
On the Relative Complexities of Some Geometric Problems�

Je� Erickson

Computer Science Division

University of California

Berkeley, CA 94720-1776

je�e@cs.berkeley.edu

October 17, 1995

Abstract

We consider the relative complexities of a large number of computational geometry

problems whose complexities are believed to be roughly �(n4=3). For certain pairs of

problems, we show that the complexity of one problem is asymptotically bounded by the

complexity of the other. Almost all of the problems we consider can be solved in time

O(n4=3+�) or better, and there are
(n4=3) lower bounds for a few of them in specialized

models of computation. However, the best known lower bound in any general model of

computation is only
(n logn).

The paper is naturally divided into two parts. In the �rst part, we consider a large

number of problems that are harder than Hopcroft's problem. These problems include

various ray shooting problems, sorting line segments in IR3, collision detection in IR3,

and halfspace emptiness checking in IR5. In the second, we survey known reductions

among problems involving lines in three-space, and among higher dimensional closest-

pair problems. Some of our results rely on the introduction of formal in�nitesimals

during reduction; we show that such a reduction is meaningful in the algebraic decision

tree model.

Keywords: relative complexity, Hopcroft's problem, in�nitesimal reduction.

Submitted to Computational Geometry: Theory and Applications

�Portions of this research were done while the author was visiting Universit�at des Saarlandes, Freie Universit�at
Berlin, and Universiteit Utrecht. An extended abstract of this paper was presented at the 7th Canadian Conference

on Computational Geometry [25].

On the Relative Complexities of Some Geometric Problems 1

1 Introduction

In this paper, we consider a number of problems whose best known algorithms run in roughly

O(n4=3) time. While it is generally believed that these algorithms are optimal, at least up to

polylogarithmic or n" factors, the best known lower bound in any general model of computation is

only
(n logn). We characterize these problems by their relative complexities. That is, for certain

pairs of problems, we show that the complexity of one problem is asymptotically bounded by the

complexity of the other. Thus, a o(n4=3)-time algorithm for the \harder" problem is impossible

without a similar algorithm for the \easier" one. Conversely, any signi�cantly better lower bounds

for the easier problem, in a su�ciently powerful model of computation, would immediately apply

to the harder problem as well.

This paper is similar in spirit to the earlier work of Gajentaan and Overmars [28]. They

introduce the class of 3sum-hard problems, all of which are at least as hard as the following

simple base problem: Given n numbers, do any three sum to zero? All of these problems seem

to require
(n2) time to solve; thus, some earlier papers describe them with the more suggestive

but potentially misleading term \n2-hard" [29]. (But see [7].) The present classi�cation of what

might be informally called \n4=3-hard" problems is not so clean. Many of our reductions introduce

extra logarithmic factors. More importantly, while we can easily describe arti�cial problems that

are easier than anything presented here1, we do not know if there is a single natural base problem

to which all these problems can be reduced.

The paper is organized as follows. In Section 2, we give relevant de�nitions and background

information. In Section 3 we describe a several problems that can all be reduced to Hopcroft's

problem; a few related problems are described in Section 4. In Sections 5 and 6, we survey known

reductions among problems involving lines in three-space and proximity problems in higher dimen-

sions. We summarize our results in Section 7. We propose a number of open problems throughout

the paper. Finally, we include some technical details regarding in�nitesimal reductions in in a

separate appendix.

2 De�nitions and Background

2.1 Relative Complexity

Let T1(n) and T2(n) denote the complexities of two problems �1 and �2, expressed as functions

of the input size n. If T1(n) =
(T2(n)), or equivalently, if T2(n) = O(T1(n)), we say that �1 is

harder than �2.
2 If T2(n) = O(T1(n) log

c
n) for some constant c, we say that �1 is almost

harder than �2. Typically, this means that �2 is solved by a binary search or parametric search

[19, 37] using an algorithm for �1 as an oracle, although more complicated reductions are also

possible. Finally, we say that �1 is probably harder than �2 if �1 is almost harder than �2,

and T1(n) =
(n1+�) for some � > 0 implies that �1 is harder than �2.

We derive many our relative complexity results through the standard technique of reductions.

Suppose we want to show that problem �1 is harder than problem �2. In the simplest reduction

argument, given an instance X of �2 of size n, we transform it into an instance Y of �1 of size

O(n), call an algorithm for �1 as a subroutine, and transform the output of this subroutine to the

1Given any two problems �1 and �2, the following arti�cial problem is trivially easier than both of them: Given

inputs X1 and X2 for �1 and �2, respectively, solve either problem. This construction can clearly be extended to
any �nite number of problems.

2It would be more accurate, but considerably unwieldier, to say \at least as hard as" or \no easier than".

2 Je� Erickson

result of �2. This reduction gives us the bound

T2(n) � T2!1(n) + T1(O(n)) = T2!1(n) + O(T1(n));

where T2!1(n) is the time required to transformX into Y . (We assume here that the output can be

transformed in constant time.) If T2!1(n) = O(T1(n)), this bound simpli�es to T2(n) = O(T1(n)),

as desired. Because of the known lower bounds of
(n logn) on each of the problems we consider,

it will su�ce that T2!1(n) = O(n logn).

Our terminology is somewhat more
exible than the notation pr1nf(n) pr2 (\pr1 is f(n)-

solvable using pr2") used by Gajentaan and Overmars [28], or the earlier equivalent notation

A /�(N) B (\A is �(N)-transformable to B") used by Preparata and Shamos [41], both of which

denote the existence of a direct reduction from one problem to another. Our terminology allows

for more complicated reductions3, but it hides the actual reduction time.

For example, suppose �2 is solved using a recursive divide-and-conquer strategy, similar to

quicksort or mergesort: the input is divided into two halves in linear time, an algorithm for �1 is

applied to the partitioned input, and problem �2 is recursively solved for each of the two partitions.

Then we have the following upper bound for T2(n) in terms of T1(n).

T2(n) � O(T1(n)) + 2T2(n=2) =

dlgneX
i=0

2iO(T1(n=2
i))

We can always simplify this upper bound to T2(n) = O(T1(n) logn+ n logn) = O(T1(n) logn), but

if T1(n) =
(n1+�), we can improve the bound to T2(n) = O(T1(n)). Thus, �1 is probably harder

than �2. The proofs of Theorems 5.1 and 6.2 include even more complex reductions.

We develop our relative complexity results primarily in the algebraic decision tree model of

computation [43]. Most of our results hold in more general models of computation such as algebraic

computation trees [5] or real RAMs [41] (and in some cases, even integer RAMs or Turing machines),

but a few results rely on speci�c properties of the algebraic decision tree model. Speci�cally, some of

our reductions introduce formal in�nitesimals into the input before passing it to the �1 subroutine.

See, for example, the proof of Theorem 3.4. In the appendix, we prove a few technical results that

make this practice rigorous. These results follow almost immediately from simple properties of

algebraic decision trees and real closed �elds.

2.2 Known Lower Bounds

For each of the problems we consider, the best lower bound known in any general model of compu-

tation is only
(n logn). These lower bounds follow from results of Steele and Yao in the algebraic

decision tree model [43], and from results of Ben-Or in the algebraic computation tree model [5] or

the equivalent real RAM model [41].

