Homology Flows, Cohomology Cuts”

Erin W. Chambers’ Jeff Erickson* Amir Nayyeri®

Submitted to SIAM Journal on Computing (STOC 2009 special issue) — August 1, 2010
Revised and resubmitted September 2, 2011

Abstract

We describe the first algorithm to compute maximum flows in surface-embedded graphs
in near-linear time. Specifically, given a graph embedded on a surface of genus g, with two
specified vertices s and t and integer edge capacities that sum to C, our algorithm computes a
maximum (s, t)-flow in O(g®nlog? nlog? C) time. We also present a combinatorial algorithm
that takes g°®)n3/2 arithmetic operations. Except for the special case of planar graphs, for
which an O(nlogn)-time algorithm has been known for 20 years, the best previous time
bounds for maximum flows in surface-embedded graphs follow from algorithms for general
sparse graphs. For graphs of any fixed genus, our algorithms improve these time bounds by
roughly a factor of 4/n. Our key insight is to optimize the homology class of the flow, rather
than directly optimizing the flow itself; two flows are in the same homology class if their
difference is a weighted sum of directed facial cycles. A dual formulation of our algorithm
computes the minimum-cost circulation in a given (real or integer) homology class.

Errors, like straws, upon the surface flow;
He who would search for pearls must dive below.

— John Dryden, All for Love, Prologue (1677)

*Research partially supported by NSF grant DMS-0528086. An extended abstract of this paper was presented at the 50th
ACM Symposium on Theory of Computing [19]. Please see http://www.cs.uiuc.edu/~jeffe/pubs/surflow.html for the most
recent version of this paper.

"Department of Computer Science and Mathematics, Saint Louis University. Portions of this work were done while this
author was affiliated with the Department of Computer Science, University of Illinois, Urbana-Champaign.

*Department of Computer Science, University of Illinois, Urbana-Champaign. Portions of this work were done while this
author was visiting IST Austria.

$Department of Computer Science, University of Illinois, Urbana-Champaign. Portions of this work were done while this
author was visiting the Toyota Institute of Technology, Chicago.

http://www.cs.uiuc.edu/~jeffe/pubs/surflow.html

Erin Chambers, Jeff Erickson, and Amir Nayyeri 1

1 Introduction

Planar graphs are natural targets for study. In addition to modeling real-world scenarios ranging from
road networks to VLSI layouts, they often admit much faster algorithms compared to more general
graphs. Most algorithms for planar graphs have been generalized to larger families of graphs, such as
graphs of higher genus, graphs with forbidden minors, or graphs with small separators. Examples include
single-source and multiple-source shortest paths [16, 42, 63, 83, 84, 86, 110]; minimum spanning trees
[87, 100]; graph and subgraph isomorphism [35, 36, 54, 66, 90]; and approximation algorithms for the
traveling salesman problem, Steiner trees, and other NP-hard problems [8, 12, 14, 28, 36, 46].

A stark exception to this general pattern is the classical maximum flow problem and its dual, the
minimum cut problem. Flow and cuts were originally developed as tools for studying railway and other
transportation networks [59], which are naturally modeled as planar graphs; Ford and Fulkerson’s
seminal paper [43] includes an algorithm for planar networks where the source and target vertices lie on
the same face. A long series of results has led to planar maximum-flow algorithms that run in O(nlogn)
time, first for undirected graphs [44, 61, 102] and more recently for directed graphs [11, 13, 38].
Despite more than half a century of attention on flows in planar graphs, surprisingly little is known
about flows in these more general graph families. Even for graphs embedded on the torus, the fastest
algorithms to compute maximum flows are no faster than for arbitrary sparse graphs.

This paper describes the first algorithm to find maximum flows in surface-embedded graphs in
near-linear time when the genus is fixed. The input to our problem is a graph G = (V, E) embedded on a
surface of genus g, along with two vertices s and t and a capacity function c: E — R™. For any fixed
genus g and polynomially-bounded integer capacities, our algorithm runs in O(n polylogn) time (bit
operations). We also describe a combinatorial algorithm that runs in O(n3/ 2) time (arithmetic operations)
for arbitrary real capacities, for graphs of any fixed genus. In related work [20, 40], we describe the first
algorithms to compute minimum cuts in undirected surface-embedded graphs in O(nlogn) time for any
fixed genus, using different techniques.

Before describing our results in more detail, we review several previous related results. Table 1
summarizes the fastest known maximum flow algorithms for several related families of graphs, including
our new results. For general background on maximum flow algorithms and related results, we refer the
reader to monographs by Ahuja et al. [4] and Schrijver [105].

Sparse graphs O(n®logn) [108, 49]
Sparse graphs with integer capacities 0(n*?lognlogU) [48]
Planar undirected graphs O(nloglogn) [72]
Planar directed graphs O(nlogn) [11,13]
Planar graphs plus k edges O(k®nlogn) [65]
Surface graphs g0In3/2 Theorem 3.17
Surface graphs with integer capacities | O(g®nlog®nlog®C) | Theorem 3.16

Table 1. Fastest known maximum flow algorithms for several families of graphs. Here, n is the number of vertices; g is the
genus of the surface; U is the maximum edge capacity; and C is the sum of the edge capacities.

Flows in sparse graphs. Euler’s formula implies that an n-vertex graph embedded on a surface of
genus O(n) has at most O(n) edges. The fastest known combinatorial maximum-flow algorithms for
sparse graphs, due to Sleator and Tarjan [108] and Goldberg and Tarjan [49], run in time O(n?logn).
The minimum-cost maximum flow can be computed in O(n?log? n) time using an algorithm of Orlin [97].
(For graphs with small separators, the running time of Orlin’s algorithm can be improved to O(n?logn)
by replacing Dijkstra’s algorithm with a linear-time shortest-path algorithm [63, 110].) The fastest

2 Homology Flows, Cohomology Cuts

algorithm known for integer capacities, due to Goldberg and Rao [48], runs in O(n®/?lognlog U) time,

where U is an upper bound on the edge capacities. A more recent algorithm of Diatch and Spielman [31]
computes the minimum-cost maximum flow in O(n®/? polylog nlog U) time.

Flows in planar graphs. Maximum flows in planar graphs have received considerable attention for
more than 50 years. Weihe [116] and Borradaile and Klein [11, 13] describe the history of planar flow
algorithms in detail; we describe only a few important highlights.

Itai and Shiloach exploited the connection between maximum flows in an undirected planar graph
and shortest paths in its dual graph to obtain an O(nlogn)-time algorithm when the source and sink
vertices lie on a common face [71]; see also Hassin [60].

