Realizing partitions respecting full and partial order information

Erik D. Demaine ${ }^{\text {a }}$, Jeff Erickson ${ }^{\text {b }}$, Danny Kriz̧anc ${ }^{\text {c }}$, Henk Meijer ${ }^{\text {d }}$, Pat Morin ${ }^{\mathrm{e}, *}$, Mark Overmars ${ }^{\mathrm{f}}$, Sue Whitesides ${ }^{\mathrm{g}}$
${ }^{\text {a }}$ Massachusetts Institute of Technology, USA
${ }^{\mathrm{b}}$ University of Illinois at Urbana-Champaign, USA
c Wesleyan University, USA
${ }^{\text {d }}$ Queen's University, Canada
${ }^{\text {e }}$ Carleton University, Canada
${ }^{\mathrm{f}}$ University of Utrecht, The Netherlands
${ }^{\mathrm{g}}$ McGill University, Canada

Received 5 December 2005; accepted 5 October 2006
Available online 30 November 2006

Abstract

For $n \in \mathbb{N}$, we consider the problem of partitioning the interval $[0, n)$ into k subintervals of positive integer lengths $\ell_{1}, \ldots, \ell_{k}$ such that the lengths satisfy a set of simple constraints of the form $\ell_{i} \diamond_{i j} \ell_{j}$ where $\diamond_{i j}$ is one of $<,>$, or $=$. In the full information case, $\diamond_{i j}$ is given for all $1 \leqslant i, j \leqslant k$. In the sequential information case, $\diamond_{i j}$ is given for all $1<i<k$ and $j=i \pm 1$. That is, only the relations between the lengths of consecutive intervals are specified. The cyclic information case is an extension of the sequential information case in which the relationship $\diamond_{1 k}$ between ℓ_{1} and ℓ_{k} is also given. We show that all three versions of the problem can be solved in time polynomial in k and $\log n$. © 2006 Elsevier B.V. All rights reserved.

Keywords: Integer partitions; Integer sequences; Subset-sum; Rhythm pattern; Rhythm perception; Modular arithmetic

1. Introduction

We consider problems of realizing a sequence having restrictions on its sum and the relative sizes of its terms. In particular, we consider the following problem: Given positive integers n and k, partition $[0, n)$ into k subintervals of positive integer lengths $\ell_{1}, \ldots, \ell_{k}$ such that the lengths satisfy a set of simple constraints of the form $\ell_{i} \diamond_{i j} \ell_{j}$ where $\diamond_{i j}$ is one of $<,>$, or $=$. In the full information case, $\diamond_{i j}$ is given for all $1 \leqslant i, j \leqslant k$. In the sequential information information case, $\diamond_{i j}$ is given for all $1 \leqslant i \leqslant k$ and $j=i \pm 1$. The cyclic information case is an extension of the sequential information case in which the relationship $\diamond_{1 k}$ between ℓ_{1} and ℓ_{k} is also given.

[^0]| $i \backslash j$ | 1 | 2 | 3 | 4 |
| ---: | :---: | :---: | :---: | :---: |
| 1 | $=$ | $=$ | $<$ | $<$ |
| 2 | $=$ | $=$ | $<$ | $<$ |
| 3 | $>$ | $>$ | $=$ | $>$ |
| 4 | $>$ | $>$ | $<$ | $=$ |

Fig. 1. A comparison matrix for the full information case.

For an example of the full information case observe that, for $n=12$, the comparison matrix in Fig. 1 is satisfied by the sequences

$$
\left\langle\ell_{1}, \ldots, \ell_{4}\right\rangle \in\{\langle 1,1,8,2\rangle,\langle 1,1,7,3\rangle,\langle 1,1,6,4\rangle,\langle 2,2,5,3\rangle\} .
$$

On the other hand, for $n=6$ no solution is possible since the smallest natural sequence satisfying the comparison matrix is $\langle 1,1,3,2\rangle$ and $1+1+3+2=7$.

