'. In this case we can
directly apply the ideas of [12, 9, 34] and obtain the
following result. Details will appear in the full paper.

Theorem 5.2. Given a set S of N linearly moving
points in R', we can preprocess S into an index K of
size O(n) blocks, so that a Q1 query can be answered
in O(loggn + k) I/0s, provided there are at most N
events between t, and the current time. The amortized
cost per event is O(log2B n) I/Os. If a point p is stored
at T places in the index, we can update the trajectory
of p using O((1 + T')logg n) I/Os.

5.2 Answering distant-future queries

We now combine the partition tree with the interim
persistent index to obtain an index whose query cost
is a function of |t; — now|. The combination is similar
to the multilevel partition trees discussed in Section 3.
For simplicity, we describe the indexing scheme in R!
only; a similar approach works in R2.

Let S be a set of N points in R, each moving with
fixed velocity. We convert S into a set of lines in the xt-
plane, and let P denote the set of points dual to these
lines. We construct a partition tree 7 on P as described
in Section 2.2. Each node v of T is associated with a
subset P, C P of points. Let S, C S be the set of input
points corresponding to P,.

For each node v whose depth is a multiple of
alogp n, where a > 0 is a small constant, we construct
an interim persistent index X, on S, (Theorem 5.2).

We also maintain the time interval [t;,¢}] in which

K, is valid. The total size of the resulting structure is
O(n) disk blocks. An event is now defined to be a time
instance at which two points stored in some secondary
structure collide. At each such event point, the data
structure can be updated using O(loggn) I/Os.

A 1-dimensional Q1 query—report all points of S(t,)
that lie in an interval I—can be answered as follows. We
traverse 7, starting from the root, as in Section 2.2.
Suppose we are at a node v. If v has a secondary
structure K, and ¢, € [t, ,t}], then we report all points
of Sy(tq) NI using K,. This requires O(logg n + K, /B)
I/0s, where K, = |Sy(tq) N I|. Otherwise, we visit the
children of v exactly as in Section 2.2.

The maximum number of I/Os needed to answer
a query, independent of t,, is O(n'/2*¢ + k); in the
worst case, we never use any secondary structure /C,.
However, if ¢, is close to the current time, the query
procedure will visit only a few levels of the partition
tree and then it will switch to the secondary kinetic
structures. It is difficult to bound the query time in
the worst-case without assuming any distribution on the
trajectories of points, since several events can occur in
a short period of time. If we assume that the points
and their trajectories are uniformly distributed (i.e., the
points in P are uniformly distributed in a unit square),
then we can simplify the partition tree and prove the
following.

Theorem 5.3. Given a set S of N linearly moving
points in R', we can preprocess S into an index of
size O(n) blocks so that the cost of a Q1 query at time
ty is a monotonically increasing function of [ty — now|.
If the points and their trajectories in S are uniformly
distributed, then a query takes O((A/n)Y/?n® + k)
expected 1/Os, where 0 < A < (7)) is the number of
events between t, and now.

In R? we can prove a similar result, with a slightly
worse bound on the size of the data structure and
update time. Details will appear in the full version of
this paper.

Theorem 5.4. Given a set S of N linearly moving
points in R%2, we can preprocess S into an index of
size O(nlogg n/(loggloggn)) blocks so that the cost
of a Q1 query at time t, is a monotonically increasing
function of |t,—mnow|. If the points and their trajectories
in S are uniformly distributed, then a query takes
O((A/n)'/?nf + k) expected 1/Os, where 0 < A < (3)
is the number of events between t, and now.

6 Almost-Nearest Neighbor Searching

In this section we briefly sketch an indexing scheme for
answering Q3 queries. The main idea is to approximate
the Euclidean metric with a metric whose unit ball is a
regular polygon with few edges.

For any polygon P that contains the origin, we
define the distance function dp : R2 x R2 — Rt as
dp(a,b) = inf{\ | b € AP + a}. We can easily verify
that this function is a metric if and only if the polygon
P is centrally symmetric about the origin.

Letm =2 [2 / \/S-I , and let P be the regular m-gon of

circumscribing radius 1, centered at the origin and with
a vertex on the z-axis; see Figure 6(i). Since m is even,
dp is a metric, and an easy trigonometric calculation
shows that dp(a,b) < (1 + d§)d(a,b); see Figure 6(ii).