Reif [102] developed a divide-and-conquer algorithm to compute a minimum cut, and thus the
maximum flow value, in a planar undirected network in O(nlog? n) time. Reif’s algorithm was extended
by Hassin and Johnson to compute the actual maximum flow in O(nlogn) additional time, using a
carefully structured dual shortest-path computation [61]. Frederickson subsequently improved Reif’s
algorithm to O(nlogn) time [44]. Frederickson’s improvement can also be obtained more directly using
more recent planar shortest-path algorithms [16, 63, 83, 110]. Very recently, after almost 25 years
without progress, Italiano et al. [72] described an improved algorithm that runs in O(nloglogn) time.

Maximum flows in directed planar graphs were first investigated by Johnson and Venkatesan [74],
who described a divide-and-conquer algorithm, based on recursive separator decompositions, with
running time O(n®/?logn). Venkatesan [114] observed that a feasible flow with a given value, if such
a flow exists, can be computed in O(n*/?) time by computing a single-source shortest path tree in a
dual graph with both positive and negative edge weights, using an algorithm of Lipton, Rose, and
Tarjan [86]. (Venkatesan’s reduction is described in greater detail in Section 3.1.) For graphs with
integer capacities, binary search over the possible flow values immediately yields a max-flow algorithm
that runs in O(n*/?log C) time, where C is the sum of the capacities. This running time can be improved
by more recent planar shortest path algorithms [63, 42, 84]; in particular, the recent algorithm of
Mozes and Wulff-Nilsen [95] implies a running time of O(nlog?nlog C/loglogn). Miller and Naor [92]
generalized Johnson and Venkatesan’s algorithm to planar (single-commodity) flow networks with
multiple sources and sinks. Returning to the classical augmenting path technique, Weihe [116, 115]
described a planar maximum-flow algorithm that runs in O(nlogn) time, provided the input graph
satisfies a certain connectivity condition. Finally, Borradaile and Klein [11, 13] described the first
O(nlogn)-time algorithm to find maximum flows in arbitrary directed planar graphs. Erickson [38]
simplified the presentation and analysis of Borradaile and Klein’s algorithm by reformulating it in terms
of parametric shortest paths.

Generalizations of planar graphs. Surprisingly little is known about the complexity of flow algorithms
for generalizations of planar graphs. A recent algorithm of Hochstein and Wiehe [65] computes a
maximum flow in a planar graph with k additional edges in O(k®nlogn) time, using a clever simulation
of Goldberg and Tarjan’s push-relabel algorithm [49]. Another related result is the algorithm of Hagerup
et al. [58] to compute maximum flows in graphs of constant treewidth in O(n) time.

To our knowledge, the only prior result that applies to graphs of positive genus, but not to arbitrary
sparse graphs, is an algorithm of Imai and Iwano [70] that computes minimum-cost flows in graphs
with small balanced separators, using a combination of nested dissection [86, 98], interior-point
methods [113], and fast matrix multiplication. Their algorithm can be adapted to compute maximum
flows in any graph of constant genus in time O(n'**log C), where C is the sum of the capacities.
However, this is slower than more recent and more general algorithms [31, 48].

New results in this paper. Our key insight generalizes the relationship between flows and dual shortest
paths in planar graphs first observed by Venkatesan [114] using a standard equivalence relation from

Erin Chambers, Jeff Erickson, and Amir Nayyeri 3

algebraic topology called homology. We prove in Section 3.1 that given any flow f, one can find a
feasible flow in the same homology class in near-linear time, by computing a single-source shortest path
tree in the dual of the residual network G;. Two flows are in the same homology class if their difference
is the weighted sum of directed facial cycles. This observation allows us to optimize the homology class
of the flow, rather than directly optimizing the flow itself. Instead of optimizing a vector of O(n) flow
values, our algorithm optimizes a vector of 2g + 1 homology coefficients, subject to a much larger set of
linear constraints; see Section 3.3.

We perform this optimization implicitly using two different techniques. In Section 3.4, we de-
scribe an adaptation of the central-cut ellipsoid method [56, 57] yields an algorithm that runs in
0(g®nlog? nlog? C) time for integer capacities that sum to C. The separation oracle for this algorithm
is a new algorithm to compute shortest paths in surface-embedded graphs with positive and negative
edge weights in O(g?nlog? n) time, generalizing the recent planar shortest-path algorithm of Mozes and
Wulff-Nilsen [95]. (The actual running times of these algorithms are somewhat more complicated than
the bounds stated here; see the discussion just before Corollary 3.6. In particular, when the genus g is
constant, our shortest-path algorithm runs in O(nlog?n/loglogn) time, and our maximum-flow algo-
rithm runs in O(nlog? nlog? C/loglogn) time.) Alternatively, in Section 3.5, we use multidimensional
parametric search [3, 26], together with a parallel shortest-path algorithm of Cohen [24], to obtain a
combinatorial algorithm for graphs with arbitrary real capacities that runs in g%&n®? time. For any
fixed genus g, both our algorithms improve the previous best time bounds by roughly a factor of v/n.*
We describe our algorithms first for undirected graphs embedded on orientable surfaces; some additional
work is required to handle directed graphs (Section 3.6) and non-orientable surfaces (Section 3.7).

Following a strategy first suggested by Sullivan [109], we show that a dual formulation of our
algorithm finds the minimume-cost circulation in the same homology class as a given circulation, in
a graph with non-negative edge costs but no capacities, in roughly the same time as computing a
maximum flow; see Section 4. If the given flow values and edge costs are integers, the resulting
circulation is the minimum-cost integer circulation in the desired homology class. The minimum-cost
circulation is always the weighted sum of at most 2g directed cycles. (In particular, the minimum-cost
circulation in any planar graph is identically zero.) For more recent related results, see Dey, Hirani, and
Krishnamoorthy [30] and Dunfield and Hirani [34].

We emphasize that all our algorithms require an explicit embedding as part of the input. Computing
the minimum genus of an abstract graph is NP-hard [111]; moreover, no efficient algorithms are known
that approximate the genus within a factor of o(4/n) [22]. On the other hand, for any constant g, it is
possible to compute either an embedding of a given graph on a surface of genus g, or an obstruction to
such an embedding, in O(n) time [77, 93].

New results on minimum cuts. In two related papers [20, 40], we describe the first algorithms
to compute minimum (s, t)-cuts in near-linear time for any fixed genus, using different techniques
than described in this paper. Both algorithms exploit the observation that finding a minimum-capacity
(s, t)-cut in G is equivalent to finding the minimum-cost collection of cycles in the dual graph G* (as
defined in Section 2.6) in the same Z,-homology class as the boundary of s*. (Two subgraphs are in the
same Z,-homology class if their symmetric difference is the boundary of the union of a subset of the
faces.) The first algorithm reduces the problem to several instances of the planar minimum-cut problem,
each in a finite portion of the universal cover of the surface, using a technique introduced by Kutz [85]
and generalized by Chambers et al. [18]. In combination with the recent planar minimum-cut algorithm
of Italiano et al. [72], the running time of this algorithm is g®®’nloglogn time. The second algorithm
solves the problem in 2°nlogn time by applying a multiple-source shortest path algorithm [16, 83]

In the previous version of this paper [19], we incorrectly reported the running time of the first algorithm as
0(g"nlog? nlog® C) and the running time of the second algorithm as n(g logn)°® = O(n polylogn).