Better lower bounds are known for a few of these problems in less powerful models, but these

models are inappropriate in more general settings. Chazelle [14, 13] has proven a number of lower

bounds for online and o�ine range counting problems in the Fredman/Yao semigroup arithmetic

model [27]. In this model, the points are given arbitrary weights from a �xed semigroup, and

the complexity of a problem is given by the worst-case number of semigroup additions required to

3Formally, the reductions in [29] and [41] are quasilinear-time many-one reductions, and the reductions we consider
here are quasilinear-time oracle reductions. The di�erence is exactly analogous to that between Karp reduction and

Cook reduction in the theory of NP-completeness [30].

On the Relative Complexities of Some Geometric Problems 3

compute the answer. While this model works quite well for studying range counting problems, it

is not at all applicable to decision or optimization problems.

Similarly, Erickson [24] has proven
(n4=3) lower bounds for a number of problems, including

Hopcroft's problem (Problem A) and unit distance detection (Problem G), in what he calls the par-

titioning algorithm model. Informally, a partitioning algorithm splits the plane up into a constant

number of regions, determines which of the input objects intersects which regions, and recursively

solves the resulting subproblems. While this model describes existing algorithms for incidence de-

tection problems reasonably well, it does not generalize to other contexts. Some problems, such as

halfspace emptiness checking (Problem F), can be solved in linear time in this model. Others, such

as line towering (Problem K), apparently cannot be solved at all.

3 Hopcroft's Problem and Its Friends

We begin with one of the oldest problems in computational geometry, �rst posed by John Hopcroft

in the early 1980's.

Problem A. Hopcroft's Problem: Given a set of points in the plane, does any point lie on

the dual line of any other point?

Best known upper bound: O(n4=32O(log
� n)) [36]

A number of di�erent results suggest that the true complexity of Hopcroft's problem is �(n4=3).

Erd}os has constructed a set of n points and n lines with
(n4=3) point-line incidences. (See [27].)

The existence of such a con�guration implies that any algorithm that solves the reporting version

of Hopcroft's problem must take time
(n4=3) in the worst case. Lower bounds due to Fredman [27]

and Chazelle [13] imply that any algorithm that solves the online counting version of Hopcroft's

problem | How many points are on each line? | by building a general purpose range searching

data structure over the points and querying it once for each line, must take
(n4=3) time. More

recent results of Chazelle [14] imply the same lower bound for the o�ine counting version. Finally,

Erickson [24] has shown a lower bound of
(n4=3) for any partitioning algorithm that solves the

original decision problem.

Hopcroft's problem is a special case of a large number of other more general problems, including

the following. We leave the reductions as easy exercises for the reader.

� Detecting, counting, or enumerating incidences between a set of \point-like" geometric objects

(points, line segments, circles, triangles, etc.) and a set of \line-like" geometric objects (lines,

line segments, rays, circles, etc.)

� Finding the closest pair between a set of points (or point-like objects) and a set of lines (or

line-like objects)

� Locating a set of points in an arrangements of lines

� Counting intersecting pairs among a single set of line segments (In contrast, counting inter-

section points is 3sum-hard [28].)

� Triangular emptiness checking | Given a set of points and triangles, does any triangle contain

a point?

� Halfplane range counting | Given a set of points and halfplanes, how many points are in

each halfplane?

4 Je� Erickson

(a) (b) (c)

Figure 1. Transforming Hopcroft's problem into ray shooting over a polyhedral terrain (Theorem 3.1). (a)

The initial triangulation of the points. (b) The re�ned triangulation. (c) The �nal terrain.

� Detecting intersections, or �nding the closest pair, among lines (or line segments, circles,

polyhedra, etc.) in IR3

Rather than attempting to give an exhaustive list of easy reductions, we will describe only a

few speci�c problems, for which the reductions may be less obvious.

3.1 Ray Shooting

Problem B. Ray Shooting over a Polyhedral Terrain: Given a polyhedral terrain and a set

of rays in IR3, does any ray hit the terrain?

Best known upper bound: O(n4=3+�)4 [16]

The ray shooting problem is normally described as a selection problem: Which facet (if any) of

the terrain does each ray hit �rst? In order to solve the usual ray shooting problem, it is obviously

necessary to solve the decision problem we consider here. In other words, the selection problem is

harder than the decision problem.

Theorem 3.1. Ray shooting over a polyhedral terrain is harder than Hopcroft's problem.

Proof: Given a set of points and lines, we construct a polyhedral terrain and a set of rays as follows.

Construct an arbitrary triangulation of the points. Divide each triangle into four sub-triangles by

bisecting its edges. See Figure 1(b). This ensures that no edge in the triangulation joins two of the

original points. To create the terrain, lift the triangulation into IR3, placing each of the original

points on the plane z = 1 and all the other vertices on the plane z = 0. See Figure 1(c). To create

the rays, chop each line at some very large x- or y-coordinate, and lift the resulting ray to the

plane z = 1. A ray hits the terrain if and only if the corresponding line contains one of the original

points. The entire reduction can be carried out in time O(n logn). �

This reduction may be unsatisfactory, as it is not clear, from a practical standpoint, whether

the intersection of a ray and a single vertex of the terrain should qualify as a \hit". In most

applications of the ray shooting problem, it su�ces to consider only proper intersections, where the

ray passes through the relative interior of a terrain facet. We can avoid this ambiguity altogether,

at least in the algebraic decision tree model, by moving the rays from the plane z = 1 to the plane

z = 1� ", where " is a formal in�nitesimal. (See the appendix.) We emphasize that in�nitesimals

4In upper bounds of this form, � represents an arbitrarily small positive constant. Multiplicative constants hidden

in the big-Oh notation may depend on �.

On the Relative Complexities of Some Geometric Problems 5

are required for this modi�ed reduction to work in all cases. In order to determine a suitable real

value to replace ", we would have to compute a lower bound on the minimum non-zero distance

between a point and a line in the original input con�guration. Unfortunately, determining such a

bound is itself harder than Hopcroft's problem.

Several other versions of ray-shooting are also harder than Hopcroft's problem. For example,

given a set of non-intersecting triangles and a set of vertical rays in IR3, does any ray hit any

triangle? Given a set of line segments and a set of vertical rays in the plane, which segment does

each ray hit? We leave the reductions as easy exercises.

3.2 Sorting Line Segments in Space

Problem C. Segment Depth Order Veri�cation: Given a sequence of non-intersecting line

segments in IR3, is any segment below a segment following it in the sequence?

Best known upper bound: O(n4=3+�) [6]

The segment depth order problem arises in the context of hidden surface removal. An extremely

simple solution to the hidden surface removal problem is the \painter's algorithm": simply draw

the objects from back to front, painting newer objects over the old ones. In order for this algorithm

to succeed, however, it must �rst determine a valid back-to-front order for the objects.

In common applications of hidden surface removal, the objects in question are triangles. Here

we consider the easier special case where the objects are line segments. Our reductions can be

generalized to the case of nondegenerate triangles, at least in the algebraic decision tree model, by

replacing any line segment with a long thin triangle, one of whose sides has in�nitesimal length.

Theorem 3.2. Segment depth order veri�cation is harder than Hopcroft's problem.

