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Abstract

We observe that the classical maximum flow problem in any
directed planar graph G can be reformulated as a parametric
shortest path problem in the oriented dual graph G∗. This
reformulation immediately suggests an algorithm to compute
maximum flows, which runs in O(n log n) time. As we con-
tinuously increase the parameter, each change in the shortest
path tree can be effected in O(log n) time using standard
dynamic tree data structures, and the special structure of
the parametrization implies that each directed edge enters
the evolving shortest path tree at most once. The resulting
maximum-flow algorithm is identical to the recent algorithm of
Borradaile and Klein [J. ACM 2009], but our new formulation
allows a simpler presentation and analysis. On the other hand,
we demonstrate that for a similarly structured parametric
shortest path problem on the torus, the shortest path tree
can change Ω(n2) times in the worst case, suggesting that
a different method may be required to efficiently compute
maximum flows in higher-genus graphs.

1 Introduction

The maximum flow and minimum cut problems have
been staples of algorithms research for more than half
a century. From the problem’s inception in classified
studies of the Soviet rail network [24], particular at-
tention has been paid to computing flows and cuts
in planar graphs, both because they arise naturally in
many application settings, and because planar graphs
often admit simpler and faster algorithms than gen-
eral graphs. The seminal paper of Ford and Fulker-
son [19], which introduced the maxflow-mincut theo-
rem and the augmenting-path technique, also contained
a polynomial-time augmenting-path algorithm for pla-
nar networks where the source and target are incident
to a common face.

Maximum flows and minimum cuts are intimately
related to shortest paths. It has been known since the
early 1980s that computing a flow with a particular
value in a planar graph G is equivalent to computing a
single-source shortest-path tree in a carefully weighted

∗Research reported in this paper was partially supported by
NSF grant DMS-0528086. See http://www.cs.uiuc.edu/~jeffe/pubs/
parshort.html for the most recent version of this paper.

dual graph G∗ [25, 28, 30, 37, 45]. The fastest algo-
rithms for computing minimum cuts in planar graphs
[39, 20, 29, 27] and maximum flows in undirected
planar graphs [26] are all directly formulated in terms
of dual shortest paths; all these algorithms run in
O(n log n) time. We describe these results in slightly
more detail in Section 1.2.

Recently, Borradaile and Klein [5, 6] described an
algorithm to compute maximum flows in arbitrary di-
rected planar graphs in O(n log n) time, generalizing an
earlier result of Weihe [47] for planar graphs satisfying
a certain connectivity condition. Unlike the algorithms
already mentioned, these two algorithms are not formu-
lated in terms of shortest paths.

In this paper, we offer an alternative formulation of
Borradaile and Klein’s algorithm in terms of parametric
shortest paths. In a parametric shortest path problem,
the lengths of the edges are (in our case) linear functions
of a real parameter λ; a typical goal is to compute
shortest path trees for all values of λ for which the graph
has no negative cycles [31, 49]. Parametric shortest
paths have been previously used to find minimum-cost
flows [21], but to our knowledge, not for the standard
maximum-flow problem.

We set up the parametric shortest path problem in
the dual graph G∗, so that for any value of λ, the
current shortest path distances define a flow with value
λ in the original network. In Section 2, we describe
our parametric shortest-path in detail and show that it
runs in O(n log n) time. As λ increases, each change in
the shortest path tree can be effected in O(log n) time
using a standard dynamic tree data structure [43], and
the special structure of our parametrization implies that
each directed edge enters the evolving shortest path tree
at most once. The resulting algorithm is identical to
the algorithm of Borradaile and Klein; however, in light
of earlier results, our reformulation is arguably more
natural, and our running time analysis is simpler.

We also consider a natural generalization of our
parametric shortest-path formulation to higher genus
graphs. Chambers et al. [10, 11] recently described
the first algorithms to compute minimum cuts and
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maximum flows in graphs of fixed genus in near-linear
time. In those papers, we conjectured that Borradaile
and Klein’s planar maximum-flow algorithm can be
generalized to compute flows in any fixed-genus graph
in O(n log n) time. As a first step in this direction, we
consider a generalization of our planar parametric short-
est path formulation to graphs on higher-genus surfaces.
Unfortunately, our results are negative; in Section 3, we
describe an infinite family of parametrized graphs on the
torus, in which a shortest-path tree changes Ω(n2) times.

1.1 Background

Planar graphs. Let G = (V, E) be an directed plane
graph; that is, a directed planar graph with a fixed
planar embedding. Each edge e ∈ E connects two
vertices tail(e) and head(e), and separates two faces
left(e) and right(e). We write u→v to denote the
edge with tail u and head v, and f ↑g to denote the
edge with left shore f and right shore g. The reversal
of edge e, denoted rev(e), is defined by swapping
its endpoints: rev(u→v) := v→u. Without loss of
generality, we assume that the reversal of every edge
in G is another edge in G. We also assume that the
planar embedding maps every edge e and its reversal
rev(e) to the same curve in the plane (but parametrized
in opposite directions). For any subgraph H of G, let
rev(H) denote the subgraph obtained by reversing every
edge of H.

