Computing Replacement Paths in Surface Embedded Graphs*

Jeff Erickson
Department of Computer Science
University of Illinois at Urbana-Champaign
jeffe@cs.uiuc.edu

Amir Nayyeri
Department of Computer Science
University of Illinois at Urbana-Champaign
nayyeri2@cs.uiuc.edu

Abstract

Let s and t be vertices in a directed graph G with non-negative edge weights. The replacement paths problem asks us to compute, for each edge e in G, the length of the shortest path from s to t that does not traverse e. We describe an algorithm that solves the replacement paths problem for directed graphs embedded on a surface of any genus g in $O(g n \log n)$ time, generalizing a recent $O(n \log n)$-time algorithm of Wulff-Nilsen for planar graphs [SODA 2010].

1 Introduction

Finding shortest paths in graphs is a fundamental algorithmic problem with an enormous range of applications. In many of these applications, connections represented by edges of the graph occasionally fail, in which case alternative shortest paths that avoid the failed edges must be computed quickly. The replacement paths problem, independently posed by Malik et al. [20] and Nisan and Ronen [24], formalizes the search for alternative paths as follows. Given a directed graph G with nonnegative edge weights and two vertices s and t, the replacement paths problem asks us to compute, for each edge e in G, the length of the shortest (s, t)-path that avoids e. In fact, it suffices to compute replacement paths only for edges in the shortest path in G from s to t; removing any other edge leaves the shortest path unchanged. The replacement paths problem has a long history of algorithms and applications, which is beyond the scope of this paper; we refer the interested reader to Emek et al. [6] and Roditty and Zwick [25] for extensive surveys.

Replacement paths in undirected graphs can be computed almost as quickly as a single shortest path. Malik et al. [20] describe an algorithm to solve the replacement path problem in $O(m+n \log n)$ time, the same time required to run Dijkstra's algorithm once; a flaw in their algorithm was corrected by Bar-Noy et al. [2]. A similar algorithm with the same running time was later independently developed by Hershberger and Suri [14].

[^0]Nardelli et al. [23] describe a faster algorithm that runs in $O(m \alpha(m, n))$ time on an integer RAM.

The problem appears to be much more difficult in directed graphs. The naive solution is to run Dijkstra's algorithm once for each edge in the original shortest path, which requires $O\left(m n+n^{2} \log n\right)$ time. Surprisingly, this is nearly the best algorithm known; the only improvement so far is a recent algorithm of Gotthilf and Lewenstein that runs in $O\left(m n+n^{2} \log \log n\right)$ time [11]. Hershberger et al. [15] prove a lower bound of $\Omega(m \sqrt{n})$ time (when $m=O\left(n^{3 / 2}\right)$) in the path comparison model proposed by Karger et al. [16]. For the special case of unweighted directed graphs, Roditty and Zwick [25] describe a randomized algorithm that runs in $O\left(m \sqrt{n} \log ^{2} n\right)$ expected time.

Several previous papers have focused on the natural special case of planar graphs. Bhosle [3] described an algorithm to compute replacement paths in undirected planar graphs in $O(n)$ time, again matching the time required to compute a single shortest path [13]. The first breakthrough for directed planar graphs was an algorithm of Emek et al. [6] that runs in $O\left(n \log ^{3} n\right)$ time. Klein, Mozes, and Weimann [18, 29] improved the running time to $O\left(n \log ^{2} n\right)$ by replacing a certain divide-and-conquer step with the SMAWK matrix-searching algorithm [1]. Most recently, Wulff-Nilson [30] further improved the running time to $O(n \log n)$; this is the fastest algorithm known to date.

All three near-linear-time algorithms for directed planar graphs rely on a seminal algorithm of Klein for the multiple-source shortest path problem in planar graphs [19]. Given a directed plane graph G and a face f of G, Klein's algorithm builds a data structure of size $O(n)$, in $O(n \log n)$ time, such that the shortest path distance between any vertex incident to f and any other vertex of G can be retrieved in $O(\log n)$ time. Wulff-Nilsen's algorithm [30] applies the underlying data structures and analysis of Klein's algorithm directly; the other two algorithms [6, 18, 29] invoke Klein's algorithm as a subroutine.

Cabello and Chambers [4] generalized Klein's algorithm to graphs embedded on arbitrary surfaces, solving
the multiple-source shortest path problem in $O\left(g^{2} n \log n\right)$ time and $O(n)$ space, where g is the genus of the underlying surface. This time bound was recently improved to $O(g n \log n)$ by Cabello et al. [5]. Cabello and Chambers' key insight is to interpret the multiplesource shortest path problem as a parametric shortest path problem. Their algorithm starts with a shortest path tree T rooted at an arbitrary vertex of f, and then maintains T as the root moves continuously around the boundary of f. (See Section 2.3 for more details.)

