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Delaunay triangulations and Voronoi diagrams are
one of the most thoroughly studies objects in computa-
tional geometry, with numerous applications including
nearest-neighbor searching, clustering, finite-element
mesh generation, deformable surface modeling, and
surface reconstruction. Many algorithms in these ap-
plication domains begin by constructing the Delaunay
triangulation or Voronoi diagram of a set of points
in IR3. Since three-dimensional Delaunay triangulations
can have complexity Q(n?) in the worst case, these algo-
rithms have worst-case running time Q(n?). However,
this behavior is almost never observed in practice except
for highly-contrived inputs. For all practical purposes,
three-dimensional Delaunay triangulations appear to
have linear complexity.

This frustrating discrepancy between theory and
practice motivates our investigation of practical geo-
metric constraints that imply low-complexity Delaunay
triangulations. Previous works in this direction have
studied random point sets under various distributions
[7, 6, 13, 11]; well-spaced point sets, which are low-
discrepancy samples of Lipschitz density functions [4,
15, 16, 17]; and surface samples with various density
constraints [1, 11].

This paper investigates the complexity of three-
dimensional Delaunay triangulations in terms of a
global geometric parameter called the spread, contin-
uing our work in an earlier paper [11]. The spread
of a set of points is the ratio between the largest and
smallest interpoint distances. Of particular interest are
dense point sets in IR, which have spread O(n'/4).
Valtr and others [10, 18, 19, 20] have established several
combinatorial results for dense point sets that improve
corresponding bounds for arbitrary point sets. For other
results related to spread, see [3, 5, 12, 14].

Here are our two main results.
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Theorem 1. For any n and A, the Delaunay triangu-
lation of any set of n points in R® with spread A has
complexity O(A3).

Theorem 2. For any n and A < n, there is a set of
n points with spread A with a regular triangulation of
complexity O(nA).

In particular, the Delaunay triangulation of any dense
point set in IR® has only linear complexity; however,
there is a dense set of n points, arbitrarily close to
a regular cubical lattice, with a regular triangulation
of complexity Q(n?/3). Theorem 1 is tight in the
worst case for all A = O(y/n) and improves an earlier
upper bound of O(A*) [11]. Theorem 2 was already
known for Delaunay triangulations when /n < A <n.
A key component of both proofs is the invariance
of Delaunay and regular triangulations under certain
geometric transformations.

Our proof of Theorem 1 is structured as follows. We
implicitly assume that no two points are closer than
unit distance apart, so that spread is synonymous with
diameter. Two sets P and Q are well-separated if each
set fits in a ball of radius r, and these two balls are
separated by distance 2h, for some r < h < 3r. Our
argument ultimately reduces to counting the number of
crossing edges—edges in the Delaunay triangulation of
PUQ with one endpoint in each set. Our proof has four
major steps.

e Place a grid of O(r?) circular pizels of constant
radius ¢ on the plane z = 0, so that every crossing
edge passes through a pixel. Our first step is to
prove that the crossing edges intersecting through
any pixel all lie within a slab of constant width
between two parallel planes. Our proof relies on the
fact that the edges of a Delaunay triangulation have
a consistent depth order from any viewpoint [8, 9].

e We say that a crossing edge is relazed if its
endpoints lie on an empty sphere of radius O(r).
We show that at most O(r) relaxed edges pass



through any pixel, using a generalization of the
‘Swiss cheese’ packing argument used to prove the
earlier O(A*) upper bound [11]. This implies that
there are O(r3) relaxed crossing edges overall.

e Delaunay triangulations are essentially invariant
under conformal (t.e., sphere-preserving) trans-
formations. We use this conformal invariance to
show that there are a constant number of conformal
maps, each changing the spread of PUQ by at most
a small constant factor, such that every crossing
edge of PUQ is a relaxed Delaunay edge in at least
one image. It follows that PUQ has at most O(r3)
crossing edges.

e Finally, we count the Delaunay edges for an ar-
bitrary point set S using an octtree-based well-
separated pair decomposition [2]. Every edge in
the Delaunay triangulation of S is a crossing edge
of some subset pair in the decomposition. However,
not every crossing edge is a Delaunay edge; a subset
pair contributes a Delaunay edge only if it is close
to a large empty witness ball. We charge the pair’s
O(r3) crossing edges to the Q(r3) volume of this
ball. By choosing the witness balls carefully, we
ensure that any unit of volume is charged at most a
constant number of times, implying the final O(A3)
bound.

In the full paper, we discuss several algorithmic and
combinatorial implications of this new upper bound.

Regular triangulations (also called weighted Delau-
nay triangulations) are orthogonal projections of convex
polytopes of one higher dimension [9]. Since affine
transformations preserve convexity, it any affine trans-
formation of a regular triangulation is also a regular
triangulation. Thus, to prove Theorem 2, it suffices
to construct a set S of n points whose Delaunay
triangulation has complexity Q(nA), such that some
affine image of S has spread O(A).

Consider the set of n/A line segments s(i,j) with
endpoints (2i,8j,0) + ((—=1)¥7, (=1)*7,1) for all pos-
itive integers 1,j < y/m/A. Let S be the set of n points
containing A evenly spaced points on each segment
s(i,j). There are Q(A?) Delaunay edges between any
pair of adjacent segments s(1,j) and s(i+1,j), and thus
the overall complexity of the Delaunay triangulation
of S is Q(nA). We easily observe that applying the
linear transformation f(x,y,z) = (x,y, Az) results in a
point set f(S) with spread O(A). This completes the
proof of Theorem 2.
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