Duality. The dual of a plane graph G is another plane
graph G∗ whose vertices correspond to faces of G and
vice versa. Two vertices in G∗ are joined by an edge if
and only if the corresponding faces of G are separated
by an edge of G. Thus, every edge e in G has a
corresponding dual edge e∗ in G∗. For any face f of G,
let f ∗ denote the corresponding vertex of G∗; for any
vertex v of G, let v∗ denote the corresponding face of G∗.
Each dual edge e∗ is embedded so that it crosses the
corresponding primal edge e (and its reversal) exactly
once and intersects no other primal edge. Dual edges
are oriented by defining (u→v)∗ := u∗↑v∗ and ( f ↑g)∗ :=
f ∗→g∗. Duality is an involution—the dual of G∗ is
isomorphic to the original graph G. However, G and G∗

use opposite orientations of the plane to distinguish left
from right. See Figure 1. For any subgraph H of G,
let H∗ denote the corresponding subgraph of G∗.

Flows and cuts. Let s and t be fixed vertices in G. An
(s , t )-cut (or simply cut if there is no confusion) is a
subset C of edges of G such that every path from s to t
contains at least one edge in C .

An (s , t )-flow (or simply flow if there is no
confusion) is an function φ : E → R that satisfies
two conditions. First, φ must be antisymmetric;
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Figure 1. Graph duality. One edge and its dual are emphasized.

that is, φ(e) =−φ(rev(e)) for every edge e. Second,
φ must satisfy the following conservation constraint:
∑

w φ(v→w) = 0 for every vertex v except s and t. The
value of the flow is

∑

w φ(s→w). (To simplify notation,
we define φ(v→w) to be 0 when v→w is not an edge
in G.)

Now fix a function c : E → R that assigns a non-
negative real capacity to every edge in G. An flow φ
is feasible if φ(e) ≤ c(e) for every edge e. A flow φ
saturates an edge e if φ(e) = c(e). The capacity of
a cut C is the sum of its edge capacities: c(C) :=
∑

e∈C c(E). The maxflow-mincut theorem [13, 15, 19]
states that the maximum feasible (s, t)-flow value is
equal to the minimum (s, t)-cut capacity. In particular, if
a flow φ saturates every edge in a cut C , then φ must
be a maximum flow, and C must be a minimum cut.

1.2 Prior Results

Maximum Flows in Planar Graphs. Borradaile and
Klein [5, 6], Khuller and Naor [32], and Weihe [47]
describe the history of planar flow algorithms in detail.
Here we describe only a few key developments, empha-
sizing the deep connections between flows, cuts, and
dual shortest paths.

More than 25 years ago, Venkatesan [45] observed
that for any planar graph G, a feasible (s, t)-flow with a
given value λ can be computed, if such a flow exists,
by solving a single-source shortest path problem in a
dual planar graph G∗ with both positive and negative
edge lengths. We describe this reduction in detail
in Section 2; similar approaches were also proposed
by Itai and Shiloach [28], Hassin [25], Johnson and
Venkatesan [30], Hassin and Johnson [26], Khuller
et al. [33], and Miller and Naor [37]. Venkatesan
applied the planar shortest-path algorithm of Lipton,
Rose, and Tarjan [36] to compute a feasible flow with
a given value in O(n3/2) time. This running time
can be improved by more recent planar shortest-path
algorithms [27, 17]; the fastest algorithm to date, due
to Klein, Mozes, and Weimann [35], runs in O(n log2 n)
time.

Itai and Shiloach [28] observed that the minimum
cut in a planar graph G is dual to the minimum-cost
cycle that separates faces s∗ and t∗ in the dual graph G∗.



Reif [39] described a divide-and-conquer algorithm to
find this cycle in O(n log2 n) time when the graph is
undirected; Reif’s algorithm was later generalized to
directed graphs by Janiga and Koubek [29]. Combining
these minimum-cut algorithms with the shortest-path
algorithm of Klein et al. [35] yields an algorithm to
compute maximum flows in directed planar graphs
in O(n log2 n) time. Frederickson [20] improved the
running time of Reif’s algorithm to O(n log n); the same
improvement can also be obtained using more recent
planar shortest path algorithms [27, 34, 7, 44]. The
running time of Janiga and Koubek’s algorithm can
be improved to O(n log n) using the linear-time planar
shortest-path algorithm of Henzinger et al. [27].

For undirected planar graphs, Hassin and
Johnson [26] extended Reif’s minimum-cut algorithm to
compute a maximum flow in only O(n log n) additional
time; together with Frederickson’s improvement of
Reif’s algorithm [20], this implies an undirected planar
maxflow algorithm that runs in O(n log n) time. Hassin
and Johnson’s algorithm also computes a single-source
shortest path tree in a dual graph with positive and
negative weights; however, the additional structure
computed by Reif’s algorithm allows these shortest
paths to be computed using a modification of Dijkstra’s
algorithm [14], as through all the edge weights were
positive.

