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Abstract

We prove an Ω(ndr/2e) lower bound for the following problem: For
some fixed linear equation in r variables, given n real numbers, do
any r of them satisfy the equation? Our lower bound holds in a
restricted linear decision tree model, in which each decision is based
on the sign of an arbitrary linear combination of r or fewer inputs. In
this model, our lower bound is as large as possible. Previously, this
lower bound was known only for a few special cases and only in more
specialized models of computation.

Our lower bound follows from an adversary argument. We show
that for any algorithm, there is a input that contains Ω(ndr/2e) “crit-
ical” r-tuples, which have the following important property. None of
the critical tuples satisfies the equation; however, if the algorithm does
not directly test each critical tuple, then the adversary can modify the
input, in a way that is undetectable to the algorithm, so that some
untested tuple does satisfy the equation. A key step in the proof is
the introduction of formal infinitesimals into the adversary input. A
theorem of Tarski implies that if we can construct a single input con-
taining infinitesimals that is hard for every algorithm, then for every
decision tree algorithm there exists a corresponding real-valued input
which is hard for that algorithm.

An extended abstract of this paper can be found in [Eri95].
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1 Introduction

Many computational problems, especially in computational geometry, can
be reduced to questions of the following form: Given n real numbers, do
any r of them satisfy some fixed linear equation? More formally, let φ =∑r

i=1 aiti − b be a linear form with formal variables t1, t2, . . . , tr and real
coefficients a1, a2, . . . , ar, b, with ai 6= 0 for all i. The linear satisfiability
problem for φ is to determine, given n real numbers x1, x2, . . . , xn, whether
there is a one-to-one map π : {1, 2, . . . , r} ↪→{1, 2, . . . , n} such that

φ(xπ(1), xπ(2), . . . , xπ(r)) =
r∑

i=0

aixπ(i) − b = 0.

For almost all inputs (all but a measure-zero subset), there is no such map;
consequently, if such a map does exist, we say that the input is degenerate.
Any r-variable linear satisfiability problem can be solved in O(n(r+1)/2) time
when r is odd, or O(nr/2 log n) time when r is even. The algorithms that
achieve these time bounds are quite simple (see Section 4); even so, these are
the best known upper bounds.

The simplest example of a linear satisfiability problem is the well-known
element uniqueness problem, which asks whether any two elements of a given
multiset are equal; in this case, we have φ = t1−t2. Gajentaan and Overmars
[GO95] describe a large class of “3sum-hard” geometric problems,1 each of
which can be reduced, in subquadratic time, to deciding if a set of numbers
has three elements whose sum is zero (φ = t1 + t2 + t3). Examples of 3sum-
hard problems include deciding whether a set of points in the plane contains
three collinear points, whether a set of line segments can be split into two
nonempty subsets by a line, whether a set of triangles has a simply connected
union, or whether a line segment can be moved from one position and orien-
tation to another in the presence of polygonal obstacles. Further examples
are described in [ACH+96, dBdGO93, BvKT93, Mat95]. In a similar vein,
Hernàndez Barrera [Her96] describes several problems that can be quickly
reduced to the linear satisfiability problem for φ = t1 + t2− t3− t4. Examples
include computing the Minkowski sum of two polygons, sorting the vertices
of a line arrangement, and determining whether one polygon can be trans-
lated to fit inside another. Higher-dimensional versions of several of these

1Some earlier papers use the more suggestive but potentially misleading term “n2-
hard”; see [BBG94].
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problems can be reduced to a linear satisfiability problem with more vari-
ables. For example, deciding if a set of points in IRd contains d+1 points on
a common hyperplane is at least as hard as the linear satisfiability problem
for φ = t1 + t2 + · · ·+ td [Eri99].

In this paper, we prove lower bounds on the complexity of linear sat-
isfiability problems. We consider these problems under a restriction of the
linear decision tree model of computation, called the r-linear decision tree
model, in which each decision is based on the sign of an arbitrary affine com-
bination of at most r elements of the input. Of particular interest are direct
queries, which test the sign of the value of φ evaluated on r selected input
elements. For example, for the element uniqueness problem, a direct query is
a simple comparison. We show that any r-linear decision tree that solves an
r-variable linear satisfiability problem must perform Ω(ndr/2e) direct queries
in the worst case. This matches the best known upper bounds when r is odd,
and it is within a logarithmic factor when r is even. We also show, using
results of Fredman [Fre76], that our lower bounds are as large as possible in
the model we consider.

We prove our lower bounds using an adversary argument. Our approach is
to derive, for each r-linear decision tree, a nondegenerate input with a large
number of “critical” r-tuples that have the following important property:
If an algorithm does not perform a direct query for every critical tuple, the
adversary can modify the input, in a way that the algorithm cannot detect, so
that some untested critical tuple lies in the zeroset of φ. Since the algorithm
cannot distinguish between the original input and the modified input, even
though the modified input is degenerate, the algorithm cannot produce the
correct output for both inputs. It follows that any correct algorithm must
check every critical tuple, so the number of critical tuples is a lower bound
on the running time.

We use two new techniques to simplify our adversary construction. First,
we allow our adversary inputs to contain formal infinitesimals instead of
just real numbers. Tarski’s transfer principle implies that if there is a hard
input with infinitesimals, then for any algorithm, there is a corresponding
real-valued input that is hard for that algorithm. Dietzfelbinger and Maass
[DM88, Die89] presented a similar technique to prove lower bounds, using
numbers that are “inaccessible” or have “different orders of magnitude”; an
early version of this technique was also used by Fredman [Fre76]. Unlike their
technique, utilizing infinitesimals makes it possible, and indeed sufficient,
to derive a single adversary input for any problem, rather than explicitly
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constructing a different input for every algorithm. Infinitesimals have been
used extensively in geometric perturbation techniques [EM90, EC91, Yap90],
in algorithms dealing with real semialgebraic sets [Can88, Can93], and in
other lower-bound arguments [GKMS97, GV96].