The motivation for studying these types of problems comes from the study of the perception of musical rhythm. Mathematically, a rhythm is a partition of $[0, n)$ into k open intervals called off-sets and k integer points called on-sets (see Refs. [1,6-9]). Musically, we interpret the on-sets as points in time (modulo n) when a percussion instrument is to be struck. Experimental evidence shows that humans often do not distinguish between different rhythms with the same rhythmic contour, i.e. the sequence that specifies whether one off-set is longer than, shorter than or equal to the previous off-set (see Refs. [2-5]). It then becomes a natural question to ask whether and how a given rhythmic contour can be realized.

In this paper, we give polynomial (in k and $\log n$) time algorithms for all three versions of the problem under study. So that we may express concrete running times our model of computation is the unit-cost k-bit word RAM, in which arithmetic operations on integers of size $k^{\mathrm{O}(1)}$ can be done in $\mathrm{O}(1)$ time. For the full information case we give an algorithm that runs in $\mathrm{O}\left(k^{2}+\log ^{c} n\right)$ time, for the sequential information case we give an algorithm that runs in $\mathrm{O}\left(k^{4}+\log ^{c} n\right)$ time, and for the cyclic information case we give an algorithm that runs in $\mathrm{O}\left(k^{5}+\log ^{c} n\right)$ time. The exponent c is given by the time it takes to compute the residue $n \bmod k$.

All versions of this problem reduce to special cases of SUBSET-SUM with multiplicity, where there are special constraints on the allowable multiplicities. The efficiency and correctness of our algorithms for solving these problems rely primarily on properties of modular arithmetic. Throughout this paper, we use some number-theoretical notations: $\mathbb{Z}_{k}=\{0, \ldots, k-1\}, \mathbb{N}_{k}=\mathbb{Z}_{k} \backslash\{0\}, \mathbb{Z}=\mathbb{Z}_{\infty}, \mathbb{N}=\mathbb{N}_{\infty}$, and \mathbb{Z}_{k}^{+}is the group whose elements are \mathbb{Z}_{k} and whose operator is addition modulo k.

The remainder of the paper is organized as follows. In Section 2 we given an algorithm for the full information case. In Section 3 we given an algorithm for the sequential information case. In Section 4 we give an algorithm for the cyclic information case. Finally, Section 5 summarizes our results and concludes with directions for future research.

2. Full information

In this section we consider the full information case in which n and k are given and, for each $1 \leqslant i, j \leqslant k$ we are told either that $\ell_{i}<\ell_{j}, \ell_{i}>\ell_{j}$ or $\ell_{i}=\ell_{j}$. We assume that this information is given (implicitly or explicitly) in the form of a comparison matrix \diamond so that we can determine in constant time which of the three cases applies to ℓ_{i} and ℓ_{j}. The algorithm we describe will either find a sequence $\ell_{1}, \ldots, \ell_{k} \in \mathbb{N}$ such that $\sum_{i=1}^{k} \ell_{i}=n$ and $\ell_{i} \diamond_{i j} \ell_{j}$ for all $1 \leqslant i, j \leqslant k$ or the algorithm will conclude that no such sequence exists.

We first observe that, because we are given the entire comparison matrix \diamond, we can run any reasonable sorting algorithm to partition $1, \ldots, k$ into $m \leqslant k$ equivalence classes C_{1}, \ldots, C_{m} where (1) $\ell_{i}=\ell_{j}$ if i and j belong to the same class and (2) $\ell_{i}<\ell_{j}$ if $i \in C_{i^{\prime}}, j \in C_{j^{\prime}}$ and $i^{\prime}<j^{\prime}$.

