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Abstract We give subquadratic algorithms that, given two necklaces each with
n beads at arbitrary positions, compute the optimal rotation of the necklaces to
best align the beads. Here alignment is measured according to the `p norm of the
vector of distances between pairs of beads from opposite necklaces in the best
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perfect matching. We show surprisingly different results for p = 1, p even, and
p = ∞. For p even, we reduce the problem to standard convolution, while for
p =∞ and p = 1, we reduce the problem to (min,+) convolution and (median,+)
convolution. Then we solve the latter two convolution problems in subquadratic
time, which are interesting results in their own right. These results shed some light
on the classic sorting X + Y problem, because the convolutions can be viewed as
computing order statistics on the antidiagonals of the X + Y matrix. All of our
algorithms run in o(n2) time, whereas the obvious algorithms for these problems
run in Θ(n2) time.

1 Introduction

How should we rotate two necklaces, each with n beads at different locations,
to best align the beads? More precisely, each necklace is represented by a set
of n points on the unit-circumference circle, and the goal is to find rotations of
the necklaces, and a perfect matching between the beads of the two necklaces,
that minimizes some norm of the circular distances between matched beads. In
particular, the `1 norm minimizes the average absolute circular distance between
matched beads, the `2 norm minimizes the average squared circular distance be-
tween matched beads, and the `∞ norm minimizes the maximum circular distance
between matched beads. The `1 version of this necklace alignment problem was in-
troduced by Toussaint [35] in the context of comparing rhythms in computational
music theory, with possible applications to rhythm phylogeny [18,36].

Toussaint [35] gave a simple O(n2)-time algorithm for `1 necklace alignment,
and highlighted as an interesting open question whether the problem could be
solved in o(n2) time. In this paper, we solve this open problem by giving o(n2)-
time algorithms for `1, `2, and `∞ necklace alignment, in both the standard real
RAM model of computation and the less realistic nonuniform linear decision tree
model of computation.

Necklace alignment problem. More formally, in the necklace alignment problem, the
input is a number p representing the `p norm, and two sorted vectors of n real
numbers, x = 〈x0, x1, . . . , xn−1〉 and y = 〈y0, y1, . . . , yn−1〉, representing the two
necklaces. See Figure 1. Canonically, we assume that each number xi and yi is in the
range [0, 1), representing a point on the unit-circumference circle (parameterized
clockwise from some fixed point). The distance between two beads xi and yj is
the minimum between the clockwise and counterclockwise distances along the
circumference of the unit-perimeter circular necklaces. We define this distance as:

d◦(xi, yj) = min{
∣∣xi − yj∣∣ , (1− ∣∣xi − yj∣∣)}.

The optimization problem involves two parameters. The first parameter, the
offset c ∈ [0, 1), is the clockwise rotation angle of the first necklace relative to
the second necklace. The second parameter, the shift s ∈ {0, 1, . . . , n}, defines the
perfect matching between beads: bead i of the first necklace matches with bead
(i + s) mod n of the second necklace. (Here we use the property that an optimal
perfect matching between the beads does not cross itself.)
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Fig. 1 An example of necklace alignment: the input (left) and one possible output (right).

The goal of the `p necklace alignment problem is to find the offset c ∈ [0, 1)
and the shift s ∈ {0, 1, . . . , n} that minimize

n−1∑
i=0

(
d◦((xi + c) mod 1, y(i+s) mod n)

)p
(1)

or, in the case p =∞, that minimize

n−1
max
i=0
{d◦((xi + c) mod 1, y(i+s) mod n)}.

The `1, `2, and `∞ necklace alignment problems all have trivial O(n2) solutions,
although this might not obvious from the definition. In each case, as we show, the
optimal offset c can be computed in linear time for a given shift value s (sometimes
even independent of s). The optimization problem is thus effectively over just
s ∈ {0, 1, . . . , n}, and the objective costs O(n) time to compute for each s, giving
an O(n2)-time algorithm.

Although necklaces are studied throughout mathematics, mainly in combinatorial
settings, we are not aware of any work on the necklace alignment problem before
Toussaint [35]. He introduced `1 necklace alignment, calling it the cyclic swap-

distance or necklace swap-distance problem, with a restriction that the beads lie at
integer coordinates. Ardila et al. [2] give a O(k2)-time algorithm for computing the
necklace swap-distance between two binary strings, with k being the number of
1-bits (beads at integer coordinates). Colannino et al. [12] consider some different
distance measures between two sets of points on the real line in which the matching
does not have to match every point. They do not, however, consider alignment
under such distance measures.

Aloupis et al. [1], consider the problem of computing the similarity of two
melodies represented as closed orthogonal chains on a cylinder. Their goal is to
find the proper (rigid) translation of one of the chains in the vertical (representing
pitch) and tangential (representing time) direction so that the area between the
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chains is minimized. The authors present an O(mn lg(n+m)) algorithm that solves
the problem. When the melodic chains each have a note at every time unit, the
melodic similarity problem is equivalent to the necklace alignment problem, and
as our results are subquadratic, we improve on the results of Aloupis et al. [1] for
this special case.

Convolution. Our approach in solving the necklace alignment problem is based
on reducing it to another important problem, convolution, for which we also
obtain improved algorithms. The (+, ·) convolution of two vectors x = 〈x0, x1,

. . . , xn−1〉 and y = 〈y0, y1, . . . , yn−1〉, is the vector x∗y = 〈z0, z1, . . . , zn−1〉 where

zk =
∑k
i=0 xi · yk−i. One can generalize convolution to any (⊕,�) operators. Al-

gorithmically, a convolution with specified addition and multiplication operators

(here denoted x
�∗
⊕

y) can be easily computed in O(n2) time. However, the (+, ·)

convolution can be computed in O(n lg n) time using the Fast Fourier Trans-
form [14, 25, 26], because the Fourier transform converts convolution into elemen-
twise multiplication. Indeed, fast (+, ·) convolution was one of the early break-
throughs in algorithms, with applications to polynomial and integer multiplica-
tion [5], batch polynomial evaluation [15, Problem 30-5], 3SUM [3, 19], string
matching [13,21,27,28], matrix multiplication [11], and even juggling [8].

