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Abstract

Let s and t be vertices in a directed graph G with non-negative
edge weights. The replacement paths problem asks us to
compute, for each edge e in G, the length of the shortest path
from s to t that does not traverse e. We describe an algorithm
that solves the replacement paths problem for directed graphs
embedded on a surface of any genus g in O(gn log n) time,
generalizing a recent O(n log n)-time algorithm of Wulff-Nilsen
for planar graphs [SODA 2010].

1 Introduction

Finding shortest paths in graphs is a fundamental algo-
rithmic problem with an enormous range of applications.
In many of these applications, connections represented
by edges of the graph occasionally fail, in which case
alternative shortest paths that avoid the failed edges must
be computed quickly. The replacement paths problem,
independently posed by Malik et al. [20] and Nisan
and Ronen [24], formalizes the search for alternative
paths as follows. Given a directed graph G with non-
negative edge weights and two vertices s and t, the
replacement paths problem asks us to compute, for each
edge e in G, the length of the shortest (s, t)-path that
avoids e. In fact, it suffices to compute replacement
paths only for edges in the shortest path in G from s
to t; removing any other edge leaves the shortest path
unchanged. The replacement paths problem has a long
history of algorithms and applications, which is beyond
the scope of this paper; we refer the interested reader to
Emek et al. [6] and Roditty and Zwick [25] for extensive
surveys.

Replacement paths in undirected graphs can be
computed almost as quickly as a single shortest path.
Malik et al. [20] describe an algorithm to solve the re-
placement path problem in O(m+n log n) time, the same
time required to run Dijkstra’s algorithm once; a flaw in
their algorithm was corrected by Bar-Noy et al. [2]. A
similar algorithm with the same running time was later
independently developed by Hershberger and Suri [14].

∗This research was partially supported by NSF grant CCF 09-15519.
See http://www.cs.uiuc.edu/~jeffe/pubs/repath.html for the most
recent version of this paper.

Nardelli et al. [23] describe a faster algorithm that runs
in O(mα(m, n)) time on an integer RAM.

The problem appears to be much more difficult in
directed graphs. The naive solution is to run Dijkstra’s
algorithm once for each edge in the original shortest path,
which requires O(mn+n2 log n) time. Surprisingly, this is
nearly the best algorithm known; the only improvement
so far is a recent algorithm of Gotthilf and Lewenstein
that runs in O(mn+ n2 log log n) time [11]. Hershberger
et al. [15] prove a lower bound of Ω(m

p
n) time (when

m = O(n3/2)) in the path comparison model proposed
by Karger et al. [16]. For the special case of unweighted
directed graphs, Roditty and Zwick [25] describe a ran-
domized algorithm that runs in O(m

p
n log2 n) expected

time.
Several previous papers have focused on the natural

special case of planar graphs. Bhosle [3] described an
algorithm to compute replacement paths in undirected
planar graphs in O(n) time, again matching the time
required to compute a single shortest path [13]. The
first breakthrough for directed planar graphs was an
algorithm of Emek et al. [6] that runs in O(n log3 n)
time. Klein, Mozes, and Weimann [18, 29] improved the
running time to O(n log2 n) by replacing a certain divide-
and-conquer step with the SMAWK matrix-searching
algorithm [1]. Most recently, Wulff-Nilson [30] further
improved the running time to O(n log n); this is the
fastest algorithm known to date.

All three near-linear-time algorithms for directed
planar graphs rely on a seminal algorithm of Klein
for the multiple-source shortest path problem in planar
graphs [19]. Given a directed plane graph G and a
face f of G, Klein’s algorithm builds a data structure
of size O(n), in O(n log n) time, such that the shortest
path distance between any vertex incident to f and
any other vertex of G can be retrieved in O(log n) time.
Wulff-Nilsen’s algorithm [30] applies the underlying data
structures and analysis of Klein’s algorithm directly; the
other two algorithms [6, 18, 29] invoke Klein’s algorithm
as a subroutine.

