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Abstract

We consider three classes of geodesic embeddings of graphs on Euclidean flat tori:

• A torus graph G is equilibrium if it is possible to place positive weights on the edges,
such that the weighted edge vectors incident to each vertex of G sum to zero.

• A torus graph G is reciprocal if there is a geodesic embedding of the dual graph G∗

on the same flat torus, where each edge of G is orthogonal to the corresponding dual
edge in G∗.

• A torus graph G is coherent if it is possible to assign weights to the vertices, so that G
is the (intrinsic) weighted Delaunay graph of its vertices.

The classical Maxwell-Cremona correspondence and the well-known correspondence be-
tween convex hulls and weighted Delaunay triangulations imply that the analogous con-
cepts for plane graphs (with convex outer faces) are equivalent. Indeed, all three conditions
are equivalent to G being the projection of the 1-skeleton of the lower convex hull of points
in R3. However, this three-way equivalence does not extend directly to geodesic graphs
on flat tori. On any flat torus, reciprocal and coherent graphs are equivalent, and every
reciprocal graph is equilibrium, but not every equilibrium graph is reciprocal. We establish
a weaker correspondence: Every equilibrium graph on any flat torus is affinely equivalent
to a reciprocal/coherent graph on some flat torus.

∗Portions of this work were supported by NSF grant CCF-1408763. An extended abstract of this paper will appear in
Proceedings of the 36th International Symposium on Computational Geometry (2020).
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https://patrickl.in/
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1 Introduction

The Maxwell-Cremona correspondence is a fundamental theorem establishing an equivalence between
three different structures on straight-line graphs G in the plane:

• An equilibrium stress on G is an assignment of non-zero weights to the edges of G, such that the
weighted edge vectors around every interior vertex p sum to zero:

∑

p : pq∈E

ωpq(p− q) =
�

0
0

�

• A reciprocal diagram for G is a straight-line drawing of the dual graph G∗, in which every edge e∗

is orthogonal to the corresponding primal edge e.

• A polyhedral lifting of G assigns z-coordinates to the vertices of G, so that the resulting lifted
vertices in R3 are not all coplanar, but the lifted vertices of each face of G are coplanar.

Building on earlier seminal work of Varignon [75], Rankine [60, 61], and others, Maxwell [49–51]
proved that any straight-line planar graph G with an equilibrium stress has both a reciprocal diagram
and a polyhedral lifting. In particular, positive and negative stresses correspond to convex and concave
edges in the polyhedral lifting, respectively. Moreover, for any equilibrium stress ω on G, the vector
1/ω is an equilibrium stress for the reciprocal diagram G∗. Finally, for any polyhedral liftings of G, one
can obtain a polyhedral lifting of the reciprocal diagram G∗ via projective duality. Maxwell’s analysis
was later extended and popularized by Cremona [25, 26] and others; the correspondence has since
been rediscovered several times in other contexts [3, 38]. More recently, Whiteley [76] proved the
converse of Maxwell’s theorem: every reciprocal diagram and every polyhedral lift corresponds to an
equilibrium stress; see also Crapo and Whiteley [24]. For modern expositions of the Maxwell-Cremona
correspondence aimed at computational geometers, see Hopcroft and Kahn [37], Richter-Gebert [63,
Chapter 13], or Rote, Santos, and Streinu [65].

If the outer face of G is convex, the Maxwell-Cremona correspondence implies an equivalence
between equilibrium stresses in G that are positive on every interior edge, convex polyhedral liftings of G,
and reciprocal embeddings of G∗. Moreover, as Whiteley et al. [77] and Aurenhammer [3] observed, the
well-known equivalence between convex liftings and weighted Delaunay complexes [4,5, 13,32] implies
that all three of these structures are equivalent to a fourth:

• A Delaunay weighting of G is an assignment of weights to the vertices of G, so that G is the
(power-)weighted Delaunay graph [4,7] of its vertices.

Among many other consequences, combining the Maxwell-Cremona correspondence [76] with
Tutte’s spring-embedding theorem [74] yields an elegant geometric proof of Steinitz’s theorem [68,69]
that every 3-connected planar graph is the 1-skeleton of a 3-dimensional convex polytope. The Maxwell-
Cremona correspondence has been used for scene analysis of planar drawings [3, 5, 24, 38, 73], finding
small grid embeddings of planar graphs and polyhedra [15,30,31,39,58,62,63,66], and several linkage
reconfiguration problems [22, 29,59, 71, 72].

It is natural to ask how or whether these correspondences extend to graphs on surfaces other than the
Euclidean plane. Lovász [46, Lemma 4] describes a spherical analogue of Maxwell’s polyhedral lifting
in terms of Colin de Verdière matrices [17, 20]; see also [43]. Izmestiev [41] provides a self-contained
proof of the correspondence for planar frameworks, along with natural extensions to frameworks in
the sphere and the hyperbolic plane. Finally, and most closely related to the present work, Borcea
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and Streinu [11], building on their earlier study of rigidity in infinite periodic frameworks [9, 10],
develop an extension of the Maxwell-Cremona correspondence to infinite periodic graphs in the plane,
or equivalently, to geodesic graphs on the Euclidean flat torus. Specifically, Borcea and Streinu prove
that periodic polyhedral liftings correspond to periodic stresses satisfying an additional homological
constraint.1

1.1 Our Results

In this paper, we develop a different generalization of the Maxwell-Cremona-Delaunay correspondence
to geodesic embeddings of graphs on Euclidean flat tori. Our work is inspired by and uses Borcea and
Streinu’s recent results [11], but considers a different aim. Stated in terms of infinite periodic planar
graphs, Borcea and Streinu study periodic equilibrium stresses, which necessarily include both positive
and negative stress coefficients, that include periodic polyhedral lifts; whereas, we are interested in
periodic positive equilibrium stresses that induce periodic reciprocal embeddings and periodic Delaunay
weights. This distinction is aptly illustrated in Figures 8–10 of Borcea and Streinu’s paper [11].

