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Abstract. We solve an open problem posed by Michael Biro at CCCG 2013 that was1

inspired by his and others’ work on beacon-based routing. Consider a human and a puppy2

on a simple closed curve in the plane. The human can walk along the curve at bounded3

speed and change direction as desired. The puppy runs along the curve (faster than the4

human) always reducing the Euclidean straight-line distance to the human, and stopping5

only when the distance is locally minimal. Assuming that the curve is smooth (with some6

mild genericity constraints) or a simple polygon, we prove that the human can always catch7

the puppy in finite time. Our results hold regardless of the relative speeds of puppy and8

human, and even if the puppy’s speed is unbounded.9
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1 Introduction10

You have lost your puppy somewhere on a simple closed curve. Both of you are forced to11

stay on the curve. You can see each other and both want to reunite. The problem is that the12

puppy runs faster than you, and it believes naively that it is always a good idea to minimize13

its straight-line distance to you. What do you do?14

To be more precise, let γ : S1 ↪→ R2 be a simple closed curve in the plane, which we15

informally call the track. Two special points move around the track, called the puppy p and16

the human h. The human can walk along the track at bounded speed and change direction17

as desired. The puppy runs with unbounded speed along the track as long as its Euclidean18

straight-line distance to the human is decreasing, until it reaches a point on the curve where19

the distance is locally minimized. As the human moves along the track, the puppy moves20

to stay at a local distance minimum. The human’s goal is to move in such a way that the21

puppy and the human meet. See Figure 1 for a simple example.22
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Figure 1: Catching the puppy.

In this paper we show that it is always possible to reunite with the puppy under the23

assumption that the curve is well-behaved (in a sense to be defined), or if the curve is a24

polygon. From this result it easily follows that catching a puppy that moves at any bounded25

speed is also possible: the strategy is essentially the same as for the unbounded-speed case,26

except that the human may have to move at a lower speed or occasionally stop, in order to27

let the puppy reach a point of minimal distance before continuing.28

The problem was posed in a different guise at the open problem session of the 25th29

Canadian Conference on Computational Geometry (CCCG 2013) by Michael Biro. In Biro’s30

formulation, the track was a railway, the human a locomotive, and the puppy a train carriage31

that was attracted to an infinitely strong magnet installed in the locomotive.32

Returning to our formulation of catching a puppy, it was also asked if the human33

will always catch the puppy by choosing an arbitrary direction and walking only in that34

direction. This turns out not to be the case; consider the star-shaped track in Figure 2.35

Suppose the human and puppy start at points h1 and p1, respectively, and the human walks36

counterclockwise around the track. When the human reaches h2, the puppy runs from p237

to p′2. When the human reaches h3, the puppy runs from p3 to p′3. Then the pattern repeats38

indefinitely. Examples of this type, where the human walking in the wrong direction will39

never catch the puppy, were independently discovered during the conference by some of the40

authors and by David Eppstein.41
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Figure 2: If the human keeps walking counterclockwise from h1, the human and the puppy
will never meet. To the right are closeups of two of the spikes of the star.

1.1 Related work42

Biro’s problem was inspired by his and others’ work on beacon-based geometric routing, a43

generalization of both greedy geometric routing and the art gallery problem introduced at44

the 2011 Fall Workshop on Computational Geometry [7] and the 2012 Young Researchers45

Forum [8], and further developed in Biro’s PhD thesis [6] and papers [9, 10]. A beacon is46

a stationary point object that can be activated to create a “magnetic pull” towards itself47

everywhere in a given polygonal domain P . When a beacon at point b is activated, a point48

object p moves moves greedily to decrease its Euclidean distance to b, alternately moving49

through the interior of P and sliding along its boundary, until it either reaches b or gets stuck50

at a “dead point” where Euclidean distance is minimized. By activating different beacons one51

at a time, one can route a moving point object through the domain. Initial results for this52

model by Biro and his colleagues [6–10] sparked significant interest and subsequent work in53

the community [2, 3, 5, 13, 18,20–22,26]. More recent works have also studied how to utilize54

objects that repel points instead of attracting them [11,24].55

Biro’s problem can also be viewed as a novel variant of classical pursuit problems,56

which have been an object of intense study for centuries [25]. The oldest pursuit problems ask57

for a description of the pursuit curve traced by a pursuer moving at constant speed directly58

toward a target moving along some other curve. Pursuit curves were first systematically59

studied by Bouguer [12] and de Maupertuis [14] in 1732, who used the metaphor of a pirate60

overtaking a merchant ship; another notable example is Hathaway’s problem [16], which asks61

for the pursuit curve of a dog swimming at unit speed in a circular lake directly toward a duck62

swimming at unit speed around its circumference. In more modern pursuit-evasion problems,63

starting with Rado’s famous “lion and man” problem [23, pp.114–117], the pursuer and target64

both move strategically within some geometric domain; the pursuer attempts to capture65

the target by making their positions coincide while the target attempts to evade capture.66

Countless variants of pursuit-evasion problems have been studied, with multiple pursuers67

and/or targets, different classes of domains, various constraints on motion or visibility,68

different capture conditions, and so on. Biro’s problem can be naturally described as a69

cooperative pursuit or pursuit-attraction problem, in which a strategic target (the human)70

wants to be captured by a greedy pursuer (the puppy).71
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Kouhestani and Rappaport [19] studied a natural variant of Biro’s problem, which we72

can recast as follows. A guppy is restricted to a closed and simply-connected lake, while the73

human is restricted to the boundary of the lake. The guppy swims with unbounded speed74

to decrease its Euclidean distance to the human. Kouhestani and Rappaport described a75

polynomial-time algorithm that finds a strategy for the human to catch the guppy, if such76

a strategy exists, given a simple polygon as input; they also conjectured that a capturing77

strategy always exists. Abel, Akitaya, Demaine, Demaine, Hesterberg, Korman, Ku, and78

Lynch [1] recently proved that for some polygons and starting configurations, the human79

cannot catch the guppy, even if the human is allowed to walk in the exterior of the polygon,80

thereby disproving Kouhestani and Rappaport’s conjecture. Their simplest counterexample81

is an orthogonal polygon with about 50 vertices.82

1.2 Our results83

Before describing our results in detail, we need to carefully define the terms of the problem.84

The track is a simple closed curve γ : S1 ↪→ R2. We consider the motion of two points on this85

curve, called the human (or beacon or target) and the puppy (or pursuer). A configuration86

is a pair (x, y) ∈ S1 × S1 that specifies the locations h = γ(x) and p = γ(y) for the human87

and puppy, respectively. Let D(x, y) denote the straight-line Euclidean distance between88

these two points. When the human is located at h = γ(x), the puppy moves from p = γ(y)89

to greedily decrease its distance to the human, as follows.90

• If D(x, y + ε) < D(x, y) for all sufficiently small ε > 0, the puppy runs forward along91

the track, by increasing the parameter y.92

• If D(x, y− ε) < D(x, y) for all sufficiently small ε > 0, the puppy runs backward along93

the track, by decreasing the parameter y.94

If both of these conditions hold, the puppy runs in an arbitrary direction. While the puppy95

is running, the human remains stationary. If neither condition holds, the configuration is96

stable; the puppy does not move until the human does. When the configuration is stable,97

the human can walk in either direction along the track; the puppy walks along the track in98

response to keep the configuration stable, until it is forced to run again. The human’s goal is99

to catch the puppy; that is, to reach a configuration in which the two points coincide.100

Our main result is that the human can always catch the puppy in finite time, starting101

from any initial configuration, provided the track is either a generic simple smooth curve or102

an arbitrary simple polygon.103

The remainder of the paper is structured as follows. We begin in Section 2 by104

considering some variants and special cases of the problem. In particular, we give a simple105

self-contained proof of our main result for the special case of orthogonal polygons.106