4 Homology Flows, Cohomology Cuts

to a different covering space of the surface. (Except for a brief mention in Section 3.7, we do not use
covering spaces in this paper; we refer the interested reader to our other papers for definitions and
technical details [20, 40].) Essentially the same algorithms compute the minimum-weight subgraph in
every Z,-homology class, in the same running time. Unlike the corresponding problem for circulations
considered in this paper, computing the minimum-weight subgraph in an arbitrary Z,-homology class is
NP-hard [20]. For related NP-hardness results, see Cabello et al. [17], Chambers et al. [18], Chen and
Friedman [21], and Dunfield and Hirani [34].

2 Dramatis Personae

We begin by recalling several useful definitions from topological graph theory and algebraic topology. For
more comprehensive background, we refer the interested reader to Gross and Tucker [55] or Mohar and
Thommasen [94] for topological graph theory; and Hatcher [62] or Massey [88] for algebraic topology.

2.1 Surfaces

A surface (more formally, a 2-manifold) is a Hausdorff topological space in which every point has an
open neighborhood homeomorphic to R2. A cycle in a surface ¥ is (the image of) a continuous map
y:S§! — %, where S! denotes the unit circle. A cycle is simple if this map is injective, and it is separating
if its removal disconnects the underlying surface. The genus of a surface ¥ is the maximum number
of simple, disjoint, non-separating cycles y1,ys,...,7, in X; thatis, y; N y; = @ for all i and j, and the
space %\ (y1U---Uy,) is connected. A surface is non-orientable if it contains a subspace homeomorphic
to the Mobius band (a one-sided surface with genus 1 and one boundary component), and orientable
otherwise.

We consider only compact and connected surfaces in this paper; moreover, except in Section 3.7,
we consider only orientable surfaces. Up to homeomorphism, for any non-negative integer g, there is
exactly one orientable surface and exactly one non-orientable surface with genus g, constructed from
the sphere by attaching g handles and g cross-caps, respectively. We also assume that g = O(+4/n), as
our new algorithms improve existing results only when g is small.

2.2 Graphs and Embeddings

Let G = (V,E) be an undirected graph. We define an associated directed graph G = (V, E) by replacing
each undirected edge in E with an antisymmetric pair of directed edges. The graphs G and G are
represented by the same adjacency matrix. Following Borradaile and Klein [11, 13], we refer to the
directed edges in E as darts. Each dart connects two (possibly equal) vertices, called its tail and its
head; we say that the dart leaves its tail and enters its head. Each dart € has a unique reversal, denoted
rev(€) and defined by swapping its endpoints: head(rev(€)) = tail(€) and tail(rev(€)) = head(€). We will
often write u—v to denote a dart with tail u and head v; thus, rev(u—v) = v—u.

Informally, an embedding of a graph G on an orientable surface ¥ is a drawing of the graph on %,
such that vertices are mapped to distinct points and edges are mapped to non-crossing curves. A face
of an embedding is a maximal connected subset of X that does not intersect the image of any edge or
vertex. An embedding is cellular (or 2-cell [94]) if every face is an open topological disk. Any cellular
embedding can be represented combinatorially by a rotation system, which is a permutation 7 of the

Erin Chambers, Jeff Erickson, and Amir Nayyeri 5

darts of G, where (&) is the dart that appears immediately after € in the counterclockwise? ordering of
darts leaving tail(€).

Suppose G = (V,E) is a simple n-vertex graph cellularly embedded on an orientable surface of
genus g, and F is the set of faces of the embedding. Euler’s formula |V| — |E| + |F| = 2 — 2g implies
that G has at most 3n — 6 + 6g edges and at most 2n — 4 + 4g faces, with equality if every face of the
embedding is a triangle. Our assumption that g = O(4/n) implies that the overall complexity of any
embedding is O(n).

Every dart in a cellularly embedded graph G separates two (possibly equal) faces, called the left shore
and right shore.®> Reversing any dart swaps its shores: left(rev(€)) = right(€) and right(rev()) = left(?).
We sometimes write f1g to denote a dart whose left shore is f and whose right shore is g; thus,
rev(f1g) = g1f. See Figure 1.

2.3 Chains, Circulations, and Flows

Let G = (V, E) be an undirected graph cellularly embedded on a surface %, and let F denote the set of
faces of the embedding. A k-chain is a function that assigns a real weight to all cells of dimension k.*
Thus, a 0-chain is a function w: V — R; a 1-chain is a function ¢ : E — R; and a 2-chain is a function
a: F—R.

It is useful to think of each 1-chain as assigning both an orientation and a non-negative value to
each edge in G. We implicitly extend any 1-chain to a function on the darts of G; for each edge uv, we
arbitrarily choose one of its darts u—v and define ¢ (u—v) = ¢p(uv) and ¢p(v—u) = —¢p(uv).

The boundary of a 1-chain ¢ is the 0-chain d¢ : V — R defined as follows:

o) == D plu-v)

u: u—>v€]§

A circulation is a 1-chain ¢ such that d¢(v) = 0 for every vertex v € V; the equation d¢(v) = 0 is often
called the conservation constraint at v; intuitively, the total flow into v equals the total flow out of v.
For any two vertices s and t, an (s, t)-flow (or just a flow if s and t are fixed) is a 1-chain ¢ such that
0¢(v) =0 for every vertex v € V \ {s, t}. The value |¢| of a flow ¢ is d¢p(t) = —I¢(s); a circulation is
simply a flow with value 0.

The (first) chain space C(G) is the vector space of all 1-chains in G, which is isomorphic to REl; this
is sometimes also called the edge space. The cycle space Z(G) is the vector space of all circulations in G,
which Z(G) is isomorphic to RE-IVI+1 The flow space Z(G; st) is the vector space of all (s, t)-flows
in G, which is isomorphic to REIZIVI+2 The cycle space is (redundantly) generated by the indicator
functions of all simple directed cycles in G, and the flow space is (redundantly) generated by the
indicator functions of all directed walks from s to ¢ in G.

For notational convenience, we define ¢(A) = ZEE , ¢ (&) for any 1-chain ¢ and any set A of darts.

2.4 Boundary Circulations and Homology

The boundary of a 2-chain a: F — R is the 1-chain da: E — R defined by setting da(€) := a(right(€)) —
a(left(€)). One can easily verify that the boundary of any 2-chain is a circulation. A boundary circulation
is the boundary of some 2-chain. In planar graphs, every circulation is a boundary circulation, but this is

2We can define either orientation of the surface to be ‘counterclockwise’, but we must make the same choice at every vertex;
a consistent choice is possible if and only if X is orientable.

3Again, the distinction between left and right shores is well-defined if and only if the underlying surface is orientable.

