
Author's personal copy

Journal of Discrete Algorithms 6 (2008) 51–58
www.elsevier.com/locate/jda

Realizing partitions respecting full and
partial order information

Erik D. Demaine a, Jeff Erickson b, Danny Kriz̧anc c, Henk Meijer d,
Pat Morin e,∗, Mark Overmars f, Sue Whitesides g

a Massachusetts Institute of Technology, USA
b University of Illinois at Urbana-Champaign, USA

c Wesleyan University, USA
d Queen’s University, Canada
e Carleton University, Canada

f University of Utrecht, The Netherlands
g McGill University, Canada

Received 5 December 2005; accepted 5 October 2006

Available online 30 November 2006

Abstract

For n ∈ N, we consider the problem of partitioning the interval [0, n) into k subintervals of positive integer lengths !1, . . . ,!k

such that the lengths satisfy a set of simple constraints of the form !i #ij !j where #ij is one of <, >, or =. In the full information
case, #ij is given for all 1 ! i, j ! k. In the sequential information case, #ij is given for all 1 < i < k and j = i ± 1. That is, only
the relations between the lengths of consecutive intervals are specified. The cyclic information case is an extension of the sequential
information case in which the relationship #1k between !1 and !k is also given. We show that all three versions of the problem can
be solved in time polynomial in k and logn.
 2006 Elsevier B.V. All rights reserved.

Keywords: Integer partitions; Integer sequences; Subset-sum; Rhythm pattern; Rhythm perception; Modular arithmetic

1. Introduction

We consider problems of realizing a sequence having restrictions on its sum and the relative sizes of its terms. In
particular, we consider the following problem: Given positive integers n and k, partition [0, n) into k subintervals of
positive integer lengths !1, . . . ,!k such that the lengths satisfy a set of simple constraints of the form !i #ij !j where
#ij is one of <, >, or =. In the full information case, #ij is given for all 1 ! i, j ! k. In the sequential information
information case, #ij is given for all 1 ! i ! k and j = i ± 1. The cyclic information case is an extension of the
sequential information case in which the relationship #1k between !1 and !k is also given.

* Corresponding author.
E-mail address: morin@scs.carleton.ca (P. Morin).

1570-8667/$ – see front matter 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.jda.2006.10.004

Author's personal copy

52 E.D. Demaine et al. / Journal of Discrete Algorithms 6 (2008) 51–58

Fig. 1. A comparison matrix for the full information case.

For an example of the full information case observe that, for n = 12, the comparison matrix in Fig. 1 is satisfied by
the sequences

〈!1, . . . ,!4〉 ∈
{
〈1,1,8,2〉, 〈1,1,7,3〉, 〈1,1,6,4〉, 〈2,2,5,3〉

}
.

On the other hand, for n = 6 no solution is possible since the smallest natural sequence satisfying the comparison
matrix is 〈1,1,3,2〉 and 1 + 1 + 3 + 2 = 7.

The motivation for studying these types of problems comes from the study of the perception of musical rhythm.
Mathematically, a rhythm is a partition of [0, n) into k open intervals called off-sets and k integer points called on-sets
(see Refs. [1,6–9]). Musically, we interpret the on-sets as points in time (modulo n) when a percussion instrument is
to be struck. Experimental evidence shows that humans often do not distinguish between different rhythms with the
same rhythmic contour, i.e. the sequence that specifies whether one off-set is longer than, shorter than or equal to the
previous off-set (see Refs. [2–5]). It then becomes a natural question to ask whether and how a given rhythmic contour
can be realized.

In this paper, we give polynomial (in k and logn) time algorithms for all three versions of the problem under
study. So that we may express concrete running times our model of computation is the unit-cost k-bit word RAM, in
which arithmetic operations on integers of size kO(1) can be done in O(1) time. For the full information case we give
an algorithm that runs in O(k2 + logc n) time, for the sequential information case we give an algorithm that runs in
O(k4 + logc n) time, and for the cyclic information case we give an algorithm that runs in O(k5 + logc n) time. The
exponent c is given by the time it takes to compute the residue n mod k.