Proof: Suppose we are given a set fp1; : : : ; png of points and a set fl1; : : : ; lng of lines. Lift each
point pi onto the horizontal plane z = �i and each line lj onto the plane z = j. Present the

sequence (p1; p2; : : : ; pn; l1; l2; : : : ; ln) to a depth order veri�cation algorithm, where each point is

considered a segment of zero length and each line a segment of in�nite length. The depth order

algorithm reports that some pair of segments is out of order if and only if there is a point-line

incidence in the original input. �

Once again, this reduction may be unsatisfactory, since in most applications we never need to

consider zero-length segments or in�nite segments. Consider a restricted version of the depth order

problem, where the inputs must be �nite nontrivial segments. We can reduce Hopcroft's problem

to this restricted problem, at least in the algebraic decision tree model, by replacing the points by

segments of length ", and the lines by segments of length 1=", where " is a formal in�nitesimal. We

emphasize that in�nitesimals are necessary for this modi�ed reduction to work in all cases.

It is possible that the set of objects being drawn does not have a valid depth order, and some

preprocessing must be done before the painter's algorithm can be applied. This observation leads

de Berg et al. [6] to consider the following problem.

Problem D. Segment Cyclic Overlap: Given a set of non-intersecting line segments in IR3,

does any subset overlap cyclically?

Best known upper bound: O(n4=3+�) [6]

Theorem 3.3 (De Berg et al. [6]). Segment depth order veri�cation is harder than segment

cyclic overlap.

6 Je� Erickson

? ?

(a) (b) (c)

Figure 2. Transforming Hopcroft's problem into segment cyclic overlap (Theorem 3.4). (a) The initial

con�guration of points and lines. (b) The transformed set of segments, as seen from above (not to scale).

The incidence in the original con�guration is transformed into an overlap cycle. (c) Why no real number

can be substituted for ".

Proof: If the segments do not cyclically overlap, then they can be sorted using any O(n logn)-

time sorting algorithm. That is, the segment cyclic overlap problem can be decided by applying

an O(n logn) sorting algorithm to the segments, and checking to see if the resulting sequence is a

valid depth order. �

Theorem 3.4. Segment cyclic overlap is harder than Hopcroft's problem, in the algebraic decision

tree model of computation.

Proof: Suppose we are given a set P = fp1; p2; : : : ; png of points and a set L = fl1; l2; : : : ; lng of
lines. Without loss of generality, none of the lines is horizontal. We produce a set of non-intersecting

segments as follows. Replace each line li with two parallel lines l+i and l
�

i , at horizontal distance "

to the right and left of li, respectively, where " is a formal in�nitesimal. (See the appendix.) Lift

each line l+i to the plane z = 3i+ 1 and each line l�i to the plane z = 3i� 1.

Next, for each line li, add a segment si parallel to the x-axis and in the plane z = 3i, such that

the projection of si intersects the projections of both l
+
i and l

�
i , but is far away from every other

point and line. It su�ces to put si at a y-coordinate larger than that of any of the original points

or line intersections. Alternately, we can make this y-coordinate equal to 1=".

Finally, replace each point pj = (xj ; yj) with a line segment p̂j with endpoints (xj�2"; yj ;�3n)
and (xj+2"; yj; 6n). These line segments are almost parallel to the z-axis. Our �nal collection of 4n

line segments consists of l+i ; l
�

i ; si, and p̂j for all i; j. The entire transformation can be performed

in time O(n logn).

If there are no incidences between P and L, then none of the segments p̂j are above or below

any other segment. Since the other segments are all parallel to the xy-plane, there are no cyclic

overlaps. On the other hand, if there is an incidence between li and pj , then the segment p̂j slips

between the segments l+i and l
�

i , going over the former and under the latter, introducing a cyclic

overlap. See Figure 2. �

Unlike Theorems 3.1 and 3.2, we are unable to extend this result into the algebraic computation

tree model by reducing to a \boundary case". The primary reason for introducing the in�nitesimals

into the reduction is to eliminate interactions between points and pairs of lines. Fix any real

On the Relative Complexities of Some Geometric Problems 7

number ". If a point is within, say, "=2 of more than one line, then replacing the point by a

segment whose vertical projection has length " may introduce a cycle. We can get rid of such a

cycle by changing the vertical order of the lines, but there are situations in which no order can

eliminate all such cycles. See Figure 2(c). Determining a real value for " that is su�ciently small

to avoid these di�culties would involve �nding a lower bound on the smallest non-zero point-line

distance, which is itself harder than Hopcroft's problem.

We close this section with an open problem related to hidden surface removal. Agarwal and

Matou�sek [4] describe an output-sensitive hidden surface removal algorithm that runs in time

O(n2=3+�k2=3 + n
1+�), where n is the input size and k is the combinatorial complexity of the

resulting image. If k = �(n), this running time reduces to O(n4=3+�). Is hidden surface removal

harder than Hopcroft's problem, if the complexity of the output is known in advance to be linear?

The reductions we have described so far lead to images with quadratic complexity.

3.3 Collision Detection

Problem E. Polyhedron Intersection: Given two triangulated simple polyhedra in IR3, do

they intersect?

Best known upper bound: O(n8=5+�) [40]

This problem is an important special case of three-dimensional motion planning. A typical

motion planning problem asks for a sequence of translations (and/or rotations) that take a \robot"

from one position (and/or orientation) to another, such that the moving object never collides with

a given set of obstacles. Of course, in order to solve this motion planning problem, an algorithm

must be able to decide if the robot intersects any of the obstacles. In other words, motion planning

is harder than detecting intersections.

Extremely simple versions of translational motion planning in IR3 are 3sum-hard [28]. Here we

are considering the case of a non-convex robot in the presence of a single non-convex obstacle [45].

Theorem 3.5. Polyhedron intersection is harder than Hopcroft's problem, in the algebraic decision

tree model of computation.

Proof: Given a set P = fp1; p2; : : : ; png of points and a set L = fl1; l2; : : : ; lng of non-horizontal

lines, we produce two simple polyhedra, one corresponding to P and the other to H , as follows.

We begin with everything in the plane z = 0 in IR3.

To produce the point polyhedron, surround each point by a triangle of in�nitesimal diameter

", and surround the entire set of triangles with a rectangle. Let the top and bottom y-coordinates

of this rectangle be ymax and ymin, respectively. Triangulate the collection of points and line

segments. Lift the original points up to the plane z = 3n, creating long vertical spikes. Finally, to

close the polyhedron, add four triangles, forming an inverted pyramid \underneath" the rectangle.

The resulting simple polyhedron clearly has total complexity O(n), and can be constructed in

O(n logn) time. See Figure 3(b).

To produce the line polyhedron, start by lifting each line li to the plane z = n + i. Place a

rectangle in the plane y = ymax + 1 that is large enough in the x- and z-directions to intersect all

the lines. Now we essentially repeat the previous process. Replace the intersection points of the

lines and the rectangle with triangles of in�nitesimal diameter ", triangulate everything inside the

rectangle, and lift the intersection points along the lines to the plane y = ymin � 1, creating long

horizontal spikes. These spikes clearly do not intersect. Finally, to turn the polyhedral surface into

8 Je� Erickson

a polyhedron, add four triangles \behind" the rectangle. The resulting simple polyhedron has total

complexity O(n) and can be constructed in O(n logn) time. See Figure 3(c).