In this paper we use two types of convolutions: (min,+) convolution, whose
kth entry zk = minki=0 {xi + yk−i}; and (median,+) convolution, whose kth entry

zk = medianki=0 {xi + yk−i}. As we show in Theorems 3, 6, and 12, respectively,
`2 necklace alignment reduces to standard (+, ·) convolution, `∞ necklace align-
ment reduces to (min,+) [and (max,+)] convolution, and `1 necklace alignment
reduces to (median,+) convolution. The (min,+) convolution problem has ap-
peared frequently in the literature, already appearing in Bellman’s early work on
dynamic programming in the early 1960s [4, 20,29–31,34]. Its name varies among
“minimum convolution”, “min-sum convolution”, “inf-convolution”, “infimal con-
volution”, and “epigraphical sum”.1 To date, however, no worst-case o(n2)-time
algorithms for this convolution, or the more complex (median,+) convolution, has
been obtained (it should be noted here that the quadratic worst-case running time
for (median,+) convolution follows from linear-time median finding [6,32]). In this
paper, we develop worst-case o(n2)-time algorithms for (min,+) and (median,+)
convolution, in the real RAM and the nonuniform linear decision tree models of
computation.

The only subquadratic results for (min,+) convolution concern two special
cases. First, the (min,+) convolution of two convex sequences or functions can be
trivially computed in O(n) time by a simple merge, which is the same as computing
the Minkowski sum of two convex polygons [31]. This special case is already used
in image processing and computer vision [20,29]. Second, Bussieck et al. [7] proved
that the (min,+) convolution of two randomly permuted sequences can be computed
in O(n lg n) expected time. Our results are the first to improve the worst-case
running time for (min,+) convolution.

Connections to X + Y . The necklace alignment problems, and their corresponding
convolution problems, are also intrinsically connected to problems on X+Y matri-

1 “Tropical convolution” would also make sense, by direct analogy with tropical geometry,
but we have never seen this terminology used in print.
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ces. Given two lists of n numbers, X = 〈x0, x1, . . . , xn−1〉 and Y = 〈y0, y1, . . . , yn−1〉,
X + Y is the matrix of all pairwise sums, whose (i, j)th entry is xi + yj . A classic
unsolved problem [16] is whether the entries of X + Y can be sorted in o(n2 lg n)
time. Fredman [23] showed that O(n2) comparisons suffice in the nonuniform lin-
ear decision tree model, but it remains open whether this can be converted into
an O(n2)-time algorithm in the real RAM model. Steiger and Streinu [33] gave a
simple algorithm that takes O(n2 lg n) time while using only O(n2) comparisons.

The (min,+) convolution is equivalent to finding the minimum element in each
antidiagonal of the X+Y matrix, and similarly the (max,+) convolution finds the
maximum element in each antidiagonal. We show that `∞ necklace alignment
is equivalent to finding the antidiagonal of X + Y with the smallest range (the
maximum element minus the minimum element). The (median,+) convolution is
equivalent to finding the median element in each antidiagonal of the X+Y matrix.
We show that `1 necklace alignment is equivalent to finding the antidiagonal of
X+Y with the smallest median cost (the total distance between each element and
the median of the elements). Given the apparent difficulty in sorting X + Y , it
seems natural to believe that the minimum, maximum, and median elements of
every antidiagonal cannot be found, and that the corresponding objectives cannot
be minimized, any faster than O(n2) total time. Figure 2 shows a sample X + Y

matrix with the maximum element in each antidiagonal marked, with no apparent
structure. Nonetheless, we show that o(n2) algorithms are possible.

Our results. In the standard real RAM model, we give subquadratic algorithms
for the `1, `2, and `∞ necklace alignment problems, and for the (min,+) and
(median,+) convolution problems. We present:

1. an O(n lg n)-time algorithm on the real RAM for `2 necklace alignment (Sec-
tion 3).

2. an O(n2/ lg n)-time algorithm on the real RAM for `∞ necklace alignment and
(min,+) convolution (Section 4). This algorithm uses a technique of Chan
originally developed for the all-pairs shortest paths problem [9]. Despite the
roughly logarithmic factor improvements for `1 and `∞, this result does not
use word-level bit tricks of word-RAM fame.

3. a further improved O(n2(lg lg n)3/ lg2 n)-time algorithm for `∞ necklace align-
ment and (min,+) convolution (Section 4). We actually give a direct black-box
reduction of (min,+) convolution to all-pairs shortest paths; the result then
follows from the current best upper bound for all-pairs shortest paths [10]. The
all-pairs shortest paths works in the real RAM with respect to the inputs, i.e.
it does not use bit tricks on the inputs. The algorithm, however, requires bit
tricks on other numbers, but works in a standard model that assumes (lgn)-bit
words.

4. an O(n2(lg lg n)2/ lg n)-time algorithm on the real RAM for `1 necklace align-
ment and (median,+) convolution (Section 5). This algorithm uses an exten-
sion of the technique of Chan [9].