Second, we allow our adversary inputs to be degenerate. That is, both
the original adversary input and the modified input contain r-tuples in the
zeroset of φ. Although it appears that such inputs cannot be used in an
adversary argument, since the adversary’s modification does not change the
correct output, we show that a degenerate adversary input can always be
perturbed slightly, resulting in a new nondegenerate adversary input with
just as many critical tuples as the original.

1.1 Previous results

For any constant r ≥ 2, an Ω(n log n) lower bound for any r-variable lin-
ear satisfiability problem follows from the techniques of Dobkin and Lipton
[DL79] in the (unrestricted) linear decision tree model. They observed that
the set of inputs following a fixed computational path through a linear de-
cision tree is connected. Since the set of nondegenerate inputs has nΩ(n)

connected components, even when r = 2, any linear decision tree must have
nΩ(n) leaves and, therefore, must have depth Ω(n log n).

Dobkin and Lipton’s techniques were generalized to higher-degree alge-
braic decision trees by Steele and Yao [SY82] and to algebraic computa-
tion trees by Ben-Or [Ben83], and the Ω(n log n) lower bound holds in these
models as well. Several more advanced techniques have been developed for
proving lower bounds in these models (see, for example, [BLY92, GKMS97,
GKV97, Yao95, Yao97]), but none of them improve the Ω(n log n) lower
bound.

Fredman [Fre76] proved an Ω(n2) lower bound on the number of simple
comparisons required, given two sets X and Y , to sort the elements of the
multiset X+Y = {x+y | x ∈ X, y ∈ Y } or to decide whether it contains any
duplicate elements. “Sorting X + Y ” is closely related to the four-variable
linear satisfiability problem with φ = t1+t2−t3−t4, and our results generalize
Fredman’s lower bound to arbitrary 4-linear decision trees.

Fredman’s result was generalized by Dietzfelbinger [Die89], who derived
an Ω(nr/2) lower bound on the depth of any comparison tree that determines,
given a set of n reals, whether any two disjoint subsets of size r/2 have the
same sum. In our terminology, he proves a lower bound for the specific
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r-variable linear satisfiability problem with

φ =

r/2∑
i=1

ti −
r/2∑
i=1

ti+r/2,

in a model that allows only direct queries, for all even r. Dietzfelbinger
claimed that his lower bound also holds in a more general restriction of the
r-linear decision tree model, where every query polynomial has at most r/2
positive coefficients and at most r/2 negative coefficients. Our lower bound
generalizes Dietzfelbinger’s lower bound to arbitrary r-linear decision trees.

More recent techniques of Erickson and Seidel [ES95] (but see also [ES97])
and Erickson [Eri99] can be used to prove lower bounds for certain linear sat-
isfiability problems, in a model of computation that allows only direct queries.
However, there are still several such problems for which these techniques ap-
pear to be inadequate.

Our lower bounds should be compared with the following result of Meyer
auf der Heide [Mey84]: For any fixed n, there exists a linear decision tree of
depth O(n4 log n) that solves the n-dimensional knapsack problem, “Given a
set of n real numbers, does any subset sum to 1?” His nonuniform algorithm
can be adapted to solve any of the linear satisfiability problems we consider,
in the same amount of time [DM88]. Thus, there is no hope of proving lower
bounds bigger than Ω(n4 log n) for any linear satisfiability problem in the full
linear decision tree model. We reiterate that our lower bounds apply only to
linear decision trees where the number of terms in any query is bounded by
a constant.

Seidel [Sei97] has recently shown that, given three sets A, B, C, each
containing n integers between 0 and m, we can determine whether there
are elements a ∈ A, b ∈ B, c ∈ C such that a + b = c, in time O(n +
m log m). (Note that this problem is 3sum-hard [GO95]!) Seidel’s algorithm
transforms the sets A, B, C into bit vectors, computes the integer vector
representing the multiset A+B using a fast Fourier transform, and compares
it to the bit vector of C. This algorithm can be modified to solve any r-
variable linear satisfiability problem, where the input consists of r sets of
n bounded integers and the coefficients of φ are integers, in time O(n +
(r log r)(m log m)). However, Seidel’s algorithm cannot be modeled even as
an algebraic decision tree. We discuss the bit length of our adversary inputs
in Section 3.4.
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1.2 Outline

The rest of the paper is organized as follows. Section 2 provides some useful
definitions, including a formal definition of our model of computation. We
prove our main theorem in Section 3. In Section 4, we establish matching
nonuniform upper bounds. Finally, in Section 5, we offer our conclusions and
suggest directions for further research.

2 Background and definitions

2.1 Hyperplane arrangements

A hyperplane h in IRn is an (n − 1)-dimensional affine subspace, that is, a
set of the form

h =

{
(x1, x2, . . . , xn)

∣∣∣∣ n∑
i=0

αixi = β

}
or, more simply, h = {X | 〈X, α〉 = β}, for some real coefficients α1, . . . , αn, β,
where at least one αi is not zero. The complement of a hyperplane h con-
sists of a positive halfspace h+ = {X | 〈X, α〉 > β} and a negative halfspace
h− = {X | 〈X, α〉 < β}.

Any finite set H = {h1, h2, . . . , hN} of hyperplanes in IRn defines a cell
complex, called an arrangement. Each cell is a maximal connected subset
of IRn contained in the intersection of a fixed subset of H and disjoint from
any other hyperplane in H . The dimension of a cell is the dimension of the
smallest affine subspace that contains it. For example, the n-dimensional
cells are the connected components of IRn \ ⋃N

i=1 hi. An arrangement of N
hyperplanes in IRn has O(Nn) cells [Ede87].