If any point pi 2 P lies on a a line lj 2 L, then the ith vertical spike intersects the jth horizontal

spike. On the other hand, if the point is at distance d > 0 from the line, then these two spikes are

never closer than d� 2" > 0 apart, since " is a formal in�nitesimal. Thus, if there are no incidences

in the original input, the polyhedra do not intersect. See Figure 3(d). �

3.4 Range Searching

Hopcroft's problem is one of the simplest examples of range searching. In a typical range searching

problem, we are given a set of points and a set of ranges (typically axis-parallel boxes, hyperplanes,

halfspaces, spheres, or simplices), and are asked to report or count the points contained in each

range. Results in this area are surveyed by Matou�sek [33].

We have already mentioned a number of two-dimensional range searching problems that are

harder than Hopcroft's problem. Here we consider a higher-dimensional example.

Problem F. Halfspace Emptiness Checking in IR5: Given a set of points and hyperplanes

in IR5, is every point above every hyperplane?

Best known upper bound: O(n4=3 logO(1) n) [34]

Counting the number of points in each halfspace is apparently much more di�cult than de-

ciding if every halfspace is empty. Recall that halfspace range counting is already harder than

Hopcroft's problem in two dimensions, whereas the corresponding emptiness problem can be de-

cided in O(n logn) time using any convex hull algorithm.

Theorem 3.6. Halfspace emptiness checking in IR5 is harder than Hopcroft's problem.

Proof: Every point and hyperplane in IRd can be represented in homogeneous coordinates by a

vector in IRd+1, so that the relative orientation of any point p and any hyperplane h is determined

by the sign of the inner product hp; hi. Speci�cally, if hp; hi > 0 then p is above h; if hp; hi = 0,

then p is contained in h; and if hp; hi < 0, then p is below h.

Using this observation, we can reformulate the two problems as follows.

� Hopcroft's problem: Given a set of red and blue vectors in IR3, is there a red vector p and a

blue vector h such that hp; hi = 0?

� Halfspace emptiness checking in IR5: Given a set of red and blue vectors in IR6, is there a red

vector p and a blue vector h such that hp; hi � 0?

Now consider the function � : IR3 ! IR6 de�ned as

�(x; y; z) = (x2; y2; z2;
p
2xy;

p
2yz;

p
2zx):

This function squares inner products: h�(p); �(h)i = hp; hi2. Thus, we can transform any set of

planar points and lines into a set of of �ve-dimensional points and hyperplanes in linear time, by

applying the function � to the entire set, so that no point is below any hyperplane and all incidences

are preserved. �

The best known upper bound for halfspace emptiness checking in four dimensions is also

O(n4=3 logO(1) n) [34]. Is four-dimensional halfspace emptiness checking also harder than Hopcroft's

problem?

On the Relative Complexities of Some Geometric Problems 9

(a) (b) (c)

(d)

Figure 3. Transforming Hopcroft's problem into polyhedron intersection (Theorem 5) (a) The initial con�g-

uration of points and lines. (b) The point polyhedron, seen from above. (c) The line polyhedron, seen from

above. (d) Oblique view of the two polyhedra together. The incidence is transformed into an intersection.

Drawings are not to scale | the spikes are actually in�nitesimally thin.

10 Je� Erickson

4 Planar Distance Problems

Problem G. Unit Distance Detection: Given a set of points in the plane, is any pair of

points at unit distance?

Best known upper bound: O(n4=3 log2+� n) [32].

This problem is actually quite similar to Hopcroft's problem in many respects. Both problems

can be solved using similar divide-and-conquer algorithms; compare [32] and [36]. Where algo-

rithms for Hopcroft's problem typically exploit the duality between points and lines, algorithms

for detecting unit distances typically exploit the similar duality between points and unit circles.

Any collection of points and lines with no incidences can be approximated arbitrarily closely by a

combinatorially equivalent set of points and unit circles. Using this observation, Erickson proves a

(n4=3) lower bound for this problem in the partitioning algorithm model [24].

We conjecture, but are unable to prove, that detecting unit distances is harder than detecting

point-line incidences. Both the unit distance problem and Hopcroft's problem are special cases of

several other harder problems, including as point-circle incidence detection in the plane, point-plane

incidence detection in IR3, and unit-distance detection in IR3.

Problem H. Distance Selection: Given a set of points in the plane and an integer k, what

is the kth smallest interpoint distance?

Best known upper bound: O(n4=3 log3+� n) [32]

Theorem 4.1. Distance selection is almost harder than unit distance detection.

Proof: We can detect unit distances with a binary search over the
�
n
2

�
possible values for k, using

a distance selection algorithm at each step in the search. �

Problem I. Distance Ranking: Given a set of points in the plane, how many pairs of points

are closer than unit distance apart?

Best known upper bound: O(n4=3 log3+� n) [32]

Theorem 4.2. Distance selection is almost harder than distance ranking. Distance ranking is

almost harder than distance selection.

Proof: The binary search algorithm described in the proof of Theorem 4.1 can also be used to solve

the distance ranking problem. To select the kth smallest distance, we can perform a parametric

search over the space of interpoint distances, using a distance ranking algorithm as an oracle [2]. �

Theorem 4.3. Distance ranking is harder than unit distance detection in the algebraic decision

tree model.

Proof: To detect the presence or absence of unit distances in a set of points, we call a distance

ranking algorithm twice, once on the original set of points, and once on the set of points scaled by

a factor of 1+ ", where " is an in�nitesimal. The unit distance rank is the same in both sets if and

only if the original set contains no unit distances. �

Katoh and Iwano [31] consider the related problem of actually enumerating the k farthest

pairs among a given set of points in the plane. They describe an algorithm that runs in time

O(minfn2; n logn + k
4=3 log n= log1=3 ng), which simpli�es to O(n4=3 log2=3n) when k = �(n). Is

enumerating the n farthest pairs harder than detecting unit distances?

On the Relative Complexities of Some Geometric Problems 11

5 More Lines and Segments in Space

In this section, we describe a number of known reductions between problems involving lines and

line segments in 3-space. We �rst consider the following special case of polyhedron intersection

(Problem E). A polyhedral terrain is a polyhedral surface that intersects any vertical line in at

most one point.

Problem J. Polyhedral Terrain Intersection: Given two triangulated polyhedral terrains in

IR3, do they intersect?

Best known upper bound: O(n4=3 logO(1) n) [16, 15, 34]

Whether terrain intersection is harder than Hopcroft's problem is completely open. Note that

reduction in Theorem 3.5 does not produce two polyhedral terrains. We can modify the reduction

so that it does produce a polyhedral terrain from the lines, but the resulting terrain would have

quadratic complexity, and thus would be worthless for our purposes.

Problem K. Line Towering: Given a set of red and blue lines in IR3, are all the red lines

above all the blue lines?

Best known upper bound: O(n4=3 logO(1)
n) [15, 34]

Theorem 5.1 (Chazelle et al. [16]). Line towering is almost harder than polyhedral terrain

intersection.

Proof: There are two distinct ways that two polyhedral terrains can intersect: either a vertex of

one terrain is on the wrong side of a facet of the other, or an edge of the higher terrain is below

an edge of the lower terrain. The �rst case can be decided in O(n logn) time using any optimal

algorithm for point location in planar subdivisions [20]. The second case is what makes the problem

di�cult.

Chazelle et al. [16] show that this second case can be reduced to several instances of line towering.