Recall that a Euclidean flat torus T is the metric space obtained by identifying opposite sides of an
arbitrary parallelogram in the Euclidean plane. A geodesic graph G in the flat torus T is an embedded
graph where each edge is represented by a “line segment”. Equilibrium stresses, reciprocal embeddings,
and weighted Delaunay graphs are all well-defined in the intrinsic metric of the flat torus. We prove the
following correspondences for any geodesic graph G on any flat torus T.

• Any equilibrium stress for G is also an equilibrium stress for the affine image of G on any other
flat torus T′ (Lemma 2.2). Equilibrium depends only on the common affine structure of all flat
tori.

• Any reciprocal embedding G∗ on T—that is, any geodesic embedding of the dual graph such
that corresponding edges are orthogonal—defines unique equilibrium stresses in both G and G∗

(Lemma 3.1).

• G has a reciprocal embedding if and only if G is coherent. Specifically, each reciprocal diagram
for G induces an essentially unique set of Delaunay weights for the vertices of G (Theorem 4.5).
Conversely, each set of Delaunay weights for G induces a unique reciprocal diagram G∗, namely
the corresponding weighted Voronoi diagram (Lemma 4.1). Thus, a reciprocal diagram G∗ may
not be a weighted Voronoi diagram of the vertices of G, but some unique translation of G∗ is.

• Unlike in the plane, G may have equilibrium stresses that are not induced by reciprocal embed-
dings; more generally, not every equilibrium graph on T is reciprocal (Theorem 3.2). Unlike
equilibrium, reciprocality depends on the conformal structure of T, which is determined by the
shape of its fundamental parallelogram. We derive a simple geometric condition that characterizes
which equilibrium stresses are reciprocal on T (Lemma 5.4).

• More generally, we show that for any equilibrium stress on G, there is a flat torus T′, unique up
to rotation and scaling of its fundamental parallelogram, such that the same equilibrium stress is
reciprocal for the affine image of G on T′ (Theorem 5.7). In short, every equilibrium stress for G is
reciprocal on some flat torus. This result implies a natural toroidal analogue of Steinitz’s theorem
(Theorem 6.1): Every essentially 3-connected torus graph G is homotopic to a weighted Delaunay
graph on some flat torus.

1Phrased in terms of toroidal frameworks, Borcea and Streinu consider only equilibrium stresses for which the corresponding
reciprocal toroidal framework contains no essential cycles.
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1.2 Other Related Results

Our results rely on a natural generalization (Theorem 2.3) of Tutte’s spring-embedding theorem to the
torus, first proved (in much greater generality) by Colin de Verdière [18], and later proved again, in
different forms, by Delgado-Friedrichs [28], Lovász [47, Theorem 7.1] [48, Theorem 7.4], and Gortler,
Gotsman, and Thurston [35]. Steiner and Fischer [67] and Gortler et al. [35] observed that this toroidal
spring embedding can be computed by solving the Laplacian linear system defining the equilibrium
conditions. We describe this result and the necessary calculation in more detail in Section 2. Equilibrium
and reciprocal graph embeddings can also be viewed as discrete analogues of harmonic and holomorphic
functions [47,48].

Our weighted Delaunay graphs are (the duals of) power diagrams [4, 6] in the intrinsic metric of
the flat torus. Toroidal Delaunay triangulations are commonly used to generate finite-element meshes
for simulations with periodic boundary conditions, and several efficient algorithms for constructing
these triangulations are known [8, 14, 36, 52]. Building on earlier work of Rivin [64] and Indermitte
et al. [40], Bobenko and Springborn [7] proved that on any piecewise-linear surface, intrinsic Delaunay
triangulations can be constructed by an intrinsic incremental flipping algorithm, mirroring the classical
planar algorithm of Lawson [45]; their analysis extends easily to intrinsic weighted Delaunay graphs.
Weighted Delaunay complexes are also known as regular or coherent subdivisions [27, 78].

Finally, equilibrium and reciprocal embeddings are closely related to the celebrated Koebe-Andreev
circle-packing theorem: Every planar graph is the contact graph of a set of interior-disjoint circular
disks [1, 2, 42]; see Felsner and Rote [33] for a simple proof, based in part on earlier work of Brightwell
and Scheinerman [12] and Mohar [53]. The circle-packing theorem has been generalized to higher-
genus surfaces by Colin de Verdière [16, 19] and Mohar [54, 55]. In particular, Mohar proves that any
well-connected graph G on the torus is homotopic to an essentially unique circle packing for a unique
Euclidean metric on the torus. This disk-packing representation immediately yields a weighted Delaunay
graph, where the areas of the disks are the vertex weights. We revisit this result in Section 6.

Discrete harmonic and holomorphic functions, circle packings, and intrinsic Delaunay triangulations
have numerous applications in discrete differential geometry; we refer the reader to monographs by
Crane [23], Lovász [48], and Stephenson [70].

2 Background and Definitions

2.1 Flat Tori

A flat torus is the metric surface obtained by identifying opposite sides of a parallelogram in the
Euclidean plane. Specifically, for any nonsingular 2× 2 matrix M =

�a b
c d

�

, let TM denote the flat torus
obtained by identifying opposite edges of the fundamental parallelogram ◊M with vertex coordinates
�0

0

�

,
�a

c

�

,
�b

d

�

, and
�a+b

c+d

�

. In particular, the square flat torus T
�
= TI is obtained by identifying opposite

sides of the Euclidean unit square � = ◊I = [0,1]2. The linear map M : R2 → R2 naturally induces a
homeomorphism from T� to TM .

Equivalently, TM is the quotient space of the plane R2 with respect to the lattice ΓM of translations
generated by the columns of M ; in particular, the square flat torus is the quotient space R2/Z2. The
quotient map πM : R2 → TM is called a covering map or projection. A lift of a point p ∈ TM is any
point in the preimage π−1

M (p) ⊂ R
2. A geodesic in TM is the projection of any line segment in R2; we

emphasize that geodesics are not necessarily shortest paths.
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2.2 Graphs and Embeddings

We regard each edge of an undirected graph G as a pair of opposing darts, each directed from one
endpoint, called the tail of the dart, to the other endpoint, called its head. For each edge e, we arbitrarily
label the darts e+ and e−; we call e+ the reference dart of e. We explicitly allow graphs with loops and
parallel edges. At the risk of confusing the reader, we often write p�q to denote an arbitrary dart with
tail p and head q, and q�p for the reversal of p�q.