The closure of every cell in a hyperplane arrangement is a (convex) poly-
hedron. More generally, a polyhedron is the intersection of finite number of
hyperplanes and closed halfspaces. A bounded polyhedron is called a poly-
tope. A hyperplane supports a polyhedron if it intersects the polyhedron
but does not intersect its relative interior. The intersection of a polyhedron
and one of its supporting hyperplane is a face of the polyhedron; faces are
themselves lower-dimensional polyhedra. A (k − 1)-dimensional face of a k-
dimensional polyhedron is called a facet, and a (k − 2)-dimensional face is
called a ridge. Each ridge is contained in exactly two facets. For example, a
(three-dimensional) cube has 6 facets, 12 ridges, and a total of 26 faces.
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We refer the reader to Edelsbrunner’s monograph [Ede87] for further de-
tails on hyperplane arrangements and to Ziegler’s lecture notes [Zie94] for a
thorough introduction to the theory of convex polytopes and polyhedra.

2.2 r-linear decision trees

We now formally define our model of computation. A linear decision tree is a
ternary tree in which each interior node v is labeled with a query polynomial
qv ∈ IR[t1, . . . , tn] of degree 1, and the outgoing edges of each interior node
are labeled −1, 0, and +1. Each leaf is labeled with some value; for our
purposes, these values are all either “yes” or “no.” Given an input X ∈ IRn,
we compute with such a tree by traversing a path from the root to a leaf. At
each node v on this path, we evaluate the sign of qv(X) and then proceed
recursively in the appropriate subtree. When we reach a leaf, we return
its label as the output of the algorithm. This definition is essentially the
same as that given by Steele and Yao [SY82]; linear decision trees are also
equivalent to the “linear search algorithms” investigated by Meyer auf der
Heide [Mey84]. An r-linear decision tree is a linear decision tree, each of
whose query polynomials has at most r linear terms (and possibly a constant
term).

Linear decision trees have a natural geometric interpretation. Each query
polynomial induces a hyperplane in the space IRn of possible inputs. At each
internal node of the tree, we branch according to whether the input point X
is on the corresponding query hyperplane (0), in its positive halfspace (+1),
or in its negative halfspace (−1). If HA is the set of hyperplanes induced by
the query polynomials in a linear decision tree A, all the inputs in the same
cell in the arrangement of HA traverse the same root-to-leaf path in A. In
other words, A cannot distinguish between two inputs in the same cell. In
an r-linear decision tree, every query hyperplane is parallel to all but r of
the coordinate axes.

An r-variable linear satisfiability problem asks whether a given point in
IRn lies on a fixed set Hφ of Θ(nr) hyperplanes, each parallel to all but r of
the coordinate axes. Our main result can be stated geometrically as follows.
There is an n-dimensional cell C in the arrangement of Hφ with Ω(ndr/2e)
boundary facets. Given a point X ∈ C as input, if an algorithm fails to
check whether X lies “inside” each boundary facet of C, the adversary can
undetectably move X onto some unchecked boundary facet and, thus, onto
a hyperplane in Hφ.
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2.3 Ordered fields and infinitesimals

An ordered field is a field with a strict linear ordering < compatible with the
field operations. A real closed field is an ordered field, no proper algebraic
extension of which is also an ordered field. The real closure K̃ of an ordered
field K is the smallest real closed field that contains it. We refer the interested
reader to [BCR87, HRR91] for further details and more formal definitions,
and to [Can88, Can93] for previous algorithmic applications of real closed
fields.

A formula in the first-order theory of the reals, or more simply, a first-
order formula, is a quantified Boolean combination of polynomial equations
and inequalities. An elementary formula is a first-order formula with no free
variables, in which every polynomial has real coefficients. An elementary
formula holds in an ordered field K if and only if the formula is true when
the range of the quantifiers is the field K and addition, multiplication, and
comparisons are interpreted as ordered field operations in K. Obviously, this
makes sense only if K contains the coefficients of the formula; every ordered
field we consider is an extension field of the reals.

The following principle was originally proven by Tarski [Tar51] in a s-
lightly different form. See [BCR87] for a proof of this version.

The transfer principle Let K̃ be a real closed extension field of IR. An

elementary formula holds in K̃ if and only if it holds in IR.

For any ordered field K, we let K(ε) denote the ordered field of rational
functions in ε with coefficients in K, where ε is positive but less than every
positive element of K. In this case, we say that ε is infinitesimal in K. We
use towers of such field extensions. In such an extension, the order of the
infinitesimals is specified by the description of the field. For example, in the
ordered field IR(ε1, ε2, ε3) = IR(ε1)(ε2)(ε3), ε1 is infinitesimal in the reals, ε2

is infinitesimal in IR(ε1), and ε3 is infinitesimal in IR(ε1, ε2).
An important property of such a field (in fact, the only property we really

need) is that the sign of any element a0 + a1ε1 + a2ε2 + a3ε3 ∈ IR(ε1, ε2, ε3),
where each of the coefficients ai is real, is given by the sign of the first nonzero
coefficient; in particular, the element is zero if and only if every ai is zero. In
other words, we can treat the set of elements of the form a0+a1ε1+a2ε2+a3ε3

as the vector space IR4 with a lexicographic ordering. Our constructions never
use higher-order elements such as ε2

1 + ε2/ε3.
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Let K be any ordered field extension of the reals. Since K is ordered,
and since any real polynomial can be thought of as a function from K to K,
it is reasonable to talk about the behavior of any linear decision tree given
elements of K as input. We emphasize that query polynomials always have
real coefficients, even when we consider more general inputs.

3 The main theorem

In this section, we prove the following theorem.

Theorem 1 Any r-linear decision tree that solves an r-variable linear sat-
isfiability problem must have depth Ω(ndr/2e).

Throughout this section, let φ =
∑r

i=1 aiti − b denote a fixed linear form
with formal variables t1, t2, . . . , tr and real coefficients a1, . . . , ar, b, where
ai 6= 0 for all i. We call the ordered r-tuple (xπ(1), . . . , xπ(r)) a satisfying
tuple if it lies in the zeroset of φ, that is, if φ(xπ(1), . . . , xπ(r)) = 0. We say
that a set X is degenerate if it contains the elements of a satisfying tuple.
For any set X, we call an ordered r-tuple of elements of X critical if the
following properties are satisfied:

(1) The tuple is not in the zeroset of φ.