In the nonuniform linear decision tree model, we give particularly fast algorithms
for the `1 and `∞ necklace alignment problems, using techniques of Fredman [23,
24]:

5. O(n
√
n)-time algorithm in the nonuniform linear decision tree model for `∞

necklace alignment and (min,+) convolution (Section 4).
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Fig. 2 An X + Y matrix. Each polygonal line denotes an antidiagonal of the matrix, with a
point at coordinates (x, y) denoting the value x + y for x ∈ X and y ∈ Y . An × denotes the
maximum element in each antidiagonal.

6. O(n
√
n lg n)-time algorithm in the nonuniform linear decision tree model for

`1 necklace alignment and (median,+) convolution (Section 5).

(Although we state our results here in terms of (min,+) and (median,+) convo-
lution, the results below use − instead of + because of the synergy with necklace
alignment.) We also mention connections to the venerable X+Y and 3SUM prob-
lems in Section 6.

2 Linear Versus Circular Alignment

Before we proceed with proving our results, we first show that any optimal solution
to the necklace alignment problem can be transformed into an optimal solution
to the problem of linear alignment—aligning and matching beads that are on a
line. We then can use the simpler optimization function of the “linear alignment
problem” to show our results. Let d−(xi, yj) = |xi − yj | be the linear distance
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between two beads xi and yj . In the linear alignment problem we are given two
sorted vectors of real numbers x = 〈x0, x1, . . . , xn−1〉 and y = 〈y0, y1, . . . , ym−1〉
with m ≥ n, and we want to find s and c that minimize

n−1∑
i=0

(
d−(xi + c, y(i+s) mod m)

)p
(2)

or, in the case p =∞, that minimize

n−1
max
i=0
{d−(xi + c, y(i+s) mod m)}.

The main difference between (1) and (2) is that instead of taking the minimum
between the clockwise and counterclockwise distances between pairs of matched
beads in (1), we are simply summing the forward distances between beads in (2).
We will now show that whether the beads are on a line or a circle, the optimal
alignment of the beads x and y in these two cases are equal.

Let M◦ and M− be an alignment/matching of the beads of x and y along the
unit circumference circle C and the infinite line segment L respectively. An edge

(xi, yj) of M◦ (M−) is the shortest segment that connects two matched beads xi
and yj in M◦ (M−); thus, the length of (xi, yj) is equal to d◦(xi, yj) (d−(xi, yj)).
We will show that the sum of the lengths of the edges of each of the optimal
matchings M◦∗ and M−∗ are equal. Note that by the quadrangle inequality, we
have that the edges of both M◦∗ and M−∗ are non-crossing.

Observation 1 Consider any edge (xi, yj) along the circular necklace. If this edge

crosses point 0, then the distance

d◦(xi, yj) = (1− |xi − yj |);

otherwise,

d◦(xi, yj) = |xi − yj |.

Let xx be the doubling of the vector x, that is

xx = 〈x0, . . . , xn−1, x0, . . . , xn−1〉.

Theorem 2 If M◦∗ is the optimal matching of two given vectors x and y along the

unit-circumference circle C and M−∗ is the optimal matching of xx and yy along line

L, then |M◦∗| = |M−∗|.

Proof First we show that the value of any optimal matching of a set of beads
along L is at least as large as the value of the optimal solution of the beads along
C. Given an optimal matching M−∗ = {s, c} along L, we will “wrap” the line L
around a unit circle C by mapping each of the n matched beads xi (yi+s) along
L to x◦i (y◦(i+s) mod n) along C. (Thus we have exactly n pairs of beads along C.)

Now, for every i = 0, 1, . . . , n− 1, the length of an edge of M−∗ is equal to

d−(xi + c, y(i+si) mod m)

= |xi + c− yi+s| (M−∗ is noncrossing, so i+ s ≤ m− 1)

≥ min{|(xi + c) mod 1− yi+s| , (1− |(xi + c) mod 1− yi+s|)}
= d◦((x◦i + c) mod 1, y◦(i+s) mod n).



8 D. Bremner et al.

Thus, as every edge length of the matching M−∗ is at least as large as its corre-
sponding edge along the circle C, we have |M−∗| ≥ |M◦∗|.

Next we show that the value of any optimal matching of a set of beads along
C is at least as large as the value of the optimal solution of the beads along L.
Suppose we have an optimal matching M◦∗ = (s, c). We map every point xi + c

and yi to the infinite line segment so that the edges of M◦∗ are preserved in M−.
Thus, for all i = 0, 1, . . . , n− 1 and k ∈ Z, we map

(xi + c) mod 1 7→ x−i = xi + c,

yi 7→ y−i+kn = yi + k.

With this transformation, in any valid matching M−, the matched beads span
at most two consecutive intervals [k, k + 1) and [k + 1, k + 2) for any k ∈ Z. In
particular, the beads xi + c span the intervals [0, 1) and [1, 2).

Now we construct M− given M◦∗ by matching every x−i to y−i+s+kn such that,
whenever xi + c < 1 (see Figure 3),

• k = −1
if ((xi+c) mod 1, y(i+s) mod n) crosses point 0 and (xi+c) mod 1 < y(i+s) mod n;

• k = 1
if ((xi+c) mod 1, y(i+s) mod n) crosses point 0 and (xi+c) mod 1 > y(i+s) mod n;

• k = 0
if ((xi + c) mod 1, y(i+s) mod n) does not cross point 0;

and, whenever xi + c ≥ 1, we increment k by 1 in each of the cases. Thus, when
xi + c ≥ 1,

• k = 0
if ((xi+c) mod 1, y(i+s) mod n) crosses point 0 and (xi+c) mod 1 < y(i+s) mod n;

• k = 2
if ((xi+c) mod 1, y(i+s) mod n) crosses point 0 and (xi+c) mod 1 > y(i+s) mod n;

• k = 1
if ((xi + c) mod 1, y(i+s) mod n) does not cross point 0.

