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Abstract. The ability to represent and query continuously moving ob-
jects is important in many applications of spatio-temporal database sys-
tems. In this paper we develop data structures for answering various
queries on moving objects and study tradeoffs between various perfor-
mance measures — query time, size, and accuracy of the result.

1 Introduction

With the rapid advances in geographical positioning technologies, it now be-
comes feasible for spatial database systems to keep track of continuously moving
objects accurately. In many applications, people would like to store these moving
objects in a way such that certain queries on them can be answered quickly. For
example, the mobile phone service provider may wish to know how many users
are currently present in a specified area. In such kinetic scenarios, most of the
traditional techniques fail to work because they usually assume that data do not
change over time. The problem of efficiently representing and querying moving
objects has been investigated by many researchers from database and computa-
tional geometry communities, and several new techniques have been developed
recently [1,7,9,16,23].

The kinetic data structure framework (KDS) proposed by Basch et al. [9]
has been successfully applied to a variety of geometric problems to efficiently
maintain data structures for moving objects. The key observation of KDS is
that, though the actual structure of the moving objects may change continuously
over time, its combinatorical description changes only at discrete time instances.
Although this framework has proven to be very useful for maintaining geometric
structures, it is not clear whether KDS is the right framework if we simply want
to query moving objects: on the one hand, there is no need to maintain the
underlying structure explicitly, and on the other hand the KDS maintains a
geometric structure on the current configuration of points while one may wish
to answer queries on the past as well as the future configurations of points.

For example, one can use the KDS by Basch et al. [9] to maintain the convex
hull of a set of linearly moving points. It processes roughly O(n?) events, each
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of which requires O(log® n) time. Using this structure, one can easily determine
whether a query point lies in the convex hull of the current configuration of
points. But suppose one is interested in the queries of the following form: “Does
a point p lie in the convex hull of the point set at time ¢,7” In order to answer
this convex-hull query, there is no need to maintain the convex hull explictly,
and we need a data structure that maintains convex hull at all times implicitly.
The focus of this paper is to develop data structures for answering these types of
queries and to study tradeoffs between various performance measures — query
time, size, and accuracy of the result.

1.1 Problem statement

Let S = {p1,p2,---,pn} be a set of moving points in R* or R?. For any time ¢,
let p;(t) be the position of p; at time ¢, and let S(t) = {p1(t),p2(t),- -, pn(t)} be
the configuration of S at time t. We assume that each p; moves along a straight
line at some fixed speed. We are interested in answering the following queries.

Q1. Given a y-range R = [y1,y2] C R' and a time stamp ¢,, report S(t,) N R,
i.e., all points of S that lie inside R at time ¢,.

Q2. Given an axis-aligned rectangle R C R? and a time stamp ¢,, report S(t,) N
R, i.e., all points of S that lie inside R at time ¢,.

Q3. Given a query point p € R? and a time stamp ¢,, report an J-approximate
nearest neighbor p’ € S of p at time ¢,, such that d(p,p'(ty)) < (1 + 6) -

minges d(p, q(tq))-

Q4. Given a query point p € R?, a time stamp ¢, and a value J, report an
d-approximate farthest neighbor p' € S of p at time t,, such that d(p,p'(t,)) >

(1 —96) - maxqes d(p,q(ty))-

Q5. Given a query point p € R? and a time stamp ¢,, a convez-hull query asks
whether p lies inside the convex hull of S(¢;).

1.2 Previous results

Range trees and kd-trees are two widely used data structures for orthogonal
range queries. People have developed kinetic algorithms for both structures:
Two-dimensional kinetic range trees were proposed in [1] with O(n logn/ loglogn)
space and O(logn + k) query time®; Agarwal et al. [4] developed kinetic data
structures for two variants of the standard kd-tree, pseudo kd-tree and overlap-
ping kd-tree, that can answer queries in O(n'/?>*¢ 4 k) time. Based on partition
trees [17], Kollios et al. [16] proposed a linear-size data structure for answering
one-dimensional range queries of type Q1 in O(n'/?** 4+ k) time. This result was

% Some of the previous work described in this section was actually done in the standard
two-level I/O model aiming to minimize the number of I/Os. Here we interpret and
state their results in the standard internal-memory setting.
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later extended to R? by Agarwal et al. [1] with the same space and query time
bounds.