In this paper, we show that the parametric shortestpath infrastructure developed by Cabello et al. [4, 5] can be used to solve the replacement paths problem in $O(g n \log n)$ time when the input graph is embedded on an orientable surface of genus $g \geq 0$. To the best of our knowledge, this is the first replacement-paths algorithm for directed surface graphs that runs in subquadratic time. For the special case of directed planar graphs, our algorithm has the same $O(n \log n)$ running time as Wulff-Nilsen's algorithm [30], but we believe both our algorithm and its analysis are simpler. Like earlier algorithms [6, 30], our algorithm computes only the lengths of the replacement paths, but it can be modified easily to return the actual replacement paths in $O(1)$ additional time per edge.

After reviewing some background in Section 2, we reformulate the replacement path problem in arbitrary directed graphs in terms of parametric shortest paths in Section 3. We use this generic algorithm as a template for our algorithm for surface graphs in Section 4.

2 Preliminaries

2.1 Graphs and (Shortest) Paths

An edge in a directed graph G is an ordered pair of vertices; we use the mnemonic notation $u \rightarrow v$ to denote the directed edge from vertex u to vertex v.

A directed walk in G is a sequence of vertices $v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{k}$ such that each adjacent pair $v_{i-1} \rightarrow v_{i}$ is an edge in G. A walk with distinct vertices is called a path. We say that a path $P=v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{k}$ traverses each edge $v_{i-1} \rightarrow v_{i}$ and avoids every other edge in G. For any indices $i<j$, we let $P[i . . j]$ denote the subpath $v_{i} \rightarrow v_{i+1} \rightarrow \cdots \rightarrow v_{j}$ from the i th vertex of P to the j th vertex of P. A prefix of P is a subpath that contains the first vertex of P; a suffix of P is a subpath that contains the last vertex of P. The concatenation $P \cdot Q$ of two paths $P=v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{k}$ and $Q=v_{k} \rightarrow v_{k+1} \rightarrow \cdots \rightarrow v_{l}$ is the walk $v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{k} \rightarrow v_{k+1} \rightarrow \cdots \rightarrow v_{l}$.

To simplify our presentation and analysis, we assume that in each of the graphs we consider, every pair of vertices is connected by a unique shortest path; in particular, we assume that replacement paths are unique.

The Isolation Lemma [22] implies that this assumption can be enforced (at least with high probability) by perturbing the edge weights with random infinitesimal values [8].

2.2 Surfaces

A surface (more formally, a 2-manifold) is a compact Hausdorff space in which every point has an open neighborhood homeomorphic to the plane. A simple cycle in a surface Σ is (the image of) an injective continuous map $\gamma: S^{1} \rightarrow \Sigma$. A simple cycle γ is separating if its removal disconnects the surface. The genus of a surface Σ is the maximum number of simple, disjoint cycles in Σ whose deletion leaves the surface connected. Two compact, connected, orientable surfaces are homeomorphic if and only if they have the same genus.

A path on a surface Σ is (the image of) a continuous $\operatorname{map} \alpha:[0,1] \rightarrow \Sigma$. Two paths α and β are homotopic if there is a continuous map $h:[0,1] \times[0,1] \rightarrow \Sigma$ such that $h(0, \cdot)=\alpha, h(1, \cdot)=\beta, h(\cdot, 0)=\alpha(0)=\beta(0)$, and $h(\cdot, 1)=\alpha(1)=\beta(1)$. The function h is called a homotopy between α and β.

An embedding of a graph G on a surface Σ maps vertices to distinct points and (undirected) edges to interior-disjoint curves. The faces of the embedding are maximal connected subsets of Σ that are disjoint from the image of the graph. An embedding is cellular if each of its faces is homeomorphic to the plane. Any cellular embedding can be represented combinatorially by a rotation system, which specifies the counterclockwise ordering of edges incident to each vertex of G [21]. Two paths in a surface-embedded graph are considered homotopic if their images on the surface are homotopic.

Let $P=v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{k}$ be a directed path in an embedded graph G. We say that the edge $u \rightarrow v_{i}$ enters P from the left (resp. right) if the vertices v_{i-1}, u, and v_{i+1} are ordered clockwise (resp. counterclockwise) around v_{i}, according to the embedding's rotation system. An edge $v_{i} \rightarrow u$ leaves P from the left (resp. right) if its reversal $u \rightarrow v_{i}$ enters P from the left (resp. right). These definitions require that $0<i<k$ and that u is not a vertex in P; edges incident to v_{0} or v_{k} are considered neither left nor right of P.