“*Classically, k-chains are defined as formal weighted sums of oriented k-cells; we do not distinguish between this formal
sum and the function assigning a coefficient to each k-cell.

6 Homology Flows, Cohomology Cuts

not true for higher-genus embeddings. The boundary space B(G) is the vector space of all boundary
circulations; B(G) is a linear subspace of Z(G), isomorphic to RIFI-1,

We say that two flows or circulations ¢ and v are homologous, or in the same homology class, if
their difference ¢ —1) is a boundary circulation. In particular, two flows in a planar graph are homologous
if and only if they have the same value. The homology space H(G) is the vector space of all homology
classes of circulations in G, which is isomorphic to Z(G)/B(G) = RIEI-IVIZIFI+2 — 28 by Euler’s formula.
Similarly, the (s, t)-flow homology space, which we denote by H(G;st), is the vector space of all
homology classes of (s, t)-flows in G, which is isomorphic to Z(G;st)/B(G) = RIEFIVIZIFI+1 — p2g+1

2.5 Capacities and Residual Networks

Now fix a positive capacity function c: E — R™. (In Section 3.6, we consider directed graphs, where
the capacity function has the form c: E — R*.) A flow or circulation ¢ is feasible (with respect to c) if
and only if |¢(e)| < c(e) for every undirected edge e € E. We emphasize that the flow value assigned
to an edge may be negative, even if the flow is feasible; the sign of the flow on each edge indicates its
direction. We emphasize that flow values may be negative.” The residual capacity function Cpt]_Ef - R
is defined by setting cy(u—v) = c(uv) — ¢(u—v). The residual network G is just the graph G with
darts weighted by the residual capacity function c,. Clearly, ¢ is feasible if and only if every dart
in G, has non-negative residual capacity. Moreover, ¢ is a maximum flow if and only if there is no
directed path in G, from s to t in which every dart has positive residual capacity. We emphasize that the
functions ¢ and c,, are not 1-chains, because they are not skew-symmetric on the darts of G.

Again, for notational convenience, we extend the functions ¢ and ¢, to any subset A of darts by

summation: c¢(A) = Y, c(e) and ¢y (A) = c(A) — $(A) = D 5., ¢4 (©).

2.6 Dual Graphs, Cocycles, and Cohomology

The dual graph G* of an embedded graph G is the (multi-)graph whose vertices are the faces of G,
where two faces are joined by a (dual) edge if and only if they are separated by an edge of G. Thus,
every edge e in G has a corresponding dual edge in G*, denoted e*.

For any face f of G, we let f* denote the corresponding vertex of G*. The dual graph G* has a
natural cellular embedding on ¥ whose faces correspond exactly to vertices of G. For any vertex v of G,
we let v* denote the corresponding face of G*. We orient the darts of G* by defining (u—v)* := u*tv*
and (f1g)" := f*—g*. Duality is an involution—the dual of G* is isomorphic to the original graph G.
However, G and G* use opposite orientations of the underlying surface ¥ to distinguish left from right.

Figure 1. Graph duality. One dart u—»v = f 1g and its dual f*—g* = u*1v* are emphasized.

SFlows are often defined as functions from the darts to the non-negative reals, where without loss of generality, a directed
edge and its reversal cannot both carry positive flow. While this classical formulation is more convenient for many algorithms,
the equivalent skew-symmetric formulation is more suitable for our techniques.

Erin Chambers, Jeff Erickson, and Amir Nayyeri 7

When the graph G is fixed, we abuse notation by writing H* to denote the subgraph of G* containing
the edges dual to the edges of a subgraph H of G. If the subgraph H is a cycle, we call H* a cocycle. The
bijection between the edges of G and the edges of G* extends to a bijection between 1-chains in G and
in G*. A cocirculation is a 1-chain whose dual is a circulation in G*; a coboundary is a 1-chain whose
dual is a boundary circulation in G*. Two cocirculations are cohomologous, or in the same cohomology
class, if their difference is a coboundary, or equivalently, if their dual circulations are homologous.

Many of the terms defined in this section are known by other names in other research communities.
Algebraic topologists [62, 88] will immediately recognize circulations as 1-cycles, boundary circulations
as 1-boundaries, H(G) as the first homology group H,(X), and H(G;st) as the relative homology group
H,(%, {s,t}), all with real coefficients. Discrete differential geometers [10, 29, 64] will recognize
1-chains as discrete 1-forms, the boundary operator as the adjoint of the discrete exterior derivative,
circulations as duals of closed 1-forms, boundary circulations as duals of exact 1-forms, H(G) as both the
first cohomology group H'(X) and the space of harmonic 1-forms, H(G;st) as the cohomology group
HY(Z\ {s, t}), and combinatorial duality as a variant of the Hodge star operator.

3 Homology Flows

Throughout this section, we fix an undirected graph G = (V,E), a cellular embedding of G on an
orientable surface X of genus g, a capacity function c: E — R™, and two vertices s and t. (We extend
our results to directed graphs and non-orientable surfaces in Sections 3.6 and 3.7.)

3.1 Homologous Feasible Flows

More than 25 years ago, Venkatesan [114] observed that for any planar graph G, a feasible (s, t)-flow
with a given value can be computed, if such a flow exists, by solving a single-source shortest path
problem in a dual planar graph G* with both positive and negative edge lengths. Similar approaches
were proposed by Johnson and Venkatesan [74], Hassin and Johnson [61], Khuller et al. [80], and Miller
and Naor [92]. The following lemma directly generalizes Venkatesan’s observation to flow networks of
higher genus.

Let ¢: E — R be an arbitrary (in particular, not necessarily feasible) (s, t)-flow in G. The dual
residual network G is the directed dual graph G*, where every dual dart &* has a cost c(€*) equal to
the residual capacity of its corresponding primal dart: c,(€*) = c,(€). For any directed cocycle A, let
c(A) denote its total capacity, and for any flow ¢, let ¢ (1) denote the total flow through edges in A:

c(A) :=Zc(e) and P (L) :=Z¢(é’).
eer eer

Lemma 3.1. There is a feasible (s, t)-flow in G homologous to a given (s, t)-flow ¢ if and only if the
dual residual network G:’; contains no negative-cost cycles.

Proof: Let A* be an arbitrary directed cycle in G;;, and let A denote the corresponding directed cocycle
in G. The total cost of A* is the difference between the total capacity of A and the total flow through A:

cp(W) = (W)= pA) = Y cle)— > (@
el eer
For any 2-chain a: F — R, we have

D>oa@ =Y (a(@-alf))= Y (a(g)-a(f))=0.

eer f1ger frogrear

8 Homology Flows, Cohomology Cuts

(The last equality follows from the fact that A* is a cycle.) Thus, for any flow 1) homologous to ¢, we
have (1) = ¢(A), which immediately implies that c,,(1*) = c4 (1").

If the cycle A* has negative cost, then for any flow) homologous to ¢, we have c,,(1*) = ¢, (1*) < 0.
It follows immediately that c,,(€) < O for at least one dart € in A; in other words, 1) is infeasible.