Agarwal et al. [1] were the first to propose time-responsive data structures.
The time-responsive data structure optimizes the structure for the time close to
the current time, and only stores a rough approximation for the time far away in
the future. It has the nice property that queries on recent future configurations
can be answered much more quickly than on distant future ones. Agarwal et
al. [1] developed a time-responsive data structure for Q1 and Q2 queries whose
query time is a monotonically increasing function of the difference between the
query time stamp ¢, and the current time, and is bounded by O(n'/?** + k) in
the worst case. However, no exact bounds on the query time were known except
for a few special cases. Time-responsive data structures with provable query time
bounds were developed later on in [2], based on a fairly complicated technique.
The size of the structure is O(nlog n), and the query time is O(¢(t,) /n+logn+k)
and O(y/p(ty) + /nlogn/\/[e(ty)/n] + k) for Q1 and Q2 queries respectively,
where t, is the query time stamp and p(t,) < O(n?) is the number of kinetic
events between ¢, and the current time.

Kollios et al. [15] described a data structure for answering one-dimensional
nearest-neighbor queries, but did not give any bound on the query time. Later,
an efficient structure was given by Agarwal et al. [1] to answer d-approximate
nearest-neighbor queries in O(n'/?*/1/§) time using O(n/+/d) space. Their data
structure can also be used to answer d-approximate farthest neighbor queries,
for some fixed §. More practical algorithms to compute exact and approximate
k-nearest-neighbors were proposed by Procopiuc et al. [19] based on a data
structure called STAR-tree.

Basch et al. [9] described how to maintain the convex hull of a set of moving
points in R? under the KDS framework. They showed that each kinetic event
can be handled in logarithmic time, and the total number of kinetic events is
O(n?) if points move linearly. With the kinetic convex hull at hand, one can
easily answer a convex-hull query in O(logn) time. However, as noted earlier,
the kinetic convex hull can only answer queries on current configurations.

1.3 Our results

In this paper we present data structures for answering queries of type Q1-Q5.
A main theme of these data structures is to obtain various tradeoffs: time-
responsive data structures in which query time dependes on the value of {,;
tradeoff between query time and the accuracy of the result; and tradeoff be-
tween query time and the size of the data structure.

In Section 2, we describe a new time-responsive data structure for orthogonal
range queries in R' and R2. It uses O(n'*) space and can answer Q1 or Q2
queries in O([p(t,)/n]'/?>*¢ - polylog n + k) time. To appreciate how this new
query time improves over those of previously known data structures [2] (see
Section 1.2 for previous bounds), let us examine two extreme cases. For near
future queries (i.e., ¢(t,) = O(n)), previous structures answer Q1 and Q2 queries
in O(logn) and O(y/nlogn) time respectively, while our structures answer both
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queries in O(polylog n) time. For distant future queries (i.e., ¢(t,) = 2(n?)),
previous structures answer both Q1 and Q2 queries in O(n) time, which is no
better than the naive method, while our structures provide a query time bounded
by roughly O(y/n). Using this result, we also obtain the first time-responsive
structure for approximate nearest-neighbor queries.

In Section 3, we present a data structure for answering d-approximate farthest-
neighbor queries, which provides a tradeoff between the query time and the accu-
racy of the result. In particular, for any fixed parameter m > 1, we build a data
structure of size O(m) in O(n + m"/*) time so that a d-approximate farthest-
neighbor query can be answered in O(1/6%/4¢) time, given a parameter § > 0
as a part of the query.