Here, the variable k basically decides the interval [−1, 0), [0, 1), or [1, 2) in
which the bead y(i+s) mod n is located, based on the type of the edge ((xi +
c) mod 1, y(i+s) mod n). Observe that, if an edge in M◦∗ crosses point 0, then its

corresponding edge in M− crosses (r, r) for some r ∈ {0, 1, 2}.
Now, the sum of the distances of the matched beads of M− is equal to

d−(x0 + c, y(0+s) mod n + k) + d−(x1 + c, y(1+s) mod n + k) + · · ·+

d−(xn−s−1 + c, yn−1 + k) + d−(xn−s + c, y0 + k + 1) + · · ·+

d−(xn−s−1 + c, yn−1 + k + 1).

We claim that the value of M◦∗ is equal to at least the value of this matching
M−. We show this claim by comparing the length of each edge ((xi+c) mod 1, yi+s)
of M◦∗ with its corresponding edge in M−.
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0

0

(xi + c) mod 1

yi+s

(xj + c) mod 1

yj+s

yq+s

(xq + c) mod 1

(a) A matching M◦ of beads along a circular necklace
with three types of edges: those that do not cross point
0, and those that cross point 0 with (xi + c) mod 1 either
greater or less than yi+s.

yi+s − 1

xi + c

yj+s + 1yq+s

xq + c xj + c

0 1 2−1
(b) Unrolling a necklace to a line L by preserving the edges of M◦ in the matching
M−. In this example, 0 ≤ x0 + c < 1.

Fig. 3 Unrolling a circular necklace to a line.

Edges that do not cross point 0: If an edge of M◦∗ does not cross point 0, then the
corresponding edge in M− does not cross any of the edges (0, 0), (1, 1) or (2, 2);
hence both endpoints (beads) of the given matching edge are within the same
interval [r, r + 1) for some r ∈ {0, 1} (the purple edge (xq + c, yq+s) in Figure 3).
This means that, when xi + c = (xi + c) mod 1, we have k = 0 and

d−(xi + c, y(i+s) mod n + k) = |(xi + c)− (y(i+s) mod n + k)|

= |(xi + c) mod 1− (y(i+s) mod n)|

= |x−i − y
−
(i+s) mod n|

= d◦(x−i , y
−
(i+s) mod n) (by Observation 1).

We can similarly show that, when xi + c = (xi + c) mod 1 + 1, we have k = 1
and the edges of M◦∗ that do not cross point 0 have the same length as their
corresponding edge in M−.

Edges that cross point 0: If an edge of M◦∗ crosses point 0, then the corresponding
edge in M− crosses edge (r, r) and hence the two endpoints (beads) of the given
edge of M− must be in different and consecutive intervals: [r − 1, r) and [r, r + 1)
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for some r ∈ {0, 1, 2} (the green and blue edges (xi + c, yi + s),(xj + c, yj + s) in
Figure 3). Then, assuming xi + c = (xi + c) mod 1, we have

• When (xi + c) mod 1 < y(i+s) mod n, k = −1 and

d−(xi + c, y(i+s) mod n + k) = |(xi + c)− (y(i+s) mod n − 1)|

= |(xi + c) mod 1− y(i+s) mod n + 1|

= (1− |((xi + c) mod 1)− y(i+s) mod n|)

= (1− |x−i − y
−
((i+s) mod n)−n|)

= d◦(x−i , y
−
((i+s) mod n)−n)(by Observation 1).

• When (xi + c) mod 1 > y(i+s) mod n, k = 1 and

d−(xi + c, y(i+s) mod n + k) = |(xi + c)− (y(i+s) mod n + 1)|

= |(xi + c) mod 1− y(i+s) mod n − 1|

= (1− |((xi + c) mod 1)− y(i+s) mod n|)

= (1− |x−i − y
−
((i+s) mod n)+n|)

= d◦(x−i + c, y−((i+s) mod n)+n)(by Observation 1).

We can similarly show that, when xi+ c = (xi+ c) mod 1+1, the edges of M◦∗

that cross point 0 have the same length as their corresponding edge in M−.

Therefore, the length of every edge of M◦∗ along the circle is equal to the
length of its corresponding edge in M−. Thus, the value of the matching M◦∗ is
at least as large as that of M−∗, completing the proof of the theorem.

We now proceed to prove our results by using the objective function (2).

3 `2 Necklace Alignment and (+, ·) Convolution

In this section, we first show how `2 necklace alignment reduces to standard con-
volution, leading to an O(n lg n)-time algorithm. We then show how this result
generalizes to `p for any even p.

Theorem 3 The `2 necklace alignment problem can be solved in O(n lg n) time on a

real RAM.
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Proof The objective (2) expands algebraically to

n−1∑
i=0

(
xi − y(i+s) mod n + c

)2
=

n−1∑
i=0

(
x2
i + y2

(i+s) mod n + 2cxi − 2cy(i+s) mod n + c2
)
− 2

n−1∑
i=0

xiy(i+s) mod n

=
n−1∑
i=0

(
x2
i + y2

i + 2cxi − 2cyi + c2
)
− 2

n−1∑
i=0

xiy(i+s) mod n

=

[
n−1∑
i=0

(
x2
i + y2

i

)
+ 2c

n−1∑
i=0

(xi − yi) + nc2

]
− 2

n−1∑
i=0

xiy(i+s) mod n.