A drawing of a graph G on a torus T is any continuous function from G (as a topological space)
to T. An embedding is an injective drawing, which maps vertices of G to distinct points and edges to
interior-disjoint simple paths between their endpoints. The faces of an embedding are the components
of the complement of the image of the graph; we consider only cellular embeddings, in which all faces
are open disks. (Cellular graph embeddings are also called maps.) We typically do not distinguish
between vertices and edges of G and their images in any embedding; we will informally refer to any
embedded graph on any flat torus as a torus graph.

In any embedded graph, left(d) and right(d) denote the faces immediately to the left and right of
any dart d. (These are possibly the same face.)

The universal cover eG of an embedded graph G on any flat torus TM is the unique infinite periodic
graph in R2 such that πM (eG) = G; in particular, each vertex, edge, or face of eG projects to a vertex,
edge, or face of G, respectively. A torus graph G is essentially simple if its universal cover eG is simple,
and essentially 3-connected if eG is 3-connected [34,54–57]. We emphasize that essential simplicity and
essential 3-connectedness are features of embeddings; see Figure 1.
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Figure 1. An essentially simple, essentially 3-connected geodesic graph on the square flat torus (showing the homology vectors of all
four darts from u to v), a small portion of its universal cover, and its dual graph

2.3 Homology, Homotopy, and Circulations

For any embedding of a graph G on the square flat torus T�, we associate a homology vector [d] ∈ Z2

with each dart d, which records how the dart crosses the boundary edges of the unit square. Specifically,
the first coordinate of [d] is the number of times d crosses the vertical boundary rightward, minus the
number of times d crosses the vertical boundary leftward; and the second coordinate of [d] is the number
of times d crosses the horizontal boundary upward, minus the number of times d crosses the horizontal
boundary downward. In particular, reversing a dart negates its homology vector: [e+] = −[e−]. Again,
see Figure 1. For graphs on any other flat torus TM , homology vectors of darts are similarly defined by
how they crosses the edges of the fundamental parallelogram ◊M .

The (integer) homology class [γ] of a directed cycle γ in G is the sum of the homology vectors of its
forward darts. A cycle is contractible if its homology class is

�0
0

�

and essential otherwise. In particular,
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the boundary cycle of each face of G is contractible.
Two cycles on a torus T are homotopic if one can be continuously deformed into the other, or

equivalently, if they have the same integer homology class. Similarly, two drawings of the same graph G
on the same flat torus T are homotopic if one can be continuously deformed into the other. Two drawings
of the same graph G on the same flat torus T are homotopic if and only if every cycle has the same
homology class in both embeddings [21, 44].

A circulation φ in G is a function from the darts of G to the reals, such that φ(p�q) = −φ(q�p)
for every dart p�q and

∑

p�qφ(p�q) = 0 for every vertex p. We represent circulations by column
vectors in RE , indexed by the edges of G, where φe = φ(e+). Let Λ denote the 2 × E matrix whose
columns are the homology vectors of the reference darts in G. The homology class of a circulation is the
matrix-vector product

[φ] = Λφ =
∑

e∈E

φ(e+) · [e+].

(This identity directly generalizes our earlier definition of the homology class [γ] of a cycle γ.)

2.4 Geodesic Drawings and Embeddings

A geodesic drawing of G on any flat torus TM is a drawing that maps edges to geodesics; similarly,
a geodesic embedding is an embedding that maps edges to geodesics. Equivalently, an embedding is
geodesic if its universal cover eG is a straight-line plane graph.

A geodesic drawing of G in TM is uniquely determined by its coordinate representation, which
consists of a coordinate vector 〈p〉 ∈ ◊M for each vertex p, together with the homology vector [e+] ∈ Z2

of each edge e.
The displacement vector ∆d of any dart d is the difference between the head and tail coordinates

of any lift of d in the universal cover eG. Displacement vectors can be equivalently defined in terms of
vertex coordinates, homology vectors, and the shape matrix M as follows:

∆p�q := 〈q〉 − 〈p〉+M [p�q].

Reversing a dart negates its displacement: ∆q�p = −∆p�q. We sometimes write ∆xd and ∆yd to
denote the first and second coordinates of∆d . The displacement matrix ∆ of a geodesic drawing is the
2× E matrix whose columns are the displacement vectors of the reference darts of G. Every geodesic
drawing on TM is determined up to translation by its displacement matrix.

On the square flat torus, the integer homology class of any directed cycle is also equal to the sum of
the displacement vectors of its darts:

[γ] =
∑

p�q∈γ
[p�q] =

∑

p�q∈γ
∆p�q.

In particular, the total displacement of any contractible cycle is zero, as expected. Extending this identity
to circulations by linearity gives us the following useful lemma:

Lemma 2.1. Fix a geodesic drawing of a graph G on T� with displacement matrix ∆. For any circula-
tion φ in G, we have ∆φ = Λφ = [φ].

2.5 Equilibrium Stresses and Spring Embeddings

A stress in a geodesic torus graph G is a real vector ω ∈ RE indexed by the edges of G. Unlike
circulations, homology vectors, and displacement vectors, stresses can be viewed as symmetric functions



6 A Toroidal Maxwell-Cremona-Delaunay Correspondence

on the darts of G. An equilibrium stress in G is a stress ω that satisfies the following identity at every
vertex p:

∑

p�q

ωpq∆p�q =
�

0
0

�

.

Unlike Borcea and Streinu [9–11], we consider only positive equilibrium stresses, whereωe > 0 for every
edge e. It may be helpful to imagine each stress coefficient ωe as a linear spring constant; intuitively,
each edge pulls its endpoints inward, with a force equal to the length of e times the stress coefficientωe.