In Section 4, we present data structures for answering convex-hull queries.
We obtain data structures that produce a continuous tradeoff between space and
query time. In particular, we obtain two data structures: one with linear size, and
the other with logarithmic query time. We then present a data structure that
provides a tradeoff between efficiency and accuracy for approximate convex-hull
queries, following the general scheme discussed in Section 3.

2 Time-Responsive Data Structures

In this section, we describe our time-responsive data structures for orthogonal
range reporting in R' and RZ2.

2.1 One-dimensional data structure

Preliminaries. Let L be a set of n lines in R%2. A (1/r)-cutting for L within
a simplex A is a triangulation of A such that each triangle of the triangulation
intersects at most n/r lines in L. Chazelle [12] described a deterministic algo-
rithm for computing a (1/r)-cutting of optimal size O(r?) in O(nr) time. The
basic idea of his algorithm is to refine cuttings by composition. Consequently,
the whole computation process of the algorithm can be naturally represented as
a tree T, referred to as the cutting tree. Each node v of 7T is associated with a
triangle A,, and the root of T is associated with A. For any internal node v, the
set of triangles associated with its child nodes is a triangulation of A,, which
forms a (1/rp)-cutting for the partial arrangement of L lying inside A,,, where
7o is a sufficiently large constant. The height of 7 is O(log,, r) = O(logr), and
the set of triangles associated with the leaves of the tree is the (1/r)-cutting for
L within A. We refer to this cutting as a hierarchical cutting. An important fact
about the cutting, which was implicitly proved in [12], is that its size depends
on the complexity of the arrangment of L within A.

Lemma 1 ([12]). Let A be a triangle in R, L be a set of n lines intersecting
A, and e > 0 be a constant. A hierarchical (1/r)-cutting of size O(r**< +xr? /n?)
for L inside A can be computed in O(nr® + kr/n) time, where k is the number
of intersections of L inside A.
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Overall structure. We interpret time ¢ as an additional dimension and consider
the trajectories of points of S in the ty-plane. Since the velocities of the points
are fixed, each of them traces out a line in the ty-plane. Let L = {{1, 42, -+, {,}
be the resulting set of lines, and A(L) the arrangement of L. Now a Q1 query
is equivalent to a vertical-segment stabbing query, i.e., reporting all lines in L
that intersect a query vertical segment {t,} X [y1, ya].

Each vertex in .4 (L) corresponds to a change of y-ordering for a pair of points
in S, which we refer to as a kinetic event. Similar to the approach by Agarwal
et al. [2], we divide the ty-plane into O(logn) vertical slabs as follows. Suppose
t = 0 is the current time. Let us consider the partial arrangement of A(L) that
lie in the halfplane ¢ > 0 (the other side of the arrangement can be handled
symmetrically). Let 7; be the 2-coordinate of the (2¢ - n)-th leftmost vertex in
that partial arrangement, 1 < i < [log,n]. Using an optimal slope selection
algorithm [14], 71,73, - - - can be computed in O(nlog®n) time. We then define
the first slab Wy to be [0,71] x R, and the i-th slab W; to be [r—1, 7] X R,
for i+ > 2. Note that the number of kinetic events inside the first ¢ slabs is
bounded by O(2¢ - n). For each W;, we construct a window data structure WZI;
described below, for answering vertical-segment stabbing queries within W;. Our
overall one-dimensional data structure consists of these O(logn) window data
structures.

To answer a Q1 query, we first let £ = {t,} X [y1,y2], and locate the slab W;
that contains £. We then use the corresponding window data structure WZ; to
report all lines in L that intersect &.

Window data structure. Before we describe the window data structure WZ;
for answering general vertical-segment stabbing queries in W;, we first show how
to construct a data structure YWT; to handle the case in which the query segment
is of the form {¢,} x (—o0,y2].