2.3 Parametric Shortest Paths

Cabello et al. [4, 5] solved the multiple-source shortest path problem in surface-embedded graphs by recasting it in the parametric shortest path paradigm introduced by Karp and Orlin [17]. The input to the parametric shortest path problem is a graph whose edge weights are linear functions of a parameter λ; specifically, let
$w_{\lambda}(e)=w(e)+\lambda \cdot w^{\prime}(e)$, for given functions $w, w^{\prime}: E \rightarrow \mathbb{R}$. (In Karp and Orlin's original formulation, $w^{\prime}(e) \in\{0,1\}$ for every edge e.) Let T_{λ} denote the shortest-path tree rooted at a fixed source vertex s with respect to the weights w_{λ}. The goal of the problem is to compute T_{λ} for all λ in a certain range.

To solve this problem, Karp and Orlin [17] propose maintaining T_{λ} while continuously increasing the parameter λ. Although shortest-path distances vary continuously as a function of λ, the combinatorial structure of T_{λ} changes only at certain critical values of λ. At each critical value, an edge $v \rightarrow w$ pivots into the shortestpath tree, replacing some other edge $u \rightarrow w$; in other words, v becomes the new predecessor of w. Karp and Orlin [17] show that by storing T_{λ} in an appropriate dynamic tree data structure [26, 12, 27], it is possible to update T_{λ} in $O(\log n)$ time at each critical value; moreover, during the simulation, the current shortest path distance from s to any other vertex can be retrieved in $O(\log n)$ amortized time [17]. The overall running time of Karp and Orlin's algorithm depends on two additional factors: the amortized time needed to identify the next pivot, and the total number of pivots.

Cabello et al. [4, 5] develop efficient algorithms for a narrow special case of the parametric shortest path problem, where the input graph is undirected and has a cellular embedding on some surface, and the source s of the shortest-path tree moves continuously along an edge $u v$ from one end to the other. Their algorithm finds pivots by maintaining and querying the complementary dual subgraph $C_{\lambda}^{*}=\left(G \backslash T_{\lambda}\right)^{*}$. When the input graph G is planar, C_{λ}^{*} is a spanning tree of the dual graph G^{*}, which can be maintained in another dynamic tree data structure [26, 28], so that the next pivot can be computed in $O(\log n)$ amortized time. (Klein's multiplesource shortest-path algorithm [19] uses the same primal and dual dynamic tree data structures, but performs a different sequence of pivots.) For surfaces of genus $g>0$, the dual subgraph C_{λ}^{*} is a spanning tree plus $2 g$ extra edges. Cabello et al. describe a canonical decomposition of C_{λ}^{*} into $O(g)$ edge-disjoint subtrees; by maintaining each of these subtrees in its own dynamic tree data structure, the next pivot can be predicted in $O(g \log n)$ amortized time [4, Lemma 3.2].

With only trivial modifications, the algorithm of Cabello et al. can be adapted to directed graphs where exactly one edge has non-constant weight, with the following time and space bounds:

Lemma 2.1 (Cabello et al. [5]). Let G be a directed graph with non-negative edge weights, cellularly embedded on an orientable surface of genus g, and let s be a fixed vertex of G. After $O(n \log n)$ preprocessing
time, we can maintain a data structure of size $O(n)$ that supports the following operations:

- Update (e, w) : Change the weight of the edge e to $w \geq 0$, in $O((g+p) \log n)$ amortized time, where p is the number of pivots that the tree go through as the weight of e gradually changes to $w .{ }^{1}$
- Distance(v): Return the shortest-path distance in G from s to v in $O(\log n)$ amortized time.

These same operations can be supported in arbitrary directed graphs using the parametric shortest-path algorithms of Karp and Orlin [17] and Young et al. [31]. The latter algorithm requires $O(m+n \log n)$ time to perform an Update, after which any Distance query can be answered in constant time. However, unlike the specialized algorithm of Cabello et al., these generic algorithms require the entire graph to be preprocessed anew for each Update. Dynamic data structures supporting Update and Distance operations are also described by Klein [19, Section 6] for directed planar graphs, and by Frigioni et al. [9, 10] for several families of graphs including graphs of bounded genus. However, at least for our application, these data structures are not as efficient as the structure described in Lemma 2.1.

3 General Graphs

We now describe our general strategy for solving the replacement path problem using parametric shortest path operations. The algorithm we describe can actually be applied to arbitrary directed graphs, although its running time then matches the naive algorithm that runs Dijkstra n times.

Fix an input directed graph $G=(V, E)$, a non-negative weight function $w: E \rightarrow \mathbb{R}^{+}$, and two vertices s and t. Without loss of generality, we assume that s has outdegree 1 and in-degree 0 , and that t has in-degree 1 and out-degree 0 . Let $P=v_{0} \rightarrow v_{1} \rightarrow \ldots \rightarrow v_{k}$ denote the shortest path in G from $s=v_{0}$ to $t=v_{k}$. For each index i, let e_{i} denote the edge $v_{i-1} \rightarrow v_{i}$.