Refer to Fig. 2. Now our problem is to find $v_{1}, \ldots, v_{m} \in \mathbb{N}$ such that $v_{i^{\prime}}<v_{i^{\prime}+1}$, for all $1 \leqslant i^{\prime}<m$ and $\sum_{i^{\prime}=1}^{m} v_{i^{\prime}}\left|C_{i^{\prime}}\right|=n$. Then by assigning $\ell_{i}=v_{i^{\prime}}$ for all $i \in C_{i^{\prime}}$ we obtain a solution to the original problem. The restriction $v_{i^{\prime}}<v_{i^{\prime}+1}$ is slightly inconvenient and we can remove it with a rewording of the problem. Let $t_{1}=k$, and let

Fig. 2. The relationship between v_{1}, \ldots, v_{m} and w_{1}, \ldots, w_{m}. The area under the curve is n.
$t_{i}=t_{i-1}-\left|C_{i-1}\right|$ for $1<i \leqslant m$. Then it suffices to find $w_{1}, \ldots, w_{m} \in \mathbb{N}$ such that

$$
\begin{equation*}
\sum_{i=1}^{m} w_{i} t_{i}=n \tag{1}
\end{equation*}
$$

From w_{1}, \ldots, w_{m} we can compute the value of v_{i} as $v_{i}=\sum_{j=1}^{i} w_{j}$. That is, each value w_{i} represents the increase from v_{i-1} to v_{i}.

At this point it is tempting to apply dynamic programming immediately to solve (1) directly. However, this would lead to an algorithm with running time $\mathrm{O}\left(k^{a} n^{b}\right)$, for some constants a and b. In general, this is superpolynomial in the input size since the input is a $k \times k$ comparison matrix and an integer n, all of which can be encoded in $\mathrm{O}\left(k^{2}+\log n\right)$ bits. In the following, we describe a representation that allows us to reduce the dependence on n.

Let

$$
S_{i}=\left\{\sum_{j=1}^{i} w_{j} t_{j}: w_{1}, \ldots, w_{i} \in \mathbb{N}\right\}
$$

Our problem is to determine whether $n \in S_{m}$. To solve this problem we use dynamic programming to compute each S_{i} for $i=1, \ldots, m$. However, since the set S_{i} has infinite size, we require a compact representation for it. To obtain a nice representation, we observe that, because $t_{1}=k$, if S_{i} contains x then S_{i} also contains $x+k, x+2 k, x+3 k$, and so on. Thus, we can represent S_{i} by storing, for each $y \in \mathbb{Z}_{k}$, the value

$$
D_{i}(y)=\min \left(\{\infty\} \cup\left\{x: x \equiv y(\bmod k) \text { and } x \in S_{i}\right\}\right)
$$

Lemma 1. Given D_{i-1}, D_{i} can be computed in $\mathrm{O}(k)$ time.
Proof. We show that a careful reordering of the elements of \mathbb{Z}_{k} allows us to compute D_{i} by a sequence of k / r lower envelope computations each taking time $\mathrm{O}(r)$; here, $r=k / \operatorname{gcd}\left(k, t_{i}\right)$ is the length of the orbit of ℓ_{i} in the group \mathbb{Z}_{k}^{+}. The example of the lower envelope in Fig. 3 may be useful in what follows.

Define $q_{c, j}=\left(c+j t_{i}\right) \bmod k$. We will show how to compute $D_{i}(y)$ for all y in

$$
q_{0}=\left\{q_{0,1}, q_{0,2}, q_{0,3}, \ldots, q_{0, r}\right\}
$$

in $\mathrm{O}(r)$ time. The same algorithm can be used for the sets $q_{1}, q_{2}, \ldots, q_{k / r-1}$ to give a total running time of $\mathrm{O}(r) \cdot k / r=$ $\mathrm{O}(k)$. The main observation we use is that

$$
\begin{equation*}
f(j)=D_{i}\left(q_{0, j}\right)=\min \left\{D_{i-1}\left(q_{0,(j-x)} \bmod k\right)+x t_{i}: x \in \mathbb{N}_{k}\right\} \tag{2}
\end{equation*}
$$

That is, the univariate function $f(j)$ is the lower envelope of r half-lines, where the x th half-line is given by

$$
h_{x}=\left\{(j, y) \in \mathbb{Z}_{k} \times \mathbb{Z}: y=\left(D_{i-1}\left(q_{0, x}\right)+(j-x) t_{i}\right) \bmod k \text { and } j \geqslant 1\right\}
$$

Since the slope, t_{i}, of all k half-lines is identical and positive and their left endpoints are sorted (by j) the lower envelope can easily be computed in $\mathrm{O}(r)$ time by scanning from left to right and keeping track of the current minimum line. This completes the proof.