Weihe [47, 46] and Borradaile and Klein [5, 6]
described algorithms to compute maximum flows in
directed planar graphs in O(n log n) time. Weihe’s algo-
rithm requires the input graph to satisfy a certain con-
nectivity condition.1 Borradaile and Klein’s algorithm
works for any directed planar graph. Both algorithms
compute a single-source shortest path tree in the dual
of the input graph in a preprocessing phase, in order to
remove all clockwise cycles from the graph [33]; other-
wise, they do not (explicitly) use dual shortest paths.
Instead, both algorithms are instances of Ford and
Fulkerson’s classical augmenting path technique [19].
We describe Borradaile and Klein’s algorithm in more
detail later in the paper.

Maximum Flows in Higher-Genus Graphs. Chambers
et al. [10] recently described the first algorithms to
compute maximum flows in graphs of fixed genus in
near-linear time. Specifically, given a graph with integer
capacities embedded on a surface of genus g, they
describe an algorithm to compute a maximum flow in
O(g7n log2 n log2 C) time. They also describe a combi-

1Specifically, every edge u→v must lie on a simple directed path
from s to v and on a simple directed path from u to t. Any edge that
does not satisfy this condition can be safely removed, because there
is a maximum flow that does not use them; unfortunately, the fastest
algorithm to find all such edges requires O(n2) time [4].

natorial maximum-flow algorithm that runs in gO(g)n3/2

arithmetic operations.2 Both algorithms reduce the
maximum-flow problem to a (2g+1)-dimensional linear
programming problem, which is then solved implicitly
using a shortest-path algorithm as an oracle. These
algorithms are considerably more complex than Bor-
radaile and Klein’s algorithm for planar graphs [5, 6].
Our results in Section 3 reflect an attempt to generalize
Borradaile and Klein’s simpler approach to the higher
genus setting.

Parametric Shortest Paths. Karp and Orlin [31] for-
mulated the parametric shortest path problem as fol-
lows. The input is a directed graph G = (V, E), a subset
of edges E′ ⊆ E, and a cost function c : E→ R. We add a
second real parameter λ to the cost function by defining
c(λ, e) = c(e) − λ for each edge e ∈ E′, and c(λ, e) =
c(e) otherwise. The goal of the problem is to compute
the largest value of λ such that the resulting weighted
directed graph contains no negative cycles. Karp and
Orlin describe an algorithm to solve this problem in
O(nm log n) time; the running time was improved to
O(nm+ n2 log n) by Young, Tarjan, and Orlin [49].

Both of these algorithms maintain a single-source
shortest path tree rooted at some node s, with respect to
the cost function c(λ, ·), while increasing λ continuously
from −∞. At certain critical values of λ, the shortest-
path tree changes by a single edge. For any vertex v, let
dist(λ, v) denote the shortest-path distance from s to v
for a particular value of λ; these distances satisfy the
inequality dist(λ, v) ≤ dist(λ, u) + c(λ, u→v) for every
edge u→v, with equality if u→v is in the shortest path
tree. A critical value of λ occurs when dist(λ, v) =
dist(λ, u) + c(λ, u→v) for some edge u→v that is not in
the shortest path tree. At that critical value, u→v enters
the shortest path tree, replacing some edge u′→v; we
call this change a pivot. The algorithm ends when a
pivot introduces a cycle (which must have cost 0) into
the shortest-path tree.

Each pivot increases the number of edges in E′ on the
shortest path from s to some other vertex v. It follows
immediately that the shortest path to any vertex changes
at most n times, which implies that the shortest-path
tree undergoes at most O(n2) pivots.

The parametric shortest path problem can be gener-
alized by allowing the costs c(λ, e) to be arbitrary linear
functions of the parameter λ. The algorithms of Karp
and Orlin [31] and Young et al. [49] can be adapted to
this setting with only trivial modifications. If the cost
functions have only a constant number of different λ-
coefficients, the number of pivots is still at most O(n2),

2The conference version of their paper [10] incorrectly claimed a
running time of gO(g)n polylog n; see the full version for details.



and the running times of the algorithms changes by only
a constant factor. However, for the most general case
where every edge weight has a different λ-coefficient,
Carstensen [9] proved that the worst-case number of
pivots is nΩ(log n); see also Mulmuley and Shah [38].
Carstensen attributes a matching nO(log n) upper bound
to Gusfield [23].

2 Maximum Flows in Planar Graphs

Throughout this section, let G = (V, E) be a directed
plane graph, let c : E → R be a nonnegative capacity
function, let s and t be vertices of G. Our goal is
to compute a maximum (s, t)-flow in G. We assume
without loss of generality that the reversal of any di-
rected edge in G is also an edge in G; otherwise, we
can add the missing reversed edges with capacity 0.
This assumption implies that both G and its dual G∗

are strongly connected. To simplify our presentation,
we assume that the capacity function is generic; we will
point out the consequences of this assumption as they
arise.3

Finally, in the interest of readability, we will always
use the letters s, t, u, v, w to denote vertices of the primal
graph G, and the letters o, p, q, r to denote vertices of the
dual graph G∗. Thus, o∗ is a face of G, and s∗ is a face
of G∗.