Our goal is to compute, for each i, the length of the shortest path P_{i} from s to t that avoids e_{i}. (Removing an edge that is not in P does not change the shortest path.) Because P is a shortest path, the replacement path P_{i} has the form $P[0$.. Out $(i)] \cdot D_{i} \cdot P[\operatorname{In}(i) . . k]$ where Out (i) and $\operatorname{In}(i)$ are indices such that $0<\operatorname{Out}(i)<i \leq \operatorname{In}(i)<k$, and D_{i} is a path that is disjoint from P except at its endpoints. We call the middle subpath D_{i} of P_{i} a detour.

Following Emek et al. [6], we define a sequence of edge-weighted graphs $G_{1}, G_{2}, \ldots, G_{k}$ such that for each i, the shortest path from s to t corresponds to a

[^1]

Figure 1. Transforming G (top) into G_{i} (bottom).
shortest e_{i}-avoiding path in G. For each index i, let $W_{i}:=\sum_{j=i+1}^{k} w\left(e_{j}\right)$; thus, W_{i} is the length of the suffix $P[i . . k]$. The graph G_{i} is defined by modifying the graph G, by adding edges $\ell_{j}:=v_{j} \rightarrow t$ with weight W_{j}, for each index $j \geq i$, and then deleting all edges in the suffix $P[i-1$..k]. See Figure 1. The shortest path from s to t in G_{i} has the form $P[0$.. Out $(i)] \cdot D_{i} \cdot \ell_{I n(i)}$; the length of this path is the same as the length of P_{i}. Thus, the replacement path problem boils down to finding the shortest path from s to t in each graph G_{i}.

Our algorithm computes these distances by maintaining a single graph G^{+}, constructed from G by adding the edges $\ell_{j}:=v_{j} \rightarrow t$ for all $1 \leq j \leq k$, and changing the weights of its edges. We initially assign each edge ℓ_{j} infinite weight, so that shortest paths in G^{+} are identical to shortest paths in G. Our algorithm computes the shortest path tree T_{s} rooted at s in G^{+}, and then preprocesses G^{+}and T_{s} into a data structure that supports the Update and Distance operations described in Lemma 2.1. We implement Update as a parametric shortest path operation; we maintain the shortest-path tree T_{s} as the weight of edge e changes continuously and monotonically from its previous value to its new value.

After preprocessing, our algorithm proceeds in phases indexed from k down to 1 . In the i th phase, we Update the weight of e_{i} to ∞, and then Update the weight ℓ_{i} to W_{i}. After the i th phase, the edge weights are consistent with the graph G_{i}, so $\operatorname{Distance}(t)$ is the length of the replacement path P_{i}. When all phases are complete, we return the array of $k-1$ replacement path lengths. Our algorithm is summarized in Figure 2

The running time of our algorithm depends on the number of pivots executed during all Update operations, the time required to find the next pivot, and the time required to answer Distance queries. If we implement the Update and Distance operations using the parametric shortest-path algorithm of Young et al. [31], our generic

```
REPLACEMENTPATHS ( \(G^{+}\)):
    Compute the shortest path tree \(T_{s}\) in \(G^{+}\)
    Preprocess \(G^{+}\)and \(T_{s}\) for Update and Distance
    for \(i \leftarrow k\) down to 1
        \(\operatorname{Update}\left(e_{i}, \infty\right)\)
        \(\operatorname{Update}\left(\ell_{i}, W_{i}\right)\)
        \(R[i] \leftarrow \operatorname{Distance}(t)\)
    return \(R[1 . . k-1]\)
```

Figure 2. Our generic replacement paths algorithm.
algorithm runs in $O\left(m n+n^{2} \log n\right)$ time, matching the time to run Dijkstra's algorithm in each graph $G \backslash e_{i}$.

In Section 4, we show that this generic algorithm can be implemented much more efficiently if the input graph is embedded. The next three lemmas, which actually hold for arbitrary graphs, prove useful in this analysis.

Lemma 3.1. For any vertex v, the shortest path from s to v changes at most once during any UpDATE operation.

Proof: Consider an Update operation that increases the weight of an edge e. While the weight of e is increasing, the length of any shortest path that contains e is increasing, while the length of any shortest path that avoids e stays constant. Thus, if the shortest path from s to v changes, it must change from a path that contains e to a path that avoids e.

The other case is symmetric. While the weight of any edge e is decreasing, if the shortest path from s to v changes, it must change from a path that avoids e to a path that contains e.

Lemma 3.1 immediately implies that at most $n-1$ pivots take place during each Update operation. However, the special structure of our input graphs implies an even smaller number of pivots. In particular, the fact that t has no outgoing edges immediately implies the following:

Lemma 3.2. At most one pivot occurs during each operation $\operatorname{Update}\left(\ell_{i}, W_{i}\right)$ in ReplacementPaths.