Let Ŝ and T̂ be the edges of the two terrains, and let S and T be their vertical projections onto

the plane z = 0. To see if any segment in Ŝ lies below a segment in T̂ , it su�ces to consider all

pairs of segments in S and T that intersect. To do this, we divide S into several (not necessarily

disjoint) subsets Si, and T into corresponding subsets Ti, such that every segment in Si intersects

every segment in Ti, and every intersection is represented in some subset pair (Si; Ti). If we use the

algorithm in [16], the total size of these subsets is
P

i jSij+ jTij = O(n log2 n); where n = jSj+ jT j.
We refer the reader to [16] for details on how these subsets are actually constructed.

Finally, it su�ces to check, for each pair of subsets Si and Ti, whether every segment in Ŝi is

above every segment in T̂i. To do this, we extend the segments Ŝi and T̂i into lines and invoke a

line towering subroutine. This extension does not introduce any new bichromatic intersections in

the projection.

Let TLT (n) be the time taken by the line towering subroutine, given a set of n lines as input.

The total time for all calls to the line towering subroutine is

X
i

TLT (jSij+ jTij) � TLT

 X
i

(jSij+ jTij)
!

= TLT (O(n log
2
n))

= TLT (n) �O(log4 n)
The last inequality follows from the crude estimate TLT (n) = O(n2). The calls to the line towering

subroutine dominate the running time of the terrain intersection algorithm. �

12 Je� Erickson

Problem L. Line Cyclic Overlap: Given a set of non-intersecting lines in IR3, do any three

lines overlap cyclically?

Best known upper bound: O(n4=3 logO(1) n) [17, 15, 34]

This problem is clearly a special case of segment cyclic overlap (Problem D). We conjecture,

but are unable to prove, that this special case is harder than Hopcroft's problem.

Theorem 5.2 (Chazelle et al. [17]). Line towering is almost harder than line cyclic overlap.

Proof: The line cyclic overlap problem can be solved by applying any sorting algorithm to the

lines, and checking whether the resulting sequence is a valid depth order. (Compare Theorem 3.3.)

The sequence can be veri�ed as follows. Split the sequence of lines into two equal halves, verify

each of the two halves recursively, and use a line towering algorithm to check that every line in the

�rst half is above every line in the second half. �

Problem M. Largest Vertical Distance: Given a set of lines in IR3, �nd the largest vertical

distance between two lines.

Best known upper bound: O(n4=3 logO(1) n) [39, 15, 34]

Theorem 5.3 (Pellegrini [39]). Line towering is almost harder than largest vertical distance.

Proof: The largest vertical distance among a given set of lines can be solved as follows. Split

the set of lines into two subsets R and B, and recursively �nd the largest vertical distance within

each subset. Let B0 be the result of moving the set B down a distance of �. If our line towering

subroutine tells us that R lies completely above B
0, then the largest distance between R and B

is less than �. Thus, we can �nd the largest bichromatic vertical distance with parametric search,

using a line towering algorithm as an oracle. �

We emphasize that the previous reduction does not actually give us the farthest pair of lines,

unless a bichromatic line intersection algorithm is also called.

Theorem 5.4 (Chazelle et al. [15]). Halfspace emptiness checking in IR5 is probably harder

than line towering.

Proof: Consider the special case of consistently oriented sets of lines, in which the projections of

the blue lines onto the xy-plane all have higher slope than the projections of the red lines. In this

case, using Pl�ucker coordinates [44], we can express each red line as a point in IR5 and each blue

line as a hyperplane in IR5, so that relative orientation is preserved.

The general problem can be solved using the following divide-and-conquer approach. The

median slope among the xy-projections of all the lines naturally partitions the red lines into two

subsets R1 and R2, and the blue lines into B1 and B2, so that the projected slopes in R1[B1 are all

larger than the projected slopes of R2[B2. The subset pairs (R1; B2) and (R2; B1) are consistently

oriented, and thus can be checked using the Pl�ucker space algorithm described previously. The

other two pairs of subsets are checked recursively. �

On the Relative Complexities of Some Geometric Problems 13

6 Higher-Dimensional Distance Problems

Problem N. Points Outside Intersecting Unit Balls in IR3: Given a set of points and a set

of unit balls in IR3, such that every ball contains the origin, is any point contained in

any ball?

Best known upper bound: O(n4=3 log4=3 n) [3]

This computational problem is closely related to the following open combinatorial problem:

What is the worst-case combinatorial complexity of the union of n intersecting unit balls in IR3?

The best known bounds are only O(n2) and
(n). If the complexity of the union is linear, then

Problem N can be solved in O(n logn) expected time using random sampling techniques [18]. If we

allow balls of even two di�erent sizes, or do not require the balls to have a common intersection,

their union can have complexity
(n2). The intersection of unit balls, on the other hand, always

has complexity O(n).

Problem N is a special case of several other harder range searching algorithms. The reductions

derive directly from simple geometric transformations. We leave the details as exercises.

� Unit-spherical emptiness checking in IR3 | Given a set of points and a set of unit balls, is

any point inside any ball?

� Anti-spherical emptiness checking in IR3 | Given a set of points and a set of balls, is every

point inside every ball?

� Halfspace emptiness checking in IR4 |Given a set of points and halfspaces, does any halfspace

contain a point? (See Problem F.)

� Unit anti-spherical emptiness checking in IR4 | Given a set of points and a set of unit balls,

is every point inside every ball?

In the remainder of this section, we describe known reductions from proximity problems in

three and four dimensions to some of the range searching problems listed above. The reductions

we describe immediately extend to problem N.

Problem O. Bichromatic Closest Pair in IR3: Given a set of red and blue points in IR3,

�nd the closest red-blue pair.

Best known upper bound: O(n4=3 log4=3 n) [3]

Theorem 6.1. Bichromatic closest pair is harder than unit spherical range checking, and unit

spherical range checking is almost harder than bichromatic closest pair.

Proof: We can solve any unit spherical range checking problem by looking for the closest foreign

neighbor among the points and the centers of the spheres. If the distance separating the closest

point-center pair is less than unity, then the point is in the ball; otherwise, every point is outside

every ball. Conversely, we can �nd the bichromatic closest pair with a parametric search over the

space of interpoint distances, using a unit spherical range checking algorithm as an oracle. �

Problem P. Euclidean Minimum Spanning Tree in IR3: Given a set of points in IR3, con-

struct its Euclidean minimum spanning tree.

Best known upper bound: O(n4=3 log4=3 n) [3]

14 Je� Erickson

Theorem 6.2 (Agarwal et al. [3]). Bichromatic closest pair is probably harder than Euclidean

minimum spanning tree, and Euclidean minimum spanning tree is harder than bichromatic closest

pair.

Proof: Agarwal et al. [3, Theorem 5] describe a rather complicated reduction for the �rst half

of this theorem. Their algorithm decomposes the input set S into several pairs of \�-separated"

subsets (Ri; Bi), such that for any two points r; b 2 S, there is some subset pair such that r 2 Ri and

b 2 Bi. These subset pairs are constructed essentially by traversing a constant number of implicit

three-dimensional range trees [41]. The total number of �-separated subset pairs constructed by

their algorithm is O(n log2 n). Each edge of the Euclidean minimum spanning tree is guaranteed

to join the bichromatic nearest neighbors between some pair of �-separated subsets. Thus, once

all the bichromatic nearest neighbors are found, the minimum spanning tree can be constructed in

time O(n log2 n). We refer the reader to [47] and [3] for de�nitions and further details.