All versions of this problem reduce to special cases of SUBSET-SUM with multiplicity, where there are special
constraints on the allowable multiplicities. The efficiency and correctness of our algorithms for solving these problems
rely primarily on properties of modular arithmetic. Throughout this paper, we use some number-theoretical notations:
Zk = {0, . . . , k−1}, Nk = Zk \{0}, Z = Z∞, N = N∞, and Z+

k is the group whose elements are Zk and whose operator
is addition modulo k.

The remainder of the paper is organized as follows. In Section 2 we given an algorithm for the full information
case. In Section 3 we given an algorithm for the sequential information case. In Section 4 we give an algorithm for the
cyclic information case. Finally, Section 5 summarizes our results and concludes with directions for future research.

2. Full information

In this section we consider the full information case in which n and k are given and, for each 1 ! i, j ! k we
are told either that !i < !j , !i > !j or !i = !j . We assume that this information is given (implicitly or explicitly) in
the form of a comparison matrix # so that we can determine in constant time which of the three cases applies to !i

and !j . The algorithm we describe will either find a sequence !1, . . . ,!k ∈ N such that
∑k

i=1 !i = n and !i #ij !j for
all 1 ! i, j ! k or the algorithm will conclude that no such sequence exists.

We first observe that, because we are given the entire comparison matrix #, we can run any reasonable sorting
algorithm to partition 1, . . . , k into m ! k equivalence classes C1, . . . ,Cm where (1) !i = !j if i and j belong to the
same class and (2) !i < !j if i ∈ Ci′ , j ∈ Cj ′ and i′ < j ′.

Refer to Fig. 2. Now our problem is to find v1, . . . , vm ∈ N such that vi′ < vi′+1, for all 1 ! i′ < m and∑m
i′=1 vi′ |Ci′ | = n. Then by assigning !i = vi′ for all i ∈ Ci′ we obtain a solution to the original problem. The re-

striction vi′ < vi′+1 is slightly inconvenient and we can remove it with a rewording of the problem. Let t1 = k, and let

Author's personal copy

E.D. Demaine et al. / Journal of Discrete Algorithms 6 (2008) 51–58 53

Fig. 2. The relationship between v1, . . . , vm and w1, . . . ,wm. The area under the curve is n.

ti = ti−1 − |Ci−1| for 1 < i ! m. Then it suffices to find w1, . . . ,wm ∈ N such that

(1)
m∑

i=1

witi = n.

From w1, . . . ,wm we can compute the value of vi as vi = ∑i
j=1 wj . That is, each value wi represents the increase

from vi−1 to vi .
At this point it is tempting to apply dynamic programming immediately to solve (1) directly. However, this would

lead to an algorithm with running time O(kanb), for some constants a and b. In general, this is superpolynomial in the
input size since the input is a k × k comparison matrix and an integer n, all of which can be encoded in O(k2 + logn)
bits. In the following, we describe a representation that allows us to reduce the dependence on n.

Let

Si =
{

i∑

j=1

wj tj : w1, . . . ,wi ∈ N
}

.

Our problem is to determine whether n ∈ Sm. To solve this problem we use dynamic programming to compute each
Si for i = 1, . . . ,m. However, since the set Si has infinite size, we require a compact representation for it. To obtain a
nice representation, we observe that, because t1 = k, if Si contains x then Si also contains x + k, x + 2k, x + 3k, and
so on. Thus, we can represent Si by storing, for each y ∈ Zk , the value

Di(y) = min
(
{∞} ∪

{
x: x ≡ y (mod k) and x ∈ Si

})
.

Lemma 1. Given Di−1, Di can be computed in O(k) time.

Proof. We show that a careful reordering of the elements of Zk allows us to compute Di by a sequence of k/r lower
envelope computations each taking time O(r); here, r = k/gcd(k, ti) is the length of the orbit of !i in the group Z+

k .
The example of the lower envelope in Fig. 3 may be useful in what follows.