0] (if) (il

Figure 6. (i) A regular m-gon P centered at the origin. (ii)
The difference between the Euclidean and dp metrics. (iii) The
wedge Q. and the nearest neighbor to a under the distance
function da, .

Decompose P into m triangles Aq,...,A,,, by
connecting every vertex of P to the origin. Obviously,
dp(a,b) = minj<i<k da,;(a,b). Thus, to find a nearest
neighbor in the dp metric, it suffices to compute the
nearest neighbor of a query point under the distance
function da,. Our indexing scheme for approximate
nearest neighbor queries consists of a separate data
structure for each A;. Without loss of generality,
consider A;y. For a point a, let Q(a) be the wedge
formed by the rays emanating from a in directions ov;
and ovq; see Figure 6 (iii). The nearest neighbor of a
point ¢ under the distance function da, is the point in
Q(o) N S nearest to o in the direction normal to vivg;
see Figure 6(iii). For any point p € S, let f(p) be the
dot product of p with the vector normal to vyve. It is
easy to prove that the nearest da,-neighbor in S of a
point a € R? is the point p € S minimizing f(p).

We thus have the following problem at hand. We
want to preprocess a set S of N moving points in the
plane to answer queries of the following form:

Q3’. Given a point ¢ and a time ¢,, compute the point
in p(ty) € Q(o) minimizing f(p(t,)).

To solve this problem, we use a modification of the two-
level partition tree 7 described in Section 3. First we
construct a partition tree T' over the projections of S
onto the line ov;. At certain nodes v of T, we construct
a secondary partition tree 72 over the projections of the
subset S, onto the line ovs. Finally, we attach tertiary
structures to certain nodes in T;.

Specifically, let v be a node in some secondary
partition tree whose depth in that tree is a multiple

of aloggn, for some small constant & > 0, and let
S, be the subset of N, points stored in its subtree.
Define F, (t) = minyeg, f(p(t)) to be the lower envelope
of the functions f(p(t)). The graph of F, is a convex
chain with at most N, vertices, and it can be computed
in O(nyloggn,) I/Os [16]. We store this chain at
v. For a given value of ¢, we can compute F,(t) in
O(logg n) I/Os. We can also insert or delete a point in
S, and update the graph of F,, at an amortized cost
of O(log, nloggn) I/0s [1, 24]. The total size of our
three-tier data structure is O(n) blocks.

Given a query point o and time value t,, we answer
a Q3’ query as follows. We first compute O(n'/2%%)
nodes v1,vs2,...,v,, in the secondary trees so that
S(tq) N Qo) = Ui_; Su;, using the query algorithm
described in Section 3. Then for each v;, we compute
F,, (), and finally we return the point p of S(t) that
attains minlSZSm F’vi (tq)

Omitting further details, we obtain the following.

Lemma 6.1. Given a set S of N linearly moving points
in R? and two parameters € > 0, we can preprocess S
into an index of size O(n) blocks so that a Q3 query
can be answered in O(n'/?7¢) I/Os. The index can be
constructed in O(N logg N) expected I/0s, and points
can be inserted or deleted at an amortized cost of
O(log, nlogg n) expected I/Os each.

Since our data structure for Q3 queries consists of
©(1/+/3) separate copies of the Q3’ index, one for each
triangle A;, we conclude:

Theorem 6.2. Given a set S of N linearly moving
points in R? and two parameters ¢,6 > 0, we can
preprocess S into an index of size O(n/\/§) blocks so
that a Q3 query can be answered in O(n'/?*¢/\/3)
I/Os. The index can be constructed in O(N logg N/v/6)
expected I/Os, and points can be inserted or deleted
at an amortized cost of O(log, nlogg n) expected I/Os
each.

This approach can be extended to higher dimen-
sions. FEach new dimension requires a new level of
partition tree, and in order to maintain the same
approximation error, we must also increase the num-
ber of facets in the polyhedron used to approximate
the unit sphere. Specifically, we can compute 6-
approximate nearest neighbors among moving points
in R?, using an index of size O(n/§(?=1/2) blocks, in
O(n'/?*2§(3=1)/2) 1/0s per query point. Details will
appear in the full paper.