Let r = n/2%. We first construct a (1/r)-cutting = inside W; using Lemma 1.
Let us denote by 7z the cutting tree of =; Tz forms the top part of the tree
WT; (see Figure 1). For any node u in Tz, we denote by L,, the set of lines in L
that intersect A, (recall that A, is the triangle associated with the node u). For
each leaf node v of Tz, we build a partition tree [17], denoted by T, for the set
of points dual to the lines in L,. These partition trees form the bottom part of
WT ;. Finally, let p(u) denote the parent node of a node u in Tz. At each node
u of Tz (except for the root), we store a set J, C Ly, of lines that lie below
A,. This completes the construction of WT;.

The cutting tree Tz requires O(r' 41 + kr? /n?) space, where k = O(2¢-n) is
the complexity of A(L) within W;. There are O(r'*t + xr?/n?) partition trees
in WT;, each of size O(n/r). Therefore the total size of the partition trees is
bounded by O(r'** +kr?/n?)-O(n/r) = O(nr®* + kr/n). Since J, C Ly(y), the
size of J, for a node u at the j-th level of Tz is bounded by O(n/rl ') (recall
that ro is the sufficiently large constant in the construction of the cutting). The
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cutting
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Fig. 1. The window data structure for one slab in the one-dimensional time-responsive
data structure.

total size of J,,’s associated with the nodes of 7z is thus bounded by

log,.

0
Z 0] (ré(H_El) + nrgj/n2) . (n/réfl) = O(nr®! + kr/n).
j=1

Summing up the above three quantities and substituting the values of r and x,
we conclude that the size of WT; is O(n!*1/2%1). The time for constructing
WT; is O(n'**1 logn/2%1), which can be computed similarly.

Given a query segment & = {t;} X (—00,y2] in W;, we answer the stabbing
query using WT; as follows. We search down the tree WT; in a natural manner
to locate the leaf node v of Tz whose associated triangle A, contains the point
(tq,y2). Whenever we reach a node u of Tz, we report all lines in J,,. When we
reach the leaf node v, we can use the partition tree 7, to report all lines in L,
that lie below (t4,¥2), as it is just a two-dimensional halfspace range query in
the dual (the reason we use partition trees for answering halfspace range query is
to accommodate the general vertical-segment stabbing query described below).
It is straightforward to verify that the set of reported lines are indeed the set of
lines in L intersected by &.

We spend O(logr) = O(logn) time to locate the leaf node v, and then
O((n/r)t/?te2) = O(2i(1/2+22)) time for querying the parition tree 7. Taking
into account the time for reporting, the total time spent in answering a query is
bounded by O(logn + 2{(1/2+¢2) L k) where k is the number of reported lines.

Lemma 2. The structure WT; can answer the Q1 query with a given y-range
R = (—00,y2] in O(logn-f—?i(l/w'sz) +k) time, where k is the number of reported
points. It uses O(n**=1 /2%1) space and can be constructed in O(n'**°1 logn/2%1)
time.

For each node u of Tz (except for the root), let .J,, C L,y be the set of lines
that lie above A, . Notice that if we associate J,, instead of J, to each node w,
we then have a data structure YWT; that can answer vertical-segment stabbing
queries of the form {¢,} x [y1, +o0].
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We are now ready to describe the window data structure WZ;. It is con-
structed by modifying WT; as follows. Instead of associating .J,, directly to a
node u of 7z, we build a secondary data structure for J,, and associate it to u.
This secondary structure is similar to YWT;, except that it is constructed within
the triangle A, and the cutting used in the structure is a (2/].J,|)-cutting.
The query on WZ; can be performed in a standard manner.

Using the general framework for multi-level structures, see, e.g. [3], we can
prove that the size of WZ; is O(n'*®1logn/2%1), its preprocessing time is
O(n'te1 log? n/21), and the query time is O(log® n 4 2/(*/2+22) logn + k).