(2) There exists another collapsed set X̂, such that the corresponding tu-
ple in X̂ is in the zeroset of φ but the sign of every other real linear
combination of r or fewer elements is the same for both sets.

In other words, the only way for an r-linear decision tree to distinguish be-
tween X and X̂ is to perform a direct query on the critical tuple. Critical tu-
ples play the same role in our adversary argument as Dietzfelbinger’s “fooling
pairs” [Die89] and Erickson and Seidel’s “collapsible simplices” [ES95, Eri99].

To prove our lower bound, it would suffice to prove the existence of a
nondegenerate input X with several critical tuples. If an r-linear decision
tree algorithm did not perform a direct query for each critical tuple, given X
as input, then an adversary could “collapse” one of the untested tuples. The
algorithm would be unable to distinguish between the original input X and
the modified input X̂, even though one would be degenerate and the other
would not. Thus, the number of critical tuples would be a lower bound on
the running time of any algorithm.
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Unfortunately, this approach seems to be doomed from the start. For any
two sets X and X ′ of real numbers, there are an infinite number of query
polynomials that are positive at X and negative at X ′. It follows that critical
tuples are impossible. Moreover, no single input is hard for every algorithm,
since for any set X of n real numbers, there is an algorithm that requires
only n queries to decide whether X is degenerate.

To avoid these problems, we allow our adversary inputs to contain ele-
ments of an ordered extension field of the form IR(ε1, . . . , εm). Allowing the
adversary to use infinitesimals lets us construct a set with several critical tu-
ples (Lemma 2), even though such sets are impossible if we restrict ourselves
to real-valued inputs.

The algorithms we consider are required to behave correctly only when
they are given real input. Therefore, the infinitesimal inputs we construct
cannot be used directly in our adversary argument. The second step in our
proof (Lemma 3) is to derive, for each r-linear decision tree, a corresponding
real-valued input with several relatively critical tuples (defined below). This
step follows from our infinitesimal construction by a straightforward appli-
cation of Tarski’s transfer principle. We emphasize that for each algorithm,
we obtain a different real-valued input.

Finally, the adversary inputs we construct in the first step (and by im-
plication, the real inputs we get by invoking the transfer principle) contain
several satisfying r-tuples. Thus, the critical tuples do not immediately im-
ply a lower bound, since both the original input and any collapsed input
are degenerate. In the final step of the proof (Lemma 4), we use simple
properties of hyperplane arrangements and convex polyhedra to show that
these degenerate inputs can be perturbed slightly, resulting in nondegenerate
inputs with the same critical tuples. Thus, for each r-linear decision tree,
we obtain a corresponding nondegenerate input with Ω(ndr/2e) relatively col-
lapsible tuples. Our lower bound then follows by the previous adversary
argument.

3.1 The infinitesimal adversary input

Our construction relies on the existence of an integer matrix with two special
properties.

Lemma 1 There exists an r×br/2c integer matrix M satisfying the follow-
ing conditions:
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(1) There are Ω(ndr/2e) vectors v ∈ {1, 2, . . . , n}r such that M>v = 0.

(2) Every set of br/2c rows of M forms a nonsingular matrix.

Proof Consider the matrix M with entries

mij =


ij−1 if 1 ≤ i ≤ dr/2e,
−1 if i = j + dr/2e,
0 otherwise,

where 1 ≤ i ≤ r and 1 ≤ j ≤ dr/2e. The first dr/2e rows of M form a
rectangular Vandermonde matrix, and the last br/2c rows form a negative
identity matrix. We claim that this matrix satisfies the conditions of the
lemma.

We can choose a vector v = (v1, v2, . . . , vr) ∈ {1, 2, . . . , n}r such that
M>v = 0 as follows. Let mmax = dr/2edr/2e−1 denote the largest element of
M . For each 1 ≤ i ≤ dr/2e, choose vi arbitrarily in the range

1 ≤ vi ≤
⌊

n

dr/2emmax

⌋
,

and for all 1 ≤ j ≤ br/2c, let

vj+dr/2e =

dr/2e∑
i=1

mijvi =

dr/2e∑
i=1

ijvi.

Each vj+dr/2e is a positive integer in the range dr/2e ≤ vj ≤ n. We easily
verify that M>v = 0. There are⌊

n

dr/2emmax

⌋dr/2e
=

⌊
n

dr/2edr/2e

⌋dr/2e
= Ω

(
ndr/2e)

different ways to choose the vector v. Thus, M satisfies condition (1).
Let M ′ be a matrix consisting of br/2c arbitrary rows of M . We can write

M ′ = P

(
V W
0 −I

)
,

where P is an br/2c × br/2c permutation matrix, V is a (possibly empty)
square minor of a Vandermonde matrix, and I is a (possibly empty) identity
matrix. (W is also a minor of a Vandermonde matrix, but this is unimpor-
tant.) Since P , V , and I are all nonsingular, so is M ′. Thus, M satisfies
condition (2). 2
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Lemma 2 There exists a set X ∈ Kn with Ω(ndr/2e) critical tuples, for some
ordered field K.

Proof We construct such a set X ∈ Kn, where

K = IR(∆1, . . . , ∆r−1, δ1, . . . , δbr/2c, ε).

We assume without loss of generality that n is a multiple of r.
Let M = (mij) be the matrix given by Lemma 1. Our set X is the union

of r smaller sets Xi, each containing n/r elements xij defined as

xij =
1

ai

b

r
+ (−1)i(∆i−1 + ∆i) +

br/2c∑
k=1

mikjδk + j2ε


for all 1 ≤ i ≤ r and 1 ≤ j ≤ n/r. For notational convenience, we define
∆0 = ∆r = 0.