Recall that the linear map M : R2 × R2 associated with any nonsingular 2 × 2 matrix induces a
homeomorphism M : T�→ TM . In particular, applying this homeomorphism to a geodesic graph in T�
with displacement matrix ∆ yields a geodesic graph on TM with displacement matrix M∆. Routine
definition-chasing now implies the following lemma.

Lemma 2.2. Let G be a geodesic graph on the square flat torus T�. If ω is an equilibrium stress for G,
then ω is also an equilibrium stress for the image of G on any other flat torus TM .

Our results rely on the following natural generalization of Tutte’s spring embedding theorem to flat
torus graphs.

Theorem 2.3 (Colin de Verdiére [18]; see also [28,35,47]). Let G be any essentially simple, essen-
tially 3-connected embedded graph on any flat torus T, and let ω be any positive stress on the edges
of G. Then G is homotopic to a geodesic embedding in T that is in equilibrium with respect to ω;
moreover, this equilibrium embedding is unique up to translation.

Theorem 2.3 implies the following sufficient condition for a displacement matrix to describe a
geodesic embedding on the square torus.

Lemma 2.4. Fix an essentially simple, essentially 3-connected graph G on T�, a 2× E matrix ∆, and
a positive stress vector ω. Suppose for every directed cycle (and therefore any circulation) φ in G,
we have ∆φ = Λφ = [φ]. Then ∆ is the displacement matrix of a geodesic drawing on T� that is
homotopic to G. If in additionω is an equilibrium stress for that drawing, the drawing is an embedding.

Proof: A result of Ladegaillerie [44] implies that two embeddings of a graph on the same surface are
homotopic if the images of each directed cycle are homotopic. Since homology and homotopy coincide
on the torus, the assumption∆φ = Λφ = [φ] for every directed cycle immediately implies that∆ is the
displacement matrix of a geodesic drawing that is homotopic to G.

If ω is an equilibrium stress for that drawing, then the uniqueness clause in Theorem 2.3 implies
that the drawing is in fact an embedding. �

Following Steiner and Fischer [67] and Gortler, Gotsman, and Thurston [35], given the coordinate
representation of any geodesic graph G on the square flat torus, with any positive stress vector ω > 0,
we can compute an isotopic equilibrium embedding of G by solving the linear system

∑

p�q

ωpq

�

〈q〉 − 〈p〉+ [p�q]
�

=
�

0
0

�

for every vertex q

for the vertex locations 〈p〉, treating the homology vectors [p�q] as constants. Alternatively, Lemma 2.4
implies that we can compute the displacement vectors of every isotopic equilibrium embedding directly,
by solving the linear system

∑

p�q

ωpq∆p�q =
�

0
0

�

for every vertex q
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∑

left(d)= f

∆d =
�

0
0

�

for every face f

∑

d∈γ1

∆d = [γ1]

∑

d∈γ2

∆d = [γ2]

where γ1 and γ2 are any two directed cycles with independent non-zero homology classes.

2.6 Duality and Reciprocality

Every embedded torus graph G defines a dual graph G∗ whose vertices correspond to the faces of G,
where two vertices in G are connected by an edge for each edge separating the corresponding pair of
faces in G. This dual graph G∗ has a natural embedding in which each vertex f ∗ of G∗ lies in the interior
of the corresponding face f of G, each edge e∗ of G∗ crosses only the corresponding edge e of G, and
each face p∗ of G∗ contains exactly one vertex p of G in its interior. We regard any embedding of G∗ to be
dual to G if and only if it is homotopic to this natural embedding. Each dart d in G has a corresponding
dart d∗ in G∗, defined by setting head(d∗) = left(d)∗ and tail(d∗) = right(d∗); intuitively, the dual of a
dart in G is obtained by rotating the dart counterclockwise.

It will prove convenient to treat vertex coordinates, displacement vectors, homology vectors, and
circulations in any dual graph G∗ as row vectors. For any vector v ∈ R2 we define v⊥ := (J v)T , where
J :=

�

0 −1
1 0

�

is the matrix for a 90◦ counterclockwise rotation. Similarly, for any 2×n matrix A, we define
A⊥ := (JA)T = −AT J .

Two dual geodesic graphs G and G∗ on the same flat torus T are reciprocal if every edge e in G is
orthogonal to its dual edge e∗ in G∗.

A cocirculation in G a row vector θ ∈ RE whose transpose describes a circulation in G∗. The
cohomology class [θ]∗ of any cocirculation is the transpose of the homology class of the circulation θ T

in G∗. Recall that Λ is the 2 × E matrix whose columns are homology vectors of edges in G. Let λ1
and λ2 denote the first and second rows of Λ.

Lemma 2.5. The row vectors λ1 and λ2 describe cocirculations in G with cohomology classes [λ1]∗ =
(0 1) and [λ2]∗ = (−1 0).

Proof: Without loss of generality, assume that G is embedded on the flat square torus T�, with no
vertices on the boundary of the fundamental square �. Let γ1 and γ2 denote directed cycles in T� (not
in G) induced by the boundary edges of �, directed respectively rightward and upward.

Let d0, d1, . . . , dk−1 be the sequence of darts in G that cross γ2 from left to right, indexed by the
upward order of their intersection points. Each dart d that appears in this sequence appears exactly
λ1(d) times, once for each crossing. For each index i, we have left(di) = right(di+1 mod k); thus, the
corresponding sequence of dual darts d∗0 , d∗1 , . . . , d∗k−1 describes a closed walk in G∗. This closed walk
can be continuously deformed to γ2, so it has the same homology class as γ2; see Figure 2. We conclude
that [λ1]∗ = (0 1).