Returning to the overall one-dimensional data structure, recall that it consists
of O(logn) independent window structures. Therefore the overall structure has
size 3, O(n'**1logn/2%1) = O(n'**1logn), and can be constructed in total
time O(nlog®n) + 3, O(n'*°1 log” n/2i1) = O(n'**t log® n). The query perfor-
mance of the whole data structure deteriorates as time passes by. Therefore, we
update the data structure periodically in order to restore its performance. More
precisely, we rebuild the entire structure after every O(n) kinetic events. The
amortized cost for each event is bounded by O(n°* log® n).

Let ¢(t,) be the number of kinetic events (i.e., the number of swaps in y-
ordering of the points) between ¢, and the current time. Putting everything to-
gether, choosing a parameter e > max{e;, &>}, and noticing that 2! = O([¢(t,)/n])
for t, € [7—1, 7], we obtain the following theorem.

Theorem 1. Let S be a set of n linearly moving points in R'. A data structure
of size O(n**¢) can be built in O(n'*¢) time and maintained in amortized O(n®)
time per kinetic event such that a Q1 query on S can be answered in O(log2 n+
[o(t,)/n]*/?*e logn + k) time, where k is the number of reported points, t, is
the time stamp of the query, and @(t,) is the number of kinetic events between
ty and the current time.

2.2 Two-dimensional data structure

Let L = {{1,£s,---,£,} be the set of lines traced out by points of S in the tzy-
space. Given a time stamp ¢, and a rectangle R = R, x R, where R, = [x1, 2]
and R, = [y1,y2], the corresponding Q2 query is equivalent to reporting all
lines in L that intersect a horizontal rectangle {t,} x R in the txy-space. Let £7
and ¢! be the projections of ¢; onto the tz-plane and ty-plane respectively, for
1 <i<n.Wethenlet L, = {¢{,05,---, (2} and L, = {¢¥,05,---(¥}.

In the two-dimensional case, each vertex of A(L,) or A(L,) is regarded as
a kinetic event. Similar to the one-dimensional structure as described in the
previous section, we divide the tzy-space into O(logn) slices along the t-axis
such that the number of kinetic events inside the i-th slice is O(2¢ - n), and then
build a slice data structure for each of these slices.

To build one slice data structure, observe that for any ¢; € L, ¢; intersects
{t,} x R if and only if ¢¢ intersects {t,} x R, and ¢/ intersects {t,} x R,.
Thus we can build a four-level data structure similarly to the way we build the
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window structure WZ; in previous section. More specifically, we first build a
two-level window data structure for L, as described in Section 2.1, with one
minor modification: all partition trees in the structure are replaced by multilevel
partition trees as discussed in [1]. For each node u of the cutting tree in the
secondary data structure, define J, = {¢? | ¢% € J,} (recall that J, is the set
of lines that intersect A, and lie above A, ). We then build another two-level
window data structure for J/, and associate it to the node u.

Theorem 2. Let S be a set of n linearly moving points in R*. A data struc-
ture of size O(n'™¢) can be built in O(n'™°) time and maintained in amortized
O(n®) time per kinetic event such that a Q2 query on S can be answered in
O([g(t,)/n]'/?*= -polylog n +k) time, where k is the number of reported points,
tq is the time stamp of the query, and ¢(ty) is the number of kinetic events
between t, and the current time.

Combining the above result and the techniques developed in [1], we can
construct a time-responsive data structure for answering d-approximate nearest-
neighbor queries*. Omitting further details, we conclude with the following the-
orem.

Theorem 3. Let S be a set of n linearly moving points in R?>. A data structure of
size O(n' T2 /\/8) can be built in O(n'*=/\/$) time and maintained in amortized
O(nf //8) time per kinetic event so that a Q3 query on S can be answered in
O([(t,)/n]/* polylog(n)/V/§) time, where t, is the time stamp of the query
and @(ty) is the number of kinetic events between t, and the current time.