We claim that any tuple (x1p1 , . . . , xrpr), where the indices pi satisfy the
matrix equation M>(p1, . . . , pr) = 0, is critical. By condition (1) of Lemma 1,
there are Ω((n/r)dr/2e) = Ω(ndr/2e) such tuples. The corresponding collapsed
input X̂ has elements

x̂ij =
1

ai

 b

r
+ (−1)i(∆i−1 + ∆i) +

br/2c∑
k=1

mikjδk + (j − pi)
2ε


or, more succinctly, x̂ij = xij + (p2

i − 2jpi)ε/ai.
For example, in the simplest nontrivial case r = 3, the set X has elements

in the field IR(∆1, ∆2, δ1, ε). If we take M = (1, 1,−1)>, then X contains the
following elements, where 1 ≤ j ≤ n/3:

x1j = (b/3−∆1 + jδ1 + j2ε)/a1,

x2j = (b/3 + ∆1 + ∆2 + jδ1 + j2ε)/a2,

x3j = (b/3 −∆2 − jδ1 + j2ε)/a3.

The indices of each allegedly critical tuple satisfy the equation p1 + p2 = p3,
and the elements of the corresponding collapsed input X̂ are

x̂1j = (b/3−∆1 + jδ1 + (j − p1)
2ε)/a1,

x̂2j = (b/3 + ∆1 + ∆2 + jδ1 + (j − p2)
2ε)/a2,

x̂3j = (b/3 −∆2 − jδ1 + (j − p3)
2ε)/a3.

12



Before continuing the proof, let us attempt to provide some intuition
about our construction; the same intuition can be applied to Dietzfelbinger’s
construction [Die89]. To keep things simple, consider the case where ai = 1
for all i and b = 0. We can write any linear expression

∑r
i=1 αixiπ(i), where

αi ∈ IR, as a real linear combination of the infinitesimals ∆i, δk, ε. The sign of
such an linear combination is determined by the sign of the most significant
nonzero coefficient. Each “level” of infinitesimals restricts which expressions
of this form can possibly equal zero. Specifically, the ∆ terms ensure that
each coefficient αi = 1, and the δ terms ensure that the indices π(i) satisfy
the equation M>(π(1), . . . , π(r)) = 0. The remaining expressions are direct
queries on (allegedly) critical tuples; these are the only expressions whose
signs can be changed by the adversary. The ε terms ensure that no such
expression is equal to zero and that a corresponding expression in X̂ equals
zero if and only if π(i) = pi for all i.

We can interpret any real linear combination of infinitesimals in K geo-
metrically as an element of the lexicographically ordered vector space IRr+br/2c.
Figure 1 illustrates our adversary construction for the case φ = t1 + t2 as a
set of points or vectors in IR3. The adversary set X contains the points
(−1, i, i2), (1,−1, i2) for all 1 ≤ i ≤ n/2. For each 1 ≤ p ≤ n/2, we have a
collapsed set X̂, which contains the points (−1, i, (i − p)2), (1,−i, (i − p)2).
“Collapsing” a critical pair involves “rolling” the two parabolas containing
the points so that the desired pair lies in the (∆, δ) plane. Clearly, every
pair of points in X is linearly independent. Exactly one pair of points in X̂
is linearly dependent, and those two points sum to zero. Otherwise, every
linear combination of two points in X has the same sign as the corresponding
points in X̂.

We now continue our proof of Lemma 2. Fix an r-tuple (x1p1 , . . . , xrpr)
such that M>(p1, . . . , pr) = 0. We verify that φ(x1p1 , . . . , xrpr) 6= 0 as follows.

φ(x1pi
, . . . , xrpr) =

r∑
i=1

 b

r
+ (−1)i(∆i−1 + ∆i) +

br/2c∑
k=1

mikpiδk + p2
i ε

− b

=

r∑
i=1

(−1)i(∆i−1 + ∆i) +

br/2c∑
k=1

(
r∑

i=1

mikpi

)
δk +

r∑
i=1

p2
i ε

=

r∑
i=1

p2
i ε > 0.
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∆

δ

ε

(a)

ε

δ

∆

(b)

Figure 1: (a) The original adversary set X for the case φ = t1 + t2. (b) A col-
lapsed set X̂; the white points lie in the (∆, δ) plane.
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Similar calculations show that φ(x̂1pi
, . . . , x̂rpr) = 0.

To show that the tuple is critical, it remains to show that every other
r-linear query has the same sign when evaluated at both X and X̂. To
distinguish between the query polynomials and their value at a particular
input, let tij be the formal variable corresponding to each element xij in the
set X above.

Consider the query polynomial Q =
∑r

i=1 Qi − β, where for each i,

Qi = ai

n/r∑
j=1

αijtij ,

and at most r of the real coefficients αij are not zero. We refer to tij as a
query variable if its coefficient αij is not zero. For notational convenience,
define

Ai =

n/r∑
j=1

αij and Ji =

n/r∑
j=1

αijj

for each i and

B =
b

r

r∑
i=1

Ai − β.

We can rewrite the query expression Q(X) as a real linear combination
of the infinitesimals as follows:

Q(X) =
r∑

i=1

n/r∑
j=1

αij

 b

r
+ (−1)i(∆i−1 + ∆i) +

br/2c∑
k=1

mikjδk + j2ε

− β

= B +
r∑

i=1

(−1)iAi(∆i−1 + ∆i) + Ji

br/2c∑
k=1

mikδk

 +

 n/r∑
j=1

αijj
2

 ε


= B +

r−1∑
i=1

(−1)i(Ai −Ai+1)∆i +

br/2c∑
k=1

(
r∑

i=1

mikJi

)
δk +

r∑
i=1

 n/r∑
j=1

αijj
2

 ε.