Symmetrically, the darts crossing γ1 upward define a closed walk in G∗ in the same homology class
as the reversal of γ1, and therefore [λ2]∗ = (−1 0). �

2.7 Coherent Subdivisions

Let G be a geodesic graph in TM , and fix arbitrary real weights πp for every vertex p of G. Let
p�q, p�r, and p�s be three consecutive darts around a common tail p in clockwise order. Thus,
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G G* G G*

Figure 2. Proof of Lemma 2.5: The darts in G crossing either boundary edge of the fundamental square dualize to a closed walk in G∗

parallel to that boundary edge.

left(p�q) = right(p�r) and left(p�r) = right(p�s). We call the edge pr locally Delaunay if the
following determinant is positive:

�

�

�

�

�

�

�

∆xp�q ∆yp�q
1
2 |∆p�q|2 +πp −πq

∆xp�r ∆yp�r
1
2 |∆p�r |2 +πp −πr

∆xp�s ∆yp�s
1
2 |∆p�s|2 +πp −πs

�

�

�

�

�

�

�

> 0. (2.1)

This inequality follows by elementary row operations and cofactor expansion from the standard deter-
minant test for appropriate lifts of the vertices p, q, r, s to the universal cover:

�

�

�

�

�

�

�

�

�

1 xp yp
1
2(x

2
p + y2

p )−πp

1 xq yq
1
2(x

2
q + y2

q )−πq

1 xr yr
1
2(x

2
r + y2

r )−πr

1 xs ys
1
2(x

2
s + y2

s )−πs

�

�

�

�

�

�

�

�

�

> 0. (2.2)

(The factor 1/2 simplifies our later calculations, and is consistent with Maxwell’s construction of polyhe-
dral liftings and reciprocal diagrams.) Similarly, we say that an edge is locally flat if the corresponding
determinant is zero. Finally, G is the weighted Delaunay graph of its vertices if every edge of G is
locally Delaunay and every diagonal of every non-triangular face is locally flat.

One can easily verify that this condition is equivalent to G being the projection of the weighted
Delaunay graph of the lift π−1

M (V ) of its vertices V to the universal cover. Results of Bobenko and
Springborn [7] imply that any finite set of weighted points on any flat torus has a unique weighted
Delaunay graph. We emphasize that weighted Delaunay graphs are not necessarily either simple or
triangulations; however, every weighted Delaunay graphs on any flat torus is both essentially simple and
essentially 3-connected. The dual weighted Voronoi graph of P, also known as its power diagram [4,6],
can be defined similarly by projection from the universal cover.

Finally, a geodesic torus graph is coherent if it is the weighted Delaunay graph of its vertices, with
respect to some vector of weights.

3 Reciprocal Implies Equilibrium

Lemma 3.1. Let G and G∗ be reciprocal geodesic graphs on some flat torus TM . The vector ω defined
by ωe = |e∗|/|e| is an equilibrium stress for G; symmetrically, the vector ω∗ defined by ω∗e∗ = 1/ωe =
|e|/|e∗| is an equilibrium stress for G∗.

Proof: Let ωe = |e∗|/|e| and ω∗e∗ = 1/ωe = |e|/|e∗| for each edge e. Let ∆ denote the displacement
matrix of G, and let ∆∗ denote the (transposed) displacement matrix of G∗. We immediately have
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∆∗e∗ =ωe∆
⊥
e for every edge e of G. The darts leaving each vertex p of G dualize to a facial cycle around

the corresponding face p∗ of G∗, and thus

 

∑

q : pq∈E

ωpq∆p�q

!⊥

=
∑

q : pq∈E

ωpq∆
⊥
p�q =

∑

q : pq∈E

∆∗(p�q)∗ = (0 0) .

We conclude thatω is an equilibrium stress for G, and thus (by swapping the roles of G and G∗) thatω∗

is an equilibrium stress for G∗. �

A stress vector ω is a reciprocal stress for G if there is a reciprocal graph G∗ on the same flat torus
such that ωe = |e∗|/|e| for each edge e. Thus, a geodesic torus graph is reciprocal if and only if it has a
reciprocal stress.

Theorem 3.2. Not every positive equilibrium stress for G is a reciprocal stress. More generally, not
every equilibrium graph on T is reciprocal/coherent on T.

Proof: Let G1 be the geodesic triangulation in the flat square torus T� with a single vertex p and three
edges, whose reference darts have displacement vectors

�1
0

�

,
�1

1

�

, and
�2

1

�

. Every stress ω in G is an
equilibrium stress, because the forces applied by each edge cancel out. The weighted Delaunay graph
of a single point is identical for all weights, so it suffices to verify that G1 is not an intrinsic Delaunay
triangulation. We easily observe that the longest edge of G1 is not Delaunay. See Figure 3.

Figure 3. A one-vertex triangulation G1 on the square flat torus, and a li� of its faces to the universal cover. Every stress in G1 is an
equilibrium stress, but G1 is not a (weighted) intrinsic Delaunay triangulation.

More generally, for any positive integer k, let Gk denote the k× k covering of G1. The vertices of Gk
form a regular k × k square toroidal lattice, and the edges of Gk fall into three parallel families, with
displacement vectors

�1/k
1/k

�

,
�2/k

1/k

�

, and
�1/k

0

�

. Every positive stress vector where all parallel edges have
equal stress coefficients is an equilibrium stress.

For the sake of argument, suppose Gk is coherent. Let p�r be any dart with displacement vector
�2/k

1/k

�

, and let q and s be the vertices before and after r in clockwise order around p. The local Delaunay
determinant test implies that the weights of these four vertices satisfy the inequalityπp+πr+1< πq+πs.
Every vertex of Gk appears in exactly four inequalities of this form—twice on the left and twice on the
right—so summing all k2 such inequalities and canceling equal terms yields the obvious contradiction
1< 0. �

Every equilibrium stress on any graph G on any flat torus induces an equilibrium stress on the
universal cover eG, which in turn induces a reciprocal diagram (eG)∗, which is periodic. Typically,
however, for almost all equilibrium stresses, (eG)∗ is periodic with respect to a different lattice than eG.
We describe a simple necessary and sufficient condition for an equilibrium stress to be reciprocal in
Section 5.
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4 Coherent iff Reciprocal

Unlike in the previous and following sections, the equivalence between coherent graphs and graphs with
reciprocal diagrams generalizes fully from the plane to the torus.