3 Approximate Farthest-Neighbor Queries

In this section, we describe a data structure for answering Q4 queries that
achieves a tradeoff between efficiency and accuracy. The query time only depends
on how much accuracy is required for a particular query. The general scheme
is very simple, but it crucially relies on the notion of core-sets introduced by
Agarwal et al. [6]. We first prove a lemma about farthest neighbors.

Lemma 3. Let S = {p1,---,pn} be a set of n points in RY. For any 0 <& < 1,
a subset Q C S of size O(1/614+1/2) can be computed in O(n +1/6%+1) time so
that given any point ¢ € R?, we have

1-96)- < < _
(1-9) rgggd(p, q) < r;leagd(p, q) < r;lggd(p, q)

Proof. We define f; : R* — R to be fi(q) = (d(pi,q))°, and let fl(q) = —fi(q)-
Let F ={f1,---, fu} U{fi, -, fl}. Notice that F is a family of d-variate poly-
nomials that admits a linearization of dimension d + 1. One can compute in

4 Of course, this result also holds for approximate farthest neighbor queries. However,
it will be immediately improved by Lemma 4 of the next section.
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O(n 4 1/6%t1) time a subset G C F of size O(1/6(¢+1)/2) that J-approximates
the extent of F [6,11], i.e., for any ¢ € R,

(18- (maxf(q) ~ min f<q>) < max f(g) — min /(q).

feEF fEF ~ feg feg

Let Q = {pi | fi € G or f/ € G}. Then for any ¢ € R?, we have

1/2
max d(p, q) > <(r;1§5< f(q) — min f(q))/ 2>

feg

FEF FEF

1/2
> ((1 ~5)- (max f(g) - minf<q>>/2)

> (1-4). (maXf(q)>1/2

feF
= (1-0) - maxd(p,q).

Therefore, () satisfies the desired property, which completes the proof. O

The subset () in the above lemma is referred to as a d-kernel for §-approximate
farthest neighbors (under Ly metric). Similarly, one can prove that such a core-
set also exists under L; or L, metric. The size of the core-set becomes O(1/6%/?)
under L; metric and O(1/5'/?) under L., metric in R?. We can further prove the
following result for a set of moving points. We omit the proof since it is almost
identical to the one given above.

Lemma 4. Let S = {p1,--,pn} be a set of n points moving linearly in R?.
For any 0 < § < 1, a subset Q C S of size O(1/6%3/2) can be computed in
O(n+1/6%+3) time so that given any time t € R and any point ¢ € R?, we have

(1-29)- max d(p(t),q) < max d(p(t),q) < max d(p(t), q).

As we mentioned in Section 1.2, for a set of n linearly moving points in R2,
one can build in O(nlog(n)/v/d) time a data structure of size O(n/+/d) that can
answer d-approximate farthest-neighbor queries in O(n!/?*¢/1/§) time, for any
fixed §. To achieve tradeoff between efficiency and accuracy, we do as follows. Let
m > 1 be a fixed parameter, and let §; = (2!/m)'/*, for 0 < i < logm. Let S; be
a 0;-kernel of S. A straightforward application of Lemma 4 with d = 2 shows that
all Si’s for 0 < i < logm can be computed in O(nlogm 4+ m™/*) total time. One
can reduce the time complexity to O(n+m7/*) by first computing a do-kernel So
of S and then computing a (8; —d;_1)-kernel S; of S;_; for 1 < i < logm. For each
Si, we then build a data structure for answering d;-approximate farthest-neighbor
queries on S;. The size of one such data structure is O(|S;|/v/d;) = O(m/2%);
as such, the total size of these data structures is O(m). Given a é-approximate
farthest-neighbor query, where (1/m)'/* < § < 1, we first find an index i such
that 26; < 6 < 26;41, and then query the corresponding data structure for S;.
The returned point is a 1 — (1 —§;)? < 2§; < § approximate farthest neighbor of
the query point. The query time is O(|S;|'/?1//&;) = O((1/8)%/*+*).
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Theorem 4. Let S be a set of n linearly moving points in R?. For a parameter
m > 1, a data structure of size O(m) can be built in O(n + m7/*) time so that
a §-approzimate farthest-neighbor query on S can be answered in O((1/8)%/4+°)
time, for any (1/m)Y/* < § < 1.