Fig. 3. A possible lower envelope used for the set q_{0}, with $k=20$ and $t_{i}=6$. The empty circles show values in D_{i-1} and the filled disks show values in D_{i}.

Note that the algorithm implied by Lemma 1 is actually very simple, and is given by the following pseudocode:

```
\(r \leftarrow k / \operatorname{gcd}\left(k, t_{i}\right)\)
for \(c=0, \ldots, k / r-1\) do
    \(\mu \leftarrow \infty\)
    for \(x=1, \ldots, r\) do
        \(\mu \leftarrow \min \left\{\mu, D_{i-1}\left(\left(c-x t_{i}\right) \bmod k\right)+x t_{i}\right\}\)
    end for
    for \(j=0, \ldots, r-1\) do
        \(D_{i}\left(\left(c+j t_{i}\right) \bmod k\right) \leftarrow \mu\)
        \(\mu \leftarrow \min \left\{\mu, D_{i-1}\left(\left(c+j t_{i}\right) \bmod k\right)\right\}+t_{i}\)
        end for
end for
```

Once we have computed D_{m}, we can test if n is in the set S_{m} by checking if $D_{m}(n \bmod k) \leqslant n$. To summarize the running time of our algorithm, we compute D_{1}, \ldots, D_{m}, using $\mathrm{O}(k)$ arithmetic operations for each, for a total of total of $\mathrm{O}\left(k^{2}\right)$ arithmetic operations. Note that the values in table D_{i} obtained by adding a value of at most k^{2} to a value in table D_{i-1}. Thus, the entries in D_{1}, \ldots, D_{m} never exceed k^{3} so all arithmetic operations can be done in constant time so that computing D_{m} takes $\mathrm{O}\left(k^{2}\right)$ time. The algorithm finishes by computing $D_{m}(n \bmod k)$. The modulus operation performed in this computation can be done in $\mathrm{O}\left(\log ^{c} n\right)$ time for some constant c. This completes the proof of our first result:

Theorem 2. The realization problem with full information can be solved in $\mathrm{O}\left(k^{2}+\log ^{c} n\right)$ time.

3. Sequential information

Next we consider the realization problem given only sequential information. That is, for each $i \in\{1, \ldots, k-1\}$ we are told only that $\ell_{i}>\ell_{i+1}, \ell_{i}<\ell_{i+1}$ or $\ell_{i}=\ell_{i+1}$. Our approach is similar to that of the full information case. By scanning for $\diamond_{i, i+1}$ for $i=1, \ldots, k-1$ we determine a set of $m \leqslant k$ equivalence classes C_{1}, \ldots, C_{m} over $1, \ldots, k$ such that (1) $\ell_{i}=\ell_{j}$ if i and j belong to the same class and (2) if $i \in C_{i^{\prime}}$ and $j \in C_{i^{\prime}+1}$ then either $\ell_{i}<\ell_{j}$ or $\ell_{i}>\ell_{j}$, as indicated by \diamond.

Refer to Fig. 4. Let $t_{1}=k$, and let $t_{i}=t_{i-1}-\left|C_{i-1}\right|$ for $i>1$. Let $s_{1}=+1$ and, for $i>1$, let $s_{i}=+1$ if the elements in C_{i} should be greater than the elements in C_{i-1} and let $s_{i}=-1$ if the elements in C_{i} should be less than

Fig. 4. An illustration of the sequential information case with $s_{1}=s_{2}=s_{3}=s_{5}=+1$ and $s_{4}=-1$.
the elements in C_{i-1}. Then, our problem is to find $w_{1}, \ldots, w_{m} \in \mathbb{N}$ such that

$$
\begin{equation*}
\sum_{j=1}^{m} w_{j} s_{j} t_{j}=n \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{i} w_{j} s_{j} \geqslant 1 \quad \text { for all } i \in\{1, \ldots, m\} \tag{4}
\end{equation*}
$$