Without assuming more about the graph, each operation $\operatorname{Update}\left(e_{i}, \infty\right)$ could require $n-1$ pivots. However, even without additional assumptions, these pivots have a special structure that we will exploit in our later analysis. For any index i and any vertex $y \neq t$, let Last (i, y) denote the index of the last vertex of P in the shortest path from s to y in G_{i}. Our assumption that all shortest paths are unique implies that the shortest path from s to y in G_{i} begins with the prefix $P[0 \ldots \operatorname{Last}(i, y)]$ and otherwise avoids every edge of P.

Lemma 3.3. For any vertex $y \neq t$ and any index $i>1$, we have $\operatorname{Last}(i-1, y) \leq \operatorname{Last}(i, y)$.

Proof: Let $\operatorname{dist}_{i}(y)$ denote the shortest-path distance from s to y in G_{i}. Because $y \neq t$ and t has no outgoing edges, the shortest path from s to y avoids every edge ℓ_{j}. It follows that $\operatorname{dist}_{i-1}(y) \geq \operatorname{dist}_{i}(y)$, because G_{i-1} is a proper subgraph of G_{i} if all edges ℓ_{j} are ignored.

If $\operatorname{Last}(i, y)<i-1$, the shortest path from s to y in G_{i} is a valid path in G_{i-1}, and therefore must be a shortest path in G_{i-1}, which implies that $\operatorname{Last}(i-1, y)=\operatorname{Last}(i, y)$. On the other hand, the definition of G_{i} implies that $1 \leq$ $\operatorname{Last}(i, y)<i$ for all i. Thus, if $\operatorname{Last}(i, y)=i-1$, we immediately have $\operatorname{Last}(i-1, y)<i-1=\operatorname{Last}(i, y)$.

4 Surface-Embedded Graphs

Now we specialize our generic algorithm to solve the replacement path problem in surface-embedded graphs in $O(g n \log n)$ time. In particular, when the input graph is planar, our algorithm runs in $O(n \log n)$ time, matching Wulff-Nilsen's recent algorithm [30].

4.1 The Algorithm

Let G be a directed graph with non-negative edge weights, cellularly embedding on an orientable surface Σ of genus g. If the shortest path P happens to lie on the boundary of a single face of the embedding, then the augmented graph G^{+}can also be embedded on Σ; in this case, we can solve the replacement path problem efficiently by combining our generic algorithm with Lemma 2.1 and bounding the number of pivots. In general, however, more work is required.

Recall from the previous section that each replacement path P_{i} is the concatenation of a prefix of P, a detour D_{i}, and a suffix of P. The first edge of D_{i} can leave P either to the left or to the right; similarly, the last edge of D_{i} can enter P either from the left or from the right. These alternatives give us four possible structures for the replacement path, illustrated in Figure 3. Following Emek et al. [6] and Wulff-Nilson [30], our algorithm separately computes replacement paths of each of these four types, and then combines the results.

To compute left-left replacement paths, we first construct a new graph $L L$ from G by deleting every edge that either enters P from the right or leaves P to the right. (See Figure 4(a).) For each index i, the shortest left-left e_{i}-avoiding path from s to t in G is also the shortest e_{i}-avoiding path from s to t in $L L$. Because the entire path P lies on the boundary of a single face of $L L$, the augmented graph $L L^{+}$is also embedded in Σ. Thus, we can compute left-left replacement paths efficiently by calling ReplacementPaths ($L L^{+}$), using the data structure described by Lemma 2.1 to implement the Update and Distance operations. We compute right-right replacement paths symmetrically.

Figure 3. Four types of replacement paths in surface graphs. From top to bottom: left-left, left-right, right-right, and right-left.

The other two cases are slightly more complicated. To compute left-right replacement paths, we construct a graph $L R$ by modifying G as follows. First, we delete all edges leaving P to the right or entering P from the left. Next, for each vertex v_{i} of P except s and t, we introduce a new vertex v_{i}^{\prime}, intuitively just to the right of P. Finally, we replace each edge $u \rightarrow v_{i}$ that enters P from the right with a new edge $u \rightarrow v_{i}^{\prime}$. (See Figure 4(b).) Now a detour in G appears in $L R$ as a path from some node v_{i} to some other node v_{j}^{\prime}. Thus, before we augment $L R$ to pass to our generic ReplacementPaths algorithm, we add edges $\ell_{i}=v_{i}^{\prime} \rightarrow t$ for each index i. The resulting graph $L R^{+}$still has an embedding in Σ, and ReplacementPaths $\left(L R^{+}\right)$correctly returns the lengths of the left-right replacement paths. Although the edges ℓ_{i} are defined differently than in Section 3, the proof of correctness and analysis of ReplacementPaths $\left(L R^{+}\right)$is completely unchanged. Again, we implement the Update and Distance operations using Lemma 2.1. We compute right-left replacement paths symmetrically.