4 Convex-Hull Queries

In this section, we describe data structures for convex-hull queries amid moving
points, i.e., Q5 queries defined in Section 1.1, which provide various tradeoffs.
We begin with data structures that produce a continuous tradeoff betwee space
and query time. In particular, we present two data structures for this problem —
one with linear size, and the other with logarithmic query time. We then show
how to achieve a tradeoff between efficiency and accuracy, following the general
spirit of Section 3.

Tradeoff between space and query time. In the tzy-space, the set of linearly
moving points of S traces out a set of n oriented lines L = {1, /o, ---,£,}, whose
orientations are naturally defined to be along the positive t-axis. Given a time
stamp t, and a query point p € R?, let p = (p,t,) € R* and v C R? be the
plane ¢ = t;. To determine whether p € conv(S(t,)), we need to decide whether
D € conv(yN L). Observe that p ¢ conv(y N L) if and only if there exists a line
¢ lying in the plane «y that passes through p and lies outside conv(y N L). If we
assign an arbitrary orientation to ¢, then it can be verified that ¢ has the same
relative orientation® with respect to all lines in L (see Figure 2).

R® R’
Fig. 2. Pliicker coordinates and convex-hull queries on moving points in R?.

% Let ¢; be an oriented line in R® whose orientation is defined by an ordered pair of
points a and b on ¢, and let > be another oriented line whose orientation is defined
by two points ¢ and d on £>. The relative orientation of 1 and {2 is defined by the

sign of the determinant of the 4-by-4 matrix <(ll ll) (1: L1l>
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Pliicker coordinates [13,22] maps an oriented line £ in R? to either a point
7(f) in R (referred to as the Plicker point of ) or a hyperplane w(f) in R®
(referred to as the Plicker hyperplane of £). Furthermore, for any two oriented
lines ¢; and /5, {1 has a positive orientation with respect to £» if and only if
7(¢1) lies above w(fs).

Lemma 5. The union of the set of Plicker points of all oriented lines lying in
v and passing through P is a line in R®, denoted by (,,.

Proof. Let D = (tq,pz,Py)- A simple calculation shows that the Pliicker point of
an oriented line lying in v and passing through p can be written as

(aaoap.’ta _pyatqa _tqa)a

for & € R. The union of these Pliicker points is a line passing through two points
(0,0, —py,t4,0) and (1,0, p,,0, —t,) in R°. O

Let H = {w(¢;) | ¢; € L} be the set of Pliicker hyperplanes in R®. A line
¢ has the same relative orientation with respect to all lines in L if and only
if w(¢) lies above or below all hyperplanes of H. Hence, determining whether
p € conv(S(t,)) is equivalent to determining whether there is a point on ¢, that
lies above or below all hyperplanes in H. This can be formulated as a linear-
programming query problem, and a linear-size data structure with query time
O(n'=1/14/2Ipolylog n) was developed by Matousek [18] in R¢ for d > 4. In
fact, he obtained a continuous tradeoff between space and query time for this
problem. Invoking this result® with d = 5, we obtain the following result.

Theorem 5. Let S be a set of n linearly moving points in R?. For a parameter
n <m < n?, a data structure of size O(m'*%) can be built in O(m'*®) time so
that a Q5 query on S can be answered in O(n - polylog(n)/\/m) time.

Remark. Being a little careful, one can show that it is enough to build a linear-
programming query structure in R* instead of R®. This slightly decreases the
polylog factor in the query time. Using the same idea, one can build a data
structure for answering two-dimensional halfspace range queries amid moving
points.