Finally, define

Di = (−1)i(Ai − Ai+1), dk =

r∑
i=1

mikJi, and ei =

n/r∑
j=1

αijj
2,
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for each i and k, so that

Q(X) = B +
r−1∑
i=1

Di∆i +

br/2c∑
k=1

dkδk +
r∑

i=1

eiε.

The sign of Q(X) is the sign of the first nonzero coefficient in this expansion;
in particular, Q(X) = 0 if and only if every coefficient B, Di, dk, ei is zero.
Similarly, we can write

Q(X̂) = B +

r−1∑
i=1

Di∆i +

br/2c∑
k=1

dkδk +

r∑
i=1

êiε,

where for each i,

êi =

n/r∑
j=1

αij(j − pi)
2 = ei − 2piJi + p2

i Ai.

If B 6= 0, the sign of B determines the sign of both Q(X) and Q(X̂).
Similarly, if any of the coefficients Di or dk is nonzero, the first such coefficient
determines the sign of both Q(X) and Q(X̂). Thus, it suffices to consider
only queries for which B = 0, every Di = 0, and every dk = 0. Note that in
this case, all the Ai’s are equal. There are three cases to consider.

Case 1. Suppose no subset Xi contains exactly one of the query variables.
(This includes the case where all query variables belong to the same subset.)
Then at most br/2c of the polynomials Qi are not identically zero, and it
follows that Ai = 0 for all i. The vector J consisting of the br/2c (or fewer)
nonzero Ji’s must satisfy the matrix equation (M ′)>J = 0, where M ′ is a
square minor of the matrix M . By condition (2) above, M ′ is nonsingular,
so all the Ji’s must be zero. It follows that êi = ei for all i, which implies
that Q(X) = Q(X̂).

Case 2. Suppose some subset Xi contains exactly one query variable tij and
some other subset Xi′ contains none. Then Ai = αij and Ai′ = 0. Since Ai

and Ai′ are equal, we must have αij = 0, but this contradicts the assumption
that tij is a query variable. Thus, this case never happens.
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Case 3. Finally, suppose each query variable comes from a different subset.
(This includes the case of a direct query on what we claim is a critical tuple.)
Recall that all the Ai’s are equal. Since we are interested only in the sign
of the query, we can assume without loss of generality that Ai = αij = 1 for
each query variable tij . Thus, each of the coefficients ei is positive, which
implies that Q(X) is positive. Furthermore, unless the query variables are
exactly xipi

for all i, each of the coefficients êi is also positive, which means

Q(X̂) is positive.

Thus, the tuple (x1p1 , . . . , xrpr) is critical, as claimed. Since there are
Ω(ndr/2e) such tuples, this completes the proof of Lemma 2. 2

3.2 Moving back to the reals

The presence of infinitesimals in our adversary construction means that we
cannot apply our adversary argument directly, since the algorithms we con-
sider are required to produce the correct output only when they are given
real-valued input. Therefore, we must somehow eliminate the infinitesimals
before applying our adversary argument. Since we know that no single real
adversary input exists, we instead derive a different adversary input for each
algorithm.

For any r-linear decision tree A, let QA denote the set of query polynomi-
als used throughout A. We emphasize that QA includes all the polynomials
used by A, not just the polynomials on any particular computation path.
We can assume, without loss of generality, that QA includes all Θ(nr) direct
queries, since otherwise the algorithm cannot correctly detect all possible
satisfying tuples.

For any input X, we call an ordered r-tuple of elements of X relatively
critical with respect to A if the following properties are satisfied:

(1) The tuple is not in the zeroset of φ.

(2) There exists another collapsed input X̂, such that the corresponding
tuple in X̂ is in the zeroset of φ but the sign of every other polynomial
in QA is the same for both inputs.

Clearly, any critical tuple is also relatively critical. To prove a lower bound,
it suffices to prove, for each r-linear decision tree, the existence of a corre-
sponding nondegenerate input with several relatively critical tuples.
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Lemma 3 For any r-linear decision tree A, there exists a set XA ∈ IRn with
Ω(ndr/2e) relatively critical tuples.

Proof Fix an r-linear decision tree A. Let X ∈ Kn be given by Lemma 2.
Let Φ denote the set of Ω(ndr/2e) polynomials

Φ =

{
r∑

i=1

aitπ(i)

∣∣∣∣ (xπ(1), xπ(2), . . . , xπ(r)) is relatively critical

}
.

Each polynomial in Φ is a direct query.
It follows directly from the definitions and Lemma 2 that the following

elementary formula holds in K:

∃X
∧
q∈Φ

q(X) 6= 0 ∧ ∃X̂
q(X̂) = 0 ∧

∧
q′∈QA\{q}

sgn q′(X) = sgn q′(X̂)

 .

In English, this formula reads “There is a set X such that for every direct
query q ∈ Φ, the corresponding tuple in X is relatively collapsible with
respect to A.”

This is just a convenient shorthand for the actual formula. The large
conjunction signs are abbreviations for a conjunction of subformulas, one
for each q and q′. The quantifier ∃X̂ can be pulled out to the front of the
formula, resulting in a formula with Ω(ndr/2e) + 1 existential quantifiers, one
for the original input X and one for each collapsed input X̂.2 The equa-
tion sgn a = sgn b is shorthand for ((ab > 0)∨ (a = 0 ∧ b = 0)). Finally, each
reference to q(X) or q′(X) should be expanded into an explicit polynomial
in X. (Note that within the scope of the quantifiers, X and X̂ are formal
variables.)

Since K is a subset of its real closure K̃ and since the formula is only

existentially quantified, the formula holds in K̃. Thus, the transfer principle
implies that it also holds in IR. The lemma follows immediately. 2

With a little more care, we can show that the real inputs are derived by re-
placing the infinitesimals by sufficiently small and sufficiently well-separated
real values. Thus, our infinitesimals play exactly the same role as the “in-
accessibles” used by Dietzfelbinger and Maass [DM88, Die89], but we avoid
having to derive explicit values based on the coefficients of the query poly-
nomials.