On the other hand, suppose G:’; has no negative cycles. Fix an arbitrary source vertex r* in G;.
For any face f of G, let a(f) denote the shortest-path distance from r* to f* in G:; ; these distances
are well-defined precisely because G;; has no negative cycles. Finally, consider the flow v := ¢ + da,
which is clearly homologous to ¢. Because a is defined by shortest-path distances, we have ¢, (f 1g) =
cy(f*~g*) = a(g) — a(f), and therefore

Y(frg)=¢(f18)+alg)—alf)
<o(frg)tcy(frg)
= c(frg)

for every dart f1g. In other words, 1) is feasible. O

3.2 Shortest Paths with Negative Edges

Lemma 3.1 and its proof immediately imply an algorithm to find a feasible flow in a given homology
class, if one exists, by directly applying any single-source shortest-path algorithm for embedded directed
graphs with both positive- and negative-weight edges. The next two theorems describe the best parallel
and serial algorithms known at present.

Theorem 3.2. After O(n) preprocessing time, given an (s, t)-flow ¢ in G, we can either find a feasible
(s, t)-flow homologous with ¢, or determine correctly that no homologous feasible flow exists, in
O(log® n) time and 0(g%*n®?) work on a EREW PRAM.

Proof: The theorem follows immediately from the parallel shortest-path algorithm of Cohen [24].
The running time follows from the observation that any n-vertex graph of genus g can be separated
into planar subgraphs, each with at most 2n/3 vertices, by removing O(,/gn) edges [32, 47, 69, 68].
Moreover, such a separator can be computed in O(n) time [5, 37], after which the recursive separator
decomposition of the resulting planar subgraphs can be constructed in O(n) time [50]. O

The serial setting is not so straightforward. In the following theorem, we describe an algorithm
that generalizes algorithms for planar graphs by Fakcharoenphol and Rao [42]; Klein, Mozes, and
Weimann [84]; and Mozes and Wulff-Nilsen [95]. These algorithms rely on Miller’s observation that any
n-vertex planar graph contains a simple cycle separator of length O(y/n), which can be computed in O(n)
time [91]. Because these algorithms require additional structure in the separator decomposition, we
cannot directly substitute separator results for genus-g graphs.°

Let G = (V,E) denote the symmetric directed graph associated with some undirected graph G =
(V, E); this directed graph inherits a cellular embedding from the embedding of G.

Theorem 3.3. We can compute either a single-source shortest-path tree or a negative cycle in G, with
respect to any given edge weights w: E — R, in O(g?nlog? n) arithmetic operations.

Proof: Our algorithm begins by cutting the undirected graph G along short non-separating cycles until
the graph becomes planar. (Recall that a cycle on a surface is separating if its deletion disconnects the
surface.) Cutting any cycle duplicates its vertices and edges and reduces the genus of the surface by 1.

Erin Chambers, Jeff Erickson, and Amir Nayyeri 9

=) <&)=

Figure 2. Cutting a surface of genus 2 along two non-separating cycles yields a planar surface with four boundary cycles.

We refer to the two copies of each cut cycle as boundary cycles and its vertices as boundary vertices; in
the natural embedding of the resulting graph, every boundary cycle is a face. See Figure 2.

A theorem of Hutchinson [67] implies that every graph embedded on a surface of genus g con-
tains a non-separating cycle with at most O((vn/g)logg) vertices. For notational convenience, let
k = (v/n/g)lgg in the rest of the analysis. The fastest algorithms known for computing shortest non-
separating cycles [16] are too slow for our purposes.” Instead, we apply an algorithm of Erickson
and Har-Peled [39] that computes a non-contractible cycle with at most twice the minimum number
of edges, in O(gnlogn) time. Thus, we obtain a planar graph P with exactly 2¢g boundary cycles,
each with at most O(k) vertices, in O(g2nlogn) time. The total number of vertices in P is at most
n+gk=n+0(,/gnlogg) =0(n).

The remainder of our algorithm closely follows the recent planar shortest-path algorithm of Mozes
and Wulff-Nilsen [95]. For the moment, we assume that there are no negative-weight cycles in G; we
describe the necessary modifications to detect negative cycles at the end of the proof.

Let B denote the symmetric directed planar graph corresponding to P, with edge weights inherited
from G, and let dist3(u, v) denote the shortest-path distance in P from vertex u to vertex v. Fix an
arbitrary boundary vertex r. We compute distz(r, v) for every vertex v in O(n log®n/loglogn) time,
using the planar shortest-path algorithm of Mozes and Wulff-Nilsen [95]. We then define a reduced
weight w(u—v) = distp(r,u) + w(u—v) — distp(r, v) for every edge u—v of B. It is well-known (and easy
to prove) that the reduced weights are non-negative and define the same shortest paths as the original
edge weights [73].

Next, we compute the distances between every pair of boundary vertices using Klein’s multiple-source
shortest path algorithm [83]. Klein’s algorithm requires non-negative edge weights, so we call the
algorithm using the reduced weights w. For each boundary cycle &, Klein’s algorithm constructs a data
structure, in O(nlogn) time, from which the shortest-path distance from any vertex of 6 to any other
vertex of P can be retrieved in O(logn) time. Given the shortest-path distance between any two vertices
with respect to the reduced edge weights, we can compute the shortest-path distance with respect to the
original edge weights in O(1) time. Altogether, there are O(g?k?) pairs of boundary vertices, so the total
time for all O(g) invocations of Klein’s algorithm is O(gnlogn + g?k?logn) = O((g log? g)(nlogn)).

The most subtle part of the algorithm computes shortest-path distances in the original graph G
between every pair of boundary vertices. Let H be the complete directed graph over the boundary
vertices of B, where the weight any edge u—v is the shortest-path distance from u to v, with additional
zero-weight edges between any pair of vertices arising from the same vertex of G. We compute all
shortest-path distances in H using a modification of the Bellman-Ford algorithm described by Mozes and
Wulff-Nilsen [95, Figure 4]. Instead of relaxing the edge in H individually in each Bellman-Ford iteration,

5...despite our claim to the contrary in the previous version of this paper [19].

70n the other hand, because this portion of the algorithm is independent of the edge weights, we could perform it only
once in a preprocessing stage, using the exact O(g®nlogn)-time algorithm of Cabello and Chambers [16], without increasing
the running time of our maximum-flow algorithm.