Define qc,j = (c + j ti) mod k. We will show how to compute Di(y) for all y in

q0 = {q0,1, q0,2, q0,3, . . . , q0,r }
in O(r) time. The same algorithm can be used for the sets q1, q2, . . . , qk/r−1 to give a total running time of O(r) ·k/r =
O(k). The main observation we use is that

(2)f (j) = Di(q0,j) = min
{
Di−1(q0,(j−x) mod k) + xti : x ∈ Nk

}
.

That is, the univariate function f (j) is the lower envelope of r half-lines, where the xth half-line is given by

hx =
{
(j, y) ∈ Zk × Z: y =

(
Di−1(q0,x) + (j − x)ti

)
mod k and j " 1

}
.

Since the slope, ti , of all k half-lines is identical and positive and their left endpoints are sorted (by j) the lower
envelope can easily be computed in O(r) time by scanning from left to right and keeping track of the current minimum
line. This completes the proof. !

Author's personal copy

54 E.D. Demaine et al. / Journal of Discrete Algorithms 6 (2008) 51–58

Fig. 3. A possible lower envelope used for the set q0, with k = 20 and ti = 6. The empty circles show values in Di−1 and the filled disks show
values in Di .

Note that the algorithm implied by Lemma 1 is actually very simple, and is given by the following pseudocode:

1: r ← k/gcd(k, ti)

2: for c = 0, . . . , k/r − 1 do
3: µ ← ∞
4: forx = 1, . . . , r do
5: µ ← min{µ,Di−1((c − xti) mod k) + xti}
6: end for
7: for j = 0, . . . , r − 1 do
8: Di((c + j ti) mod k) ← µ

9: µ ← min{µ,Di−1((c + j ti) mod k)} + ti
10: end for
11: end for

Once we have computed Dm, we can test if n is in the set Sm by checking if Dm(n mod k) ! n. To summarize the
running time of our algorithm, we compute D1, . . . ,Dm, using O(k) arithmetic operations for each, for a total of total
of O(k2) arithmetic operations. Note that the values in table Di obtained by adding a value of at most k2 to a value in
table Di−1. Thus, the entries in D1, . . . ,Dm never exceed k3 so all arithmetic operations can be done in constant time
so that computing Dm takes O(k2) time. The algorithm finishes by computing Dm(n mod k). The modulus operation
performed in this computation can be done in O(logc n) time for some constant c. This completes the proof of our
first result:

Theorem 2. The realization problem with full information can be solved in O(k2 + logc n) time.

3. Sequential information

Next we consider the realization problem given only sequential information. That is, for each i ∈ {1, . . . , k − 1}
we are told only that !i > !i+1, !i < !i+1 or !i = !i+1. Our approach is similar to that of the full information case.
By scanning for #i,i+1 for i = 1, . . . , k − 1 we determine a set of m ! k equivalence classes C1, . . . ,Cm over 1, . . . , k

such that (1) !i = !j if i and j belong to the same class and (2) if i ∈ Ci′ and j ∈ Ci′+1 then either !i < !j or !i > !j ,
as indicated by #.

Refer to Fig. 4. Let t1 = k, and let ti = ti−1 − |Ci−1| for i > 1. Let s1 = +1 and, for i > 1, let si = +1 if the
elements in Ci should be greater than the elements in Ci−1 and let si = −1 if the elements in Ci should be less than

Author's personal copy

E.D. Demaine et al. / Journal of Discrete Algorithms 6 (2008) 51–58 55

Fig. 4. An illustration of the sequential information case with s1 = s2 = s3 = s5 = +1 and s4 = −1.

the elements in Ci−1. Then, our problem is to find w1, . . . ,wm ∈ N such that

(3)
m∑

j=1

wjsj tj = n

and

(4)
i∑

j=1

wjsj " 1 for all i ∈ {1, . . . ,m}.

We say that w1, . . . ,wm are admissible if they satisfy (4).
Given w1, . . . ,wm satisfying (3) and (4), we can compute the value of !i ∈ Ci′ as !i = ∑i′

j=1 wjsj . That is, the
value wj represents the difference in the values in Cj−1 and Cj , this difference being an increase if sj = +1 and a
decrease if sj = −1.