The first term depends solely on the inputs and the variable c, while the second
term depends solely on the inputs and the variable s. Thus the two terms can
be optimized separately. The first term can be optimized in O(n) time by solving
for when the derivative, which is linear in c, is zero. The second term can be
computed, for each s ∈ {0, 1, . . . , n− 1}, in O(n lg n) time using (+, ·) convolution
(and therefore optimized in the same time). Specifically, define the vectors

x′ = 〈x0, x1, . . . , xn−1; 0, 0, . . . , 0︸ ︷︷ ︸
n

〉,

y′ = 〈yn−1, yn−2, . . . , y0; yn−1, yn−2, . . . , y0〉.

Then, for s′ ∈ {0, 1, . . . , n− 1}, the (n+ s′)th entry of the convolution x′∗y′ is

n+s′∑
i=0

x′iy
′
n+s′−i =

n−1∑
i=0

xiy(i−s′−1) mod n,

which is the desired entry if we let s′ = n − 1 − s. We can compute the entire
convolution in O(n lg n) time using the Fast Fourier Transform.

The above result can be generalized to `p for any fixed even integer p. When
p ≥ 4, expanding the objective and rearranging the terms results in

n−1∑
i=0

(xi − y(i+s) mod n + c)p =
n−1∑
i=0

p∑
j=0

(
p

j

)
(xi − y(i+s) mod n)p−jcj

=

p∑
j=0

((
p

j

)
n−1∑
i=0

(xi − y(i+s) mod n)p−j
)
cj ,

which is a degree-p polynomial in c, all of whose coefficients can be computed for
all values of s by computing O(p2) convolutions.

Theorem 4 The `p necklace alignment problem with p even can be solved in O(p2n lg n)
time on a real RAM.
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4 `∞ Necklace Alignment and (min,+) Convolution

4.1 Reducing `∞ Necklace Alignment to (min,+) Convolution

First we show the relation between `∞ necklace alignment and (min,+) convolu-
tion. We need the following basic fact:

Fact 5 For any vector z = 〈z0, z1, . . . , zn−1〉, the minimum value of maxn−1
i=0 |zi + c|

is
1

2

(
n−1
max
i=0

zi −
n−1
mın
i=0

zi

)
,

which is achieved when c = −1
2

(
minn−1

i=0 zi + maxn−1
i=0 zi

)
.

Instead of using (min,+) convolution directly, we use two equivalent forms,
(min,−) and (max,−) convolution:

Theorem 6 The `∞ necklace alignment problem can be reduced in O(n) time to one

(min,−) convolution and one (max,−) convolution.

Proof For two necklaces x and y, we apply the (min,−) convolution to the following
vectors:

x′ = 〈x0, x1, . . . , xn−1;∞,∞, . . . ,∞︸ ︷︷ ︸
n

〉,

y′ = 〈yn−1, yn−2, . . . , y0; yn−1, yn−2, . . . , y0〉.

Then, for s′ ∈ {0, 1, . . . , n− 1}, the (n+ s′)th entry of x′
−∗

mın
y′ is

n+s′

mın
i=0

(x′i − y
′
n+s′−i) =

n−1
mın
i=0

(xi − y(i−s′−1) mod n),

which is minn−1
i=0 (xi − y(i+s) mod n) if we let s′ = n − 1 − s. By symmetry, we can

compute the (max,−) convolution x′′
−∗

max
y′, where x′′ has −∞’s in place of ∞’s,

and use it to compute maxn−1
i=0 (xi − y(i+s) mod n) for each s ∈ {0, 1, . . . , n − 1}.

Applying Fact 5, we can therefore minimize maxn−1
i=0 |xi − y(i+s) mod n + c| over c,

for each s ∈ {0, 1, . . . , n− 1}. By brute force, we can minimize over s as well using
O(n) additional comparisons and time.

4.2 (min,−) Convolution in Nonuniform Linear Decision Tree

For our nonuniform linear decision tree results, we use the main theorem of Fred-
man’s work on sorting X + Y :

Theorem 7 [23] For any fixed set Γ of permutations of N elements, there is a com-

parison tree of depth O(N + lg |Γ |) that sorts any sequence whose rank permutation

belongs to Γ .

Theorem 8 The (min,−) convolution of two vectors of length n can be computed in

O(n
√
n) time in the nonuniform linear decision tree model.
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Proof Let x and y denote the two vectors of length n, and let x
−∗

mın
y denote their

(min,−) convolution, whose kth entry is minki=0 (xi − yk−i).
First we sort the set D = {xi − xj , yi − yj : |i − j| ≤ d} of pairwise differences

between nearby xi’s and nearby yi’s, where d ≤ n is a value to be determined later.
This set D has N = O(nd) elements. The possible sorted orders of D correspond
to cells in the arrangement of hyperplanes in R2n induced by all (N2 ) possible
comparisons between elements in the set, and this hyperplane arrangement has
O(N4n) cells. By Theorem 7, there is a comparison tree sorting D of depth O(N +
n lgN) = O(nd+ n lg n).

The comparisons we make to sort D enable us to compare xi − yk−i versus
xj − yk−j for free, provided |i − j| ≤ d, because xi − yk−i < xj − yk−j precisely if
xi − xj < yk−i − yk−j . Thus, in particular, we can compute

Mk(λ) = min
{
xi − yk−i

∣∣∣ i = λ, λ+ 1, . . . ,min{λ+ d, n} − 1
}

for free (using the outcomes of the comparisons we have already made).

We can rewrite the kth entry minki=0(xi−yk−i) of x
−∗

mın
y as min{Mk(0),Mk(d),

Mk(2d), . . . ,Mk(dk/ded)}, and thus we can compute it in O(k/d) = O(n/d) com-
parisons between differences. Therefore all n entries can be computed in O(nd +
n lg n+ n2/d) total time.

This asymptotic running time is minimized when nd = Θ(n2/d), i.e., when
d2 = Θ(n). Substituting d =

√
n, we obtain a running time of O(n

√
n) in the

nonuniform linear decision tree model.