10 Homology Flows, Cohomology Cuts

we consider each set of at most two boundary cycles separately. Klein et al. [84, Lemma 4] describe a
method to relax all edges with both endpoints on the same boundary cycle in O(ka(k)) time, where a(-)
is the inverse-Ackerman function, using an algorithm of Klawe and Kleitman [82] to find row-minima in
totally-monotone triangular matrices. The algorithm of Klein et al. requires O(klogk) preprocessing
time for each cycle. Mozes and Wulff-Nilsen [95, Lemma 4] describe an algorithm to relax all edges
joining any two different boundary cycles in O(k) time; this algorithm requires O(k log k) preprocessing
time for each pair of cycles. We also directly relax each of the O(gk) zero-weight edges in each iteration.
Altogether, the modified Bellman-Ford algorithm requires O(g2k log k) preprocessing time, followed by
O(gk) Bellman-Ford iterations, each running in O(g%k + gka(k)) time. Thus, the overall running time
of this phase of the algorithm O(g%k? + g%k%a(k)) = 0((g21og? g)n + (g log? g)(na(n))).

Let distz(u, v) denote the shortest-path distance in G from vertex u to vertex v. Following Klein
et al. [84], let G’ denote the graph obtained from G by removing all edges entering r and adding an
edge r—u with weight distz(r,u) for every boundary vertex u; these distances were computed in the
previous phase of the algorithm. Shortest-path distances from r are equal in G and G’ [84, Lemma 6].
For any boundary node u, let A(u) = distz(r,u) — distz(r,u), and let A = max, A(u). (Note that A <0.)
We define a second set of reduced weights w’(u—v) = ¢ (u) + w(u—v) — ¢(v) for each edge u—v of G,
where ¢(r) = A and ¢ (v) = dists(r, v) for any vertex v # r. The reduced weights w’ are non-negative
[84, Lemma 7]. Thus, we can compute a shortest-path tree in G’ rooted at r, using Dijkstra’s algorithm,
in O(nlogn) time. (We could also use the linear-time shortest-path algorithm of Henzinger et al. [63],
but this would not improve our overall running time.)

To finish the algorithm, we compute the shortest-path tree rooted at r in the original graph G
in O(nlogn) time using Dijkstra’s algorithm with yet another reduced weight function distz(r,u) +
w(u—v) —distz(r,v). (In fact, every edge in the shortest-path tree has reduced weight 0, so it can be
constructed in O(n) time by a simple breadth-first search.)

Finally, we consider the modifications required to return negative cycles when they exist. Negative
cycles that contain at least one boundary vertex can be detected and returned by a standard extension of
the Bellman-Ford algorithm. On the other hand, any negative cycle in G that avoids every boundary
vertex appears as a negative cycle in P and thus can be detected and returned by the planar shortest-path
algorithm of Mozes and Wulff-Nilsen [95]. Their algorithm uses a similar modified Bellman-Ford
algorithm to combine the results of recursive subproblems; so in fact, any negative cycle is reported by
their modified Bellman-Ford algorithm at some level of recursion. The necessary modifications increase
the running time of the algorithm by only a constant factor. O

In the interest of readability, Theorem 3.3 gives a conservative upper bound on the running time of
our shortest-path algorithm. The running time is more accurately bounded as

O(nlog®n/loglogn + gnlogn + g%nlog? g).

This bound is dominated by its first term whenever g = O(vlogn/loglogn) and dominated by its third

term whenever g = 2%V108") I particular, for any constant genus, the running time of our algorithm

is dominated by the time to compute shortest paths in the planar graph B; faster planar shortest-path
algorithms would immediately improve our algorithm as well. Sharper results on the complexity of
planarizing cycles would improve the second and third terms in our running time, but only slightly. For
example, if one could find a planarizing set of O(g) cycles with total complexity O(+/gn) in O(n) time,
then the running time of our algorithm would drop to O(nlog?n/loglogn + gnlogn + g2n).

Corollary 3.4. Given an (s, t)-flow ¢ in G, we can either find a feasible (s, t)-flow in G that is homol-
ogous with ¢, or find a negative cycle in G;; if no homologous feasible flow exists, using O(g*nlog®n)
arithmetic operations.

Erin Chambers, Jeff Erickson, and Amir Nayyeri 11

3.3 Basic Flows and Optimization

Every (s, t)-flow can be expressed as a weighted sum of simple directed cycles and simple directed paths
from s to t. Consequently, every homology class of (s, t)-flows is a weighted sum of homology classes
of (s, t)-paths and cycles. It follows immediately that the flow homology space Z(G,st) = R2*! can
be generated by the homology classes of 2g + 1 curves, each of which is a (s, t)-path or a cycle. We
call such a collection of curves a flow homology basis. Any flow homology basis includes at least one
(s, t)-path; we call a flow homology basis canonical if it contains exactly one (s, t)-path and 2g cycles;
these 2g cycles necessarily define a basis for the space H(G) of homology classes of circulations.®

e e

Figure 3. Two flow homology bases for a surface of genus 2; only the second basis is canonical.

Lemma 3.5. We can compute a canonical flow homology basis for G in O(gn) time.

Proof: We begin by computing a tree-cotree decomposition [37]. Let T be an arbitrary spanning tree
of G; let K* be an arbitrary spanning tree of (G\ T)" = G*\ T*; and finally, let X = G \ (T UK). We refer
to K as a spanning cotree of G, because the corresponding dual subgraph K* is also a spanning tree of
the dual graph G*. Euler’s formula implies that X contains exactly 2g edges; call them e;, e,,..., €5,

We define a path p, and 2g cycles vy, ..., 7, as follows. Let p, denote the unique path from s to ¢
in T. For each index i between 1 and 2g, let y; denote the unique cycle in the graph T Ue;, oriented
arbitrarily. We claim that the curves pg,y1,..., 72, lie in linearly independent homology classes, and
hence comprise a basis for the flow homology space H(G,st).

Any linear combination of cycles is a circulation, but a flow along any path from s to t is not.
It follows immediately that the homology class of p, is independent from the subspace of H(G;st)
generated by homology classes of the cycles yy,...,7,. It remains only to prove that these 2g cycles lie
in linearly independent homology classes (and hence define a basis for the homology space H(G)).

Suppose to the contrary that for some index j, the cycle y; is homologous to D AT for some real
coefficients a;. Then the difference ¢ :=y; — e ;a;7; is a boundary circulation, which has nonzero
value only on edges of T UX. Let a: F — R be a 2-chain such that ¢ = da. For any cotree edge e €K,
we have ¢(e) = 0. Thus, if a cotree edge separates two faces f and f’, we must have a(f) = a(f’).
Because K* is a spanning tree for G, it follows that a assigns the same value to every face of G, which
implies that ¢ is identically zero. On the other hand, y; contains an edge e; that does not lie on any
other cycle y;, so p(e;) = v;(e;) = £1. We have a contradiction.

The tree T and cotree K* can each be constructed in O(n) time using (for example) depth-first
search, after which the path p, and each cycle y; can be easily constructed in O(n) time. O

Fix a canonical flow homology basis pg,71,...,Y2g for G. A basic flow is any flow ¢ of the form

b0 Do —|—Zi2£1 ¢; - v; for some coefficients ¢, ¢1,..., o, Specifically, we have ¢y = [¢| and ¢; = ¢(e;)
for each index i. Equivalently, a flow ¢ is basic if and only if ¢ (e) = O for every cotree edge e € K. (Given

8In the previous version of this paper [19], we defined a flow homology basis to be a set of 2g + 1 walks from s to t. The
current formulation simplifies our analysis slightly, in part because we can assume that the generating curves are simple.