As before, because t1 = k and s1 = +1, we can implicitly represent the set

Si =
{

i∑

j=1

wjsj tj : w1, . . . ,wi ∈ N and w1, . . . ,wi are admissible

}

by maintaining, for each y ∈ Zk the value

Di(y) = min
{
x: x ∈ Si and x ≡ y (mod k)

}
.

However, unlike the case for full information, the function Di−1 is not sufficient for computing the function Di . In
particular, which values of wi are admissible depends on

∑i−1
j=1 wjsj , which can be different for each value of y.

Instead, we maintain a two-dimensional table

Di(y,h) = min

{∞} ∪

x: x ≡ y (mod k) and
there exists admissible w1, . . . ,wi s.t.∑i

j=1 wjsj tj = x and
∑i

j=1 wjsj = h

.

Next we consider exactly how much information must be stored in order to maintain the table Di . Since y ∈ Zk we
know that the first dimension (y) of the table is of size k. The following lemma shows that the second dimension (h)
is also not too big.

Lemma 3. Let H = k2 + 1. If h " H then Di(y,h) − kti " Di(y,h − k).

Proof. Let w1, . . . ,wi be any admissible sequence that defines Di(y,h). That is,
∑i

j=1 wjsj = h and
∑i

j=1 wjsj tj =
Di(y,h). Let i′ ! i be the largest index such that wi′ " k + 1 and si′ = +1. The existence of i′ is guaranteed by the
pigeonhole principle and the assumption that h > H . Consider the sequence w′

1, . . . ,w
′
i where

w′
j =

{
wj − k if j = i′,
wj otherwise.

Author's personal copy

56 E.D. Demaine et al. / Journal of Discrete Algorithms 6 (2008) 51–58

Then
i∑

j=1

w′
j sj =

i∑

j=1

wjsj − k = h − k

and
i∑

j=1

w′
j sj tj =

i∑

j=1

wjsj tj − kti′ !
i∑

j=1

wjsj tj − kti .

Thus, Di(y,h − k) < Di(y,h) − kti provided that w′
1, . . . ,w

′
i is admissible. To see that w′

1, . . . ,w
′
i is admissible we

observe that, if this were not the case, then there must exist some index r > i′ such that
∑r

j=1 wjsj ! k. But then,
by the pigeonhole principle there must exist some index i′′ > r > i′ such that wi′′ > k and si′′ = +1. But this is not
possible since i′ was chosen to be the largest index with this property. !

Lemma 3 shows that in computing Dm we need only consider values of h ! H . This is because for any value x

that appears as x = Dm(y,h) for h > H , there is a value z < x that appears as z = Dm(y,h′) with h′ ! H . Since
Dm(y,h′) implicitly represents the set {z, z + k, z + 2k, . . .}, the value x is represented by Dm(y,h′).

Thus, to obtain our final answer, we need only compute a table Dm containing Hk entries. However, a small
technicality occurs because computing Dm from Dm−1 requires (as we shall see) looking up table entries of the form
Dm−1(y,h) where H < h < H + k. The easiest way to deal with this is to use a table of size (H + k)k to store Dm−1.
But then to compute Dm−1 from Dm−2 we require table entries of the form Dm−2(y,h) where H < h < H + 2k,
and so on. In general, the table Di will have (H + k(m − i))k entries so that we can lookup any value Di(y,h) with
y ∈ Zk and 1 ! h ! H + (m − i)k. Note that this only increases the sizes of the tables by a constant factor, and the
following lemma shows that we can compute these tables in time proportional to their size.

Lemma 4. Given Di−1, Di can be constructed in O(Hk) time.

Proof. We first describe the algorithm for the case si = +1. The algorithm for the case si = −1 is similar except for
a small modification described at the end of the proof.