Let TEMST(n) denote the overall time to construct the Euclidean minimum spanning tree, Ti(n)

the time to traverse an i-dimensional range tree, and TBCP (n) the time to �nd the bichromatic

closest pair, given a total of n points as input. We have the following recurrences.

TEMST(n) � O(T3(n)) + O(n log2 n)

Ti(n) � 2Ti(n=2) + Ti�1(n) [i = 1; 2; 3]

T0(n) � TBCP (n)

With no additional assumptions, we immediately have TEMST(n) = O(TBCP (n) log
3
n). Moreover,

if TBCP (n) =
(n1+�) for some � > 0, then TEMST (n) = O(TBCP (n)).

The second half of the theorem is obvious. �

Problem Q. Nearest Foreign Neighbors in IR3: Given a set of colored points in IR3, �nd

for each point the closest point with a di�erent color.

Best known upper bound: O(n4=3 log4=3 n) [1]

This problem is the obvious generalization of the bichromatic closest pair problem (Problem O)

to more than two colors.

Theorem 6.3 (Yao [47]). Nearest foreign neighbors is almost harder than Euclidean minimum

spanning tree.

Proof: We can construct the minimum spanning tree using the following algorithm, originally

published by Bor _uvka in 1926 [9, 46]. We start with a forest of n one-vertex trees. In each phase of

the algorithm, we �nd the minimum weight edge leaving each tree in the forest, and add these edges

to the evolving forest. In each phase, the number of trees drops by at least a factor of two. Thus,

after O(logn) phases, the forest contains only the minimum spanning tree. In the geometric setting,

each phase can be easily implemented using a nearest foreign neighbors algorithm, by coloring each

point according to the tree that contains it. �

Problem R. Bichromatic Farthest Pair in IR4: Given a set of red and blue points in IR4,

�nd the farthest red-blue pair.

Best known upper bound: O(n4=3 logO(1) n) [34]

The following result is exactly analogous to Theorem 6.1.

On the Relative Complexities of Some Geometric Problems 15

A

B C D

E F

G

H I

J

K

L M N

O P

Q

R

S

Figure 4. Summary of results. Arrows point from harder to easier problems. Dotted arrows indicate \almost

harder". Dashed arrows indicate \probably harder". Outlined arrows indicate results that only hold in the

algebraic decision tree model.

Theorem 6.4. Bichromatic farthest pair is harder than unit anti-spherical range checking, and

unit anti-spherical range checking is almost harder than farthest foreign pair.

The algorithm in [34] can also be used to compute the diameter of a single set of points in

IR4, in time O(n4=3 logO(1) n). Is computing diameters in IR4 harder than (say) halfspace emptiness

checking in IR3?

7 Summary

We have described reductions relating the computational complexities of a number of geometric

problems. Figure 4 summarizes our results, and suggests a number of open problems. Which is

easier: Hopcroft's problem or unit distance detection? Can we better relate the complexities of the

problems in Section 5? Is there a single natural problem that is easier than all the problems we

have considered?

We mention in closing one more interesting problem that we have been unable to relate to any

of the others.

Problem S. Extreme Points: Given a set of points in IR4, is any point a convex combination

of other points? Equivalently, is every point a vertex of the set's convex hull?

Best known upper bound: O(n4=3 logO(1) n) [35, 12]

Ultimately, we would like a proof that all these problems require
(n4=3) time in algebraic

decision tree model, as we strongly suspect. Unfortunately, proving a lower bound of !(n logn) for

any decision problem in any general model of computation seems to be completely out of reach at

present.

Appendix:

In�nitesimal Reductions and Algebraic Decision Trees

A.1 Algebraic Decision Trees

We begin with some de�nitions. A dth-order algebraic decision tree is a �nite, rooted, directed

ternary tree. If the order d is unspeci�ed, we take it to be a constant. Each internal node v is

labeled with a query polynomial qv 2 IR[t1; : : : ; tn] of degree at most d. The outgoing edges of

16 Je� Erickson

each internal node are labeled �1, 0, and +1. Each leaf is given a label from some label set L. In
Steele and Yao's original formulation [43], every leaf is labeled either \yes" or \no", but to re
ect

common usage of the model, we allow for a much larger variety of outputs. The label set L is a

product of a �nite number of primitive label sets L1�L2�� � ��Lk , each of which is either a set of

combinatorial objects (booleans, integers, permutations, graphs, convex polytopes, etc.) or a set of

polynomials of degree at most d. At the risk of confusing the reader, we will use the same symbol `

to refer both to a leaf and its label.

Given a vector X 2 IRn as input, we compute with an algebraic decision tree by traversing a

path from the root to a leaf. At each internal node v in the path, the sign of the query polynomial

qv(X) determines which edge to traverse next. We write A
X�! v when computation with the tree

A on input X reaches the node v. When we reach a leaf `, the leaf's label ` = (`1; `2; : : : ; `k) 2 L
determines the algorithm's output. For each i, if Li is a set of polynomials, we return the real value

`i(X); otherwise, we return the object `i directly. We denote by `(X) the output produced at the

leaf ` given the input con�guration X .

Every algebraic decision tree computes a function from some real vector space IRn to some

output space IRm � O, where O is a discrete set. In contexts where the structure of the output

space is unimportant, we let O refer to the entire space, rather than just its discrete component.

The complexity of a function � is the minimum depth of any algebraic decision tree that computes

�. In the main body of the paper, when we speak of a \problem", we mean a family of functions

� = f�1
;�2

; : : :g, where each function has the form �n : IRn ! O. The complexity5 of a problem

� is a function that expresses the complexity of each �n in terms of the input size n.

A.2 Reductions

One problem with applying reduction arguments in the algebraic decision tree model is that the

model doesn't allow for the storage of temporary results. Nevertheless, we can still apply the

standard reduction argument by representing the transformed input implicitly, as described in the

following lemma.

Lemma A.1. Let A1!2 and A2 be two algebraic decision trees that compute functions �1!2 :

IRn ! IRm and �2 : IRm ! O, respectively. Then there is an algebraic decision tree A1 that

computes the composition �1 = �2 � �1!2, whose depth (resp. order) is the sum of the depths

(resp. orders) of A1!2 and A2.

Proof: LetX 2 IRn denote a typical input to A1!2, and Y = �1!2(X) 2 IRm be the corresponding

output. By de�nition, each leaf ` in A1!2 is labeled with a vector ` = (`1; `2; : : : ; `m) of polynomials

such that if A1!2
X�! `, then Y = `(X) = (`1(X); `2(X); : : : ; `m(X)).

To create the new algebraic decision tree A1, we replace each leaf ` of A1!2 with a modi�ed

copy of A2, in which we replace each query polynomial qv with the polynomial qv(`) and each leaf

polynomial `0i with the polynomial `0i(`). Thus, during computation in the copy of A2 replacing the

leaf `, instead of evaluating qv(Y) directly, we evaluate qv(`(X)). We easily verify that A1 has the

desired properties. �

5Strictly speaking, this de�nes the nonuniform complexity, since in principle there is no similarity between the
trees used for di�erent input sizes. Unfortunately, we can say little or nothing about uniform complexity; in fact,

it is not entirely clear how to formally de�ne uniform complexity in the algebraic decision tree model. There are

problems for which the best known upper bounds on their uniform and nonuniform complexities di�er signi�cantly.
See, for example, Fredman's O(n2)-time algorithm for sorting X + Y [26] or Meyer auf der Heide's polynomial-time

algorithm for the knapsack problem [38].