We consider generic smooth tracks in Sections 3 and 4. Specifically, in Section 3 we107

define two important diagrams, which we call the attraction diagram and the dual attraction108

diagram, and prove some useful structural results. At a high level, the attraction diagram is a109

decomposition of the configuration space S1 × S1 according to the puppy’s behavior, similar110
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to the free space diagrams introduced by Alt and Godau to compute Fréchet distance [4].111

We show that for a sufficiently generic smooth track, the attraction diagram consists of a112

finite number of disjoint simple closed critical curves, exactly two of which are topologically113

nontrivial. Then in Section 4, we argue that the human can catch the puppy on any track114

whose attraction diagram has this structure.115

In Section 5, we describe an extension of our analysis from smooth curves to simple116

polygonal tracks. Because polygons do not have well-defined tangent directions at their117

vertices, this extension requires explicitly modeling the puppy’s direction of motion in addition118

to its location. We first prove that the human can catch the puppy on a polygon that has no119

acute vertex angles and where no three vertices form a right angle; under these conditions,120

the attraction diagram has exactly the same structure as for generic smooth curves. We then121

reduce the problem for arbitrary simple polygons to this special case by chamfering—cutting122

off a small triangle at each vertex—and arguing that any strategy for catching the puppy on123

the chamfered track can be pulled back to the original polygon.124

Finally, we close the paper by suggesting several directions for further research.125

Open-source software demonstrating several of the tools developed in this paper126

is available at https://github.com/viglietta/Chasing-Puppies or https://archive.127

softwareheritage.org/swh:1:dir:58dd270b0896aa11024666b5cbd2481068e8eab9 .128

2 Warmup: other settings and a special case129

In this section, we discuss two variants of Biro’s problem and the special case of orthogonal130

polygons.131

In the first variant, both the human h and the puppy p are allowed to move anywhere132

in the interior and on the boundary of a simple polygon P . Here, as in beacon routing133

and Kouhestani and Rappaport’s variant [1, 19], the puppy moves greedily to decrease its134

Euclidean distance to the human, alternately moving through the interior of P and sliding135

along its boundary.136

As we will show in Theorem 1, h has a simple strategy to catch p in this setting,137

essentially by walking along the dual graph of any triangulation. This is an interesting138

contrast to the proof by Abel et al. [1] that h and p cannot always meet when h is restricted139

to the exterior of P and p to the interior. Our main result that h and p can meet when both140

are restricted to the boundary of P (even for a much wider class of simple closed curves),141

somehow sits in between these other two variants.142

When both h and p are restricted to the interior of P , we propose the following143

strategy for h; see Figure 3. Let T be a triangulation of P and let t1, . . . , tk be the path of144

pairwise adjacent triangles in T such that h ∈ t1 and p ∈ tk. Let ei be the common edge145

of ti and ti+1 and let di be the midpoint of ei. Let π = hd1d2 . . . dk−1 be a path from h to146

dk−1, which is contained in the triangles t1, . . . , tk−1. The human starts walking along π. As147

soon as the puppy enters a new triangle, the human recomputes π as described and follows148

the new path.149

Theorem 1. The proposed strategy will make h and p meet.150
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Figure 3: The proposed strategy when h and p are restricted to the interior of a simple
polygon P . The human h will follow the path π. Note that the triangle containing p will
change before h reaches d1, and π will be updated accordingly.

Proof. First, we observe that if the puppy ever enters the triangle t1 that is occupied by the151

human, then the puppy and the human will meet immediately. Assume that the human does152

not meet the puppy right from the beginning. The region P \ t1 consists of one, two, or three153

polygons, one of which Pp contains p. Thus, whenever the human moves from one triangle154

to another, the set of triangles that can possibly contain p shrinks. We conclude that the155

human and the puppy must meet eventually.156

In our second variant, the human and the puppy are both restricted to a simple,157

closed curve γ in R3. Here it is easy to construct curves on which h and p will never meet;158

the simplest example is a “double loop” that approximately winds twice around a planar159

circle, as shown in Figure 4.160

h

p

Figure 4: A double loop in R3; the human and puppy will never meet.

Finally, we consider the special case of Biro’s original problem where the track γ is161

the boundary of an orthogonal polygon in the plane. This special case of our main results162

admits a much simpler self-contained proof.163

Theorem 2. The human can catch the puppy on any simple orthogonal polygon, by walking164

counterclockwise around the polygon at most twice.165

Proof. Let P be an arbitrary simple orthogonal polygon. Let u1 be its leftmost point with166

the maximum y-coordinate, and u2 be the next boundary vertex of P in the clockwise order167

(see Figure 5). Finally, let ℓ be the horizontal line supporting the segment u1u2.168
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We break the motion of the human into two phases. In the first phase, the human169

moves counterclockwise around P from the starting location to u1. If the human catches the170

puppy during this phase, we are done, so assume otherwise. In the second phase, the human171

walks counterclockwise around P starting from u1 to u2.172

We claim that the puppy p is never in the interior of the segment u1u2 during the173

second phase; thus, p always lies on the closed counterclockwise subpath of P from h to u2174

(or less formally, “between h and u2”). This claim implies that the human and the puppy are175

united during the second phase.176

u1 hp=u2
ℓ

Figure 5: Proof of Theorem 2. During the human’s second trip around P , the puppy lies
between u2 and the human.

The puppy must first cross the point u2 if it ever enters the interior of u1u2. So177

consider any moment during the second phase when p moves upward to the vertex u2. At178

that moment, h must be on the line ℓ to the right of p. (For any point a below ℓ, there is a179

point b on the segment below u2 that is closer to a than u2.) Thus, the puppy will stay on180

u2 as long as h is on ℓ. As soon as h leaves ℓ the puppy will leave u2 downward. Thus the181

puppy can never go to the interior of the edge u1u2.182

The star-shaped track in Figure 2 shows that this simple argument does not extend183

to arbitrary polygons, even with a constant number of edge directions.184

3 Diagrams of smooth tracks185

We first formalize both the problem and our solution under the assumption that the track186

is a generic smooth simple closed curve γ : S1 ↪→ R2. In particular, for ease of exposition,187

we assume that γ is regular and C3, meaning it has well-defined continuous first, second,188

and third derivatives, and its first derivative is nowhere zero. We also assume γ satisfies189

some additional genericity constraints, to be specified later. We consider polygonal tracks in190

Section 5.191

3.1 Configurations and genericity assumptions192

We analyze the behavior of the puppy in terms of the configuration space S1 × S1, which193

is the standard torus. Each configuration point (x, y) ∈ S1 × S1 corresponds to the human194
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being located at h = γ(x) and the puppy being located at p = γ(y).195

For any configuration (x, y), recall that D(x, y) denotes the straight-line Euclidean196

distance between the points γ(x) and γ(y). We classify all configurations (x, y) ∈ S1 × S1
197

into three types, according to the sign of the partial derivative of distance with respect to198

the puppy’s position.199

• (x, y) is a forward configuration if ∂
∂yD(x, y) < 0.200

• (x, y) is a backward configuration if ∂
∂yD(x, y) > 0.201

• (x, y) is a critical configuration if ∂
∂yD(x, y) = 0.202

Starting in any forward (resp. backward) configuration, the puppy automatically runs forward203

(resp. backward) along the track γ. Genericity implies that there are a finite number of204

critical configurations (x, y) with any fixed value of x, or with any fixed value of y. We205

further classify the critical configurations as follows:206

• (x, y) is a stable critical configuration if ∂2

∂y2
D(x, y) > 0.207

• (x, y) is an unstable critical configuration if ∂2

∂y2
D(x, y) < 0.208

• (x, y) is a forward pivot configuration if ∂2

∂y2
D(x, y) = 0 and ∂3

∂y3
D(x, y) < 0.209

• (x, y) is a backward pivot configuration if ∂2

∂y2
D(x, y) = 0 and ∂3

∂y3
D(x, y) > 0.210

In any stable configuration, the puppy’s distance to the human is locally minimized, so the211

puppy does not move unless the human moves. In any unstable configuration, the puppy can212

decrease its distance by running in either direction. Finally, in any forward (resp. backward)213

pivot configuration, the puppy can decrease its distance by moving in one direction but not214

the other, and thus automatically runs forward (resp. backward) along the track.215