12 Homology Flows, Cohomology Cuts

a flow ¢ that avoids every edge in K, subtracting the basic flow with coefficients |¢|, ¢ (e1), ..., P(eg)
leaves a circulation that avoids every edge in K UX = G \ T and is therefore identically zero.) Every flow
in G is homologous to exactly one basic flow.

Corollary 3.6. Given the coefficients ¢, §1,...,$og of a basic flow ¢, we can either find a feasible
(s, t)-flow in G that is homologous with ¢, or find a negative cycle in G:;) if no homologous feasible flow
exists, using O(g?nlog®n) arithmetic operations.

Corollary 3.7. After O(n) preprocessing time, given the coefficients ¢, ¢, ..., P24 of a basic flow ¢,
we can either find a feasible (s, t)-flow homologous with ¢, or determine correctly that no homologous
feasible flow exists, in O(log® n) time and O(g>/?n3/?) work on a EREW PRAM.

The preceding results imply that to compute a maximum (s, t)-flow in G, it suffices to find a basic
flow ¢ of maximum value such that the dual residual network G; contains no negative cycles. We can
formulate this optimization problem as a linear program as follows.

For any basic flow ¢ and any cocycle A, we can decompose the total flow through A as a linear
combination of the flow parameters ¢;:

28
S(A) = do-Po(A)+ D ;- 1i(A).

i=1
Thus, the optimal basic flow is the solution to the following linear programming problem.

maximize ¢,

subject to ¢ (A) <c(A) for each cocycle A in G (P
Most of the constraints in this linear program are redundant; it suffices to consider only cocycles A
whose dual cycles A* are simple and have minimum cost in their homology class—that is, simple
cocycles A with minimum residual capacity in their cohomology class. However, the best upper bound
we can prove on the number of non-redundant constraints is n°®). The cohomology class of a cocycle A
can be identified by the vector of flow values (po(1),71(4),...,72,(4)). Since each curve in the basis is
simple, each of these cohomology coefficients is an integer between —n and n. Thus, there are at most
(2n 4+ 1)?8*! different cohomology classes of simple cocycles in G.
Without a significant improvement in this upper bound, we cannot hope to solve (LP) directly;
instead, we turn to implicit solution methods.

3.4 The Ellipsoid Method

We now transform our decision procedure into an optimization algorithm using the classical central-cut
ellipsoid method. The ellipsoid method was first proposed independently by Yudin and Nemirovsky [118,
119] and Shor [107] as a convex programming algorithm. Khachiyan [78, 79] adapted the ellipsoid
method to give the first polynomial-time algorithm for linear programming; see also [9, 45]. Khachiyan’s
algorithm was further adapted to solve implicit linear programming problems by Grotschel, Lovasz, and
Schrijver [56, 57]. Here we give only a brief sketch of the method, with just enough details to complete
the analysis; we refer the interested reader to Grotschel et al. [57] for further details.

Erin Chambers, Jeff Erickson, and Amir Nayyeri 13

3.4.1 A Brief Sketch

In its simplest form, the ellipsoid method can be used to solve any linear programming problem whose
constraints are represented implicitly by an ellipsoid €, containing the feasible region ®, a known lower
bound on the volume of ®, and a black-box subroutine called a (strong) separation oracle. Let d denote
the number of variables in the linear program. Given a point x € R%, the separation oracle either
returns a constraint that is violated by x or asserts correctly that x is feasible. For purposes of analysis,
we assume that the separation oracle is fully combinatorial; that is, every branch in the algorithm is
based on the sign of an affine combination of the coordinates of x. Equivalently, we assume that the
separation oracle can be modeled by a family of linear decision trees [33, 117]. Let T, denote the number
of arithmetic operations (additions, subtractions, scalar multiplications, and comparisons) executed by a
single call to the separation oracle.

Let ¢opr denote the optimum vertex of ®; if necessary we perturb the objective function Z so that
¢opr is unique. The ellipsoid algorithm maintains an ellipsoid € guaranteed to contain ¢pr, starting
with the bounding ellipsoid €. At each iteration, we invoke the separation oracle to determine whether
the centroid x of € is feasible. If x is infeasible, the oracle returns a violated constraint in the linear
program. If x is feasible, we add the artificial constraint (%, ¢) > (Z,x). In either case, we obtain a
halfspace h that contains ¢opr. We then compute (a close approximation of) the smallest ellipsoid
containing € N h, and let this be the new ellipsoid €. Each iteration reduces the volume of £ by a factor
of !/0(d),

Suppose all the vertices of ® have integer coordinates; we show in Lemma 3.12 that this assumption
indeed holds for our problem. Let &, := ® N h,, where h, is the halfspace (%, ¢) > (2, popr) — € and ¢ is
chosen so that ¢, lies inside a ball of radius 1/4. (The specific value of ¢ depends on the volume lower
bound for ®.) The iterations stop when the volume of € is smaller than the volume of ®,. We find the
optimal vertex ¢ opr by rounding the last feasible point found, which is guaranteed to lie inside ®,, to
the integer grid.

The running time of the ellipsoid algorithm depends on the volumes of the initial and final ellipsoids
and the running time of the separation oracle as follows. The method requires N := O(d log A) iterations,
where A :=(vol £,/ vol ®,). Each iteration requires T, arithmetic operations by the separation oracle,
plus O(d?) arithmetic operations (which include multiplications, divisions, and square roots) to compute
the new ellipsoid. Grotschel et al. prove that to maintain sufficient precision in the kth iteration, it
suffices to round all numbers to O(k) bits [56, 57]. Thus, the overall running time of our algorithm is
(crudely [6, 103]) at most O(N(T,N + d?>Nlog®>N)) = O(T,d2log? A + d*1log? Alog?(d log A)).

3.4.2 The Flow Homology Polytope

Let ® denote the polytope of feasible flow homology classes, that is, the feasible region of the linear
program (LP). We now establish several facts about this polytope that are necessary to analyze of
our application of the ellipsoid method; some of these properties will also be useful later in the paper.
Recall that G = (V, E) is an undirected graph embedded on an orientable surface ¥ of genus g, with an
associated positive integer capacity function c: E — Z". Let C denote the sum of the edge capacities
D eci €(€). We assume that C = O(2"), since otherwise our new algorithms do not improve on existing
results.

Lemma 3.8. ® lies inside the hypercube [—C,C]%¢*1,

Proof: The value of any basic flow ¢ is the coefficient ¢, so any feasible basic flow trivially satisfies
the inequality |¢o| < C.