On the Relative Complexities of Some Geometric Problems 17

A.3 In�nitesimals

Let IR["] denote the ring of real polynomials in ", ordered so that " is positive, but less than

any positive real number. The symbol " represents a formal in�nitesimal. Previous applications

of in�nitesimals in computational geometry include various perturbation techniques [21, 22, 48],

algorithms dealing with real semi-algebraic sets [10, 11], and at least one lower bound argument [23].

The ring IR["] is an ordered subset of the �eld of rational functions IR("), which is in turn an ordered

subset of the real closed �eld IR("). For an introduction to the theory of real closed �elds, including

formal de�nitions, we refer the reader to [8] or [42].

An elementary formula is a �nite quanti�ed boolean formula, each of whose clauses is a mul-

tivariate polynomial inequality with real coe�cients. An elementary formula holds in an ordered

subset S of an ordered ring R if and only if the formula has no free variables, and the formula is

true if we interpret each variable as an element of S, addition and multiplication as ring operations

in R, and comparisons according to the linear order on R. A classic result of Tarski [46], called the

Transfer Principle, states that an elementary formula holds over IR if and only if it holds over any

other real closed �eld.

If the ordered ring R contains the reals, we can think of any real polynomial as a function from

R to itself. Thus, we can reasonably consider the behavior of any algebraic decision tree given

elements of R, or any ordered subset S � R, as input instead of real numbers. If an algebraic

decision tree A computes a function � : IRn ! IRm � O over the reals, then it also computes a

function � : Sn ! R
m �O over the ordered set S. Our �rst technical result implies that in a sense

these two functions are the same.

Lemma A.2. If two algebraic decision trees compute the same function over the reals, then they

also compute the same function over any ordered subset of any real closed �eld.

Proof: Let (v0; v1; : : : ; vt) be the path of vertices from the root v0 to another node vt in some

algebraic decision tree A. We can write the expression A
X�! vt formally as

t�1̂

i=0

(qvi(X) �i 0);

where �i is <, =, or >, depending on whether the edge from vi to vi�1 is labeled �1, 0, or +1,
respectively.

Let A and B be two algebraic decision trees, and let LA and LB denote the sets of leaves in A

and B, respectively. We can write the statement \A and B compute the same function" as

8X :
^
`2LA

^
`02LB

��
A

X�! ` ^B
X�! `

0
�
=) `(X) = `

0(X)
�
; (�)

where A
X�! ` and B

X�! `
0 are written as above. If some of the primitive label sets are discrete

sets, then the clauses `(X) = `
0(X) can be simpli�ed, possibly to a single boolean value.

Suppose A and B compute the same function over the reals, and therefore, by construction,

the elementary formula (�) holds over the reals. Then Tarski's Transfer Principle [46] implies

that formula (�) holds over any real closed �eld. Moreover, since the formula is only universally

quanti�ed, it also hold over any subset of any real closed �eld. �

Corollary A.3. Let S be an ordered subset of a real closed �eld, such that IR � S. The complexity

of any function over S that can be computed by an algebraic decision tree is the same as the

complexity of that function restricted to the reals.

18 Je� Erickson

Proof: Let A be a dth-order algebraic decision tree that computes some function � : Sn ! S
m�O.

The tree A also computes a function � : IRn ! IRm�O over the reals. Since IR � S, it follows that

� is the restriction of � to the reals, that is, �(X) = �(X) for any vector X 2 IRn. Lemma A.2

implies that any algebraic decision tree that computes � also computes �. Thus, both functions

are computed by exactly the same set of algebraic decision trees. �

An important implication of this lemma is that any function over the reals can be extended

uniquely to any ordered subset of any real closed �eld.

A.4 In�nitesimal Reductions

We are now in a position to discuss our more complicated reduction argument. Suppose we want to

show that the complexity of the function �1 : IR
m ! O is asymptotically less than the complexity

of the function �2 : IR
n ! O , or in the looser terminology of the main body of the paper, that

�2 is harder than �1. Given a real con�guration X 2 IRn, we compute �1(X) by (implicitly)

transforming X into another con�guration Y 2 IR["]m and computing �2(Y), where �2 is the

unique extension of �2 to IR["]. Since the complexity of the two functions �2 and �2 are equal,

the complexity of �1 is at most the complexity of �2 plus the reduction time.

The only problem with this argument is that algebraic decision trees cannot compute func-

tions from IRn to IR["]m. Therefore, in order to make the reduction work, we must simulate the

introduction of in�nitesimals.

Let IR["�k] � IR["] denote the set of real polynomials in " with degree � k, ordered consistently

with the polynomial ring IR["]. As an ordered set, IR["�k] is isomorphic to the lexicographically

ordered vector space IRk+1. Thus, given any function of the form

� : IR["�k]n ! IR["�dk]m �O;

we easily de�ne an equivalent function over the reals:

�[k] : IR(k+1)n ! IR(dk+1)m �O:

Lemma A.4. Let A be a dth-order algebraic decision tree that computes a function � over IR["�k].

There exists a dth-order algebraic decision tree A
[k] that computes the function �[k] and whose

depth is at most dk + 1 times the depth of A.

Proof: We construct A
[k] by replacing the real arithmetic in A by polynomial arithmetic. Let

X 2 IR["�k] be a typical input to A. Any query polynomial qv(X) can be rewritten as a polynomial

in " of degree at most dk+1, and the sign of qv(X) is given by the sign of the lowest-degree non-zero

term of this polynomial. To construct A[k], we replace each node v in A with a sequence of up to

dk+ 1 nodes, which compute the terms of qv(X) in increasing order of degree. We modify the leaf

labels similarly. �

Finally, we formalize our in�nitesimal reduction. As before, we want to show that the complexity

T1(n) of the function �1 : IR
n ! O is asymptotically less than the complexity T2(m) of the function

�2 : IR
m ! O. Given a real con�guration X 2 IRn, we compute �1(X) by (implicitly) transforming

X into another con�guration Y
[k] 2 IR(k+1)m �= IR["�k]n and then computing �

[k]
2 (Y [k]). The

reduction gives us an inequality of the form

T1(n) � T1!2(n) + T
[k]
2 (m) = T1!2(n) + O(k) � T2(m);

On the Relative Complexities of Some Geometric Problems 19

where T1!2(n) is the complexity of the transformation X 7! Y
[k] and T

[k]
2 (m) is the complexity

of �
[k]
2 . Provided T1!2(n) is dominated by the other term, k is a constant, and m = O(n), we have

the desired inequality

T1(n) = O(T2(n)):

A.5 Other Models of Real Computation

Results similar to Lemma A.2 and Lemma A.3 can be also proven in the algebraic computation

tree [5] and real RAM [41] models of computation. However, since in these models, algorithms can

compute polynomials of exponentially high degree in linear time, the simple simulation outlined in

Lemma A.4 might increase the running time of an algorithm exponentially.

20 Je� Erickson

References

[1] P. Agarwal and J. Matou�sek. Personal communication, reported in [3], 1991.

[2] P. K. Agarwal, B. Aronov, M. Sharir, and S. Suri. Selecting distances in the plane. Algorith-

mica, 9:495{514, 1993.

[3] P. K. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and E. Welzl. Euclidean minimum spanning

trees and bichromatic closest pairs. Discrete Comput. Geom., 6(5):407{422, 1991.