Critical points can also be characterized geometrically as follows. Refer to Figure 6.216

A configuration (x, y) is critical if the human γ(x) lies on the line N(y) normal to γ at the217

puppy’s location γ(y). Let C(y) denote the center of curvature of the track at γ(y). Then218

(x, y) is a pivot configuration if γ(x) = C(y), a stable critical configuration if the open ray219

from C(y) through the human point γ(x) contains the puppy point γ(y), and an unstable220

critical configuration otherwise.221

p
h3h2h1

Figure 6: Three critical configurations: (h1, p) is unstable; (h2, p) is a pivot configuration,
and (h3, p) is stable.
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Genericity of the track γ implies that this classification of critical configurations222

is exhaustive, and moreover, that the set of pivot configurations is finite. In particular,223

our analysis requires that in any pivot configuration (x, y), the puppy point γ(y) is not a224

local curvature minimum or maximum.1 Otherwise, we would need higher derivatives to225

disambiguate the puppy’s behavior. In the extreme case where γ contains both an open226

circular arc α and its center c, all configurations where h = c and p ∈ α are stable.227

3.2 Attraction diagrams228

The attraction diagram of the track γ is a decomposition of the configuration space229

S1 × S1 by critical configurations. Our genericity assumptions imply that the set of critical230

points—the common boundary of the forward and backward configurations—is the union of231

a finite number of disjoint simple closed curves, which we call critical cycles. At least one of232

these critical cycles, the main diagonal x = y, consists entirely of stable configurations; critical233

cycles can also consist entirely of unstable configurations. If a critical cycle is neither entirely234

stable nor entirely unstable, then its points of vertical tangency are pivot configurations, and235

these points subdivide the curve into x-monotone paths, which alternately consist of stable236

and unstable configurations.237

Figure 7 shows a sketch of the attraction diagram of a simple closed curve. We238

visualize the configuration torus S1 × S1 as a square with opposite sides identified. Green239

and red paths indicate stable and unstable configurations, respectively; blue dots indicate240

pivot configurations; and backward configurations are shaded light gray. Figure 8 shows241

the attraction diagram for a more complex polygonal track, with slightly different coloring242

conventions. (Again, we will discuss polygonal tracks in more detail in Section 5.)243

0 1

3 2
4 5

7 6

ph

0

1

2

3

4

5

6

7

0

1 2 3 4 5 6 7 00

Figure 7: The attraction diagram of a simple closed curve, with one unstable critical
configuration emphasized.

The cycles in any attraction diagram have a simple but important topological structure.244

A critical cycle in the attraction diagram is contractible if it is the boundary of a simply245

1More concretely, we assume the track γ intersects its evolute (the locus of centers of curvature) transversely,
away from its cusps.
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Figure 8: The attraction diagram of a complex simple polygon. Serrations in the diagram
are artifacts of the curve being polygonal instead of smooth. The river is highlighted in blue.
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connected subset of the torus S1 × S1 and essential otherwise. For example, the main246

diagonal is essential, and the attraction diagram in Figure 7 contains two contractible critical247

cycles and two essential critical cycles.248

Lemma 3. The attraction diagram of any generic closed curve contains an even number of249

essential critical cycles.250

Proof. This lemma follows immediately from standard homological arguments, but for the251

sake of completeness we sketch a self-contained proof.252

Fix a generic closed curve γ. Let α and β denote the horizontal and vertical cycles253

S1 × {0} and {0} × S1, respectively. Without loss of generality, assume α and β intersect254

every critical cycle in the attraction diagram of γ transversely.255

A critical cycle C in the attraction diagram is contractible if and only if α and β256

each cross C an even number of times. (Indeed, this parity condition characterizes all simple257

contractible closed curves in the torus.) On the other hand, α and β each cross the main258

diagonal once. It follows that α and β each cross every essential critical cycle an odd number259

of times; otherwise, some pair of essential critical cycles would intersect.260

Because the critical cycles are the boundary between the forward and backward261

configurations, α and β each contain an even number of critical points. The lemma now262

follows immediately.263

We emphasize that this lemma does not actually require the track γ to be simple;264

the argument relies only on properties of generic functions over the torus that are minimized265

along the main diagonal.266

3.3 Dual attraction diagrams267

Our analysis also relies on a second diagram, which we call the dual attraction diagram268

of the track. We hope the following intuition is helpful. While the attraction diagram tells269

us the possible positions of the puppy depending on the position of the human, the dual270

attraction diagram gives us the possible positions of the human depending on the position of271

the puppy. For each puppy configuration y ∈ S1, we consider the normal line N(y). We are272

interested in the intersection points of γ with N(y), as those are the possible positions of the273

human. The idea of the dual attraction diagram is to trace the positions of the human as a274

function of the position of the puppy, see Figure 10.275

Let T (y) denote the directed line tangent to γ at the point γ(y). For any configuration276

(x, y), let ℓ(x, y) denote the distance from γ(x) to the tangent line T (y), signed so that277

ℓ(x, y) > 0 if the human point γ(x) lies to the left of T (y) and ℓ(x, y) < 0 if γ(y) lies to278

the right of T (y). More concisely, assuming without loss of generality that the track γ is279

parameterized by arc length, ℓ(x, y) is twice the signed area of the triangle with vertices280

γ(x), γ(y), and γ(y) + γ′(y).281

Let L : S1 × S1 → S1 × R denote the function L(x, y) = (y, ℓ(x, y)). The dual282

attraction diagram is the decomposition of the infinite cylinder S1 × R by the points283

http://jocg.org/
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{L(x, y) | (x, y) is critical}. At the risk of confusing the reader, we refer to the image284

L(x, y) ∈ S1 × R of any critical configuration (x, y) as a critical point of the dual attraction285

diagram.286

The dual attraction diagram can also be described as follows. For any y ∈ S1
287

and d ∈ R, let Γ(y, d) denote the point on the normal line N(y) at distance d to the left288

of the tangent vector γ′(y). More formally, assuming without loss of generality that γ289

is parameterized by arc length, we have Γ(y, d) = γ(y) + d
[
0 −1
1 0

]
γ′(y). We emphasize290

that Γ(y, d) does not necessarily lie on the curve γ. The dual attraction diagram is the291

decomposition of the cylinder S1 × R by the preimage Γ−1(γ) of γ.292

γ(y)γ(x)=Γ(y, d)

γ(xʹ)

d=ℓ(x, y)

ℓ(xʹ, y)

N(y)

T(y)

Figure 9: Examples of the functions ℓ and Γ used to define the dual attraction diagram.