2Actually, ∃X is shorthand for a sequence of n quantifiers ∃x1 ∃x2 · · · ∃xn, and similarly
for ∃X̂.
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3.3 Removing degeneracies

One final problem remains. The adversary inputs we construct (and, by im-
plication, the real-valued inputs we obtain by invoking the previous lemma)
are degenerate, at least when r > 3. However, in order to invoke our adver-
sary argument we need a nondegenerate input. In simple cases, we can con-
struct nondegenerate adversary inputs, but this becomes considerably more
difficult as we consider larger values of r. Thus, instead of giving an explicit
construction, we prove nonconstructively that an appropriate nondegenerate
input exists.

Lemma 4 For any r-linear decision tree A, there exists a nondegenerate set
X∗

A ∈ IRn with Ω(ndr/2e) relatively critical tuples.

Proof Fix an r-linear decision tree A, and as before, let QA denote the set of
query polynomials used by A. Each polynomial in QA induces a hyperplane
in the space IRn; call the resulting set of hyperplanes HA. For notational
convenience, we color each hyperplane “red” if it corresponds to a direct
query and “green” otherwise. Thus, an input is degenerate if and only if the
corresponding point in IRn lies on a red hyperplane. The input XA given by
Lemma 3 corresponds to a point in some cell CA in the arrangement of HA,
not necessarily of full dimension.

Let C be any cell in the arrangement, and let F be a facet of C. If exactly
one hyperplane h ∈ HA contains F but does not contain C, and if h is a red
hyperplane, then we say that F is a critical facet of C. There is a one-to-one
correspondence between the critical facets of CA and the relatively critical
tuples in XA.

Let C be any cell in the arrangement, let F be a facet of C, and let
F̂ be a critical facet of F . Since F̂ is a ridge of C, it must be contained
in exactly two facets of C. One of these facets is F ; call the other one Ĉ.
Any hyperplane that contains two facets of a polyhedron contains the entire
polyhedron [Zie94]. Thus, any hyperplane that contains Ĉ but not C also
contains F̂ ⊂ Ĉ but not F . Since there is exactly one such hyperplane in
HA, it follows that Ĉ is a critical facet of C.

Since CA has Ω(ndr/2e) critical facets, it follows by induction that there
is a full-dimensional cell C∗

A that also has Ω(ndr/2e) critical facets.3 We can
choose X∗

A to be any point in this cell. 2

3This conclusion is stronger than the lemma requires. It suffices that some cell that is
contained only in green hyperplanes has Ω(ndr/2e) critical facets.
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This completes the proof of Theorem 1.

3.4 Rational and integer problems

The problems we consider allow the coefficients of φ to be arbitrary real
numbers; similarly, the r-linear decision tree model allows the coefficients of
the query polynomials to be arbitrary real numbers. In practice, however, all
these coefficients are likely to be integers, or at least rationals. In this case,
we can use the following result of Meyer auf der Heide [Mey84] to bound the
number of bits required by our adversary construction.

Lemma 5 (Meyer auf der Heide) Let H be a set of hyperplanes in IRn,
each of which has integer coefficients between −M and M . Every vertex
in the arrangement of H has rational coordinates (p1/p0, p2/p0, . . . , pn/p0),
where |pi| ≤ Mnnn/2 for all 0 ≤ i ≤ n.

Every bounded k-dimensional polyhedron has k + 1 vertices whose cen-
troid lies in the relative interior of the polyhedron. Thus, Lemma 5 implies
that every bounded cell in the arrangement of H has an interior rational point
of the form (p1/p0, p2/p0, . . . , pn/p0), where |pi| ≤ Mnnn/2(n + 1) for all i. It
follows that for any integer-r-linear decision tree that solves an integer-linear
satisfiability problem, there is a corresponding rational adversary input, the
absolute values of whose numerators and common denominator are bounded
by Mnnn/2(n + 1), where M is the absolute value of the largest coefficient
of any query polynomial. (To ensure that the cell containing the adversary
input is bounded, we observe that the adversary inputs we construct lie in
the interior of the hypercube [−1, 1]n and assume without loss of generality
that every algorithm uses the 2n query polynomials ti ± 1.)

In the case where the polynomial φ and every query polynomial is ho-
mogeneous, all the query hyperplanes pass through the origin. In this case,
we can produce an integer adversary input simply by scaling the rational
input described above by its common denominator. Thus, for any homoge-
neous integer-r-linear decision tree that solves a homogeneous integer-linear
satisfiability problem, there is a corresponding integer adversary input, the
absolute value of whose elements is at most Mnnn/2(n + 1). This compares
favorably with Dietzfelbinger’s adversary construction for sorting sums of
(r/2)-tuples using direct queries, which can be realized using integers be-
tween 1 and nn [Die89]. In fact, our construction improves Dietzfelbinger’s
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bound by roughly a factor of nn/2−1, since in the cases he considers, we have
M = 1.

4 Matching upper bounds

In this section, we show that our lower bound is as large as possible. We
first describe simple algorithms to solve any r-variable linear satisfiability
problem in O(n(r+1)/2) time when r is odd and in O(nr/2 log n) time when
r is even. To close the logarithmic gap when r is even and bigger than 2, we
then derive a nonuniform algorithm whose running time is O(nr/2).

As in the previous section, let φ =
∑r

i=1 aiti − b for fixed coefficients
a1, . . . , ar, b ∈ IR. Given x1, . . . , xn ∈ IR, our algorithms begin by construct-
ing two multisets Y and Z, each containing br/2c! ( n

br/2c
)

= O(nbr/2c) real
numbers, as follows:

Y =

−
br/2c∑
i=1

aixπ(i)

∣∣∣∣∣ π : {1, 2, . . . , br/2c} ↪→{1, 2, . . . , n}
 ,

Z =


br/2c∑
i=1

ai+br/2cx$(i) − b

∣∣∣∣∣ $ : {1, 2, . . . , br/2c} ↪→ {1, 2, . . . , n}
 .