Cabello and Chambers [4] generalized Klein’s algo-
rithm to graphs embedded on arbitrary surfaces, solving
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the multiple-source shortest path problem in O(g2n log n)
time and O(n) space, where g is the genus of the
underlying surface. This time bound was recently
improved to O(gn log n) by Cabello et al. [5]. Cabello
and Chambers’ key insight is to interpret the multiple-
source shortest path problem as a parametric shortest
path problem. Their algorithm starts with a shortest
path tree T rooted at an arbitrary vertex of f , and then
maintains T as the root moves continuously around the
boundary of f . (See Section 2.3 for more details.)

In this paper, we show that the parametric shortest-
path infrastructure developed by Cabello et al. [4, 5]
can be used to solve the replacement paths problem in
O(gn log n) time when the input graph is embedded on
an orientable surface of genus g ≥ 0. To the best of our
knowledge, this is the first replacement-paths algorithm
for directed surface graphs that runs in subquadratic
time. For the special case of directed planar graphs,
our algorithm has the same O(n log n) running time
as Wulff-Nilsen’s algorithm [30], but we believe both
our algorithm and its analysis are simpler. Like earlier
algorithms [6, 30], our algorithm computes only the
lengths of the replacement paths, but it can be modified
easily to return the actual replacement paths in O(1)
additional time per edge.

After reviewing some background in Section 2, we
reformulate the replacement path problem in arbitrary
directed graphs in terms of parametric shortest paths in
Section 3. We use this generic algorithm as a template
for our algorithm for surface graphs in Section 4.

2 Preliminaries

2.1 Graphs and (Shortest) Paths

An edge in a directed graph G is an ordered pair of
vertices; we use the mnemonic notation u�v to denote
the directed edge from vertex u to vertex v.

A directed walk in G is a sequence of vertices
v0�v1� · · ·�vk such that each adjacent pair vi−1�vi is
an edge in G. A walk with distinct vertices is called a
path. We say that a path P = v0�v1� · · ·�vk traverses
each edge vi−1�vi and avoids every other edge in G.
For any indices i < j, we let P[i .. j] denote the subpath
vi�vi+1� · · ·�v j from the ith vertex of P to the jth vertex
of P. A prefix of P is a subpath that contains the first
vertex of P; a suffix of P is a subpath that contains the
last vertex of P. The concatenation P ·Q of two paths
P = v0�v1� · · ·�vk and Q = vk�vk+1� · · ·�vl is the
walk v0�v1� · · ·�vk�vk+1� · · ·�vl .

To simplify our presentation and analysis, we assume
that in each of the graphs we consider, every pair of
vertices is connected by a unique shortest path; in
particular, we assume that replacement paths are unique.

The Isolation Lemma [22] implies that this assumption
can be enforced (at least with high probability) by
perturbing the edge weights with random infinitesimal
values [8].

2.2 Surfaces

A surface (more formally, a 2-manifold) is a compact
Hausdorff space in which every point has an open
neighborhood homeomorphic to the plane. A simple
cycle in a surface Σ is (the image of) an injective
continuous map γ: S1 → Σ. A simple cycle γ is
separating if its removal disconnects the surface. The
genus of a surface Σ is the maximum number of simple,
disjoint cycles in Σ whose deletion leaves the surface
connected. Two compact, connected, orientable surfaces
are homeomorphic if and only if they have the same
genus.

A path on a surface Σ is (the image of) a continuous
map α: [0,1]→ Σ. Two paths α and β are homotopic
if there is a continuous map h: [0,1]× [0,1]→ Σ such
that h(0, ·) = α, h(1, ·) = β , h(·, 0) = α(0) = β(0),
and h(·, 1) = α(1) = β(1). The function h is called a
homotopy between α and β .

An embedding of a graph G on a surface Σ maps
vertices to distinct points and (undirected) edges to
interior-disjoint curves. The faces of the embedding
are maximal connected subsets of Σ that are disjoint
from the image of the graph. An embedding is cellular
if each of its faces is homeomorphic to the plane. Any
cellular embedding can be represented combinatorially
by a rotation system, which specifies the counterclockwise
ordering of edges incident to each vertex of G [21].
Two paths in a surface-embedded graph are considered
homotopic if their images on the surface are homotopic.