2.1 Venkatesan’s Reduction

We now describe Venkatesan’s algorithm [45] to com-
pute a feasible (s, t)-flow with fixed value λ, or correctly
report that no such flow exists, by reduction to a
single-source shortest path problem in an appropriately
weighted dual graph G∗. Our presentation differs
significantly from Venkatesan’s, so that we can introduce
some useful notation.

Fix an arbitrary directed path P from s to t, and let
π: E→ R denote the unit flow through P:

π(e) :=







1 if e ∈ P,

−1 if rev(e) ∈ P,

0 otherwise

For any subset E′ ⊆ E, let π(E′) =
∑

e∈E′ π(e). A
subgraph C of G is called a cocycle if the corresponding
dual subgraph C∗ is a simple directed cycle in G∗.
For any cycle C∗ in G∗, we call π(C) the crossing
number of C∗; this is the number of times P crosses the
cycle C∗ from left to right, minus the number of times
P crosses C∗ from right to left. Whitney [48] observed

3Our genericity assumption can be enforced by standard perturba-
tion techniques, but in fact, ties that arise during our algorithm can be
broken arbitrarily. Details will appear in the full version of the paper.

that any cocycle in a planar graph is also a cut; the next
lemma refines this observation.

Lemma 2.1. π(C) ∈ {−1, 0,1} for any cocycle C . More-
over, π(C) = 1 if and only if C is an (s, t)-cut.

Proof: Every edge in the cocycle C crosses its dual cy-
cle C∗ from left to right; every edge in rev(C) crosses C∗

from right to left. The Jordan Curve Theorem implies
that C∗ partitions the plane into exactly two connected
regions; call these left(C∗) and right(C∗). There are only
three cases to consider.

Suppose s and t lie on the same side of C∗. Then P
must cross C∗ the same number of times in each direc-
tion. Equivalently, P must contain the same number of
edges in C and rev(C). Thus, π(C) = 0.

Suppose s ∈ left(C∗) and t ∈ right(C∗). Then P must
cross C from left to right once more than it crosses C
from right to left. Equivalently, P must contain one more
edge in C than in rev(C), so π(C) = 1. Moreover, any
path from s to t must contain at least once edge in C; in
other words, C is an (s, t)-cut. See Figure 2.

A symmetric argument implies that if s ∈ right(C∗)
and t ∈ left(C∗), then π(C) =−1.

Finally, if C is an (s, t)-cut, then every path from path
from s to t must contain at least once edge in C , and
therefore crosses C∗ from right to left. It follows that
π(C) = 1. �

o

s*

t*

s

t

Figure 2. A directed cycle in G∗ and the corresponding directed
cocycle in G, which is also an (s, t)-cut.

Now consider the flow λ · π, which assigns value λ
to every directed edge in path P, value −λ to every



edge in rev(P), and value 0 to every other edge. Let
Gλ := Gλ·π denote the residual network of this flow; this
is just the graph G with the residual capacity function
c(λ, e) := c(e) − λ · π(e). The flow λ · π is feasible if
and only if c(λ, e) ≥ 0 for every edge e of G. Finally,
let G∗λ denote the dual residual network, which is just
the directed dual graph G∗ where every dual edge e∗

has a cost c(λ, e∗) equal to the residual capacity of the
corresponding primal edge: c(λ, e∗) = c(λ, e).

Lemma 2.2. There is a feasible (s, t)-flow in G with
value λ if and only if the dual residual network G∗λ does
not contain a negative cycle.

Proof: Because G∗λ is strongly connected, there are only
two cases to consider.

First, suppose G∗λ contains a negative cycle C∗. We
can decompose the cost of this cycle as follows:

c(λ, C∗) =
∑

e∈C

c(λ, e) =
∑

e∈C

c(e)−λ ·π(C) < 0.

Because c(e) ≥ 0 for every edge e, we must have
π(C)> 0. Thus, Lemma 2.1 implies that the cocycle C is
an (s, t)-cut whose capacity is less than λ. We conclude
that there is no feasible (s, t)-flow in G with value λ.

On the other hand, suppose shortest paths in G∗λ
are well-defined. Fix an arbitrary dual vertex o (called
the origin) in G∗λ. For any dual vertex p, let dist(λ, p)
denote the shortest path distance in G∗λ from o to p. Now
consider the function

φ(λ, e) := dist(λ, head(e∗))−dist(λ, tail(e∗))+λ ·π(e).

For every vertex v, we have
∑

w φ(λ, v→w) =
∑

w λ ·
π(v→w); the duals of the edges leaving v define a
directed cycle in G∗, so all the dist(λ, ·) terms in the sum
cancel out. It follows that φ(λ, ·) is a valid (s, t)-flow
with value λ. Now define the slack of each dual edge e∗

as follows:

slack(λ, e∗) :=
dist(λ, tail(e∗)) + c(λ, e)− dist(λ, head(e∗)).