Combining Theorems 6 and 8, we obtain the following result:

Corollary 1 The `∞ necklace alignment problem can be solved in O(n
√
n) time in the

nonuniform linear decision tree model.

4.3 (min,−) Convolution in Real RAM via Geometric Dominance

Our first algorithm on the real RAM uses the following geometric lemma from
Chan’s work on all-pairs shortest paths:

Lemma 1 [9, Lemma 2.1] Given n points p1, p2, . . . , pn in d dimensions, each colored

either red or blue, we can find the P pairs (pi, pj) for which pi is red, pj is blue, and

pi dominates pj (i.e., for all k, the kth coordinate of pi is at least the kth coordinate

of pj), in 2O(d)n1+ε +O(P ) time for arbitrarily small ε > 0.

Theorem 9 The (min,−) convolution of two vectors of length n can be computed in

O(n2/ lg n) time on a real RAM.

Proof Let x and y denote the two vectors of length n, and let x
−∗

max
y denote their

(max,−) convolution. (Symmetrically, we can compute the (min,−) convolution.)
For each δ ∈ {0, 1, . . . , d − 1}, for each i ∈ {0, d, 2d, . . . , bn/dcd}, and for each j ∈
{0, 1, . . . , n− 1}, we define the d-dimensional points

pδ,i= (xi+δ − xi, xi+δ − xi+1, . . . , xi+δ − xi+d−1),
qδ,j = (yj−δ − yi, yj−δ − yi−1, . . . , yj−δ − yj−d−1).
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(To handle boundary cases, define xi = ∞ and yj = −∞ for indices i, j outside
[0, n−1].) For each δ ∈ {0, 1, . . . , d−1}, we apply Lemma 1 to the set of red points
{pδ,i : i = 0, d, 2d, . . . , bn/dcd} and the set of blue points {qδ,j : j = 0, 1, . . . , n− 1},
to obtain all dominating pairs (pδ,i, qδ,j).

Point pδ,i dominates qδ,j precisely if xi+δ − xi+δ′ ≥ yj−δ − yj−δ′ for all δ′ ∈
{0, 1, . . . , d−1} (ignoring the indices outside [0, n−1]). By re-arranging terms, this
condition is equivalent to xi+δ− yj−δ ≥ xi+δ′ − yj−δ′ for all δ′ ∈ {0, 1, . . . , d−1}. If
we substitute j = k − i, we obtain that (pδ,i, qδ,k−i) is a dominating pair precisely

if xi+δ − yk−i−δ = maxd−1
δ′=1(xi+δ′ − yk−i−δ′). Thus, the set of dominating pairs

gives us the maximum Mk(i) = max{xi − yk−i, xi+1 − yk−i+1, . . . , xmin{i+d,n}−1 −
ymin{k−i+d,n}−1} for each i divisible by d and for each k. Also, there can be at

most O(n2/d) such pairs for all i, j, δ, because there are O(n/d) choices for i and
O(n) choices for j, and if (pδ,i, qδ,j) is a dominating pair, then (pδ′,i, qδ′,j) cannot
be a dominating pair for any δ′ 6= δ. (Here we assume that the max is achieved
uniquely, which can be arranged by standard perturbation techniques or by break-
ing ties consistently [9].) Hence, the running time of the d executions of Lemma 1
is d2O(d)n1+ε + O(n2/d) time, which is O(n2/ lg n) if we choose d = α lg n for a
sufficiently small constant α > 0. We can rewrite the kth entry maxki=0(xi − yk−i)
of x

−∗
max

y as max{Mk(0),Mk(d),Mk(2d), . . . ,Mk(dk/ded)}, and thus we can com-

pute it in O(k/d) = O(n/d) time. Therefore all n entries can be computed in
O(n2/d) = O(n2/ lg n) time on a real RAM.

Combining Theorems 6 and 9, we obtain the following result:

Corollary 2 The `∞ necklace alignment problem can be solved in O(n2/ lg n) time on

a real RAM.

Although we will present a slightly faster algorithm for (min,−) convolution
in the next subsection, the approach described above will be useful later when we
discuss the (median,−) convolution problem.

4.4 (min,−) Convolution via Matrix Multiplication

Our next algorithm uses Chan’s O(n3(lg lgn)3/ lg2 n) algorithm for computing
the (min,+) matrix multiplication of two n × n matrices [10] (to which all-pairs
shortest paths also reduces). We establish a reduction from convolution to matrix
multiplication.

Theorem 10 If we can compute the (min,−) matrix multiplication of two n× n ma-

trices in T (n) time, then we can compute the (min,−) convolution of two vectors of

length n in O((n+ T (
√
n))
√
n) time.
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Proof We claim that computing the (min,−) convolution z = x
−∗

mın
y reduces to the

following (min,−) matrix multiplication:

P =
√
n

︸ ︷︷ ︸
√
n




x0 x1 · · · x√n−1

x√n x√n+1 · · · x2
√
n−1

...
...

. . .
...

xn−
√
n xn−

√
n+1 · · · xn−1

 −·
mın

︸ ︷︷ ︸
n−
√
n+1


y√n−1 y√n · · · yn−2 yn−1

y√n−2 y
√
n−1 · · · yn−3 yn−2

...
...

. . .
...

...
y1 y2 · · · yn−√n−2 yn−

√
n−1

y0 y1 · · · yn−√n−1 yn−
√
n




√
n.

The (i, j)th entry pi,j of this product P is

pi,j =

√
n−1

min
m=0

(
xi
√
n+m − yj+√n−1−m

)
.