A data structure with logarithmic query time. The polylog factor in the
query time of Theorem 5 is prohibitively large. We now describe a simple data
structure for convex-hull queries that avoids the use of the complicated linear-
programming query structure. The query time is reduced to O(logn). Althought
the size of the data structure is O(n?) in the worst case, a tradeoff between
efficiency and accuracy described in the next section alleviates this problem
easily.

Let us denote by ¢;(t) the dual line of point p;(t) at time ¢. As time ¢ varies,
each £;(t) traces out an algebraic surface, denoted by f;, in the dual-time space.

® The data structures of Chan [10] or Ramos [20] may also be used for this purpuse.



12 Pankaj K. Agarwal et al.

Let F = {f1, -+, fa} and F(t) = {l1(t),---,£,(t)}. It is clear that each vertex
on the upper or lower envelope of F corresponds to a kinetic event, indicating
a combinatorial change on the convex hull of S(t). We can compute the upper
and lower envelopes of F using an O(n?"¢) algorithm described in [8], and then
store each combinatorial change in a standard persistent data structure [21].

Given a point p and a time stamp ¢,, deciding whether p lies outside the
convex hull of S(¢;) is equivalent to deciding whether there exists a nonvertical
line passing through p such that the set S(t,;) lies above or below it. If such a
nonvertical line exists, observe that in the dual, it would be mapped to a point on
£(p) — the dual line of p — that lies either above the upper envelope or below the
lower envelope of F(t,), in which case £(p) must therefore intersect the envelopes
of F(ts). We can detect whether they indeed intersect by two standard binary
searches on the upper and lower envelopes of F(t,) respectively, which can be
performed in the persistent structure for any ¢, € R.

Denote by k the number of combinatorial changes to the convex hull of S
over time. It is known that £ = O(n?) for a set of n linearly moving points
in the plane [5]. Therefore the size of the persistent structure is bounded by
O(n+k) = O(n?), and the query time is bounded by O(log k+1logn) = O(logn).

Theorem 6. Let S be a set of n linearly moving points in R2, and let & = O(n?)
be the total number of combinatorial changes to the convex hull of S over time.
A data structure of size O(n + k) can be built in O(n**¢) time so that a Q5
query on S can be answered in O(logn) time.

Tradeoff between efficiency and accuracy. We can further build a data
structure for approzimate convex-hull queries. Given any unit vector u € S2,
the directional width of a point set P is defined to be w,(P) = maxyep(u,p) —
minyep(u,p). A subset C C S is a d-kernel of a set S of moving points if for any
time ¢ and any unit vector u, wy, (C(t)) > (1 —0)-w,(S(t)). Given any parameter
§, one can compute in O(n+1/8%) time a d-kernel of S of size O(1/§%/?), if points
of S move linearly [6, 11]. To achieve tradeoff between efficiency and accuracy for
convex-hull queries, we do as follows. Let m > 1 be a fixed parameter, and let
8 = (2¢/m)'/3, for 0 < i < logm. Let S; be a d;-kernel of S, for 1 < i < logm.
We can compute all S;’s in O(n + m) time by first computing a dp-kernel Sy of
S and then computing a (d; — d;—1)-kernel S; of S;_1 for 1 < i < logm. We then
build a data structure for each S; using Theorem 6. The size of one such data
structure is O(]S;|?) = O(m/2%); as such, the total size of these data structures
is O(m). Given a d-approximate convex-hull query, where (1/m)'/? < § < 1, we
first find an index ¢ such that d; < § < d;+1, and then query the corresponding
data structure for S;. The query time is O(log |S;|) = O(log(1/9)).

Theorem 7. Let S be a set of n linearly moving points in R?. For a parameter
m > 1, a data structure of size O(m) can be built in O(n+m>*) time so that a
d-approzimate convez-hull query on S can be answered in O(log(1/9)) time, for
any (1/m)Y/? <§ < 1.
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