We easily observe that slack(λ, e∗) = c(e) − φ(λ, e).
Ford’s classical formulation of shortest paths [18] im-
plies that every dual edge has non-negative slack. We
conclude that the flow φ(λ, ·) is feasible. �

The proof of Lemma 2.2 immediately implies an
O(n)-time algorithm to compute the flow values φ(λ, ·)
from the dual shortest path distances dist(λ, ·). We
emphasize here that the final flow φ(λ, ·) depends on
the value of λ and the choice of the origin vertex o, but
does not depend on the path P. In fact, we can replace π
with any flow of value 1 without changing the output
flow.

2.2 Parametric Shortest Paths

We now extend the previous reduction into an algorithm
to compute the maximum flow, by treating the value λ
as a continuously varying parameter. Our parametric
shortest path problem has almost the same form as the
problem studied by Karp and Orlin [31] and Young,
Tarjan, and Orlin [49]. The only differences are that
the parametric cost function c(λ, ·) has three different
λ-coefficients (−1, 0, and 1), and that both the graph G∗

and the set P∗ of parametrized edges have a special
structure.

Let λmax denote the largest value of λ for which
shortest paths in G∗λ are well-defined; Lemma 2.2 im-
plies that λmax is also the value of the maximum flow.
For any particular value of λ, let Tλ denote the single-
source shortest path tree in G∗λ rooted at o. Because
our input capacities are non-negative, shortest-paths are
well-defined in G∗0, and therefore T0 is well-defined. Our
genericity assumption implies that Tλ is uniquely defined
for all λ between 0 and λmax, except for a finite set of
critical values.

At a very high level, our algorithm can be described
as follows:

PLANARMAXFLOW(G, c, s, t):
Compute T0.
Maintain Tλ as λ increases continuously from 0 to λmax.
Compute φ(λmax, ·) from Tλmax

.

The edges in Tλ are directed away from o. Thus,
every dual vertex p 6= o has exactly one incoming
edge in Tλ, from its parent vertex, which we denote
pred(λ, p). We call a dual edge e∗ tense at λ if
slack(λ, e∗) = 0; except at critical values of λ, a dual
edge is tense at λ if and only if it lies in Tλ. At
each critical value of λ, some non-tree dual edge p→q
becomes tense and enters Tλ, replacing the previous
edge pred(λ, q)→q (unless q = o). We call this event
a pivot; see Figure 3. Our genericity assumption implies
that exactly one non-tree edge becomes tense at each
critical value of λ.

We can precompute λmax in O(n log n) time by com-
puting a minimum (s, t)-cut [29, 27]. However, no
such precomputation is necessary; we can detect λmax
when it occurs. For any dual vertex p, let path(λ, p)
denote the unique path from o to p in Tλ. For any
dual edge p→q, let cycle(λ, p→q) denote the cycle
obtained by concatenating the shortest path path(λ, p),
the dual edge p→q, and the reversed shortest path
rev(path(λ, q)).

Lemma 2.3. λmax is the first critical value of λ whose
pivot introduces a directed cycle into Tλ.



Figure 3. A possible sequence of shortest-path-tree pivots.

Proof: Let λ� be the first critical value of λ whose
pivot introduces a directed cycle into Tλ, and let C∗

be that directed cycle. We easily observe that C∗ =
cycle(λ�, p→q), where p→q is the pivot edge introduced
at λ�, so Lemma 2.1 implies that the cocycle C is an
(s, t)-cut. Every dual edge in C∗ is tense at λ�, which
implies that φ(λ�, e) = c(e). It follows that the flow
φ(λ�, ·) saturates the cut C and is therefore a maximum
flow. (Moreover, C is a minimum cut.) We conclude that
λ� = λmax. �

We can also characterize λmax by considering a
related structure in the primal graph G. Call a primal
edge e loose at λ if neither its dual e∗ nor its reversed
dual rev(e∗) is tense at λ, and let Lλ be the subgraph
of all loose edges. Except at critical values of λ, the
subgraph Lλ is a spanning tree of G; together, Lλ and Tλ
define a tree-cotree decomposition of G [16, 42].

Lemma 2.4. λmax is the smallest critical value of λ
whose pivot disconnects Lλ.

A dual edge is active at λ if its slack at λ is decreas-
ing. Because all slacks are always non-negative, only
active edges can become tense. The primal spanning
tree Lλ contains a unique directed path from s to t; call
this loose path LPλ.

PLANARMAXFLOW(G, c, s, t):
Initialize the spanning tree L, predecessors, and slacks

while s and t are in the same component of L
LP ← the path in L from s to t
p→q← the edge in LP∗ with minimum slack
∆← slack(p→q)
for every edge e in LP

slack(e∗)← slack(e∗)−∆
slack(rev(e∗))← slack(rev(e∗)) +∆

delete (p→q)∗ from L
if q 6= o 〈〈that is, if pred(q) 6=∅〉〉

insert (pred(q)→q)∗ into L
pred(q)← p

for each edge e
φ(e)← c(e)− slack(e∗)

return φ

Figure 4. Our planar maximum flow algorithm.

Lemma 2.5. A dual edge e∗ is active at λ if and only if
e is an edge of LPλ.