Let k̄ = bk/
√
nc
√
n denote the next smaller multiple of

√
n from k. Now, given the

product P above, we can compute each element zk of the convolution z as follows:

zk = min

{
p0,k+1−

√
n, p1,k+1−2

√
n, p2,k+1−3

√
n, . . . , pbk/

√
nc−1,k−bk/

√
nc
√
n,

xk̄ − yk−k̄, xk̄+1 − yk−k̄−1, . . . , xk − y0

}
.

This min has O(
√
n) terms, and thus zk can be computed in O(

√
n) time. The entire

vector z can therefore be computed in O(n
√
n) time, given the matrix product P .

It remains to show how to compute the rectangular product P efficiently, given
an efficient square-matrix (min,−) multiplication algorithm. We simply break the
product P into at most

√
n products of

√
n ×
√
n matrices: the left term is the

entire left matrix, and the right term is a block submatrix. The number of blocks
is d(n−

√
n+1)/

√
ne ≤

√
n. Thus the running time for the product is O(T (

√
n)
√
n).

Summing the reduction cost and the product cost, we obtain a total cost of
O((n+ T (

√
n))
√
n).

Plugging in T (n) = O(n3/ lg n) from [9] allows us to obtain an alternative proof
of Theorem 9. Plugging in T (n) = O(n3(lg lg n)3/ lg2 n) from [10] immediately gives
us the following improved result:

Corollary 3 The (min,−) convolution of two vectors of length n can be computed in

O(n2(lg lgn)3/ lg2 n) time on a real RAM.

Combining Theorem 6 and Corollary 3, we obtain the following result:

Corollary 4 The `∞ necklace alignment problem can be solved in

O(n2(lg lgn)3/ lg2 n) time on a real RAM.

We remark that by the reduction in Theorem 10, any nontrivial lower bound for
(min,−) convolution would imply a lower bound for (min,−) matrix multiplication
and the all-pairs shortest path problem.
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5 `1 Necklace Alignment and (median,+) Convolution

5.1 Reducing `1 Necklace Alignment to (median,+) Convolution

First we show the relation between `1 necklace alignment and (median,+) convo-
lution. We need the following basic fact:

Fact 11 For any vector z = 〈z0, z1, . . . , zn−1〉,
n−1∑
i=0

|zi + c| is minimized when c =

−mediann−1
i=0 zi.

Instead of using (median,+) convolution directly, we use the equivalent form,
(median,−) convolution:

Theorem 12 The `1 necklace alignment problem can be reduced in O(n) time to one

(median,−) convolution.

Proof For two necklaces x and y, we apply the (median,−) convolution to the
following vectors, as in the proof of Theorem 6:

x′ = 〈x0, x0, x1, x1, . . . , xn−1, xn−1;∞,−∞,∞,−∞, . . . ,∞,−∞︸ ︷︷ ︸
2n

〉,

y′ = 〈yn−1, yn−1, yn−2, yn−2, . . . , y0, y0; yn−1, yn−1, yn−2, yn−2, . . . , y0, y0〉.

Then, for s′ ∈ {0, 1, . . . , n− 1}, the 2(n+ s′) + 1st entry of x′
−∗

med
y′ is

2(n+s′)+1

median
i=0

(x′i − y
′
2(n+s′)+1−i) =

n−1

median
i=0

(xi − y(i−s′−1) mod n),

which is mediann−1
i=0 (xi − y(i+s) mod n) if we let s′ = n − 1 − s. Applying Fact 11,

we can therefore minimize mediann−1
i=0 |xi − y(i+s) mod n + c| over c, for each s ∈

{0, 1, . . . , n − 1}. By brute force, we can minimize over s as well using O(n) addi-
tional comparisons and time.

Our results for (median,−) convolution use the following result of Frederickson
and Johnson:

Theorem 13 [22] The median element of the union of k sorted lists, each of length n,

can be computed in O(k lg n) time and comparisons.

5.2 (median,−) Convolution in Nonuniform Linear Decision Tree

We begin with our results for the nonuniform linear decision tree model:

Theorem 14 The (median,−) convolution of two vectors of length n can be computed

in O(n
√
n lg n) time in the nonuniform linear decision tree model.
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Proof As in the proof of Theorem 1, we sort the set D = {xi−xj , yi−yj : |i−j| ≤ d}
of pairwise differences between nearby xi’s and nearby yi’s, where d ≤ n is a value
to be determined later. By Theorem 7, this step requires O(nd+n lg n) comparisons
between differences. These comparisons enable us to compare xi − yk−i versus
xj − yk−j for free, provided |i − j| ≤ d, because xi − yk−i < xj − yk−j precisely if
xi − xj < yk−i − yk−j . In particular, we can sort each list

Lk(λ) =
〈
xi − yk−i

∣∣∣ i = λ, λ+ 1, . . . ,min{λ+ d, n} − 1
〉

for free. By Theorem 13, we can compute the median of Lk(0)∪Lk(d)∪Lk(2d)∪· · ·∪
Lk(dk/ded), i.e., medianki=0(xi−yk−i), in O((k/d) lg d) = O((n/d) lg d) comparisons.
Also, in the same asymptotic number of comparisons, we can binary search to find
where the median fits in each of the Lk(λ) lists, and therefore which differences
are smaller and which differences are larger than the median. This median is

the kth entry of x
−∗

med
y. Therefore, we can compute all n entries of x

−∗
med

y in

O(nd+n lg n+(n2/d) lg d) comparisons. This asymptotic running time is minimized
when nd = Θ((n2/d) lg d), i.e., when d2/ lg d = Θ(n). Substituting d =

√
n lg n, we

obtain a running time of O(n
√
n lg n) in the nonuniform linear decision tree model.