As in the proof of Lemma 1 we reduce the problem to a sequence of lower-envelope computations. As before, we
begin by splitting the elements of Zk into the sets q0, . . . , qk/r−1 where r = gcd(k, ti) and qc,j = (c + j ti) mod k.
Using exactly the same scanning algorithm used in Lemma 1 we can compute Di(q0,j , j) for all 1 ! j ! H +(m− i)k

in O(H) time. Again, this is because the univariate function

f (j) = Di(q0,j , j) = min
{
Di−1(q0,j−x, j − x) + xti : 1 ! x ! j

}

is the lower envelope of H + (m − i)k parallel half-lines. By repeated applications of the above procedure we can
compute Di(q0,j , j + c) for all 1 ! j ! H and all 0 ! c < r in O(Hr) time.1 Finally, by repeating that procedure k/r
times we compute entire table Di(y,h), for all y ∈ Zk and all 1 ! h ! H in O(Hk) time, as required.

The case si = −1 is handled in a symmetric manner except that now the function f is defined as

f (j) = Di(q0,j , j) = min
{
Di−1(q0,j+x, j + x) − xti : 1 ! x ! ∞

}
.

The difficulty with this formulation is that f (j) is the lower envelope of an infinite number of lines. However, it
follows immediately from Lemma 3 that

f (j) = min
{
Di−1(q0,j+x, j + x) − xti : 1 ! x ! H − j + (m − i + 1)k

}
.

Thus, we can compute Di by taking the lower envelope of H + (m − i + 1)k parallel half-lines. This completes the
proof. !

We have just shown that we can incrementally construct the sets S1, . . . , Sm in O(Hk) = O(k3) time per set. This
yields our second theorem:

1 Graphically, we are computing the minimum area under a chain whose area is q0,j (mod n) and whose last segment is at height j + c.

Author's personal copy

E.D. Demaine et al. / Journal of Discrete Algorithms 6 (2008) 51–58 57

Theorem 5. The realization problem with sequential information can be solved in O(k4 + logc n) time.

4. The cyclic information case

In this section we consider the cyclic version of the realization problem. The cyclic version is identical to the
sequential version except that one additional constraint, namely the relationship between !1 and !k , is given. We show
that the cyclic version of the problem can be solved using O(k) applications of the algorithm for the sequential version
of the problem.

Let t1, . . . , tm and s1, . . . , sm be defined as in the previous section and suppose that there exists w1, . . . ,wm ∈ N
such that

m∑

j=1

wjsj tj = n,

i∑

j=1

wjsj " 1 for all i ∈ {1, . . . ,m},

w1s1 !
i∑

j=1

wjsj for all i ∈ {3, . . .m − 1},

and

w1s1 <

i∑

j=1

wjsj for all i ∈ {2,m}.

Then, rearranging the above equations we get the equivalent statements

(5)
m∑

j=2

wjsj tj = n − w1t1 = n − w1k,

(6)
i∑

j=2

wjsj " 0 for all i ∈ {3, . . . ,m − 1},

and

(7)
i∑

j=2

wjsj " 1 for all i ∈ {2,m}.

Note that Eqs. (5)–(7) are almost identical to Eqs. (3) and (4) and that the existence of w2, . . . ,wm satisfying these
equations can be tested in O(k4 + logc n) time using the algorithm from the previous section. This means that, if
there exists a solution to our cyclic information problem in which the elements of class C1 are assigned a value not
exceeding any value assigned to any other class Ci , i -= 1, then we can find this solution in O(k4 + logc n) time.2

However, if there exists any solution then at least one of the classes Ci must be assigned a minimum value in this
solution. Thus, by running the algorithm from the previous section m times we can determine if there exists any
solution.

Theorem 6. The realization problem with cyclic information can be solved in O(k5 + logc n) time.

2 Fig. 4 is an example of this.

Author's personal copy

58 E.D. Demaine et al. / Journal of Discrete Algorithms 6 (2008) 51–58

5. Conclusions

We have considered the problem of partitioning the interval [0, n) into k positive integer length subintervals satisfy-
ing some simple order requirements. The types of requirements we have considered include full information, in which
the relative length of each pair of subintervals is given, sequential information, in which only the relative lengths of
consecutive subintervals is given, and cyclic information in which the relationships between consecutive subintervals
and the first and last subinterval are given. Our algorithms run in O(k2 + logc n), O(k4 + logc n) and O(k5 + logc n)