Because γ is simple and regular, the dual attraction diagram is the union of simple293

disjoint closed curves. The function L continuously maps each critical cycle in the attraction294

diagram to a closed curve in the cylinder S1×R; we also call this image curve a critical cycle.295

Thus, the restriction of L to the set of critical configurations is a homeomorphism onto its296

image in the dual attraction diagram. In particular, L maps the main diagonal x = y to the297

horizontal axis ℓ(x, y) = 0 of the dual attraction diagram. We emphasize, however, that the298

two diagrams are not topologically equivalent. Figure 10 shows the dual attraction diagram299

of the same track whose attraction diagram is shown in Figure 7; here preimages of points300

inside the track are shaded.301

Just as in the attraction diagram, a critical cycle in the dual attraction diagram is302

contractible if it is the boundary of a simply connected subset of the cylinder S1 × R and303

essential otherwise.304

0 1

3 2
4 5

7 6

p
h

0 1 2 3 4 5 6 7 0

Figure 10: The dual attraction diagram of a simple closed curve, with one critical configuration
emphasized. Compare with Figure 7.
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Lemma 4. The function L bijectively maps essential critical cycles in the attraction diagram305

to essential critical cycles in the dual attraction diagram. In particular, the two diagrams306

have the same number of essential critical cycles.307

Proof. Let α = S1 ×{0} and α′ = S1 ×{0} denote the horizontal cycles in the torus S1 ×S1
308

and in the infinite cylinder S1 ×R, respectively. Let C be any critical cycle on the attraction309

diagram, and let C ′ = L(C) be the corresponding critical cycle in the dual attraction diagram.310

Recall from the proof of Lemma 3 that C is contractible on the torus if and only if311

|C ∩ α| is even. Similarly, C ′ is contractible in the cylinder if and only if |C ′ ∩ α′| is even.312

The map L : S1 × S1 → S1 × R maps C ∩ α bijectively to C ′ ∩ α′. We conclude that C is313

essential if and only if C ′ is essential.314

With this correspondence in hand, we can now more carefully describe the topological315

structure of the attraction diagram when the track is simple.316

Lemma 5. The attraction diagram of a simple generic closed curve contains exactly two317

essential critical cycles.318

Proof. Fix a generic closed curve γ. Lemma 3 implies that the attraction diagram of γ319

contains at least two essential critical cycles, one of which is the main diagonal. Thus, to320

prove the lemma, it remains to show that there are at most two essential critical cycles, in321

either the attraction diagram or the dual attraction diagram.322

Let Σ ⊂ S1 × R denote the set of essential critical cycles in the dual attraction323

diagram. Any two cycles in Σ are homotopic—meaning one can be continuously deformed324

into the other—because there is only one nontrivial homotopy class of simple cycles on the325

infinite cylinder S1 × R. It follows that the cycles in Σ have a well-defined vertical total326

order. In particular, the highest and lowest intersection points between any vertical line327

and Σ always lie on the same two essential cycles in Σ.328

Without loss of generality, suppose γ(0) is a point on the boundary of the convex hull329

of γ. Let C be any essential critical cycle in the attraction diagram of γ, and let C ′ = L(C)330

denote the corresponding essential cycle in the dual attraction diagram. The cycle C must331

pass through all possible puppy positions and all possible human positions; thus, C contains332

a configuration (0, y) for some parameter y ∈ S1. Recall that N(y) denotes the line normal333

to γ at γ(y). Then γ(0) must be an endpoint of the convex hull of γ ∩N(y), which is a line334

segment. We conclude that C ′ must be either the highest or lowest essential critical cycle in335

the dual attraction diagram. Therefore, there are at most two critical cycles, completing the336

proof.337

In the rest of the paper, we mnemonically refer to the two essential critical cycles in338

the attraction diagram of a simple track as the main diagonal and the river .339

We emphasize that the converse of Lemma 5 is false; there are non-simple tracks340

whose attraction diagrams have exactly two essential critical cycles. (Consider the figure-eight341

curve ∞.) Moreover, we conjecture that Lemma 5 can be generalized to all (smooth) tracks342

with turning number ±1.343
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4 Dexter and sinister strategies344

We can visualize any strategy for the human to catch the puppy as a path through the345

attraction diagram, consisting entirely of segments of stable critical paths and vertical346

segments, that ends on the main diagonal, as shown in Figure 11. We refer to the vertical347

segments as pivots. Every pivot (except possibly the first) starts at a pivot configuration,348

and every pivot ends at a stable configuration.349

p

h

p

h

p

h

p

h

p

h p=h

Figure 11: A sinister strategy for catching the puppy; compare with Figures 1 and 7.

We call a strategy dexter if it ends with a backward pivot—a downward segment,350

approaching the main diagonal to the right—and we call a configuration (x, y) dexter if351

there is a dexter strategy for catching the puppy starting at (x, y). Similarly, a strategy is352

sinister if it ends with a forward pivot—a skyward segment, approaching the main diagonal353

to the left—and a configuration is sinister if it is the start of a sinister strategy.2 A single354

configuration can be both dexter and sinister; see Figure 12.355

Theorem 6. Let γ be a generic track whose attraction diagram has exactly two essential356

critical cycles. Every configuration on γ is dexter or sinister, or possibly both; thus, the357

human can catch the puppy on γ from any starting configuration.358

Before giving the proof, we emphasize that Theorem 6 does not require the track γ359

to be simple. Also, it is an open question whether having exactly two essential critical cycle360

curves is a necessary condition for the human to always be able to catch the puppy. (We361

conjecture that it is not.)362

Proof. Fix a generic track γ whose attraction diagram has exactly two essential critical cycles,363

which we call the main diagonal and the river. Assume γ has at least one pivot configuration,364

since otherwise, from any starting configuration, the puppy runs directly to the human.365

Let D be the set of all dexter configurations, and let S be the set of all sinister366

configurations. We claim that D and S are both annuli that contain both the main diagonal367

and the river. Because S and D meet on opposite sides of the main diagonal, this claim368

2Dexter and sinister are Latin for right (or skillful, or fortunate, or proper, from a Proto-Indo-European
root meaning “south”) and left (or unlucky, or unfavorable, or malicious), respectively.
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Figure 12: Dexter (orange) and sinister (cyan) configurations in the example attraction
diagram. Arrows on the stable critical paths describe dexter and sinister strategies for
catching the puppy.

implies that D ∪ S is the entire torus, completing the proof of the lemma. We prove our369

claim explicitly for D; a symmetric argument establishes the claim for S.370

For purposes of argument, we partition the attraction diagram of γ by extending371

vertical segments from each pivot configuration to the next critical cycles directly above and372

below. We call the cells in this decomposition trapezoids, even though their top and bottom373

boundaries may not be straight line segments. At each forward pivot configuration p, we374

color the vertical segment above (x, y) green and the vertical segment below p red ; the colors375

are reversed for backward vertical segments, see Figure 13.376

The first step of any strategy is a (possibly trivial) pivot onto a stable critical path.377

Because the human and puppy can move freely within any stable critical path σ, either every378

point in σ is dexter, or no point in σ is dexter. Similarly, for any green pivot segment π,379

either every point in π is dexter or no point in π is dexter.380

Consider any trapezoid τ , and let σ be the stable critical path on its boundary.381

Starting in any configuration in τ , the puppy immediately moves to a configuration on σ.382

Thus, if any point in τ is dexter, then σ is dexter, which implies that every point in τ is383

dexter. Thus, we can describe entire trapezoids as dexter or not dexter. It follows that D is384

the union of trapezoids.385

If two trapezoids share a stable critical path other than the main diagonal, then either386

both trapezoids are dexter or neither is dexter. Similarly, if the green pivot segment leaving387

a pivot configuration p is dexter, then all four trapezoids incident to p are dexter; otherwise,388

either two or none of these four trapezoids are dexter.389

We conclude that aside from the main diagonal, the boundary of D consists entirely390

of unstable critical paths, pivot configurations, and red vertical segments. Moreover, for391

every pivot configuration p on the boundary of D, the green pivot segment leaving p is not392

dexter.393

By definition, every point in D is connected by a (dexter) path to the main diagonal,394
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Figure 13: Possible arrangements of dexter trapezoids near a forward pivot configuration.

so D is non-empty and connected. On the other hand, D excludes a complete cycle of395

forward configurations just below the main diagonal. For any x ∈ S1, let D(x) denote the396

set of dexter configurations (x, y); this set consists of one or more vertical line segments in397

the attraction diagram.398

Suppose for the sake of argument that some set D(x) is disconnected. Because D is399

connected, the boundary of D must contain a concave vertical bracket : A vertical boundary400

segment π whose adjacent critical boundary segments both lie (without loss of generality)401

to the right of π, but D lies locally to the left of π. See Figure 14. Let p be the pivot402

configuration at one end of π. The green vertical segment on the other side of p is dexter,403

which implies that all trapezoids incident to p are dexter, contradicting the assumption that404

π lies on the boundary of D. We conclude that for all x, the set D(x) is a single vertical line405

segment; in other words, D is a monotone annulus.406

p

π

Figure 14: A hypothetical concave vertical bracket on the boundary of D.