Combining Theorems 12 and 14, we obtain the following result:

Corollary 5 The `1 necklace alignment problem can be solved in O(n
√
n lg n) time

in the nonuniform linear decision tree model.

5.3 (min,−) Convolution in Real RAM via Geometric Dominance

Now we turn to the analogous results for the real RAM:

Theorem 15 The (median,−) convolution of two vectors of length n can be computed

in O(n2(lg lgn)2/ lg n) time on a real RAM.

Proof Let x and y denote the two vectors of length n, and let x
−∗

med
y denote their

(median,−) convolution. For each permutation π on the set {0, 1, . . . , d − 1}, for
each i ∈ {0, d, 2d, . . . , bn/dcd}, and for each j ∈ {0, 1, . . . , n − 1}, we define the
(d− 1)-dimensional points

pπ,i= (xi+π(0) − xi+π(1), xi+π(1) − xi+π(2), . . . , xi+π(d−2) − xi+π(d−1)),
qπ,j = (yj−π(0) − yj−π(1), yj−π(1) − yj−π(2), . . . , yj−π(d−2) − yj−π(d−1)),

(To handle boundary cases, define xi = ∞ and yj = −∞ for indices i, j outside
[0, n − 1].) For each permutation π, we apply Lemma 1 to the set of red points
{pπ,i : i = 0, d, 2d, . . . , bn/dcd} and the set of blue points {qπ,j : j = 0, 1, . . . , n− 1},
to obtain all dominating pairs (pπ,i, qπ,j).

Point pπ,i dominates qπ,j precisely if xi+π(δ)− xi+π(δ+1) ≥ yj−π(δ)− yj−π(δ+1)

for all δ ∈ {0, 1, . . . , d− 2} (ignoring the indices outside [0, n− 1]). By re-arranging
terms, this condition is equivalent to xi+π(δ) − yj−π(δ) ≥ xi+π(δ+1) − yj−π(δ+1)

for all δ ∈ {0, 1, . . . , d − 2}, i.e., π is a sorting permutation of 〈xi − yj , xi+1 −
yj−1, . . . , xi+d−1 − yj−d+1〉. If we substitute j = k− i, we obtain that (pπ,i, qπ,k−i)
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is a dominating pair precisely if π is a sorting permutation of the list Lk(i) =
〈xi − yk−i, xi+1 − yk−i+1, . . . , xmin{i+d,n}−1 − ymin{k−i+d,n}−1〉. Thus, the set of
dominating pairs gives us the sorted order of Lk(i) for each i divisible by d and for
each k. Also, there can be at most O(n2/d) total dominating pairs (pπ,i, qπ,j)
over all i, j, π, because there are O(n/d) choices for i and O(n) choices for j,
and if (pπ,i, qπ,j) is a dominating pair, then (pπ′,i, qπ′,j) cannot be a dominat-
ing pair for any permutation π′ 6= π. (Here we assume that the sorted order
is unique, which can be arranged by standard perturbation techniques or by
breaking ties consistently [9].) Hence, the running time of the d! executions of
Lemma 1 is d! 2O(d)n1+ε + O(n2/d) time, which is O(n2 lg lg n/ lg n) if we choose
d = α lg n/ lg lg n for a sufficiently small constant α > 0. By Theorem 13, we can
compute the median of Lk(0)∪Lk(d)∪Lk(2d)∪· · ·∪Lk(dk/ded), i.e., medianki=0(xi−
yk−i), in O((k/d) lg d) = O((n/d) lg d) comparisons. Also, in the same asymptotic
number of comparisons, we can binary search to find where the median fits in each
of the Lk(λ) lists, and therefore which differences are smaller and which differences

are larger than the median. This median is the kth entry of x
−∗

med
y. Therefore all

n entries can be computed in O(n2(lg d)/d) = O(n2(lg lgn)2/ lg n) time on a real
RAM.

Combining Theorems 12 and 15, we obtain the following result:

Corollary 6 The `1 necklace alignment problem can be solved in

O(n2(lg lgn)2/ lg n) time on a real RAM.

As before, this approach likely cannot be improved beyond O(n2/ lg n), because
such an improvement would require an improvement to Lemma 1, which would
in turn improve the fastest known algorithm for all-pairs shortest paths in dense
graphs [10].

In contrast to (median,+) convolution, (mean,+) convolution is trivial to com-
pute in linear time by inverting the two summations.

6 Conclusion

The convolution problems we consider here have connections to many classic prob-
lems, and it would be interesting to explore whether the structural information
extracted by our algorithms could be used to devise faster algorithms for these
classic problems. For example, does the antidiagonal information of the X + Y

matrix lead to a o(n2 lg n)-time algorithm for sorting X + Y ? We believe that any
further improvements to our convolution algorithms would require progress and/or
have interesting implications on all-pairs shortest paths [9].

Our (min,−)-convolution algorithms give subquadratic algorithms for polyhe-

dral 3SUM : given three lists, A = 〈a0, a1, . . . , an−1〉, B = 〈b0, b1, . . . , bn−1〉, and
C = 〈c0, c1, . . . , c2n−2〉, such that ai + bj ≤ ci+j for all 0 ≤ i, j < n, decide whether
ai + bj = ci+j for any 0 ≤ i, j < n. This problem is a special case of 3SUM, and
this special case has an Ω(n2) lower bound in the 3-linear decision tree model [19].
Our results solve polyhedral 3SUM in O(n2/ lg n) time in the 4-linear decision tree
model, and in O(n

√
n) time in the nonuniform 4-linear decision tree model, solv-

ing an open problem of Erickson [17]. Can these algorithms be extended to solve
3SUM in subquadratic time in the (nonuniform) decision tree model?
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