Proof: We can decompose the slack function for any
edge into two components, one constant and one vary-
ing with λ, by defining

slack(λ, e∗) := slack0(λ, e∗)−λ · slack′(λ, e∗).

Thus, an edge e∗ is active at λ if and only if
slack′(λ, e∗) > 0. Straightforward definition-chasing
implies that slack′(λ, e∗) is the crossing number of
cycle(λ, p→q). Thus, by Lemma 2.1, e∗ is active at λ
if and only if the cocycle C(e) = cycle(λ, e∗)∗ is an
(s, t)-cut. If C(e) is an (s, t)-cut, then LPλ must contain
at least one edge in C(e), but the only loose edge in C
is e. On the other hand, removing any edge e from L
disconnects L, so C(e) must be an (s, t)-cut. �

2.3 Implementation Details

Our algorithm is described in detail in Figure 4. Our al-
gorithm explicitly maintains three structures: The span-
ning tree Lλ of loose edges, the predecessor pred(λ, q)
of every dual vertex q, and the slack value slack(λ, e∗) of
every dual edge e∗. We maintain the spanning tree Lλ
and the dual slacks in a self-adjusting top tree [43] or
some equivalent dynamic tree structure [1, 3, 41]. This
data structure stores an n-vertex forest with weighted
edges supports the following operations in O(log n)
amortized time: determine whether two nodes are in the
same component, expose a path between two specified
nodes, find the edge on the exposed path with minimum
value, add some amount to all values on the exposed
path, remove an edge, and insert an edge. We maintain
the predecessors as simple pointers. Surprisingly, we do
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Figure 5. The dual graph G∗ and its universal cover G∗.

not need to choose a flow path P or explicitly maintain
the parameter λ!

We can compute the initial predecessor pointers and
slacks in O(n log n) time using Dijkstra’s shortest-path
algorithm [14]. (This time can be reduced to O(n) if we
use the shortest-path algorithm of Henzinger et al. [27],
but this will be dominated by other parts of the algo-
rithm.) The self-adjusting top tree for L can also be
initialized in O(n log n) time, by inserting the edges one
at a time into an initially empty forest. Each iteration of
the main loop requires O(log n) amortized time. Thus,
the running time of our algorithm is O((n+ N) log n),
where N is the number of pivots.

2.4 Number of Pivots

To complete the analysis of our algorithm, we only need
to prove and upper bound on the worst-case number of
pivots. Our analysis requires one additional assumption,
also made by Borradaile and Klein [5, 6]: The target
vertex t is incident to the outer face o∗. With this
assumption in place, we show that the shortest path
tree undergoes at most O(n) pivots in the worst case.
In fact, we will prove the following stronger statement:
Each dual edge pivots into the shortest path tree at most
once.4

Recall that P is an arbitrary directed path from s to t
in G, and π is the corresponding unit flow. Let Π be
an arbitrary path from o to another vertex p in the dual
graph G∗. We call the integer π(Π) =

∑

e∗∈Ππ(e) the
crossing number of Π.

Lemma 2.6. Each time path(λ, p) changes, its crossing
number increases by 1.

4Borradaile (personal communication) has proved that the number
of pivots is O(n) even if neither s nor t is incident to o∗. Specifically,
each dual edge pivots into Tλ at most three times.

For any dual vertex p and any integer i, let pathi(p)
denote the shortest path from o to p in G∗ = G∗0 with
crossing number i. Because all paths with the same
crossing number decrease in length at the same rate,
every shortest path path(λ, p) is equal to pathi(p) for
some integer i.

Consider the annulus obtained by deleting faces s∗

and t∗ from the plane; the universal cover of this
annulus is an infinite planar strip. We define an infinite
planar graph G∗ = (V ∗, E∗) by lifting the dual graph G∗

to this universal cover. The vertices and edges of G∗ are
formally defined as follows:

V ∗ :=
¦

pi

�

� p ∈ V ∗ and i ∈ Z
©

E∗ :=
¦

pi→qi+π(p→q)

�

� p→q ∈ E∗
©

Informally, G can be constructed as follows. Cre-
ate a doubly-infinite sequence . . . , G∗−1, G∗0, G∗1, G∗2, . . . of
copies of G∗. For any dual vertex p and any integer i,
let pi denote the corresponding vertex of G∗i ; we call this
vertex a lift of p. Then for every integer i and every dual
edge p→q in P∗, replace the edge pi→qi with pi→qi+1,
and symmetrically replace qi→pi with qi→pi−1. See
Figure 5. Edge costs in G∗ are inherited from edge costs
in G∗ in the obvious way: c(pi→q j) = c(p→q).

There is a natural projection map $: G∗ → G∗ that
simply drops subscripts: $(pi) = p and $(pi→q j) =
p→q. The preimage $−1(Π) of any path Π in G∗ is a
doubly-infinite set of paths in G∗, which we call the lifts
of Π. Specifically, if Π starts at p and ends at q, then
for any integer i, there is a lift of Π that starts at pi and
ends at qi+π(Π). Faces s∗ and t∗ lift to two unbounded
faces s∗ and t∗; every other face of G∗ lifts to an infinite
sequence of faces in G∗.