4.1 Notation

In this section we fix a non-singular matrix M = (u v)where u, v ∈ R2 are column vectors and det M > 0.
We primarily work with the universal cover eG of G; if we are given a reciprocal embedding G∗, we also
workwith its universal cover eG∗ (which is reciprocal to eG). Vertices in eG are denoted by the letters p and q
and treated as column vectors in R2. A generic face in eG is denoted by the letter f ; the corresponding
dual vertex in eG∗ is denoted f ∗ and interpreted as a row vector. To avoid nested subscripts when
edges are indexed, we write ∆i = ∆ei

and ωi = ωei
, and therefore by Lemma 3.1, ∆∗i = ωi∆

⊥
i . For

any integers a and b, the translation p + au+ bv of any vertex p of eG is another vertex of eG, and the
translation f + au+ bv of any face f of eG is another face of eG.

4.2 Results

The following lemma follows directly from the definitions of weighted Delaunay graphs and their dual
weighted Voronoi diagrams; see, for example, Aurenhammer [4,6].

Lemma 4.1. Let G be a weighted Delaunay graph on some flat torus T, and let G∗ be the corresponding
weighted Voronoi diagram on T. Every edge e of G is orthogonal to its dual e∗. In short, every coherent
torus graph is reciprocal.

Maxwell’s theorem implies a convex polyhedral lifting z : R2 → R of the universal cover eG of G,
where the gradient vector ∇z| f within any face f is equal to the coordinate vector of the dual vertex f ∗

in eG∗. To make this lifting unique, we fix a vertex o of eG to lie at the origin
�0

0

�

, and we require z(o) = 0.
Define the weights on vertices p ∈ eG by

πp =
1
2 |p|

2 − z(p).

The determinant conditions (2.1) and (2.2) for an edge to be locally Delaunay are both equivalent to
interpreting 1

2 |p|
2−πp as a z-coordinate and requiring that the induced lifting be locally convex at said

edge. Because z is a convex polyhedral lifting, these weights establish that eG is the intrinsic weighted
Delaunay graph of its vertex set.

Translating the lifted reciprocal graph eG∗ adds a global linear term to the lifting function z, and
therefore to the Delaunay weights πp. The main result of this section is that there is a unique translation
such that the corresponding Delaunay weights πp are periodic.

To compute z(q) for any point q ∈ R2, we choose an arbtirary face f containing q and identify the
equation of the plane through the lift of f , that is, z| f (q) = ηq + c where η is a row vector and c ∈ R.
Borcea and Streinu [11] give a calculation for η and c, which for our setting can be written as follows:

Lemma 4.2 ( [11, Eq. 7]). For q ∈ R2, let f be a face containing q. The function z| f can be explicitly
computed as follows:

• Pick an arbitrary root face f0 incident to o.

• Pick an arbitrary path from f ∗0 to f ∗ in eG∗, and let e∗1, . . . , e∗
`
be the dual edges along this path.

By definition, f ∗ = f ∗0 +
∑`

i=1∆
∗
i . Set C( f ) = z(o) +

∑`
i=1ωi |pi qi|, where ei = pi�qi and

|pi qi|= det (pi qi).
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• Set η= f ∗ and c = C( f ), implying that z| f (q) = f ∗q+C( f ). In particular, C( f ) is the intersection
of this plane with the z-axis.

Reciprocality of eG∗ implies that the actual choice of root face f ∗0 and the path to f ∗ do not matter. We
use this explicit computation to establish the existence of a translation of G∗ such that πo = πu = πv = 0.
We then show that after this translation, every lift of the same vertex of G has the same Delaunay weight.

Lemma 4.3. There is a unique translation of eG∗ such that πu = πv = 0. Specifically, this translation
places the dual vertex of the root face f0 at the point

f ∗0 =
�

−1
2

�

|u|2 |v|2
�

− (C( f0 + u) C( f0 + v))
�

M−1.

Proof: Lemma 4.2 implies that

z(u) = ( f0 + u)∗u+ C( f0 + u) = f ∗0 u+ |u|2 + C( f0 + u),

and by definition, πu = 0 if and only if z(u) = 1
2 |u|

2. Thus, πu = 0 if and only if f ∗0 u= −1
2 |u|

2−C( f0+u).
A symmetric argument implies πv = 0 if and only if f ∗0 v = −1

2 |v|
2 − C( f0 + v). �

Lemma 4.4. If πo = πu = πv = 0, then πp = πp+u = πp+v for all p ∈ V (eG). In other words, all lifts of
any vertex of G have equal weight.

Proof: Let f be any face incident to p, and let P = e∗1, . . . , e∗
`
be an arbitrary path from f ∗0 to f ∗ in eG∗.

We compute C( f + u) by traversing an arbitrary path from f ∗0 to f ∗0 + u followed by the translated
path P + u from f ∗0 + u to f ∗ + u. The identity f ∗ = f ∗0 +

∑`
i=1∆

∗
i from Lemma 4.2 gives us

C( f + u) = C( f0 + u) +
∑̀

i=1

ωi |(pi + u) (qi + u)|

= C( f0 + u) +
∑̀

i=1

ωi |pi qi| −
∑̀

i=1

∆∗i u

= C( f0 + u) + C( f )−
∑̀

i=1

∆∗i u

= −1
2 |u|

2 − f ∗0 u+ C( f )−
∑̀

i=1

∆∗i u

= −1
2 |u|

2 − f ∗u+ C( f ).

It follows that

πp+u =
1
2 |p+ u|2 − z(p+ u)

= 1
2 |p+ u|2 −

�

C( f + u) + ( f ∗ + uT )(p+ u)
�

= 1
2 |p+ u|2 −

�

−1
2 |u|

2 − f ∗u+ C( f ) + f ∗p+ f ∗u+ uT p+ |u|2
�

= 1
2 |p+ u|2 − z(p)− 1

2 |u|
2 − uT p

= 1
2 |p|

2 + 1
2 |u|

2 + uT p− z(p)− 1
2 |u|

2 − uT p

= 1
2 |p|

2 − z(p)

= πp.