Let P = v0�v1� · · ·�vk be a directed path in an
embedded graph G. We say that the edge u�vi enters P
from the left (resp. right) if the vertices vi−1, u, and vi+1
are ordered clockwise (resp. counterclockwise) around vi ,
according to the embedding’s rotation system. An edge
vi�u leaves P from the left (resp. right) if its reversal u�vi
enters P from the left (resp. right). These definitions
require that 0 < i < k and that u is not a vertex in P;
edges incident to v0 or vk are considered neither left nor
right of P.

2.3 Parametric Shortest Paths

Cabello et al. [4, 5] solved the multiple-source shortest
path problem in surface-embedded graphs by recasting
it in the parametric shortest path paradigm introduced
by Karp and Orlin [17]. The input to the parametric
shortest path problem is a graph whose edge weights
are linear functions of a parameter λ; specifically, let



wλ(e) = w(e)+λ·w′(e), for given functions w, w′ : E→ R.
(In Karp and Orlin’s original formulation, w′(e) ∈ {0,1}
for every edge e.) Let Tλ denote the shortest-path tree
rooted at a fixed source vertex s with respect to the
weights wλ. The goal of the problem is to compute Tλ
for all λ in a certain range.

To solve this problem, Karp and Orlin [17] propose
maintaining Tλ while continuously increasing the parame-
ter λ. Although shortest-path distances vary continuously
as a function of λ, the combinatorial structure of Tλ
changes only at certain critical values of λ. At each
critical value, an edge v�w pivots into the shortest-
path tree, replacing some other edge u�w; in other
words, v becomes the new predecessor of w. Karp and
Orlin [17] show that by storing Tλ in an appropriate
dynamic tree data structure [26, 12, 27], it is possible
to update Tλ in O(log n) time at each critical value;
moreover, during the simulation, the current shortest
path distance from s to any other vertex can be retrieved
in O(log n) amortized time [17]. The overall running
time of Karp and Orlin’s algorithm depends on two
additional factors: the amortized time needed to identify
the next pivot, and the total number of pivots.

Cabello et al. [4, 5] develop efficient algorithms
for a narrow special case of the parametric shortest
path problem, where the input graph is undirected and
has a cellular embedding on some surface, and the
source s of the shortest-path tree moves continuously
along an edge uv from one end to the other. Their
algorithm finds pivots by maintaining and querying the
complementary dual subgraph C∗λ = (G \ Tλ)∗. When the
input graph G is planar, C∗λ is a spanning tree of the dual
graph G∗, which can be maintained in another dynamic
tree data structure [26, 28], so that the next pivot can be
computed in O(log n) amortized time. (Klein’s multiple-
source shortest-path algorithm [19] uses the same primal
and dual dynamic tree data structures, but performs a
different sequence of pivots.) For surfaces of genus g > 0,
the dual subgraph C∗λ is a spanning tree plus 2g extra
edges. Cabello et al. describe a canonical decomposition
of C∗λ into O(g) edge-disjoint subtrees; by maintaining
each of these subtrees in its own dynamic tree data
structure, the next pivot can be predicted in O(g log n)
amortized time [4, Lemma 3.2].

With only trivial modifications, the algorithm of
Cabello et al. can be adapted to directed graphs where
exactly one edge has non-constant weight, with the
following time and space bounds:

Lemma 2.1 (Cabello et al. [5]). Let G be a directed
graph with non-negative edge weights, cellularly em-
bedded on an orientable surface of genus g, and let s
be a fixed vertex of G. After O(n log n) preprocessing

time, we can maintain a data structure of size O(n) that
supports the following operations:
• UPDATE(e, w): Change the weight of the edge e to

w ≥ 0, in O((g + p) log n) amortized time, where
p is the number of pivots that the tree go through
as the weight of e gradually changes to w.1

• DISTANCE(v): Return the shortest-path distance in G
from s to v in O(log n) amortized time.

These same operations can be supported in arbitrary
directed graphs using the parametric shortest-path algo-
rithms of Karp and Orlin [17] and Young et al. [31]. The
latter algorithm requires O(m+ n log n) time to perform
an UPDATE, after which any DISTANCE query can be an-
swered in constant time. However, unlike the specialized
algorithm of Cabello et al., these generic algorithms
require the entire graph to be preprocessed anew for
each UPDATE. Dynamic data structures supporting UPDATE

and DISTANCE operations are also described by Klein [19,
Section 6] for directed planar graphs, and by Frigioni
et al. [9, 10] for several families of graphs including
graphs of bounded genus. However, at least for our
application, these data structures are not as efficient as
the structure described in Lemma 2.1.