Let path(pi , q j) denote the shortest path in G∗

from pi to q j . For any vertex p and any integer j,
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Figure 6. Proof of Lemma 2.7: Indices −2, 0, and 1 are interesting; i =−2, j = 1, and q0 lies outside Γ.

path j(p) is the projection of path(o0, p j) and therefore
also the projection of path(oi , pi+ j) for all i. It follows
that every shortest path path(λ, p) is the projection of a
shortest path in G∗.

Lemma 2.7. Each dual edge p→q pivots into the short-
est path tree Tλ at most once.

Proof: Fix a dual edge p→q. To simplify the exposition,
assume that π(p→q) = 0; similar arguments apply
when π(p→q) = 1 or π(p→q) =−1.

Call an integer i interesting if p→q is the last edge
of pathi(q), or equivalently, if p0→q0 is the last edge of
path(o−i , q0). To prove the lemma, it suffices to show
that there is at most one interesting integer i whose
successor i+ 1 is boring.

Suppose to the contrary that there are two integers
i < j such that i and j are interesting but i+1 and j+1
are boring. Let Γ be the cycle formed by concatenating
the shortest path path(o−i , p0), the reversed shortest
path rev(path(o− j , p0), and a path through t∗ from o− j
to o−i . The vertex q0 does not lie on Γ.

The vertex o−( j+1) lies outside Γ, and the shortest
path path(o−( j+1), q0) does not contain the edge p0→q0.
So q0 must lie outside Γ; see Figure 6. On the other
hand, vertex o−(i+1) lies inside Γ, and the shortest path
path(o−(i+1), q0) does not contain the edge p0→q0. So q0
must lie inside Γ. We have a contradiction. �

Theorem 2.8. Maximum flows in directed planar
graphs can be computed in O(n log n) time.

In the appendix, we briefly argue our algorithm is
actually identical to Borradaile and Klein’s algorithm
[5, 6]. However, our proof that each edge in G is sat-
urated at most once is considerably simpler than theirs,
in part because they prove a stronger statement called
the ‘Unusability Theorem’: If an edge e is augmented,
and later its reversal rev(e) is augmented, then e cannot
be augmented again.

3 Parametric Shortest Paths on Surfaces
3.1 Motivation

Chambers et al. [10] recently described efficient algo-
rithms to compute maximum flows in graphs of higher

genus. Their algorithms recast the maximum problem
as a multi-parametric shortest path problem with 2g +
1 parameters in the dual graph G∗. Here, the goal
is to find parameter values whose sum is maximized,
such that the resulting edge weights do not induce a
negative cycle in G∗. Chambers et al. solve the resulting
(2g+1)-dimensional linear optimization problem using
either the ellipsoid method [22] or multidimensional
parametric search [2, 12], using a single-source shortest
path algorithm [35] as a membership oracle. These
algorithms are considerably more complex than the
algorithm described in this paper, or the equivalent
algorithm of Borradaile and Klein. It is natural to ask
whether a the parametric approach in this paper can
be generalized to obtain simpler and/or more efficient
algorithms for the higher-genus setting.

As a first step toward understanding the structure
of this multi-parametric shortest-path problem, we first
consider the natural generalization of our planar sin-
gle-parameter shortest path problem to higher-genus
graphs. Let G be a graph embedded on the torus (the
oriented surface of genus 1), let s and t be vertices of
G, let P be a directed path from s to t, and let π be
the unit flow through P. The edge costs in the dual
residual graph G∗λ are defined exactly as in the planar
case c(λ, e∗) = c(e)−λπ(e). The problem is to compute
λmax, the largest value of λ such that G∗λ has no negative
cycles.

The algorithm in Figure 4 can be generalized to solve
this problem. As in the planar case, let Tλ denote the
shortest-path tree in G∗λ rooted at some vertex o, and
let Lλ denote the complementary subgraph of G. Euler’s
formula implies that Lλ is no longer a spanning tree,
but rather a spanning tree plus two extra edges [16].
Cabello and Chambers [7] describe a generalization of
self-adjusting top trees that can maintain this subgraph
as we perform pivots in Tλ, still in O(log n) time per
pivot. Thus, the running time of the generalized algo-
rithm is still O((n+ N) log n), where N is the number of
pivots. We omit further details.

3.2 A Bad Example

Unfortunately, Lemma 2.7 is no longer true in this
setting. In this section, we describe an infinite family



of parametrized graphs on the torus of the form just de-
scribed, such that Tλ undergoes Ω(n2) pivots, matching
the trivial O(n2) upper bound of Karp and Orlin [31].
We describe the sequence of dual graphs G∗, one for
each value of n. Figure 7 shows our abstract graph and
its embedding on the torus for the case n= 5.