We say that w_{1}, \ldots, w_{m} are admissible if they satisfy (4).
Given w_{1}, \ldots, w_{m} satisfying (3) and (4), we can compute the value of $\ell_{i} \in C_{i^{\prime}}$ as $\ell_{i}=\sum_{j=1}^{i^{\prime}} w_{j} s_{j}$. That is, the value w_{j} represents the difference in the values in C_{j-1} and C_{j}, this difference being an increase if $s_{j}=+1$ and a decrease if $s_{j}=-1$.

As before, because $t_{1}=k$ and $s_{1}=+1$, we can implicitly represent the set

$$
S_{i}=\left\{\sum_{j=1}^{i} w_{j} s_{j} t_{j}: w_{1}, \ldots, w_{i} \in \mathbb{N} \text { and } w_{1}, \ldots, w_{i} \text { are admissible }\right\}
$$

by maintaining, for each $y \in \mathbb{Z}_{k}$ the value

$$
D_{i}(y)=\min \left\{x: x \in S_{i} \text { and } x \equiv y(\bmod k)\right\}
$$

However, unlike the case for full information, the function D_{i-1} is not sufficient for computing the function D_{i}. In particular, which values of w_{i} are admissible depends on $\sum_{j=1}^{i-1} w_{j} s_{j}$, which can be different for each value of y. Instead, we maintain a two-dimensional table

Next we consider exactly how much information must be stored in order to maintain the table D_{i}. Since $y \in \mathbb{Z}_{k}$ we know that the first dimension (y) of the table is of size k. The following lemma shows that the second dimension (h) is also not too big.

Lemma 3. Let $H=k^{2}+1$. If $h \geqslant H$ then $D_{i}(y, h)-k t_{i} \geqslant D_{i}(y, h-k)$.
Proof. Let w_{1}, \ldots, w_{i} be any admissible sequence that defines $D_{i}(y, h)$. That is, $\sum_{j=1}^{i} w_{j} s_{j}=h$ and $\sum_{j=1}^{i} w_{j} s_{j} t_{j}=$ $D_{i}(y, h)$. Let $i^{\prime} \leqslant i$ be the largest index such that $w_{i^{\prime}} \geqslant k+1$ and $s_{i^{\prime}}=+1$. The existence of i^{\prime} is guaranteed by the pigeonhole principle and the assumption that $h>H$. Consider the sequence $w_{1}^{\prime}, \ldots, w_{i}^{\prime}$ where

$$
w_{j}^{\prime}= \begin{cases}w_{j}-k & \text { if } j=i^{\prime} \\ w_{j} & \text { otherwise }\end{cases}
$$

Then

$$
\sum_{j=1}^{i} w_{j}^{\prime} s_{j}=\sum_{j=1}^{i} w_{j} s_{j}-k=h-k
$$

and

$$
\sum_{j=1}^{i} w_{j}^{\prime} s_{j} t_{j}=\sum_{j=1}^{i} w_{j} s_{j} t_{j}-k t_{i^{\prime}} \leqslant \sum_{j=1}^{i} w_{j} s_{j} t_{j}-k t_{i} .
$$

Thus, $D_{i}(y, h-k)<D_{i}(y, h)-k t_{i}$ provided that $w_{1}^{\prime}, \ldots, w_{i}^{\prime}$ is admissible. To see that $w_{1}^{\prime}, \ldots, w_{i}^{\prime}$ is admissible we observe that, if this were not the case, then there must exist some index $r>i^{\prime}$ such that $\sum_{j=1}^{r} w_{j} s_{j} \leqslant k$. But then, by the pigeonhole principle there must exist some index $i^{\prime \prime}>r>i^{\prime}$ such that $w_{i^{\prime \prime}}>k$ and $s_{i^{\prime \prime}}=+1$. But this is not possible since i^{\prime} was chosen to be the largest index with this property.