3 General Graphs
We now describe our general strategy for solving the
replacement path problem using parametric shortest path
operations. The algorithm we describe can actually be
applied to arbitrary directed graphs, although its running
time then matches the naive algorithm that runs Dijkstra
n times.

Fix an input directed graph G = (V, E), a non-negative
weight function w : E → R+, and two vertices s and t.
Without loss of generality, we assume that s has out-
degree 1 and in-degree 0, and that t has in-degree 1 and
out-degree 0. Let P = v0�v1� . . .�vk denote the shortest
path in G from s = v0 to t = vk. For each index i, let ei
denote the edge vi−1�vi .

Our goal is to compute, for each i, the length of the
shortest path Pi from s to t that avoids ei . (Removing an
edge that is not in P does not change the shortest path.)
Because P is a shortest path, the replacement path Pi has
the form P[0 .. Out(i)] ·Di · P[In(i) .. k] where Out(i) and
In(i) are indices such that 0 < Out(i) < i ≤ In(i) < k,
and Di is a path that is disjoint from P except at its
endpoints. We call the middle subpath Di of Pi a detour.

Following Emek et al. [6], we define a sequence
of edge-weighted graphs G1, G2, . . . , Gk such that for
each i, the shortest path from s to t corresponds to a

1The published version of this result [4] has a weaker amortized
time bound of O(gp log n). Using this version increases the running
time of our algorithm to O(g2n log n).
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Figure 1. Transforming G (top) into Gi (bottom).

shortest ei-avoiding path in G. For each index i, let
Wi :=
∑k

j=i+1 w(e j); thus, Wi is the length of the suffix
P[i .. k]. The graph Gi is defined by modifying the
graph G, by adding edges ` j := v j�t with weight Wj ,
for each index j ≥ i, and then deleting all edges in
the suffix P[i − 1 .. k]. See Figure 1. The shortest path
from s to t in Gi has the form P[0 .. Out(i)] ·Di ·`In(i); the
length of this path is the same as the length of Pi . Thus,
the replacement path problem boils down to finding the
shortest path from s to t in each graph Gi .

Our algorithm computes these distances by maintain-
ing a single graph G+, constructed from G by adding
the edges ` j := v j�t for all 1 ≤ j ≤ k, and changing
the weights of its edges. We initially assign each
edge ` j infinite weight, so that shortest paths in G+

are identical to shortest paths in G. Our algorithm
computes the shortest path tree Ts rooted at s in G+, and
then preprocesses G+ and Ts into a data structure that
supports the UPDATE and DISTANCE operations described
in Lemma 2.1. We implement UPDATE as a parametric
shortest path operation; we maintain the shortest-path
tree Ts as the weight of edge e changes continuously and
monotonically from its previous value to its new value.

After preprocessing, our algorithm proceeds in phases
indexed from k down to 1. In the ith phase, we UPDATE

the weight of ei to ∞, and then UPDATE the weight `i
to Wi . After the ith phase, the edge weights are consistent
with the graph Gi , so DISTANCE(t) is the length of the
replacement path Pi . When all phases are complete, we
return the array of k− 1 replacement path lengths. Our
algorithm is summarized in Figure 2

The running time of our algorithm depends on the
number of pivots executed during all UPDATE operations,
the time required to find the next pivot, and the time
required to answer DISTANCE queries. If we implement
the UPDATE and DISTANCE operations using the parametric
shortest-path algorithm of Young et al. [31], our generic

REPLACEMENTPATHS(G+):
Compute the shortest path tree Ts in G+

Preprocess G+ and Ts for UPDATE and DISTANCE

for i← k down to 1
UPDATE(ei ,∞)
UPDATE(`i , Wi)
R[i]← DISTANCE(t)

return R[1 .. k− 1]

Figure 2. Our generic replacement paths algorithm.

algorithm runs in O(mn+ n2 log n) time, matching the
time to run Dijkstra’s algorithm in each graph G \ ei .