[4] P. K. Agarwal and J. Matou�sek. Ray shooting and parametric search. SIAM J. Comput.,

22(4):794{806, 1993.

[5] M. Ben-Or. Lower bounds for algebraic computation trees. In Proc. 15th Annu. ACM Sympos.

Theory Comput., pages 80{86, 1983.

[6] M. de Berg, M. Overmars, and O. Schwarzkopf. Computing and verifying depth orders. In

Proc. 8th Annu. ACM Sympos. Comput. Geom., pages 138{145, 1992.

[7] S. Bloch, J. Buss, and J. Goldsmith. How hard are n
2-hard problems? SIGACT News,

25(2):83{85, 1994.

[8] J. Bochnak, M. Coste, and M.-F. Roy. G�eom�etrie alg�ebraique r�eelle. Number 12 in Ergebnisse

der Mathematik und ihrer Grenzgebeite 3. Springer-Verlag, 1987.

[9] O. Bor _uvka. O jist�em probl�emu minim�al��m. Pr�aca Moravsk�e P�r��rodov�edeck�e Spole�cnosti,

3:37{58, 1926.

[10] J. Canny. Some algebraic and geometric con�gurations in PSPACE. In Proc. 20th Annu. ACM

Sympos. Theory Comput., pages 460{467, 1988.

[11] J. Canny. Computing roadmaps of semi-algebraic sets. In Proc. 9th Annu. Sympos. Algebraic

Algorithms and Error Corr. Codes, pages 94{107, 1991.

[12] T. M. Y. Chan. Output-sensitive results on convex hulls, extreme points, and related problems.

In Proc. 11th Annu. ACM Sympos. Comput. Geom., pages 10{19, 1995.

[13] B. Chazelle. Lower bounds on the complexity of polytope range searching. J. Amer. Math.

Soc., 2:637{666, 1989.

[14] B. Chazelle. Lower bounds for o�-line range searching. In Proc. 27th Annu. ACM Sympos.

Theory Comput., 1995. To appear.

[15] B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir. Diameter, width, closest line pair

and parametric searching. Discrete Comput. Geom., 10:183{196, 1993.

[16] B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir. Algorithms for bichromatic line

segment problems and polyhedral terrains. Algorithmica, 11:116{132, 1994.

[17] B. Chazelle, H. Edelsbrunner, L. J. Guibas, R. Pollack, R. Seidel, M. Sharir, and J. Snoeyink.

Counting and cutting cycles of lines and rods in space. In Proc. 31st Annu. IEEE Sympos.

Found. Comput. Sci., pages 242{251, 1990.

On the Relative Complexities of Some Geometric Problems 21

[18] K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry,

II. Discrete Comput. Geom., 4:387{421, 1989.

[19] R. Cole. Slowing down sorting networks to obtain faster sorting algorithms. J. ACM, 34:200{

208, 1987.

[20] H. Edelsbrunner, L. J. Guibas, and J. Stol�. Optimal point location in a monotone subdivision.

SIAM J. Comput., 15:317{340, 1986.

[21] H. Edelsbrunner and E. P. M�ucke. Simulation of simplicity: a technique to cope with degenerate

cases in geometric algorithms. ACM Trans. Graph., 9:66{104, 1990.

[22] I. Emiris and J. Canny. A general approach to removing degeneracies. In Proc. 32nd Annu.

IEEE Sympos. Found. Comput. Sci., pages 405{413, 1991.

[23] J. Erickson. Lower bounds for linear satis�ability problems. In Proc. 6th Annu. ACM-SIAM

Sympos. Discrete Algorithms, pages 388{395, 1995.

[24] J. Erickson. New lower bounds for Hopcroft's problem. In Proc. 11th Annu. ACM Sympos.

Comput. Geom., pages 127{137, 1995.

[25] J. Erickson. On the relative complexities of some geometric problems. In Proc. 7th Canad.

Conf. Comput. Geom., pages 85{90, 1995.

[26] M. L. Fredman. How good is the information theory bound in sorting? Theoret. Comput. Sci.,

1:355{361, 1976.

[27] M. L. Fredman. Lower bounds on the complexity of some optimal data structures. SIAM J.

Comput., 10:1{10, 1981.

[28] A. Gajentaan and M. Overmars. On a class of O(n2) problems in computational geometry.

Comput. Geom. Theory Appl., to appear.

[29] A. Gajentaan and M. H. Overmars. n
2-hard problems in computational geometry. Report

RUU-CS-93-15, Dept. Comput. Sci., Utrecht Univ., Utrecht, Netherlands, Apr. 1993.

[30] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman, New York, NY, 1979.

[31] N. Katoh and K. Iwano. Finding k farthest pairs and k closest pairs/farthest bichromatic pairs

for points in the plane. In Proc. 8th Annu. ACM Sympos. Comput. Geom., pages 320{329,

1992.

[32] M. J. Katz and M. Sharir. An expander-based approach to geometric optimization. In Proc.

9th Annu. ACM Sympos. Comput. Geom., pages 198{207, 1993.

[33] J. Matou�sek. Geometric range searching. ACM Comput. Surv., 26: 421{461, 1994.

[34] J. Matou�sek and O. Schwarzkopf. On ray shooting in convex polytopes. Discrete Comput.

Geom., 10(2):215{232, 1993.

[35] J. Matou�sek. Linear optimization queries. J. Algorithms, 14:432{448, 1993. The results

combined with results of O. Schwarzkopf also appear in Proc. 8th ACM Sympos. Comput.

Geom., 1992, pages 16{25.

22 Je� Erickson

[36] J. Matou�sek. Range searching with e�cient hierarchical cuttings. Discrete Comput. Geom.,

10(2):157{182, 1993.

[37] N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms. J.

ACM, 30:852{865, 1983.

[38] F. Meyer auf der Heide. A polynomial time linear search algorithm for the n-dimensional

knapsack problem. J. ACM, 31:668{676, 1984.

[39] M. Pellegrini. Incidence and nearest-neighbor problems for lines in 3-space. In Proc. 8th Annu.

ACM Sympos. Comput. Geom., pages 130{137, 1992.

[40] M. Pellegrini. Ray shooting on triangles in 3-space. Algorithmica, 9:471{494, 1993.

[41] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag,

New York, NY, 1985.

[42] A. Prestel. Lectures on Formally Real Fields, volume 1093 of Lecture Notes in Mathematics.

Springer-Verlag, 1984.

[43] J. M. Steele and A. C. Yao. Lower bounds for algebraic decision trees. J. Algorithms, 3:1{8,

1982.

[44] J. Stol�. Oriented Projective Geometry: A Framework for Geometric Computations. Academic

Press, New York, NY, 1991.

[45] E. Szemer�edi and W. T. Trotter, Jr. Extremal problems in discrete geometry. Combinatorica,

3:381{392, 1983.

[46] R. E. Tarjan. Data Structures and Network Algorithms, volume 44 of CBMS-NSF Regional

Conference Series in Applied Mathematics. Society for Industrial Applied Mathematics, 1983.

[47] A. C. Yao. On constructing minimum spanning trees in k-dimensional spaces and related

problems. SIAM J. Comput., 11:721{736, 1982.

[48] C. K. Yap. A geometric consistency theorem for a symbolic perturbation scheme. J. Comput.

Syst. Sci., 40:2{18, 1990.