4.2 Two Topological Lemmas

The analysis of our algorithm relies on the following pair of lemmas. Lemma 4.2 was previously used implicitly by several authors, including Klein [19], Cabello et al. [4, 5], Erickson [7], and Wulff-Nilsen [30]. Lemma 4.2 was used implicitly by Cabello et al. [4, 5]. For completeness, we include proofs of both lemmas here.

Lemma 4.1. Let G be an undirected plane graph. Let T be an arbitrary spanning tree of G, let $x y$ be an arbitrary edge of T, and let X be the component of $T \backslash x y$ containing vertex x. Finally, let f be an arbitrary face of G. Then X contains a (possibly empty) contiguous interval of vertices on the boundary of f.

Figure 4. Graphs $L L^{+}$and $L R^{+}$, with augmenting edges ℓ_{j} drawn concurrently.

Proof: Let $T[u, v]$ denote the unique path in T from vertex u to vertex v. Let a and c be vertices on the boundary of f, such that the paths $T[a, y]$ and $T[c, y]$ both end with the edge $x y$. (If two such vertices do not exist, the lemma is trivially true.) Vertices a and c partition the boundary of f into two paths, $\partial f[a, c]$ and $\partial f[c, a]$. Without loss of generality, suppose vertex y lies outside the cycle $\gamma:=T[x, a] \cdot \partial f[a, c] \cdot T[c, x]$. For any vertex b on $\partial f[a, c]$, the path $T[b, x]$ cannot cross γ, and thus (by the Jordan Curve Theorem) cannot contain y. Thus, X contains every vertex of $\partial f[a, c]$.

Lemma 4.2. Let G be an undirected graph, embedded on an orientable surface Σ of genus $g>0$. Let T be an arbitrary spanning tree of G, let $x y$ be an arbitrary edge of T, and let X be the component of $T \backslash x y$ containing vertex x. Finally, let f be an arbitrary face of G. Then X contains at most $2 g+1$ contiguous intervals of vertices on the boundary of f.

Proof: Let Y be the component of $T \backslash x y$ containing y. Let $T[u, v]$ denote the unique path in T from vertex u to vertex v. Let G / f be the graph obtained from G by contracting the face f to a single vertex v_{f}. Let $T[u, v] / f$ denote the path in G / f corresponding to $T[u, v]$. Paths in X from x to f do not cross each other or paths in Y from y to f, so the corresponding paths in G / f also do not cross.

Let a and b be two vertices of X that lie on the boundary of f, such that the paths $T[x, a] / f$ and $T[x, b] / f$ are homotopic. Vertices a and c partition the boundary of f into two paths, $\partial f[a, b]$ and $\partial f[b, a]$. Without loss of generality, suppose the cycle $T[x, a]$. $\partial f[a, b] \cdot T[b, x]$ is the boundary of a disk D. If this disk does not contain vertex y, then the Jordan Curve Theorem implies that X contains every vertex of $\partial f[a, b]$, exactly as in the planar setting.

On the other hand, if D does contain y, then D must also contain the entire subtree Y. Lemma now implies that Y contains a single (possibly empty) contiguous interval of vertices on the boundary of D, and therefore on the boundary of f. It follows that X also contains exactly
one contiguous interval of vertices on the boundary of f in this case.

Now fix a subsequence $x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{k}, y_{k}$ of $2 k$ vertices on the boundary of f, such that each vertex x_{i} lies in X and each vertex y_{i} lies in Y. To compete the proof of the lemma, it suffices to show that $k \leq 2 g+1$. The two previous paragraphs imply that the paths $X\left[x, x_{i}\right] / f$ lie in distinct homotopy classes.

Let H denote the union of all paths $X\left[x, x_{i}\right]$; this is an acyclic subgraph of G, which inherits an embedding from G. The entire subtree Y-in particular, all vertices y_{j}-must lie in a common face of H. It follows that the induced embedding of H has exactly one face (which may or may not be a disk).

Finally, consider any maximal set of pairwise nonhomotopic, non-crossing paths in Σ from x to v_{f} whose union does not disconnect Σ. Replacing each path with a single edge defines a new graph H^{\prime} embedded on Σ, with exactly two vertices (x and v_{f}) and a single face. This face must be a disk; otherwise, we can add another edge, in a new homotopy class, that reduces its genus. Euler's formula $V-E+F=2-2 g$ implies that H^{\prime} has exactly $2 g+1$ edges.

We conclude that $k \leq 2 g+1$, which completes the proof of the lemma.

We remark in passing that the bound $2 g+1$ in the previous lemma is tight.