In Section 4, we show that this generic algorithm can
be implemented much more efficiently if the input graph
is embedded. The next three lemmas, which actually
hold for arbitrary graphs, prove useful in this analysis.

Lemma 3.1. For any vertex v, the shortest path from s
to v changes at most once during any UPDATE operation.

Proof: Consider an UPDATE operation that increases
the weight of an edge e. While the weight of e is
increasing, the length of any shortest path that contains e
is increasing, while the length of any shortest path that
avoids e stays constant. Thus, if the shortest path from s
to v changes, it must change from a path that contains e
to a path that avoids e.

The other case is symmetric. While the weight of
any edge e is decreasing, if the shortest path from s to v
changes, it must change from a path that avoids e to a
path that contains e. �

Lemma 3.1 immediately implies that at most n− 1
pivots take place during each UPDATE operation. However,
the special structure of our input graphs implies an even
smaller number of pivots. In particular, the fact that t has
no outgoing edges immediately implies the following:

Lemma 3.2. At most one pivot occurs during each
operation UPDATE(`i , Wi) in REPLACEMENTPATHS.

Without assuming more about the graph, each opera-
tion UPDATE(ei ,∞) could require n− 1 pivots. However,
even without additional assumptions, these pivots have a
special structure that we will exploit in our later analysis.
For any index i and any vertex y 6= t, let Last(i, y) denote
the index of the last vertex of P in the shortest path from s
to y in Gi . Our assumption that all shortest paths are
unique implies that the shortest path from s to y in Gi
begins with the prefix P[0 .. Last(i, y)] and otherwise
avoids every edge of P.

Lemma 3.3. For any vertex y 6= t and any index i > 1,
we have Last(i− 1, y)≤ Last(i, y).



Proof: Let disti(y) denote the shortest-path distance
from s to y in Gi . Because y 6= t and t has no outgoing
edges, the shortest path from s to y avoids every edge ` j .
It follows that disti−1(y) ≥ disti(y), because Gi−1 is a
proper subgraph of Gi if all edges ` j are ignored.

If Last(i, y)< i−1, the shortest path from s to y in Gi
is a valid path in Gi−1, and therefore must be a shortest
path in Gi−1, which implies that Last(i−1, y) = Last(i, y).
On the other hand, the definition of Gi implies that 1≤
Last(i, y) < i for all i. Thus, if Last(i, y) = i − 1, we
immediately have Last(i− 1, y)< i− 1= Last(i, y). �

4 Surface-Embedded Graphs

Now we specialize our generic algorithm to solve the
replacement path problem in surface-embedded graphs
in O(gn log n) time. In particular, when the input graph
is planar, our algorithm runs in O(n log n) time, matching
Wulff-Nilsen’s recent algorithm [30].

4.1 The Algorithm

Let G be a directed graph with non-negative edge weights,
cellularly embedding on an orientable surface Σ of
genus g. If the shortest path P happens to lie on the
boundary of a single face of the embedding, then the
augmented graph G+ can also be embedded on Σ; in
this case, we can solve the replacement path problem
efficiently by combining our generic algorithm with
Lemma 2.1 and bounding the number of pivots. In
general, however, more work is required.

Recall from the previous section that each replace-
ment path Pi is the concatenation of a prefix of P, a
detour Di , and a suffix of P. The first edge of Di can
leave P either to the left or to the right; similarly, the last
edge of Di can enter P either from the left or from the
right. These alternatives give us four possible structures
for the replacement path, illustrated in Figure 3. Follow-
ing Emek et al. [6] and Wulff-Nilson [30], our algorithm
separately computes replacement paths of each of these
four types, and then combines the results.

To compute left-left replacement paths, we first
construct a new graph LL from G by deleting every
edge that either enters P from the right or leaves P
to the right. (See Figure 4(a).) For each index i, the
shortest left-left ei-avoiding path from s to t in G is
also the shortest ei-avoiding path from s to t in LL.
Because the entire path P lies on the boundary of a single
face of LL, the augmented graph LL+ is also embedded
in Σ. Thus, we can compute left-left replacement paths
efficiently by calling REPLACEMENTPATHS(LL+), using the
data structure described by Lemma 2.1 to implement the
UPDATE and DISTANCE operations. We compute right-right
replacement paths symmetrically.

s t
vivi–1

s t
vivi–1

s t
vivi–1

s t
vivi–1

Figure 3. Four types of replacement paths in surface graphs. From
top to bottom: left-left, left-right, right-right, and right-left.