The bottom boundary of D is the main diagonal. The monotonicity of D implies that407

the top boundary of D is a monotone “staircase” alternating between upward red vertical408

segments and rightward unstable critical paths. Every trapezoid immediately above the top409

boundary of D contains only forward configurations. Thus, there is a complete essential410

cycle ϕ of forward configurations just above the upper boundary of D. Because ϕ contains411

only forward configurations, ϕ must lie entirely above the river. It follows that D contains412

the entire river.413

Symmetrically, S is an annulus bounded above by the main diagonal and bounded414

below by a non-contractible cycle of backward configurations; in particular, the entire river415

lies inside S. We conclude that D ∪ S is the entire configuration torus.416

If the attraction diagram of γ has more than two essential critical cycles curves, then417

D and S are still monotone annuli, each bounded by the main diagonal and an essential418

cycle of red vertical segments and unstable paths, and thus S and D each contain at least419
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one essential critical cycle other than the main diagonal. However, D ∪ S need not cover the420

entire torus.421

Corollary 7. The human can catch the puppy on any generic simple closed track, from any422

starting configuration.423

5 Polygonal tracks424

Our previous arguments require, at a minimum, that the track has a continuous derivative425

that is never equal to zero. We now extend our results to polygonal tracks, which do not426

have well-defined tangent directions at their vertices.427

5.1 Polygonal attraction diagrams428

Throughout this section, we fix a simple polygonal track P with n vertices. We regard P as429

a continuous piecewise linear function P : S1 ↪→ R2, parameterized by arc length. Without430

loss of generality P (0) is a vertex of the track. We index the vertices and edges of P in order,431

starting with v0 = P (0), where edge ei connects vi to vi+1; all index arithmetic is implicitly432

performed modulo n.433

To properly describe the puppy’s behavior, we must also account for the direction434

that the puppy is facing, even when the puppy lies at a vertex. To that end, we represent435

the track using both a continuous position function π : S1 → R2 and a continuous direction436

function θ : S1 → S1. Intuitively, the two functions describe the position and orientation of437

the puppy as it makes a complete circuit along P : it advances at constant speed along each438

edge, and it stops at each vertex to modify its direction vector, again at constant speed.439

To be precise, both π(y) and θ(y) are piecewise linear functions of the puppy’s440

parameter y ∈ S1. The curve π(y) is a re-parameterization of P such that, when π(y) is441

in the interior of an edge ei of P , its derivative π′(y) is a constant positive multiple of442

θ(y) = (vi+1 − vi)/∥vi+1 − vi∥. Moreover, for each vertex vi of P , the preimage π−1(vi)443

is a non-degenerate interval [ai, bi] ⊂ S1 such that π′(y) = 0 whenever ai < y < bi; also,444

θ(ai) = (vi−vi−1)/∥vi−vi−1∥, θ(bi) = (vi+1−vi)/∥vi+1−vi∥, and θ(y) is linear and injective445

on [ai, bi], turning clockwise if the edges ei−1 and ei define a clockwise turn, and vice versa.446

(The ratio of the speeds at which the puppy moves along edges and turns around at vertices447

is not relevant.)448

We classify any human-puppy configuration (x, y) ∈ S1 × S1 as forward, backward, or449

critical, if the dot product (P (x)−π(y))·θ(y) is negative, positive, or zero, respectively. In any450

forward configuration (x, y), the puppy moves to increase the parameter y; in any backward451

configuration, the puppy moves to decrease the parameter y. (The human’s direction is452

irrelevant.) The attraction diagram is the set of all critical configurations (x, y) ∈ S1 × S1.453

We further classify critical configurations (x, y) as follows:454

• final if P (x) = π(y),455

• stable if (x, y − ε) is forward and (x, y + ε) is backward for all suffic. small ε > 0,456
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• unstable if (x, y − ε) is backward and (x, y + ε) is forward for all suffic. small ε > 0,457

• forward pivot if (x, y − ε) and (x, y + ε) are both forward for all suffic. small ε > 0, or458

• backward pivot if (x, y − ε) and (x, y + ε) are both backward for all suffic. small ε > 0.459

A straightforward case analysis implies that this classification is exhaustive.460

To define the attraction diagram of P , we decompose the torus S1 ×S1 into a 2n×n461

grid of rectangular cells, where each column corresponds to an edge ej containing the human,462

and each row corresponds to either a vertex vi or an edge ei containing the puppy. The main463

diagonal of the attraction diagram is the set of all final configurations. Strictly speaking, in464

this case the “main diagonal” is not just a straight line, but consists of alternating diagonal465

and vertical segments. We can characterize the critical points inside each cell as follows:466

Each edge-edge cell ei× ej contains at most one boundary-to-boundary path of stable467

critical configurations (x, y). Refer to Figure 15.468

ei

ej

ei

ej

p

h

Figure 15: All edge-edge critical configurations are stable.

Each vertex-edge cell vi × ej contains at most one boundary-to-boundary path of469

stable critical configurations and at most one boundary-to-boundary path of unstable critical470

configurations. If the cell contains both paths, they are disjoint. A configuration (x, y) with471

π(y) = vi is stable if and only if P (x) lies in the outer normal cone at vi, and unstable if and472

only if P (x) lies in the inner normal cone at vi; see Figure 16.473

vi

ej

vi

ej

p

h

vi

ej

vi

ej

p

h

Figure 16: Stable and unstable vertex-edge critical configurations.

5.2 Polygonal pivot configurations474

Unlike the attraction diagrams of generic smooth curves defined in Section 3.2, the attraction475

diagrams of polygons are not always well-behaved. In particular, a pivot configuration476

may be incident to more (or fewer) than two critical curves, and in extreme cases, pivot477

configurations need not even be discrete. We call such a configuration a degenerate pivot478

configuration.479
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In any pivot configuration (x, y), the puppy π(y) lies at some vertex vi, the puppy’s480

direction θ(y) is parallel to either ei (or ei+1). Generically, each pivot configuration is a481

shared endpoint of an unstable critical path in cell vi × ej and a stable critical path in cell482

ei × ej (or ei−1 × ej); see Figure 17.483

ei

ej

ei

ej
vi

vi

p

h

Figure 17: Near a non-degenerate pivot configuration.

There are three distinct ways in which degenerate pivot configurations can appear.484

A type-1 degeneracy is caused by an acute angle on P . Specifically, let vi be a485

vertex of P . The configuration (x, y) with P (x) = π(y) = vi is degenerate if the angle486

between ei−1 and ei is strictly acute. In the attraction diagram of a type-1 degeneracy, two487

stable critical curves and two unstable critical curves end on a single vertical section of the488

main diagonal (corresponding to the human and the puppy being both at vi, but the puppy489

facing in different directions). Refer to Figure 18.490

vi

ei–1 ei

ei

ei–1

vi

ei

ei–1

ei

ei–1

p

h

p

h

vi

Figure 18: Stable and unstable configurations near an acute vertex angle.

A type-2 degeneracy is caused by a more specific configuration. Let ei be an edge491

of P , and let ℓ be the line perpendicular to ei through vi (or, symmetrically, through vi+1).492

Let vj be another vertex of P which lies on ℓ. The configuration (x, y) with P (x) = vj and493

π(y) = vi is degenerate if:494

• vi−1 and vj lie in the same open halfspace of the supporting line of ei; and495

• vj−1 and vj+1 lie in the same open halfspace of ℓ.496

A type-2 degeneracy corresponds to a vertex (pivot configuration) of degree 4 or 0 in the497

attraction diagram. We further distinguish these as type-2a and type-2b. Refer to Figure 19.498

Finally, a type-3 degeneracy is essentially a limit of both of the previous types of499

degeneracies. Let ei be an edge of P , let ℓ be the line perpendicular to ei through vi, and500

let ej be another edge of P which lies on ℓ. The configuration (x, y) with P (x) ∈ ej and501
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Figure 19: Type-2a and type-2b degenerate pivot configurations.