4.3 Analysis

We are finally ready to prove the main result of the paper.
Theorem 4.3. Let G be a directed graph with nonnegative edge weights, cellularly embedded on an orientable surface of genus $g>0$. The replacement paths problem in G can be solved in $O(g n \log n)$ time.

Proof: Lemma 2.1 implies that each of our four calls to ReplacementPaths runs in $O(n \log n+k g \log n+p \log n)$ time, where p is the total number of pivots occurring in all Update operations. Lemma 3.2 implies that
the operations $\operatorname{Update}\left(\ell_{i}, W_{i}\right)$ incur at most k pivots altogether. To complete the analysis, it remains only to bound the number of pivots occurring during the operations $\operatorname{Update}\left(e_{i}, \infty\right)$. Lemma 3.1 implies that at most one edge incident to t pivots into T_{s} during any Update operation, so we can safely ignore those edges.

When ReplacementPaths $\left(G^{+}\right)$is called, G^{+}is one of the graphs $L L^{+}, R R^{+}, L R^{+}$, and $R L^{+}$. Let G^{-}be the subgraph of G^{+}obtained by deleting all edges e_{i} and ℓ_{i}. Finally, for each index i, let T_{i} denote the shortest path tree in G^{+}just after the operation $\operatorname{Update}\left(e_{i}, \infty\right)$.

Fix an edge $x \rightarrow y$ of G^{+}with $y \neq t$. Lemma 3.1 implies that $x \rightarrow y$ pivots into T_{i} at most once during any call to Update. Thus, to count the number of times $x \rightarrow y$ pivots into T_{s}, it suffices to count indices i such that T_{i-1} contains $x \rightarrow y$ but T_{i} does not.

Let B_{y} denote the tree of shortest paths ending at y in G^{-}, and let B_{x} denote the subtree of B_{y} rooted at x. For any index i, the shortest path from s to y in G_{i} contains the shortest path from $v_{\text {Last }(i, y)}$ to y in G^{-}. Thus, $x \rightarrow y$ is an edge of T_{i} if and only if $v_{\text {Last }(i, y)}$ is a vertex of B_{x}. (Here we are exploiting our assumption that shortest paths are unique.) The vertices v_{j} of P all lie on a common face f of the embedding of G^{-}; thus, Lemma 4.2 implies that B_{x} contains at most $8 g$ contiguous intervals of vertices in P. Lemma 3.3 now implies that there are at most $\max \{8 g, 1\}$ indices i such that such that $v_{\text {Last }(i-1, y)} \in B_{x}$ but $v_{\text {Last }(i, y)} \notin B_{x}$. We conclude that $x \rightarrow y$ pivots into the shortest path tree T_{s} at most $8 g$ times.

Altogether at most 8 gn pivots occur during all operations $\operatorname{UpDATE}\left(e_{i}, \infty\right)$. Thus, our replacement paths algorithm runs in time $O(n \log n+k g \log n+g n \log n)=$ $O(g n \log n)$, as claimed.

For planar graphs, almost identical analysis implies a running time of $O(n \log n)$; the only difference is that we use Lemma 4.2 instead of Lemma 4.2.

Theorem 4.4 (Wulff-Nilsen [30]). Let G be a directed planar graph with non-negative edge weights. The replacement paths problem in G can be solved in $O(n \log n)$ time.