Lemma 3 shows that in computing D_{m} we need only consider values of $h \leqslant H$. This is because for any value x that appears as $x=D_{m}(y, h)$ for $h>H$, there is a value $z<x$ that appears as $z=D_{m}\left(y, h^{\prime}\right)$ with $h^{\prime} \leqslant H$. Since $D_{m}\left(y, h^{\prime}\right)$ implicitly represents the set $\{z, z+k, z+2 k, \ldots\}$, the value x is represented by $D_{m}\left(y, h^{\prime}\right)$.

Thus, to obtain our final answer, we need only compute a table D_{m} containing $H k$ entries. However, a small technicality occurs because computing D_{m} from D_{m-1} requires (as we shall see) looking up table entries of the form $D_{m-1}(y, h)$ where $H<h<H+k$. The easiest way to deal with this is to use a table of size $(H+k) k$ to store D_{m-1}. But then to compute D_{m-1} from D_{m-2} we require table entries of the form $D_{m-2}(y, h)$ where $H<h<H+2 k$, and so on. In general, the table D_{i} will have $(H+k(m-i)) k$ entries so that we can lookup any value $D_{i}(y, h)$ with $y \in Z_{k}$ and $1 \leqslant h \leqslant H+(m-i) k$. Note that this only increases the sizes of the tables by a constant factor, and the following lemma shows that we can compute these tables in time proportional to their size.

Lemma 4. Given D_{i-1}, D_{i} can be constructed in $\mathrm{O}(H k)$ time.
Proof. We first describe the algorithm for the case $s_{i}=+1$. The algorithm for the case $s_{i}=-1$ is similar except for a small modification described at the end of the proof.

As in the proof of Lemma 1 we reduce the problem to a sequence of lower-envelope computations. As before, we begin by splitting the elements of \mathbb{Z}_{k} into the sets $q_{0}, \ldots, q_{k / r-1}$ where $r=\operatorname{gcd}\left(k, t_{i}\right)$ and $q_{c, j}=\left(c+j t_{i}\right) \bmod k$. Using exactly the same scanning algorithm used in Lemma 1 we can compute $D_{i}\left(q_{0, j}, j\right)$ for all $1 \leqslant j \leqslant H+(m-i) k$ in $\mathrm{O}(H)$ time. Again, this is because the univariate function

$$
f(j)=D_{i}\left(q_{0, j}, j\right)=\min \left\{D_{i-1}\left(q_{0, j-x}, j-x\right)+x t_{i}: 1 \leqslant x \leqslant j\right\}
$$

is the lower envelope of $H+(m-i) k$ parallel half-lines. By repeated applications of the above procedure we can compute $D_{i}\left(q_{0, j}, j+c\right)$ for all $1 \leqslant j \leqslant H$ and all $0 \leqslant c<r$ in $\mathrm{O}(H r)$ time. ${ }^{1}$ Finally, by repeating that procedure k / r times we compute entire table $D_{i}(y, h)$, for all $y \in Z_{k}$ and all $1 \leqslant h \leqslant H$ in $\mathrm{O}(H k)$ time, as required.

The case $s_{i}=-1$ is handled in a symmetric manner except that now the function f is defined as

$$
f(j)=D_{i}\left(q_{0, j}, j\right)=\min \left\{D_{i-1}\left(q_{0, j+x}, j+x\right)-x t_{i}: 1 \leqslant x \leqslant \infty\right\} .
$$

The difficulty with this formulation is that $f(j)$ is the lower envelope of an infinite number of lines. However, it follows immediately from Lemma 3 that

$$
f(j)=\min \left\{D_{i-1}\left(q_{0, j+x}, j+x\right)-x t_{i}: 1 \leqslant x \leqslant H-j+(m-i+1) k\right\} .
$$

Thus, we can compute D_{i} by taking the lower envelope of $H+(m-i+1) k$ parallel half-lines. This completes the proof.