π(y) = vi is degenerate if vertices vi−1 and vj lie in the same open halfspace of the supporting502

line of ei. When this degeneracy occurs, pivot configurations are not discrete, because503

the point P (x) ∈ ej can be chosen arbitrarily. Moreover, the vertex-vertex configurations504

(vj , vi) and (vj−1, vi) have odd degree in the attraction diagram. A type-3 degeneracy can505

be connected to (two or more) other critical curves, or be isolated. We further distinguish506

these as type-3a and type-3b, depending on whether vi is an endpoint of ej . See Figure 20.507
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Figure 20: Type-3a and type-3b degenerate pivot configurations.

In Section 5.3 we first consider polygonal tracks which do not have any degeneracies508

of these three types. To simplify exposition, we forbid degeneracies by assuming that no509

vertex angle in P is acute and that no three vertices of P define a right angle. In Section 5.5510

we lift these assumptions by chamfering the polygon, cutting off a small triangle at each511

vertex.512

5.3 Catching puppies on generic obtuse polygons513

Generic obtuse polygonal tracks behave almost identically to smooth tracks, once we properly514

define the attraction diagram and dual attraction diagram.515

Lemma 8. Let P be a simple polygon with no acute vertex angles, in which no three vertices516

define a right angle. The attraction diagram of P is the union of disjoint simple critical517

cycles.518

Proof. Each edge-edge cell ei×ej contains at most one section of stable critical configurations519

(x, y) (Figure 15). For each such configuration, the points π(y) ∈ ei and P (x) ∈ ej are520

connected by a line perpendicular to ei. Because no three vertices of P define a right angle,521
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these points cannot both be vertices of P ; thus, any critical path inside the cell ei× ej avoids522

the corners of that cell.523

Each vertex-edge cell vi × ej contains at most one section of a stable and one section524

of an unstable path (Figure 16). Again, because no three vertices of P define a right angle,525

these paths avoid the corners of the cell vi × ej .526

It follows from the definition of pivot that, in any pivot configuration (x, y), the527

puppy lies at a vertex π(y) = vi, and the puppy’s direction θ(y) is parallel to either ei (or528

ei+1). Also, by the above, the human lies in the interior of some edge: P (x) ∈ ej . Moreover,529

our assumptions on P imply that there are no degenerate pivot configurations; thus, each530

pivot configuration is a shared endpoint of exactly one unstable critical path in cell vi × ej531

and exactly one stable critical path in cell ei × ej (or ei−1 × ej).532

Thus, the set of unstable critical configurations is the union of x-monotone paths533

whose endpoints are pivot configurations. Similarly, the set of stable critical configurations534

is also the union of x-monotone paths whose endpoints are pivot configurations. Moreover,535

each unstable critical path lies in a single vertex strip.536

Because every vertex angle in P is obtuse, every configuration (x, y) where the human537

P (x) lies on an edge ei and the puppy π(y) lies on the previous edge ei−1 is either forward of538

final. Similarly, if P (x) ∈ ei−1 and π(y) ∈ ei, then the configuration (x, y) is either backward539

or final. Thus, the main diagonal is disjoint from all other critical cycles; in fact, no other540

critical cycle intersects any grid cell that touches the main diagonal.541

vi

vi

ei–1 ei

ei–1
ei

ei

ei–1

Figure 21: Near the main diagonal.

This completes the classification of all critical configurations. We conclude that the542

attraction diagram consists of the (simple, closed) main diagonal and possibly other simple543

closed curves composed of stable and unstable critical paths meeting at pivot configurations.544

All these critical cycles are disjoint.545

Lemma 9. Let P be a simple polygon with no acute vertex angles, in which no three vertices546

define a right angle. If the attraction diagram of P has exactly two essential critical cycles,547

then the human can catch the puppy on P , starting from any initial configuration.548

The remainder of the proof is essentially unchanged from the smooth case. For any549

configuration (x, y), let T (y) denote the directed “tangent” line through π(y) in direction550

θ(y), and let L(x, y) denote the signed distance from P (x) to T (y), signed positively if P (x)551

lies to the left of T (y) and negatively if P (x) lies to the right of T (y). The dual attraction552

diagram of P consists of all points (y, L(x, y)) ∈ S1×R where (x, y) is a critical configuration.553
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As in the smooth case, the map (x, y) 7→ (y, L(x, y)) is a homeomorphism from the critical554

cycles in the attraction diagram to the curves in the dual attraction diagram; moreover, this555

map preserves the contractibility of each critical cycle.556

Lemma 10. Let P be a simple polygon with no acute vertex angles, in which no three vertices557

define a right angle. The attraction diagram of P contains exactly two essential critical cycles.558

Theorem 11. Let P be a simple polygon with no acute vertex angles, in which no three559

vertices define a right angle. The human can catch the puppy on P , starting from any initial560

configuration.561

We can easily extend this theorem to polygons with degenerate pivot configurations562

of type 2b and type 3b. Since these correspond to vertically isolated forward or backward563

pivot configurations in the attraction diagram, they do not impact the existence of a strategy564

to catch the puppy. The puppy will just move over them as if they were normal forward or565

backward configurations.566

Corollary 12. Let P be a simple polygon with no degeneracies of type 1, type 2a, or type 3a.567

The human can catch the puppy on P , starting from any initial configuration.568

5.4 Chamfering569

We now extend our analysis to arbitrary simple polygons. We define a chamfering operation,570

which transforms a polygon P into a new polygon P̄ . First we show that P̄ has no degenerate571

pivot configurations of type 1, 2a, or 3a (although it may still have degeneracies of type 2b572

and type 3b). Hence there is a strategy to catch the puppy on P̄ . Finally, we show that such573

a strategy can be correctly translated back to a strategy on P .574

Let P be an arbitrary simple polygon, and let ε > 0 be smaller than half of any575

distance between two non-incident features of P . Then the ε-chamfered polygon P̄ is another576

polygon with twice as many vertices as P , defined as follows. Refer to Figure 22. For each577

vertex vi of P , we create two new vertices v′i and v′′i , where v′i is placed on ei−1 at distance ε578

from vi, and v′′i is placed on ei at distance ε from vi. Edge e′i in P̄ connects v′′i to v′i+1, and579

a new short edge si connects v′i to v′′i . Note that the condition on ε implies that P̄ is itself a580

simple (i.e., not self-intersecting) polygon.581

ε

ε

ε
vi

vi+1

ei
ei+1

ei−1

P P̄

e′i
e′i+1

e′i−1

si

si+1

v′i
v′′i

v′i+1 v′′i+1

ε

Figure 22: The chamfering operation.