The other two cases are slightly more complicated.
To compute left-right replacement paths, we construct a
graph LR by modifying G as follows. First, we delete
all edges leaving P to the right or entering P from
the left. Next, for each vertex vi of P except s and t,
we introduce a new vertex v′i , intuitively just to the
right of P. Finally, we replace each edge u�vi that
enters P from the right with a new edge u�v′i . (See
Figure 4(b).) Now a detour in G appears in LR as a path
from some node vi to some other node v′j . Thus, before
we augment LR to pass to our generic REPLACEMENTPATHS

algorithm, we add edges `i = v′i �t for each index i. The
resulting graph LR+ still has an embedding in Σ, and
REPLACEMENTPATHS(LR+) correctly returns the lengths of
the left-right replacement paths. Although the edges `i
are defined differently than in Section 3, the proof of
correctness and analysis of REPLACEMENTPATHS(LR+) is
completely unchanged. Again, we implement the UPDATE

and DISTANCE operations using Lemma 2.1. We compute
right-left replacement paths symmetrically.

4.2 Two Topological Lemmas

The analysis of our algorithm relies on the following pair
of lemmas. Lemma 4.2 was previously used implicitly by
several authors, including Klein [19], Cabello et al. [4, 5],
Erickson [7], and Wulff-Nilsen [30]. Lemma 4.2 was
used implicitly by Cabello et al. [4, 5]. For completeness,
we include proofs of both lemmas here.

Lemma 4.1. Let G be an undirected plane graph. Let T
be an arbitrary spanning tree of G, let x y be an arbitrary
edge of T , and let X be the component of T \ x y containing
vertex x. Finally, let f be an arbitrary face of G. Then X
contains a (possibly empty) contiguous interval of vertices
on the boundary of f .
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Figure 4. Graphs LL+ and LR+, with augmenting edges ` j drawn concurrently.

Proof: Let T[u, v] denote the unique path in T from
vertex u to vertex v. Let a and c be vertices on the
boundary of f , such that the paths T[a, y] and T[c, y]
both end with the edge x y. (If two such vertices do
not exist, the lemma is trivially true.) Vertices a and c
partition the boundary of f into two paths, ∂ f [a, c] and
∂ f [c, a]. Without loss of generality, suppose vertex y lies
outside the cycle γ := T[x , a] · ∂ f [a, c] · T[c, x]. For any
vertex b on ∂ f [a, c], the path T[b, x] cannot cross γ, and
thus (by the Jordan Curve Theorem) cannot contain y.
Thus, X contains every vertex of ∂ f [a, c]. �

Lemma 4.2. Let G be an undirected graph, embedded
on an orientable surface Σ of genus g > 0. Let T be an
arbitrary spanning tree of G, let x y be an arbitrary edge
of T , and let X be the component of T \ x y containing
vertex x . Finally, let f be an arbitrary face of G. Then X
contains at most 2g + 1 contiguous intervals of vertices
on the boundary of f .

Proof: Let Y be the component of T \ x y containing y.
Let T[u, v] denote the unique path in T from vertex u
to vertex v. Let G/ f be the graph obtained from G by
contracting the face f to a single vertex v f . Let T[u, v]/ f
denote the path in G/ f corresponding to T[u, v]. Paths
in X from x to f do not cross each other or paths in Y
from y to f , so the corresponding paths in G/ f also do
not cross.

Let a and b be two vertices of X that lie on the
boundary of f , such that the paths T[x , a]/ f and
T[x , b]/ f are homotopic. Vertices a and c partition
the boundary of f into two paths, ∂ f [a, b] and ∂ f [b, a].
Without loss of generality, suppose the cycle T[x , a] ·
∂ f [a, b] · T[b, x] is the boundary of a disk D. If this
disk does not contain vertex y, then the Jordan Curve
Theorem implies that X contains every vertex of ∂ f [a, b],
exactly as in the planar setting.