time, respectively. The exponent c is given by the time it takes to compute the residue n mod k.
The most general version of this class of problems is as follows: Given any subset of the order matrix #, find a

sequence !1, . . . ,!k ∈ N that respects all relations in this matrix and whose sum is n. This remains an open problem.
Another problem, whose solution would be useful in performing perceptual tests on rhythms, is that of selecting

uniformly at random from all partitions of [0, n) that satisfy some sequential, cyclic or total information constraints.
Such an algorithm would be useful for testing hypotheses of the form: “Most rhythms of length n and having k onsets
that satisfy some set of constraints sound alike to many listeners”.

The sequential and cyclic information problems we study are motivated by the 3-level (+ − 0) contour represen-
tation studied by Dowling [2]. This representation has been generalized to multi-level contours [4,5] where we are
given, for each !i , a range relative to !i−1. For example, we may be told that !i ∈ [!i−1 +50,!i−1 +100]. The problem
is then to find !1, . . . ,!k that satisfy all these constraints and whose sum is n.

Finally, while the combinatorial problems studied in this paper are motivated by music theory this paper has only
considered the combinatorial aspect. Further work in this area should include experimental work to evaluate and clas-
sify existing rhythms based on their rhythmic contour and to perform listening experiments to verify how perceptually
similar rhythms with the same rhythmic contour actually are.

Acknowledgements

This work was initiated at the Bellairs Winter Workshop on Computational Geometry for Music Information Re-
trieval, January 28 to February 4th, 2005. The authors are grateful to Godfried Toussaint for organizing the workshop
and presenting the open problems which lead to the current paper. The authors are also grateful to the other workshop
participants, namely Greg Aloupis, David Bremner, Justin Colannino, Mirela Damian, Vida Dujmović, Francisco
Gomez, Ferran Hurtado, John Iacono, Stefan Langerman, Erin McLeish, Suneeta Ramaswami, David Rappaport,
Diane Souvaine, Ileana Streinu, Perouz Taslakian, Remco Veltcamp, and David Wood, for providing a stimulating
working environment. The authors would also like to thank an anonymous referee for suggesting the follow-up exper-
imental work described in the conclusions.

References

[1] M. Diaz-Banez, G. Farigu, F. Gomez, D. Rappaport, G.T. Toussaint, El compas flamenco: A phylogenetic analysis, in: Proceedings of
BRIDGES: Mathematical Connections in Art, Music, and Science, Southwestern College, 2004, pp. 61–70.

[2] W.J. Dowling, Scale and contour: Two components of a theory of memory for melodies, Psychological Review 85 (4) (1978) 341–354.
[3] T. Fujioka, L.J. Trainor, B. Ross, R. Kakigi, C. Pantev, Musical training enhances automatic encoding of melodic contour and interval structure,

Journal of Cognitive Neuroscience (2004).
[4] Y.E. Kim, W. Chai, R. Garcia, B. Vercoe, Analysis of a contour-based representation for melody, in: Proceedings of International Symposium

on Music Information Retrieval, 2000.
[5] A.T. Lindsay, Using contour as a mid-level representation of melody, Master’s thesis, MIT Media Lab, 1996.
[6] G.T. Toussaint, A mathematical analysis of African, Brazilian, and Cuban clave rhythms, in: Proceedings of BRIDGES: Mathematical Connec-

tions in Art, Music and Science, Townson University, 2002, pp. 157–168.
[7] G.T. Toussaint, Algorithmic, geometric, and combinatorial problems in computational music theory, in: Proceedings of X Encuentros de

Geometria Computacional, University of Sevilla, 2003, pp. 101–107.
[8] G.T. Toussaint, Classification and phylogenetic analysis of African ternary rhythm timelines, in: Proceedings of BRIDGES: Mathematical

Connections in Art, Music, and Science, University of Granada, 2003, pp. 25–36.
[9] G.T. Toussaint, Computational geometric aspects of musical rhythm, in: Abstracts of the 14th Annual Fall Workshop on Computational Geom-

etry, Massachusetts Institute of Technology, 2004, pp. 47–48.