References

[1] A. Aggarwal, M. Klawe, S. Moran, P. Shor, and R. E. Wilber. Geometric applications of a matrix searching algorithm. Algorithmica 2:195-208, 1987.
[2] A. Bar-Noy, S. Khuller, and B. Schieber. The complexity of finding most vital arcs and nodes. Tech. Report CS-TR-3539, University of Maryland Computer Science Department, 1995. 〈http://www.lib.umd.edu/drum/ handle/1903/763).
[3] A. M. Bhosle. Improved algorithms for replacement paths problems in restricted graphs. Oper. Res. Lett. 33(5):459-466, 2005. 〈http://www.cs.ucsb.edu/ ~bhosle/publications/repl-paths-orl.pdf).
[4] S. Cabello and E. W. Chambers. Multiple source shortest paths in a genus g graph. Proc. 18th Ann. ACM-SIAM Symp. Discrete Algorithms, 89-97, 2007.
[5] S. Cabello, E. W. Chambers, and J. Erickson. Multiplesource shortest paths in embedded graphs. Full version of [4], in preparation.
[6] Y. Emek, D. Peleg, and L. Roditty. A near-linear time algorithm for computing replacement paths in planar directed graphs. Proc. 19th Ann. ACM-SIAM Symp. Discrete Algorithms, 428-435, 2008.
[7] J. Erickson. Parametric shortest paths and maximum flows in planar graphs. Proc. 21st Ann. ACM-SIAM Symp. Discrete Algorithms, 794-804, 2010.
[8] J. Erickson and S. Har-Peled. Optimally cutting a surface into a disk. Discrete Comput. Geom. 31:37-59, 2004.
[9] D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Fully dynamic algorithms for maintaining shortest paths trees. J. Algorithms 34(2):251-281, 2000.
[10] D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Fully dynamic shortest paths in digraphs with arbitrary arc weights. Journal of Algorithms 49(1):86-113, 2003.
[11] Z. Gotthilf and M. Lewenstein. Improved algorithms for the k simple shortest paths and the replacement paths problems. Inform. Proc. Lett. 109(7):352-355, 2009.
[12] M. R. Henzinger and V. King. Randomized fully dynamic graph algorithms with polylogarithmic time per operation. J. ACM 46(4):502-516, 1999.
[13] M. R. Henzinger, P. Klein, S. Rao, and S. Subramanian. Faster shortest-path algorithms for planar graphs. J. Comput. Syst. Sci. 55(1):3-23, 1997.
[14] J. Hershberger and S. Suri. Vickrey prices and shortest paths: What is an edge worth? Proc. 42nd Ann. ACM Symp. Theory Comput., 252-259, 2001. Erratum in Proc. 42nd Ann. ACM Symp. Theory Comput., 809, 2002.
[15] J. Hershberger, S. Suri, and A. Bhosle. On the difficulty of some shortest path problems. ACM Trans. Algorithms 3(1):1-15, 2007.
[16] D. R. Karger, D. Koller, and S. J. Phillips. Finding the hidden path: time bounds for all-pairs shortest paths. SIAM J. Comput. 22(6):1199-1217, 1993.
[17] R. M. Karp and J. B. Orlin. Parametric shortest path algorithms with an application to cyclic staffing. Discrete Appl. Math. 3:37-45, 1981.
[18] P. Klein, S. Mozes, and O. Weimann. Shortest paths in directed planar graphs with negative lengths: A linearspace $O\left(n \log ^{2} n\right)$-time algorithm. Proc. 20th Ann. ACMSIAM Symp. Discrete Algorithms, 236-245, 2009.
[19] P. N. Klein. Multiple-source shortest paths in planar graphs. Proc. 16th Ann. ACM-SIAM Symp. Discrete Algorithms, 146-155, 2005.
[20] K. Malik, A. K. Mittal, and S. K. Gupta. The k most vital arcs in the shortest path problem. Oper. Res. Lett. 8(4):223-227, 1989.
[21] B. Mohar and C. Thomassen. Graphs on Surfaces. Johns Hopkins University Press, 2001.
[22] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as easy as matrix inversion. Combinatorica 7(1):105-113, 1987.
[23] E. Nardelli, G. Proietti, and P. Widmayer. A faster computation of the most vital edge of a shortest path. Inform. Proc. Lett. 79(2):81-85, 2001.
[24] N. Nisan and A. Ronen. Algorithmic mechanism design (extended abstract). Proc. 31st Ann. ACM Symp. Theory Comput., 129-140, 1999.
[25] L. Roditty and U. Zwick. Replacement paths and k simple shortest paths in unweighted directed graphs. Proc. 32nd Int. Colloq. Automata Lang. Program., 249-260, 2005. Lecture Notes Comput. Sci. 3580, Springer-Verlag.
[26] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J. Comput. Syst. Sci. 26(3):362-391, 1983.
[27] R. E. Tarjan. Dynamic trees via Euler tours, applied to the network simplex algorithm. Mathematical Programming: Series A and B 78:169-177, 1997.
[28] R. E. Tarjan and R. F. Werneck. Self-adjusting top trees. Proc. 16th Ann. ACM-SIAM Symp. Discrete Algorithms, 813-822, 2005.
[29] O. Weimann. Accelerating Dynamic Programming. Ph.D. thesis, Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science, 2009. 〈http://www.wisdom.weizmann.ac.il/ ~oweimann/Publications/Thesis.pdf .
[30] C. Wulff-Nilsen. Solving the replacement paths problem for planar directed graphs in $o(n \log n)$ time. Proc. 21st Ann. ACM-SIAM Symp. Discrete Algorithms, 756-765, 2010.
[31] N. E. Young, R. E. Tarjan, and J. B. Orlin. Faster parametric shortest path and minimum balance algorithms. Networks 21(2):205-221, 1991.

[^0]: *This research was partially supported by NSF grant CCF 09-15519. See http://www.cs.uiuc.edu/~jeffe/pubs/repath.html for the most recent version of this paper.

[^1]: ${ }^{1}$ The published version of this result [4] has a weaker amortized time bound of $O(g p \log n)$. Using this version increases the running time of our algorithm to $O\left(g^{2} n \log n\right)$.