7 Conclusions

In this paper we presented various efficient schemes for
indexing moving points in the plane so that queries

of type Q1 and Q2 can be answered efficiently. We
proposed tradeoffs between the query time and the time
spent in updating the indexing scheme as the points
move. We also presented an efficient indexing scheme
for answering Q3 queries. We conclude by mentioning
a few open problems:

1. Develop efficient indexing schemes for points mov-
ing along nonlinear trajectories.

2. Develop an efficient indexing scheme for answering
exact nearest-neighbor queries.

3. Can the indexing scheme described in Section 5.2
be extended so that Theorem 5.4 hold for any
distribution of points and their trajectories.

References

[1] P. K. Agarwal, L. Arge, J. Erickson, P. G. Franciosa,
and J. S. Vitter, Efficient searching with linear con-
straints, Proc. 17th Annu. ACM Sympos. Principles
Database Syst., 169-178, 1998.

[2] P. K. Agarwal and J. Erickson, Geometric range
searching and its relatives, Advances in Discrete and
Computational Geometry (B. Chazelle, J. E. Goodman,
and R. Pollack, eds.), AMS Press, 1999, pp. 1-56.

[3] P. K. Agarwal, J. Erickson, and L. Guibas., Kinetic
binary space partitions for intersecting segments and
disjoint triangles, Proc. 9th Annu. ACM-SIAM Sym-
pos. Discrete Algorithms, 107-116, 1998.

[4] ArcView GIS, ArcView Tracking Analyst, 1998.

[5] L. Arge, V. Samoladas, J. S. Vitter, On two-
dimensional indexability and optimal range search
indexing, Proc. 18th Annu. ACM Sympos. Principles
Database Syst., 346-357, 1999.

[6] L. Arge and J. S. Vitter, Optimal dynamic interval
management in external memory, Proc. 37th Annu.
IEEE Sympos. Found. Comput. Sci., 560-569, 1996.

[7] J. Basch, L. Guibas, and J. Hershberger, Data
structures for mobile data, Proc. 8th Annu. ACM-
SIAM Sympos. Discrete Algorithms, 747-756, 1997.

[8] J.Basch, L. Guibas, and L. Zhang, Proximity problems
on moving points, Proc. 15th Annu. ACM Sympos.
Comput. Geom., 344-351, 1997.

[9] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P.
Widmayer, An asymptotic optimal multiversion B-tree,
The VLDB Journal, 5:264-275, 1996.

[10] S. Chamberlain, Model-based battle command: A
paradigm whose time has come, Proc. 1st Intl. Sympos.
Command and Control Research and Technology, 31—
38, 1995.

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

21]

[22]

23]

[24]

[25]

J. Chomicki and P. Z. Revesz, A geometric framework
for specifying spatiotemporal objects, Proc. 6th Intl.
Workshop on Time Representation and Reasoning, 41—
46, 1999.

J. R. Driscoll, N. Sarnak, D.D. Sleator, R. Tarjan, Mak-
ing Data Structures Persistant, Journal of Computer
and System Sciences, 38:86-124, 1989.

M. Erwig and M. Schneider, Developments in spatio-
temporal query languages, DEXA Workshop, 441449,
1999.

M. Erwig, R. H. Giiting, and M. Schneider, M. Vazir-
giannis, Abstract and discrete modeling of spatiotem-
poral data types, ACM GIS Symposium, 131-136, 1998.

V. Gaede and O. Giinther, Multidimensional Access
Methods, Computing Surveys, 30:170-231, 1998.

M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J.
S. Vitter, External-memory computational geometry,
Proc. 84th Annu. IEEE Sympos. Found. Comput. Sci.,
714-723, 1993.

P. C. Kanellakis, S. Ramaswamy, D. E. Vengroff, and
J. S. Vitter, Indexing for data models with constraints
and classes, Journal of Computer and System Sciences,
52:589-612, 1996.

G. Kollios, D. Gunopulos, and V. J. Tsotras, On in-
dexing mobile objects, Proc. 18th Annu. ACM Sympos.
Principles Database Syst., 261-272, 1999.