A similar computation implies πp+v = πp. �
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The previous two lemmas establish the existence of a set of periodic weights with respect to which eG
is the weighted Delaunay complex of its point set, and a unique translation of eG∗ that is the corresponding
intrinsic weighted Voronoi diagram. Projecting from the universal cover back to the torus, we conclude:

Theorem 4.5. Let G and G∗ be reciprocal geodesic graphs on some flat torus TM . G is a weighted
Delaunay complex, and a unique translation of G∗ is the corresponding weighted Voronoi diagram. In
short, every reciprocal torus graph is coherent.

5 Equilibrium Implies Reciprocal, Sort Of

In this section, we will fix a positive equilibrium stress ω. It will be convenient to represent ω as the
E × E diagonal stress matrix Ω whose diagonal entries are Ωe,e =ωe.

Let G be an essentially simple, essentially 3-connected geodesic graph on the square flat torus T�,
and let ∆ be its 2× E displacement matrix. Our results are phrased in terms of the covariance matrix
∆Ω∆T =

�α γ
γ β

�

, where

α=
∑

e

ωe∆x2
e , β =

∑

e

ωe∆y2
e , γ=

∑

e

ωe∆xe∆ye. (5.1)

Recall that A⊥ = (JA)T .

5.1 The Square Flat Torus

Before considering arbitrary flat tori, as a warmup we first establish necessary and sufficient conditions
for ω to be a reciprocal stress for G on the square flat torus T�, in terms of the parameters α, β , and γ.

Lemma 5.1. If ω is a reciprocal stress for G on T�, then ∆Ω∆T =
�1 0

0 1

�

.

Proof: Suppose ω is a reciprocal stress for G on T�. Then there is a geodesic embedding of the dual
graph G∗ on T� where e ⊥ e∗ and |e∗| =ωe|e| for every edge e of G. Let ∆∗ = (∆Ω)⊥ denote the E × 2
matrix whose rows are the displacement row vectors of G∗.

Recall from Lemma 2.5 that the first and second rows of Λ describe cocirculations of G with coho-
mology classes (0 1) and (−1 0), respectively. Applying Lemma 2.1 to G∗ implies θ∆∗ = [θ]∗ for any
cocirculation θ in G. It follows immediately that Λ∆∗ =

� 0 1
−1 0

�

= −J .
Because the rows of ∆∗ are the displacement vectors of G∗, for every vertex p of G we have

∑

q : pq∈E

∆∗(p�q)∗ =
∑

d : tail(d)=p

∆∗d∗ =
∑

d : left(d∗)=p∗
∆∗d∗ = (0 0) . (5.2)

It follows that the columns of∆∗ describe circulations in G. Lemma 2.1 now implies that∆∆∗ = −J . We
conclude that ∆Ω∆T =∆∆∗J =

�1 0
0 1

�

. �

Lemma 5.2. Fix an E × 2 matrix ∆∗. If Λ∆∗ = −J , then ∆∗ is the displacement matrix of a geodesic
drawing on T� that is dual to G. Moreover, if that drawing has an equilibrium stress, it is actually an
embedding.

Proof: Let λ1 and λ2 denote the rows of Λ. Rewriting the identity Λ∆∗ = −J in terms of these row
vectors gives us

∑

e∆
∗
eλ1,e = (0 1) = [λ1]∗ and

∑

e∆
∗
eλ2,e = (−1 0) = [λ2]∗. Because [λ1]∗ and [λ2]∗

are linearly independent, we have
∑

e∆
∗
eθe = [θ]∗ for any cocirculation θ in G∗. The result follows

from Lemma 2.4. �
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Lemma 5.3. If ∆Ω∆T =
�1 0

0 1

�

, then ω is a reciprocal stress for G on T�.

Proof: Set ∆∗ = (∆Ω)⊥. Because ω is an equilibrium stress in G, for every vertex p of G we have

∑

q : pq∈E

∆∗(p�q)∗ =
∑

q : pq∈E

ωpq∆p�q =
�

0
0

�

. (5.3)

It follows that the columns of ∆∗ describe circulations in G, and therefore Lemma 2.1 implies Λ∆∗ =
∆∆∗ =∆(∆Ω)⊥ =∆Ω∆T J T = −J .

Lemma 5.2 now implies that ∆∗ is the displacement matrix of an drawing G∗ dual to G. Moreover,
the stress vector ω∗ defined by ω∗e∗ = 1/ωe is an equilibrium stress for G∗: under this stress vector, the
darts leaving any dual vertex f ∗ are dual to the clockwise boundary cycle of face f in G. Thus G∗ is in
fact an embedding. By construction, each edge of G∗ is orthogonal to the corresponding edge of G. �

5.2 Arbitrary Flat Tori

Now we generalize our previous analysis to graphs on the flat torus TM defined by an arbitrary non-
singular matrix M =

�a b
c d

�

. These results are also stated in terms of the parameters α, β , and γ, which
are still defined in terms of T�, which will serve as a reference flat torus when talking about flat tori
defined by different non-singular matrices.

Lemma 5.4. If ω is a reciprocal stress for G on TM , then αβ − γ2 = 1; in particular, if M =
�a b

c d

�

, then

α=
b2 + d2

ad − bc
, β =

a2 + c2

ad − bc
, γ=

−(ab+ cd)
ad − bc

.

For example, if M = (u v)where u, v ∈ R2 are column vectors and det M = 1, then∆Ω∆T =
�

|v|2 −u·v
−u·v |u|2

�

.

Proof: Suppose ω is a reciprocal stress for G on TM . Then there is a geodesic embedding of the dual
graph G∗ on TM where e ⊥ e∗ and |e∗|=ωe|e| for every edge e of G.