The chamfering operation alters the local structure of the attraction diagram near582

every vertex. The idea is that at non-degenerate configurations, the change will not influence583
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the behavior of the puppy, and as such will not influence the existence of any catching584

strategies. However, at degenerate configurations, the change in the structure is significant.585

We will argue in Section 5.5 that the changes are such that every strategy in the chamfered586

polygon translates to a strategy in the original polygon.587

Here we review again the different types of degenerate pivot configurations, and how588

the ε-chamfering operation, for a small-enough ε, affects the local structure of the attraction589

diagram in each case. Refer to Figure 23.590

• Near type-1 degeneracies, the higher-degree vertices on the main diagonal disappear.591

Instead, two separate critical curves almost touch the main diagonal: one from above592

and one from below.593

• Near type-2a degeneracies, the degree-4 vertex disappears. Instead, the two incident594

critical curves coming from the left are connected, and the two incident curves coming595

from the right are connected.596

• Near type-2b degeneracies, the isolated pivot vertex simply disappears.597

• Near type-3 degeneracies, the degenerate pivot “vertex” disappears. Any connected598

critical curve is locally rerouted away from the degenerate location.599

5.5 Catching puppies on arbitrary simple polygons600

Even when the chamfering radius ε is arbitrarily small, the attraction diagram of the chamfered601

polygon P̄ may have type-2b and type-3b degeneracies, and even new non-degenerate critical602

curves, that are not present in the original attraction diagram. See Figures 24 and 25 for603

examples. We argue in the next lemma that these are the only degeneracies that can appear604

in P̄ .605

Lemma 13. Let P be an arbitrary simple polygon. For all sufficiently small ε, the ε-chamfered606

polygon P̄ has no degenerate pivot configurations of type 1, type 2a, or type 3a.607

Proof. First, note that P̄ has no type-1 or type-3a degeneracies: we replace each vertex vi with608

angle αi by two new vertices v′i and v′′i with angles α′
i = α′′

i = π− 1
2(π−αi) =

1
2π+

1
2αi >

1
2π.609

Next, we consider the type-2 degeneracies, which may occur for some values of ε. We610

argue that each potential type-2a degeneracy only occurs for at most one value of ε; since611

there are finitely many potential degeneracies, the lemma then follows.612

Note that, as we vary ε, all vertices of P̄ move linearly and with equal speed. Thus, if613

more than one value of ε gives rise to a type-2a degeneracy, then all of them do. There are two614

configurations in P̄ that could potentially give rise to infinitely many type-2a degeneracies.615

We argue that, in fact, such configurations cannot satisfy all requirements of a type-2a616

degeneracy.617

• An edge e′i has endpoint v′i (or symmetrically, v′′i−1) such that the line ℓ through v′i and618

perpendicular to e′i contains another vertex v′j (or v′′j−1). Refer to Figure 26. Then, as619
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Figure 23: Effect of the chamfering operation on the attraction diagram near degenerate pivot
configurations. The size of ε is exaggerated; the figures show the combinatorial structure of
the chamfered diagram for a much smaller value of ε. Only the effect of chamfering vertices
relevant for the degeneracy is shown.
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Figure 24: Chamfering P can create a new non-degenerate critical curve when one vertex of
P lies on the angle bisector of another.

v′i moves along e′i, ℓ moves at the same speed as v′i, and v′j moves in the same direction620

at the same speed along e′j . So e′j is parallel to e′i. But since the angles of P̄ are obtuse,621

we conclude that v′′j−1 and v′′j lie on the opposite sides of ℓ; thus, this cannot be a622

type-2 degeneracy.623

• A short edge si of P̄ has an endpoint v′i (or symmetrically, v′′i ) such that the line ℓ624

through v′i and perpendicular to si contains another vertex v′j (or v′′j−1). Refer to625

Figure 27. In this case, vertex vj must lie on the angle bisector of edges ei and ei+1,626

and edges ei and ej must be parallel. Because the angles of P̄ are obtuse, si and e′i627

lie on opposite sides of ℓ. Now, as ε varies, v′i moves along e′i, the slope of si does not628

change, and thus ℓ remains parallel to itself. Since v′j moves in a direction concordant629

with ℓ’s direction, e′j lies on the same sides of ℓ as e′i. Thus, this cannot be a type-2a630

degeneracy. Note that it is possible that v′′j lies on the same side of ℓ as e′j , in which631

case we have a degeneracy of type 2b (Figure 27 (left)), or that v′′j lies on ℓ, in which632

case we have a degeneracy of type 3b (Figure 27 (middle)). If v′′j lies on the opposite633

side of ℓ, there is no degeneracy (Figure 27 (right)).634

Note that it may be tempting to define a different chamfering parameter ε for each635

vertex of P , in order to eliminate also the type-2b and type-3b degeneracies from P̄ . The636

reason why we insist on having the same ε for all vertices will become apparent shortly, when637

proving Lemma 14.638

Let P be an arbitrary simple polygon and P̄ an ε-chamfered copy without degeneracies639

of type 1, type 2a, or type 3a. We say a parameter value x is verty whenever P (x) is at640

distance at most ε from a vertex of P . We say a parameter value x is edgy if it is not verty.641

We reparameterize P̄ such that P (x) = P̄ (x) whenever x is edgy; the parameterization of P̄642

is uniformly scaled for verty parameters. We say a configuration (x, y) is edgy when x and y643

are both edgy.644

We say a path in the attraction diagram is valid if it describes a human and puppy645

behavior that obeys the rules imposed on the puppy and the human, as explained in Section 1.646

For polygonal tracks, it is not restrictive to assume that a valid path is piecewise linear, and647

that the derivative of the human’s parameter value x only changes sign at pivot configurations648

(that is, the human may invert direction along the curve only when the configuration is a649

pivot one).650
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Figure 25: The attraction diagram of a degenerate polygon, before and after chamfering. All
existing degeneracies disappeared in the chamfered polygon, which does have one new but
harmless type-3b degeneracy.
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Figure 26: Potential new degenerate pivot configurations based on a (shortened) original
edge e′i. For ε small enough, there can be no degeneracy.
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Figure 27: Potential new degenerate pivot configurations based on a short edge si. For any ε
we may still have a new degeneracy of type 2b (left), 3b (middle), or no degeneracy (right).

Lemma 14. Assuming ε is sufficiently small, for any valid path σ between two stable edgy651

configurations (x1, y1) and (x2, y2) in the attraction diagram of P̄ , there is a valid path σ′652

between (x1, y1) and (x2, y2) in the attraction diagram of P .653

Proof. We will describe how to obtain σ′ by slightly deforming σ in the non-edgy config-654

urations, assuming that ε is small enough. In fact, it will suffice to show that σ and σ′655

determine the same “qualitative behavior” of the puppy. That is, let ψ be a valid path in656

the attraction diagram of P or P̄ , and consider the ordered sequence of all configurations657

((x̃i, ỹi))1≤i≤k along ψ where the puppy’s parameter value ỹi transitions from edgy to verty or658

vice versa. The qualitative behavior of the puppy determined by ψ is defined as the sequence659

qψ = (ỹi)1≤i≤k. We will show that qσ = qσ′ , thus proving the lemma.660

The intuition is that there is a direct correspondence between edgy configurations661

in the two diagrams, and we only have to ensure that the puppy has the correct behavior662

when the configuration is not edgy, i.e., the human or the puppy is in an ε-neighborhood of663

a vertex of P .664

Let ρ be a maximal subpath of σ where the puppy’s parameter y remains edgy except665

possibly at the endpoints, i.e., the puppy remains on some edge e′i of P̄ while the human walks666

along P̄ . We argue that, if the human moves in the same way along P , thus determining667

a path ρ′ in the attraction diagram of P , then the puppy never leaves ei. Moreover, if ρ668

terminates with the puppy on an endpoint of e′i, say v′′i , then ρ′ terminates with the puppy669

in a verty position corresponding to vi.670

Observe that, if the projection of a vertex vj on the line supporting ei lies in the671

interior of ei, then the projection of the short edge sj on the same line lies in the interior of672
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ei′
vi′′ v′i +1

Figure 28: As long as the puppy stays on the chamfered edge e′i, its qualitative behavior is
the same on the original and chamfered polygon.