G. Kollios, D. Gunopulos, and V. J. Tsotras, Nearest
neighbor queries in a mobile environment, Spatiotemn-
poral database management, 119-134, 1999.

M. Koubarakis and S. Skiadopoulos, Tractable query
answering in indefinite constraint databases: Basic
Results and applications to querying spatiotemporal
information, Spatio-Temporal Database Management,
204-223, 1999.

J. Matousek, Efficient partition trees, Discrete Comput.
Geom., 8:315-334, 1992.

J. Nievergelt and P. Widmayer, Spatial data struc-
tures: Concepts and design choices, in: Algorithmic
Foundations of GIS (M. van Kreveld, J. Nievergelt,
T. Roos, and P. Widmayer, eds.), Springer-Verlag,
Lecture Notes in Computer Science 1340, 1997.

M.H. Overmars, The Design of Dynamic Data Struc-
tures, Springer-Verlag, LNCS 156, 1983.

M.H. Overmars and J. van Leeuwen, Maintenance
of configurations in the plane, J. Comput. Syst. Sci.
23:166—-204, 1981.

D. Pfoser, Y. Theodoidis, and C. S. Jensen, Indexing
trajectories of moving point objects, Chorochronos
Tech. Rept. CH-99-3, 1999.

[26]

27]

28]

[29]

(30]

31]

32]

[33]

34]

(35]

[36]

(37]

[38]

39]

[40]

S. Ramaswamy and P. Kanellakis, OODB indexing by
class division, A.P.I.C. Series, Academic Press, New
York, 1995.

S. Ramaswamy and S. Subramanian, Path Caching: A
Technique for Optimal External Searching, Proc. Annu.
ACM Sympos. Principles Database Syst., 25-35, 1994.

S. Saltenis, C. S. Jensen, S. T. Leutenegger, and
M. A. Lopez, Indexing the positions of continuously
moving objects, to appear in Proc. SIGMOD Int. Conf.
Management of Data, 2000.

B. Salzberg and V. J. Tsotras, A Comparison of Access
Methods for Temporal Data, TimeCenter Technical
Report, TR-13, 1997.

M. Sharir and P. K. Agarwal, Davenport-Schinzel Se-
quences and Their Geometric Applications, Cambridge
University Press, Cambridge-New York-Melbourne,
1995.

A. P. Sistla and O. Wolfson, Temporal conditions and
integrity constraints in active database systems, Proc.
SIGMOD Int. Conf. Management of Data, 269-280,
1995.

A. P. Sistla, O. Wolfson, S. Chamberlain, and S.
Dao, Modeling and querying moving objects, Proc. Int.
Conf. Data Engineering, 422-432, 1997.

J. Tayeb, O. Ulusoy, and O. Wolfson, A quadtree-based
dynamic attribute indexing method, The Computer
Journal 41:185-200, 1998.

P.J. Varman and R.M. Verma, An efficient multiversion
access structure, IEEE Trans. on Knowledge and Data
Engineering, 9:391-410, 1997.

J. S. Vitter, Online data structures in external mem-
ory, Proc. 26th Annual International Colloquium on
Automata, Languages, and Programming, LNCS 1644,
119-133, 1999.

O. Wolfson, S. Chamberlain, L. Jiang, and G. Mendez,
Cost and imprecision in modeling the position of
moving objects, Proc. Intl Conf. Data Engineering,
588-596, 1998.

O. Wolfson, L. Jiang, A. P. Sistla, S. Chamberlain, and
M. Deng, Databases for tracking mobile units in real
time, Proc. Int. Conf. Database Theory, 169186, 1999.

O. Wolfson, A. P. Sistla, S. Chamberlain, and Y. Yesha,
Updating and querying databases that track mobile
units, Distributed and Parallel Databases T7:257-387,
1999.

O. Wolfson, A. P. Sistla, B. Xu, S. J. Zhou, and S.
Chamberlain, DOMINO: Databases for moving objects
tracking, Proc. SIGMOD Int. Conf. Management of
Data, 547-549, 1999.

O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang,
Moving objects databases: Issues and solutions, Proc.
Sympos. Spatial Database Management, 111-122, 1998.