It will prove convenient to consider the geometry of G and G∗ on the reference torus T�. (The
embeddings of G and G∗ on the reference torus T� are still dual, but not necessarily reciprocal.) Let ∆
denote the 2× E reference displacement matrix for G, whose columns are the displacement vectors for G
on the square torus T�. Then the columns of M∆ are the native displacement vectors for G on the
torus TM . Thus, the native displacement row vectors of G∗ are given by the rows of the E × 2 matrix
(M∆Ω)⊥. Finally, let ∆∗ = (M∆Ω)⊥(M T )−1 denote the reference displacement row vectors for G∗ on
the square torus T�. We can rewrite this definition as

∆∗ = (M∆Ω)⊥(M T )−1

= (J M∆Ω)T (M T )−1

= (J M∆Ω)T (M−1)T

= Ω∆T M T J T (M−1)T ,

(5.4)

which implies Ω∆T =∆∗M T J(M−1)T .
Because the rows of ∆∗ are the displacement vectors for G∗, equation (5.2) implies that the columns

of ∆∗ describe circulations in G, and therefore ∆∆∗ = Λ∆∗ =
� 0 1
−1 0

�

= −J by Lemmas 2.1 and 2.5. We
conclude that

∆Ω∆T =∆∆∗M T J(M−1)T = J T M T J(M−1)T
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=
1

ad − bc

�

0 1
−1 0

��

a c
b d

��

0 −1
1 0

��

d −c
−b a

�

=
1

ad − bc

�

b d
−a −c

� �

b −a
d −c

�

=
1

ad − bc

�

b2 + d2 −ab− cd
−ab− cd a2 + c2

�

.

Routine calculation now implies that αβ − γ2 = det∆Ω∆T = 1. �

Corollary 5.5. If ω is a reciprocal stress for G on TM , then M = σR
�

β −γ
0 1

�

for some 2 × 2 rotation
matrix R and some real number σ > 0.

Proof: Reciprocality is preserved by rotating and scaling the fundamental parallelogram ◊M , so it
suffices to consider the special case M =

�a b
0 1

�

. In this special case, Lemma 5.4 immediately implies
β = a and γ= −b. �

Lemma 5.6. If αβ − γ2 = 1, then ω is a reciprocal stress for G on TM where M = σR
�

β −γ
0 1

�

for any
2× 2 rotation matrix R and any real number σ > 0.

Proof: Suppose αβ − γ2 = 1. Fix an arbitrary 2 × 2 rotation matrix R and an arbitrary real number
σ > 0, and let M = σR

�

β −γ
0 1

�

. Let∆ denote the 2× E reference displacement matrix for G on the square
flat torus T�, and define the E × 2 matrix ∆∗ = (M∆Ω)⊥(M T )−1.

Derivation (5.4) in the proof of Lemma 5.4 implies ∆∗ = Ω∆T (M−1J M)T . We easily observe that
(σR)−1J(σR) = J , and therefore

M−1J M =

�

β −γ
0 1

�−1�
0 −1
1 0

��

β −γ
0 1

�

=
1
β

�

1 γ

0 β

��

0 −1
1 0

��

β −γ
0 1

�

=
1
β

�

βγ −1− γ2

β2 −βγ

�

=

�

γ −α
β −γ

�

.

It follows that

∆∆∗ =∆Ω∆T (M−1J M)T =

�

α γ

γ β

��

γ β

−α −γ

�

=

�

0 αβ − γ2

γ2 −αβ 0

�

= −J .

Because ω is an equilibrium stress in G, for every vertex p of G we have
∑

q : pq∈E

∆∗(p�q)∗ =
∑

q : pq∈E

ωpq∆p�q(MJ M−1)T =
�

0
0

�

(MJ M−1)T =
�

0
0

�

.

Once again, the columns of ∆∗ describe circulations in G, so Lemma 2.1 implies Λ∆∗ = ∆∆∗ = −J .
Lemma 5.2 now implies that ∆∗ is the displacement matrix of a homotopic embedding of G∗ on T�. It
follows that (M∆Ω)⊥ =∆∗M T is the displacement matrix of a homotopic embedding of G∗ on TM . By
construction, each edge of G∗ is orthogonal to its corresponding edge of G. We conclude that ω is a
reciprocal stress for G. �
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We now conclude:

Theorem 5.7. Let G be a geodesic graph on T� with positive equilibrium stress ω. Let α, β , and γ be
defined as in Equation (5.1). If αβ − γ2 = 1, then ω is a reciprocal stress for G on the flat torus TM if
and only if M = σR

�

β −γ
0 1

�

for any rotation matrix R and any real number σ > 0. On the other hand, if
αβ − γ2 6= 1, then ω is not a reciprocal stress for G on any flat torus TM .

Theorem 5.7 immediately implies that every equilibrium graph on any flat torus has a coherent
affine image on some flat torus. The requirement αβ − γ2 = 1 is a necessary scaling condition: Given
any equilibrium stress ω, the scaled equilibrium stress ω/

p

αβ − γ2 satisfies the requirement. (Note

that αβ − γ2 = 1
2

∑

e,e′ωeωe′

�

�

�

∆xe ∆ye
∆xe′ ∆ye′

�

�

�

2
≥ 0.)

6 A Toroidal Steinitz Theorem

Finally, Theorem 2.3 and Theorem 5.7 immediately imply a natural generalization of Steinitz’s theorem
to graphs on the flat torus.

Theorem 6.1. Let G be any essentially simple, essentially 3-connected embedded graph on the square
flat torus T�, and let ω be any positive stress on the edges of G. Then G is homotopic to a geodesic
embedding in T� whose image in some flat torus TM is coherent.

As we mentioned in the introduction, Mohar’s generalization [54] of the Koebe-Andreev circle
packing theorem already implies that every essentially simple, essentially 3-connected torus graph G
is homotopic to one coherent homotopic embedding on one flat torus. In contrast, Lemma 3.1 and
Theorem 6.1 characterize all coherent homotopic embeddings of G on all flat tori; every positive vector
ω ∈ RE corresponds to such an embedding.

Acknowledgements. We thank the anonymous reviewers for their helpful comments and suggestions.
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