`
`′

A

B

C

D

Figure 29: Left: When the puppy is around a vertex, its qualitative behavior is determined
by the region where the human lies (either A, B, C, or D). Center and right: Once the
human gets in a neighborhood of the lower vertex, the puppy makes a jump forward. This
behavior can be replicated in P , as the configuration corresponds to a type-2a degeneracy.

e′i, assuming that ε is small enough. Thus, the puppy’s behavior according to ρ′ is the same673

as with ρ, except when the human reaches a neighborhood of a vertex vj that projects on an674

endpoint of ei, say vi.675

In the latter case, since the chamfering parameter ε is the same for both vi and vj ,676

the human cannot reach the interior of the short edge sj before the puppy reaches the interior677

of the short edge si. However, since ρ keeps the puppy on e′i, this is not possible. Thus, the678

puppy in ρ′ behaves in the same way as in ρ in every case. See Figure 28.679

Let us now consider a maximal subpath τ of σ where the puppy’s parameter y680

remains verty. Furthermore, assume that both endpoints of τ have a puppy parameter at681

the boundary between verty and edgy (such is the situation when τ is between two subpaths682

of σ where the puppy parameter is edgy). As before, we will construct a path τ ′ in the683

attraction diagram of P such that the puppy has the same qualitative behavior as in τ . Refer684

to Figure 29.685

By assumption, throughout τ , the puppy always remains on a short edge, say si,686

possibly rotating its direction vector while it is at a vertex of si. Let ℓ and ℓ′ be the lines687

through vi orthogonal to ei−1 and ei, respectively. We say that vi is generic if no other688
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vertex lies on either ℓ or ℓ′. We denote by S the infinite strip of width ε bounded by ℓ and689

v′i. Similarly, we denote the infinite strip bounded by ℓ′ and v′′i by S′.690

If vi is generic, then we can choose ε small enough such that the strips S and S′
691

intersect no short edges of P̄ other than si. Thus, whenever the human moves within one692

of the strips S or S′, it stays within some edge e′j of P̄ . It follows that, if the human in τ ′693

replicates the identical behavior within S and S′ as the human in τ , this determines the same694

qualitative behavior of the puppy (i.e., the puppy in τ leaves si from one of its endpoints if695

and only if the puppy in τ ′ moves to the corresponding edgy position in P ).696

Denote by A, B, C, D the four regions of the plane bounded by ℓ and ℓ′, as in697

Figure 29 (left), and assume that the human in τ moves outside of S and S′ within one698

of these four regions. In the case of D, the puppy never leaves si; replicating the human’s699

movements in P (straightforwardly modified around the vertices to match the shape of P )700

causes the puppy to stay at vi, thus having the same qualitative behavior. On the other701

hand, if the human is anywhere in A \ S or in C \ S′, the puppy immediately moves to an702

edgy position, both in P̄ and in P .703

Suppose now that the human is in B, and consider the open strip S′′ consisting of704

the union of all the lines perpendicular to si that intersect the interior of si. If the human705

moves within B \ (S ∪ S′ ∪ S′′), we reason in the same way as with A \ S and C \ S′. If706

the human is anywhere in B ∩ S′′, then the configuration stabilizes with the puppy in the707

interior of si. However, observe that, in order to reach this region, the human must have708

crossed B ∩ S′′, thus causing the puppy to move outside of si or never enter si in the first709

place. Hence, this case never occurs.710

Finally, let us consider the case where vi is not generic. We can argue in the same711

way as in the generic case, except when the human moves in a neighborhood of a vertex vj712

that lies on, say, ℓ. In this case, we can choose ε small enough so that both S′ and S′′ (as713

defined above) are disjoint from the disk of radius ε centered at vj . Now, if the human ever714

enters the region C while in a neighborhood of vj , we can reason as above.715

The only remaining case is the one where vi and vj give rise to a type-2a degeneracy716

in the attraction diagram of P , as illustrated in Figure 29 (center and right). Since the717

chamfering parameter ε is the same for both vi and vj , the short segment sj lies entirely in718

the strip S. Also, by our choice of ε, sj lies outside the open strip S′′. Thus, if the human in719

τ ever reaches sj , the puppy exits si from v′′i . This behavior can be replicated in P if the720

human moves to the vertex vj , which causes the puppy to travel around vertex vi.721

We have proved that the path σ can be decomposed into subpaths ρ1, τ1, ρ2, τ2,722

. . . , ρk, each of which has a corresponding path ρ′i or τ ′i in the attraction diagram of P723

which determines the same qualitative behavior of the puppy. By definition of “qualitative724

behavior”, the ending point of any path in the sequence ρ′1, τ ′1, ρ′2, τ ′2, . . . , ρ′k coincides with725

the starting point of the next path. Thus, the paths can be concatenated to form the desired726

path σ′.727

We are now ready to prove our main result.728

Theorem 15. Let P be a simple polygon. The human can catch the puppy on P , starting729

from any initial configuration.730
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Proof. Let ε be so small as to satisfy both Lemma 13 and Lemma 14. Consider an arbitrary731

starting configuration on P . If the starting configuration is not stable, we let the puppy732

move until it is. If the resulting configuration is not edgy, we move the human along P until733

we reach an edgy configuration (x, y). (This must be possible, except if the puppy stays734

in an ε-neighborhood of a vertex for the entire time; in that case, we can catch the puppy735

trivially, by going to that vertex.)736

By Lemma 13, the ε-chamfered polygon P̄ has no degeneracies of type 1 or type 2a or737

type 3a. Thus, by Corollary 12, there exists a strategy for the human to catch the puppy on738

P̄ . If the end configuration of this strategy is not edgy, we may now simply move human and739

puppy together to an edgy final configuration (f, f). By Lemma 14, there is an equivalent740

strategy to reach (f, f) from (x, y) on P . Combined with the initial path to (x, y), this gives741

us a path from an arbitrary starting configuration to a final configuration on P .742

6 Further questions743

For simple curves, we have only proved that a catching strategy exists. At least for polygonal744

tracks, it is straightforward to compute such a strategy in O(n2) time by searching the745

attraction diagram. In fact, we can compute a strategy that minimizes the total distance746

traveled by either the human or the puppy in O(n2) time, using fast algorithms for shortest747

paths in toroidal graphs [15,17]. Unfortunately, this quadratic bound is tight in the worst748

case if the output strategy must be represented as an explicit path through the attraction749

diagram. We conjecture that an optimal strategy can be described in only O(n) space750

by listing only the human’s initial direction and the sequence of points where the human751

reverses direction. On the other hand, an algorithm to compute such an optimal strategy in752

subquadratic time seems unlikely.753

If the track is a smooth curve of length ℓ whose attraction diagram has k pivot754

configurations, a trivial upper bound on the distance the human must walk to catch the755

puppy is ℓ · k/2. In any optimal strategy, the human walks straight to the point on the curve756

corresponding to a pivot located at one of the two endpoints of the current “stable sub-curve”757

of a critical curve (walking less than ℓ). Then the configuration moves to another stable758

sub-curve, and so on, never visiting the same stable sub-curve twice. Our question is whether759

a better upper bound can be proved.760

In fact, if minimizing distance is not a concern, we conjecture that no reversals are761

necessary. That is, on any simple track, starting from any configuration, we conjecture that762

the human can catch the puppy either by walking only forward along the track or by walking763

only backward along the track. Figure 2 and its reflection show examples where each of these764

naïve strategies fails, but we have no examples where both fail. (Our proof of Theorem 2765

implies that the human can always catch the puppy on an orthogonal polygon by walking at766

most once around the track in some direction, depending on the starting configuration.)767

More ambitiously, we conjecture that the following oblivious strategy is always768

successful: walk twice around the track in one (arbitrary) direction, then walk twice around769

the track in the opposite direction.770
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Another interesting question is to what extent our result applies to self-intersecting771

curves in the plane, when we consider the two strands of the curve at an intersection point to772

be distinct. It is easy to see that the human cannot catch the puppy on a curve that traverses773

a circle twice; see Figure 4. Indeed, we know how to construct examples of bad curves with774

any rotation number except −1 and +1. We conjecture that Lemma 5, and therefore our775

main result, extends to all non-simple tracks with rotation number ±1. Similarly, are there776

interesting families of curves in R3 there the human and puppy can always meet?777

Finally, it is natural to consider similar pursuit-attraction problems in more general778

domains. Theorem 1 shows that the human can always catch the puppy in the interior of a779

simple polygon, by walking along the dual tree of any triangulation. Can the human always780

catch the puppy in any planar straight-line graph? Inside any polygon with holes?781
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