(Here, ↪→ denotes a one-to-one function.)
First consider the case when r is odd. We begin by sorting Y and Z

in time O(nbr/2c log n). Then for each input element xi, we scan through
Y and Z, looking for elements y ∈ Y and z ∈ Z such that y − z = arxi.
If such a pair is generated by a pair of maps π and $ whose images are
disjoint, then φ(xπ(1), . . . , xπ(br/2c), x$(1), . . . , x$(br/2c), xi) = 0, so the input is
degenerate. We can test this condition in constant time by storing the map
used to generate each element of Y and Z and performing a simple table
lookup. Performing the scan requires time O(nbr/2c) for each xi, so the total
running time of the algorithm is O(ndr/2e). Our algorithm can be modeled
as a family of r-linear decision trees.

Now suppose r is even. The input is degenerate if and only if the multisets
Y and Z share an element defined by maps π and $ with disjoint images.
We can detect this condition by sorting Y ∪Z and performing table lookups
for every duplicate pair. This algorithm runs in O(nr/2 log n), and it can be
modeled as a family of r-linear decision trees.
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Our Ω(ndr/2e) lower bound matches these upper bounds when r is odd,
but it is a logarithmic factor away when r is even and greater than 2. We
use the following result of Fredman [Fre76] to show that our lower bounds
cannot be improved even in this case.

Lemma 6 (Fredman [Fre76]) Let Γ be a subset of the n! orderings of
{1, 2, . . . , n} for some fixed n. There exists a comparison tree of depth at
most log2(|Γ|) + 2n that sorts any sequence of n numbers with order type
in Γ.

Theorem 2 Let Π be an r-variable linear satisfiability problem with n inputs,
for some fixed n and r > 2. There exists an r-linear decision tree with depth
O(ndr/2e) that solves Π.

Proof It suffices to show that when r is even, the multiset Y ∪ Z defined
above can be sorted in time O(nr/2) using Fredman’s “comparison” tree,
which is really an r-linear decision tree.

Every pair of elements of Y ∪ Z induces a hyperplane in IRn. There
is a one-to-one correspondence between the n-dimensional cells in the re-
sulting hyperplane arrangement and the possible orderings of Y ∪ Z. Since
an arrangement of N hyperplanes in IRn has at most

∑n
i=0

(
N
i

)
= O(Nn)

cells of dimension n (refer to [Ede87]), there are at most O(nrn) possible
orderings. It follows that the depth of Fredman’s decision tree is at most
O(rn logn) + 4(r/2)!

(
n

r/2

)
= O(nr/2). 2

Of course, this result does not imply the existence of a uniform O(ndr/2e)-
time algorithm that works for all values of n. Closing the logarithmic gap
between these upper and lower bounds, even for the special case of sorting
X + Y considered by Fredman [Fre76], is a long-standing and apparently
very difficult open problem. The closest result is a simple divide-and-conquer
algorithm of Steiger and Streinu [SS95], which sorts X+Y in O(n2 log n) time
using only O(n2) comparisons; see also [Lam92, KK95]. Their algorithm can
be adapted to solve any r-variable linear satisfiability problem, for any even
r > 2, in O(nr/2 log n) time, using only O(nr/2) r-linear queries. The extra
log n factor in the running time is the result of repeating the same queries
several times.
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5 Conclusions and open problems

We have proven that the optimal depth of an r-linear decision tree that solves
an r-variable linear satisfiability problem is Θ(ndr/2e). Our lower bounds fol-
low from an adversary argument. The construction of an effective adversary
input is simplified by two novel techniques. First, we show that for any linear
satisfiability problem, it suffices to construct a single input whose elements
are taken from an extension field of the reals; Tarski’s transfer principle then
implies the existence of an appropriate real-valued input for each algorithm.
Second, we argue that this single adversary input can be degenerate; although
degenerate inputs cannot be used directly in our adversary argument, simple
properties of hyperplane arrangements and convex polytopes imply the exis-
tence of appropriate nondegenerate inputs. The matching nonuniform upper
bounds follow from results of Fredman [Fre76].

An obvious open problem is to improve our lower bounds to stronger
models of computation. In principle, our techniques can be used to prove
lower bounds in the unrestricted linear decision tree model; of course, the
bottleneck is the actual adversary construction. Infinitesimal adversary con-
structions could also be used to prove lower bounds for higher-degree alge-
braic decision trees; however, the “perturbation” technique we used to prove
Lemma 4 can no longer be used, since it relies crucially on properties of
hyperplane arrangements and convex polytopes that are not shared by ar-
rangements of algebraic surfaces and semialgebraic sets.4

Lower bounds for linear satisfiability problems in a sufficiently powerful
model of computation, such as algebraic decision trees or algebraic computa-
tion trees, would imply similar lower bounds for several geometric problems,
several of which we mentioned in the introduction. Although our results im-
ply lower bounds for a few of these problems, the models in which these lower
bounds hold are very weak, and most of the problems cannot even be solved in
the r-linear decision tree model. Even seemingly small improvements would
lead to significant new results. For example, an Ω(n2) lower bound for 3sum
in the 6-linear decision tree model would imply the first Ω(n2) lower bound
for the problem of finding the minimum-area triangle among n points in the
plane. Unfortunately, a lower bound even in the 4-linear decision tree model
seems to be completely out of reach at present.

4Erickson and Seidel [ES95] and an earlier version of this paper both claim a general-
ization of our perturbation technique to restricted classes of algebraic decision trees, but
the proofs are incorrect; see [ES97].
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Ultimately, we would like to prove a lower bound larger than Ω(n log n) for
any non-NP-hard polynomial satisfiability problem, in some general model
of computation such as linear decision trees, algebraic decision trees, or even
algebraic computation trees. Linear satisfiability problems, in particular,
3sum, seem to be good candidates for study.
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