Fix a positive integer n. We start by defining an undi-
rected graph G∗ with vertices o, o+, o−, p0, p1, . . . , p2n,
q1, . . . , qn, r0, r1, . . . , r2n. We assign the following costs
to the edges of G∗, for all i:

c(o o+) = c(o o−) = c(o+o−) =∞
c(o p0) = c(o r0) = 0

c(pi−1 pi) = c(ri−1 ri) = n

c(p2n qi) = 1

c(r2n qi) = 2+
i− 1

n− 1

c(p2i−2 p2i) =

¨

6n− 4i+ 1 if i is even,

6n− 4i+ 4 if i is odd.

c(r2i−2 r2i) =

¨

6n− 4i+ 4 if i is even,

6n− 4i+ 1 if i is odd.

The costs c(r2n qi) are non-integral only to ensure
that at most one pivot occurs at each critical value of λ.
If this is not a concern, we can set c(r2n qi) = 2 for all i.

We embed G∗ on the torus as follows. First we embed
the cycles op0p1 · · · p2nq1r2nr2n−1 · · · r0 and oo+o− so
they are non-contractible and in independent homotopy
classes. Then we spiral the paths p0p2p4 · · · p2n and
r0r2r4 · · · r2n around the torus in opposite directions.
Finally, we embed all paths p2nqi r2n in parallel.

To define the parametrized graph G∗λ, we break each
undirected edge of G∗ into two symmetric directed edges
with the same initial weight. For each directed edge e,
we set c(λ, e) := c(e)− λ ·π(e), where π(p2i−2→p2i) =
π(r2i−2→r2i) = 1 and π(p2i→p2i−2) = π(r2i→r2i−2) =
−1 for all i, and π(e) = 0 for all other edges e. Let s∗

be the face incident to both o and p1, and let t∗ be the
unique face incident to both o and r1. Let P∗ be the
set of dual edges e∗ with π(e∗) = 1; we easily confirm
that P∗ is dual to a directed path from s to t in the primal
graph G. See Figure 7.

Theorem 3.1. For the parametrized graph G∗λ described
in the text, the shortest path tree rooted at o pivots
Ω(n2) times.

Proof: We easily observe that λmax = 4n + 1. Specifi-
cally, the final graph G∗4n+1 contains the zero-length cycle
p2n−2→p2n−1→p2n→p2n−2 if n is even, and the zero-
length cycle r2n−2→r2n−1→r2n→r2n−2 if n is odd.
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Figure 7. Top: The abstract graph G∗ when n = 5. Bottom: An
embedding of G∗ on the torus. Corresponding boundary curves on the
cylinders are identified. Arrows indicate the effect of parametrization.

Vertices p2n and r2n are the only possible prede-
cessors for each vertex qi . Tedious calculation implies
that pred(λ, qi) alternates between these possibilities
exactly n times. Specifically, pred(8k, qi) = p2n for every
integer 0≤ k ≤ n/2, and pred(8k+4, qi) = r2n for every
integer 0 ≤ k ≤ (n− 1)/2. There are n vertices qi , so
the total number of pivots is at least n2. (More careful
analysis implies that the number of pivots is exactly
(n+ 1)2.) �
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Appendix: Comparison with Borradaile and Klein

Borradaile and Klein present their maximum-flow algo-
rithm as an instance of the Ford-Fulkerson augmenting-
path approach. Their algorithm begins by computing an
initial flowφ(0, ·)with value 0, by computing a shortest-
path tree in G∗ rooted at some dual vertex o incident
to t∗, exactly as described in Section 2.1. Khuller
et al. [33] prove that if G is embedded with o∗ as the
outer face, the residual graph of φ(0, ·) has no clockwise
cycles.

After the initialization phase, Borradaile and Klein’s
algorithm repeatedly augments along the leftmost s-to-t
path in the current residual graph. Augmenting along
the leftmost residual path ensures that the residual
graph has no clockwise cycles; indeed, this invariant can
be taken as a definition of ‘leftmost’. Their algorithm
maintains a spanning tree of G that is guaranteed to
contain the leftmost path.

Our algorithm can also be seen as an instance of the
augmenting-path approach, if we interpret the slack of
any dual e∗ as the residual capacity of the corresponding
primal edge e. In each iteration of the main loop,
our algorithm is pushing just enough flow through the
augmenting path LP to saturate one edge.

Moreover, our algorithm maintains the invariant that
the residual graph has no clockwise cycles. Let C be a
clockwise cycle in the current residual graph Gλ, with
some face f in its interior. Lemma 2.1 implies that the
dual cocycle C∗ is an (o, f ∗)-cut. Because the edges of Tλ
are oriented away from o, at least one edge in Tλ (on
the path from o to f ∗) is also in C∗. But the edges of Tλ
have zero slack; thus, at least one edge of C must be
saturated. Similar arguments imply that our loose path
LP is the leftmost s-to-t residual path in G, and that our
spanning tree Lλ of loose edges is the spanning tree of G
maintained by Borradaile and Klein’s algorithm. Thus,
our algorithm is essentially identical to Borradaile and
Klein’s.

(There is one unimportant difference between the
two algorithms. In our notation, Borradaile and Klein
unnecessarily maintain the shortest-path tree Tλ in a
separate dynamic tree data structure to detect the stop-
ping condition described by our Lemma 2.3.)
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