On the other hand, if D does contain y , then D must
also contain the entire subtree Y . Lemma now implies
that Y contains a single (possibly empty) contiguous in-
terval of vertices on the boundary of D, and therefore on
the boundary of f . It follows that X also contains exactly

one contiguous interval of vertices on the boundary of f
in this case.

Now fix a subsequence x1, y1, x2, y2, . . . , xk, yk of 2k
vertices on the boundary of f , such that each vertex x i
lies in X and each vertex yi lies in Y . To compete the
proof of the lemma, it suffices to show that k ≤ 2g + 1.
The two previous paragraphs imply that the paths
X [x , x i]/ f lie in distinct homotopy classes.

Let H denote the union of all paths X [x , x i]; this
is an acyclic subgraph of G, which inherits an embed-
ding from G. The entire subtree Y —in particular, all
vertices y j—must lie in a common face of H. It follows
that the induced embedding of H has exactly one face
(which may or may not be a disk).

Finally, consider any maximal set of pairwise non-
homotopic, non-crossing paths in Σ from x to v f whose
union does not disconnect Σ. Replacing each path with
a single edge defines a new graph H ′ embedded on Σ,
with exactly two vertices (x and v f ) and a single face.
This face must be a disk; otherwise, we can add another
edge, in a new homotopy class, that reduces its genus.
Euler’s formula V − E + F = 2− 2g implies that H ′ has
exactly 2g + 1 edges.

We conclude that k ≤ 2g + 1, which completes the
proof of the lemma. �

We remark in passing that the bound 2g + 1 in the
previous lemma is tight.

4.3 Analysis

We are finally ready to prove the main result of the paper.

Theorem 4.3. Let G be a directed graph with non-
negative edge weights, cellularly embedded on an
orientable surface of genus g > 0. The replacement
paths problem in G can be solved in O(gn log n) time.

Proof: Lemma 2.1 implies that each of our four calls to
REPLACEMENTPATHS runs in O(n log n+ kg log n+ p log n)
time, where p is the total number of pivots occurring
in all UPDATE operations. Lemma 3.2 implies that



the operations UPDATE(`i , Wi) incur at most k pivots
altogether. To complete the analysis, it remains only
to bound the number of pivots occurring during the
operations UPDATE(ei ,∞). Lemma 3.1 implies that at
most one edge incident to t pivots into Ts during any
UPDATE operation, so we can safely ignore those edges.

When REPLACEMENTPATHS(G+) is called, G+ is one
of the graphs LL+, RR+, LR+, and RL+. Let G− be the
subgraph of G+ obtained by deleting all edges ei and `i .
Finally, for each index i, let Ti denote the shortest path
tree in G+ just after the operation UPDATE(ei ,∞).

Fix an edge x�y of G+ with y 6= t. Lemma 3.1
implies that x�y pivots into Ti at most once during any
call to UPDATE. Thus, to count the number of times x�y
pivots into Ts, it suffices to count indices i such that Ti−1
contains x�y but Ti does not.

Let By denote the tree of shortest paths ending at y
in G−, and let Bx denote the subtree of By rooted at x .
For any index i, the shortest path from s to y in Gi
contains the shortest path from vLast(i,y) to y in G−.
Thus, x�y is an edge of Ti if and only if vLast(i,y) is a
vertex of Bx . (Here we are exploiting our assumption
that shortest paths are unique.) The vertices v j of P
all lie on a common face f of the embedding of G−;
thus, Lemma 4.2 implies that Bx contains at most 8g
contiguous intervals of vertices in P. Lemma 3.3 now
implies that there are at most max{8g, 1} indices i such
that such that vLast(i−1,y) ∈ Bx but vLast(i,y) 6∈ Bx . We
conclude that x�y pivots into the shortest path tree Ts
at most 8g times.

Altogether at most 8gn pivots occur during all
operations UPDATE(ei ,∞). Thus, our replacement paths
algorithm runs in time O(n log n+ kg log n+ gn log n) =
O(gn log n), as claimed. �

For planar graphs, almost identical analysis implies a
running time of O(n log n); the only difference is that we
use Lemma 4.2 instead of Lemma 4.2.

Theorem 4.4 (Wulff-Nilsen [30]). Let G be a directed
planar graph with non-negative edge weights. The
replacement paths problem in G can be solved in
O(n log n) time.
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