We have just shown that we can incrementally construct the sets S_{1}, \ldots, S_{m} in $\mathrm{O}(H k)=\mathrm{O}\left(k^{3}\right)$ time per set. This yields our second theorem:

[^1]Theorem 5. The realization problem with sequential information can be solved in $\mathrm{O}\left(k^{4}+\log ^{c} n\right)$ time.

4. The cyclic information case

In this section we consider the cyclic version of the realization problem. The cyclic version is identical to the sequential version except that one additional constraint, namely the relationship between ℓ_{1} and ℓ_{k}, is given. We show that the cyclic version of the problem can be solved using $\mathrm{O}(k)$ applications of the algorithm for the sequential version of the problem.

Let t_{1}, \ldots, t_{m} and s_{1}, \ldots, s_{m} be defined as in the previous section and suppose that there exists $w_{1}, \ldots, w_{m} \in \mathbb{N}$ such that

$$
\begin{aligned}
& \sum_{j=1}^{m} w_{j} s_{j} t_{j}=n \\
& \sum_{j=1}^{i} w_{j} s_{j} \geqslant 1 \quad \text { for all } i \in\{1, \ldots, m\} \\
& w_{1} s_{1} \leqslant \sum_{j=1}^{i} w_{j} s_{j} \quad \text { for all } i \in\{3, \ldots m-1\}
\end{aligned}
$$

and

$$
w_{1} s_{1}<\sum_{j=1}^{i} w_{j} s_{j} \quad \text { for all } i \in\{2, m\}
$$

Then, rearranging the above equations we get the equivalent statements

$$
\begin{align*}
& \sum_{j=2}^{m} w_{j} s_{j} t_{j}=n-w_{1} t_{1}=n-w_{1} k \tag{5}\\
& \sum_{j=2}^{i} w_{j} s_{j} \geqslant 0 \text { for all } i \in\{3, \ldots, m-1\} \tag{6}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{j=2}^{i} w_{j} s_{j} \geqslant 1 \quad \text { for all } i \in\{2, m\} \tag{7}
\end{equation*}
$$

Note that Eqs. (5)-(7) are almost identical to Eqs. (3) and (4) and that the existence of w_{2}, \ldots, w_{m} satisfying these equations can be tested in $\mathrm{O}\left(k^{4}+\log ^{c} n\right)$ time using the algorithm from the previous section. This means that, if there exists a solution to our cyclic information problem in which the elements of class C_{1} are assigned a value not exceeding any value assigned to any other class $C_{i}, i \neq 1$, then we can find this solution in $\mathrm{O}\left(k^{4}+\log ^{c} n\right)$ time. ${ }^{2}$ However, if there exists any solution then at least one of the classes C_{i} must be assigned a minimum value in this solution. Thus, by running the algorithm from the previous section m times we can determine if there exists any solution.

Theorem 6. The realization problem with cyclic information can be solved in $\mathrm{O}\left(k^{5}+\log ^{c} n\right)$ time.

[^2]
5. Conclusions

We have considered the problem of partitioning the interval $[0, n)$ into k positive integer length subintervals satisfying some simple order requirements. The types of requirements we have considered include full information, in which the relative length of each pair of subintervals is given, sequential information, in which only the relative lengths of consecutive subintervals is given, and cyclic information in which the relationships between consecutive subintervals and the first and last subinterval are given. Our algorithms run in $\mathrm{O}\left(k^{2}+\log ^{c} n\right), \mathrm{O}\left(k^{4}+\log ^{c} n\right)$ and $\mathrm{O}\left(k^{5}+\log ^{c} n\right)$ time, respectively. The exponent c is given by the time it takes to compute the residue $n \bmod k$.

The most general version of this class of problems is as follows: Given any subset of the order matrix \diamond, find a sequence $\ell_{1}, \ldots, \ell_{k} \in \mathbb{N}$ that respects all relations in this matrix and whose sum is n. This remains an open problem.

Another problem, whose solution would be useful in performing perceptual tests on rhythms, is that of selecting uniformly at random from all partitions of $[0, n)$ that satisfy some sequential, cyclic or total information constraints. Such an algorithm would be useful for testing hypotheses of the form: "Most rhythms of length n and having k onsets that satisfy some set of constraints sound alike to many listeners".

The sequential and cyclic information problems we study are motivated by the 3-level $(+-0)$ contour representation studied by Dowling [2]. This representation has been generalized to multi-level contours [4,5] where we are given, for each ℓ_{i}, a range relative to ℓ_{i-1}. For example, we may be told that $\ell_{i} \in\left[\ell_{i-1}+50, \ell_{i-1}+100\right]$. The problem is then to find $\ell_{1}, \ldots, \ell_{k}$ that satisfy all these constraints and whose sum is n.

Finally, while the combinatorial problems studied in this paper are motivated by music theory this paper has only considered the combinatorial aspect. Further work in this area should include experimental work to evaluate and classify existing rhythms based on their rhythmic contour and to perform listening experiments to verify how perceptually similar rhythms with the same rhythmic contour actually are.

Acknowledgements

This work was initiated at the Bellairs Winter Workshop on Computational Geometry for Music Information Retrieval, January 28 to February 4th, 2005. The authors are grateful to Godfried Toussaint for organizing the workshop and presenting the open problems which lead to the current paper. The authors are also grateful to the other workshop participants, namely Greg Aloupis, David Bremner, Justin Colannino, Mirela Damian, Vida Dujmović, Francisco Gomez, Ferran Hurtado, John Iacono, Stefan Langerman, Erin McLeish, Suneeta Ramaswami, David Rappaport, Diane Souvaine, Ileana Streinu, Perouz Taslakian, Remco Veltcamp, and David Wood, for providing a stimulating working environment. The authors would also like to thank an anonymous referee for suggesting the follow-up experimental work described in the conclusions.

References

[1] M. Diaz-Banez, G. Farigu, F. Gomez, D. Rappaport, G.T. Toussaint, El compas flamenco: A phylogenetic analysis, in: Proceedings of BRIDGES: Mathematical Connections in Art, Music, and Science, Southwestern College, 2004, pp. 61-70.
[2] W.J. Dowling, Scale and contour: Two components of a theory of memory for melodies, Psychological Review 85 (4) (1978) $341-354$.
[3] T. Fujioka, L.J. Trainor, B. Ross, R. Kakigi, C. Pantev, Musical training enhances automatic encoding of melodic contour and interval structure, Journal of Cognitive Neuroscience (2004).
[4] Y.E. Kim, W. Chai, R. Garcia, B. Vercoe, Analysis of a contour-based representation for melody, in: Proceedings of International Symposium on Music Information Retrieval, 2000.
[5] A.T. Lindsay, Using contour as a mid-level representation of melody, Master's thesis, MIT Media Lab, 1996.
[6] G.T. Toussaint, A mathematical analysis of African, Brazilian, and Cuban clave rhythms, in: Proceedings of BRIDGES: Mathematical Connections in Art, Music and Science, Townson University, 2002, pp. 157-168.
[7] G.T. Toussaint, Algorithmic, geometric, and combinatorial problems in computational music theory, in: Proceedings of X Encuentros de Geometria Computacional, University of Sevilla, 2003, pp. 101-107.
[8] G.T. Toussaint, Classification and phylogenetic analysis of African ternary rhythm timelines, in: Proceedings of BRIDGES: Mathematical Connections in Art, Music, and Science, University of Granada, 2003, pp. 25-36.
[9] G.T. Toussaint, Computational geometric aspects of musical rhythm, in: Abstracts of the 14th Annual Fall Workshop on Computational Geometry, Massachusetts Institute of Technology, 2004, pp. 47-48.

[^0]: * Corresponding author.

 E-mail address: morin@ scs.carleton.ca (P. Morin).

[^1]: ${ }^{1}$ Graphically, we are computing the minimum area under a chain whose area is $q_{0, j}(\bmod n)$ and whose last segment is at height $j+c$.

[^2]: 2 Fig. 4 is an example of this.