14 Homology Flows, Cohomology Cuts

Recall from the proof of Lemma 3.5 that the flow homology basis is defined in terms of a tree-cotree
decomposition (T,K,X), where T is a spanning tree, K is a spanning cotree, and X = G \ (T UK).
Fix an index i, let G; = K U {¢;}, and let ¥; denote the surface obtained by deleting the subgraph
TUX \ {e;} = G\ G; from X. The dual graph G/ is connected and contains exactly one cycle, which
implies that the surface %; is homeomorphic to an annulus (the sphere minus two disks).

For each index i, let A; be the cocycle in G dual to the unique cycle in G;. The cocycle A; shares
exactly one edge e; with the corresponding cycle y; in the flow homology basis, which implies that
vi(A;) = £1. On the other hand, for any index j # i, the cocycle A; does not share any edges with
the basis cycle y;, which implies that y;(4;) = 0. Similarly, A; avoids every edge in T, which implies
that py(A;) = 0. Thus, for any basic flow ¢, we have ¢; = £¢(4;). (In topological terms, the cocycles
A1,..., Agg constitute a cohomology basis.) We conclude that every feasible basic flow ¢ satisfies the
inequality |¢;| = |¢(2;)] < c(A;) < C. O

Corollary 3.9. & lies inside a ball of radius Cv/2g + 1 centered at the origin.

Corollary 3.9 immediately implies that we can use the ball of radius C+/2g + 1 centered at the origin
as the initial ellipsoid £ in our optimization algorithm.

Lemma 3.10. ¢ contains a ball of radius 1/v/2g + 1 centered at the origin.

Proof: The graph G is undirected, and every edge has capacity at least 1, so each basis path p; can carry
at least one unit of flow in either direction. Thus, every unit basis vector (0,...,+£1,...,0) is feasible.
The convex hull of these 4g + 2 unit vectors is contained in ®. This cross-polytope contains the ball of
radius 1/v2g + 1 centered at the origin. O

Lemma 3.11. Every integer flow in G is homologous to an integer basic flow.

Proof: Let ¢ be an integer flow in G, and let (T,K,X) be the tree-cotree decomposition of G used
to define the flow homology basis. Choose an arbitrary dual vertex r* and orient every edge of the
dual spanning tree K* away from r*. For each face f of G, let a(f) denote the shortest path distance
from r* to f* in K*, where the cost of each dual dart €™ is its corresponding flow value ¢ (&). The flow
1Y) = ¢ — da is an integer basic flow homologous to ¢. O

Lemma 3.12. The vertices of ® have integer coordinates.

Proof: Let ¢ and 1’ be flows in G, and ¢ and ¢’ be the basic flows homologous to v and v/,
respectively. Then for any real scalar a, the flows ayp + 1)’ and a¢ + ¢’ are also homologous. It follows
that the function that maps any flow in G to its unique homologous basic flow is a linear map from the
chain space C(G) = R!*! to the flow homology space H(G;st) = R28*1,

Now let 7 RE denote the polytope of feasible flows in G. The polytope & is the image of F under
the projection from flows to homologous basic flows. Recall that a matrix is totally unimodular if every
square submatrix has determinant 0, 1, or —1. It is well known’ that the constraint matrix of any
network-flow linear program is totally unimodular [105, Theorem 13.9], which implies by Cramer’s rule
that the vertices of I have integer coordinates [104, Theorem 19.1]. Lemma 3.11 implies that every
vertex of F projects to an integer point in R?6*1. The polytope & is the convex hull of these projected
integer points. d

We emphasize here that the constraint matrix that defines ¢ contains entries with absolute value
larger than 1 and thus is not totally unimodular.

°Schrijver [105] observes that this result follows directly from a theorem of Poincaré [101, Section 6]. Poincaré described a
condition on the boundary matrices of simplicial complexes that implies total unimodularity, which in turn implies that the
corresponding homology groups are torsion-free. Incidence matrices of directed graphs satisfy Poincaré’s condition.

Erin Chambers, Jeff Erickson, and Amir Nayyeri 15

3.4.3 Finding the Optimal Flow Homology Class

We now apply the ellipsoid method to our implicit linear program (LP). We clearly have d = 2g + 1,
and Corollary 3.6 gives us T, = O(g?nlog? n). To complete our analysis, we need to fill in a few details
of the algorithm and derive an upper bound on the volume ratio A. Our presentation closely follows
Grotschel, Lovész, and Schrijver [56, 57].

Let 2 := (1,0,...,0) denote the objective function for the linear program (LP). Our algorithm
uses a perturbed objective function £ := (Q28,Q2¢1,...,Q, 1), where Q := 2C + 2. We also set
€:=1/(8Cv2g + 1). Recall that h, denotes the halfspace (¢, ¢) > (%, popr) — € and ®, :=dNh,.

Lemma 3.13. & has a unique optimal vertex ¢ pr with respect to Z, and this vertex is also optimal with
respect to z.

Proof: Let ¢pr be any vertex of ® such that (%, ¢ppr) is maximized. Let ¢ be any other vertex of ®,
and let v = ¢opr — . Lemmas 3.8 and 3.12 imply that v is a non-zero integer vector, each of whose
components has absolute value at most 2C. At least one coordinate of v must be non-zero; let v; be the
non-zero coordinate with minimum index. The definition of 2 implies that (Z,v) = Z}zi 0 Q*8~J v;. The
ith term of this sum has absolute value at least Q%8 and the sum of the other terms has absolute value
at most 2C Q%¢~1/(Q — 1) < Q%87. It follows that (%, v) # 0. We conclude that that ¢pr is the unique
optimal vertex for objective Z.

The optimality of ¢pr implies that (Z,v) > 0. The sign of the sum ij.io Q%I v; is determined by
its most significant non-zero term, so its first term Q2¢v, must be non-negative. Thus, (z,v) = v, > 0.
We conclude that ¢pr is also an optimal vertex for the original objective vector z. O

Lemma 3.14. ®, lies inside a ball of radius 1/4.

Proof: Because the vertices of ® are integral (Lemma 3.12) and ¢ < 1, every vertex of &, except ¢opr
lies on the boundary of the halfspace h,. Let h; denote the halfspace (Z,¢) > (£, popr) — 1 and let
®, :=dNh,;. Again, every vertex of &, except ¢opr lies on the boundary of h;. Thus, ®, can be obtained
by scaling ®, by a factor of ¢ around ¢py. Corollary 3.9 implies that ®; C & lies inside a ball of radius
2C+v2g + 1. Thus, ®, lies inside a ball of radius 2eCv2g + 1 = 1/4, as required. O

Lemma 3.15. &, has volume 0™,
Proof: Consider the cone X whose apex is ¢opr and whose base is the 2g-dimensional ball of radius

1/+/2g + 1 centered at the origin on the hyperplane (£, ¢) = 0. Lemma 3.10 implies that X € &. The
volume of X is

s (1)2g+l.<ﬁ,¢(m> 1 (o)
ot \Vzgr1 R ECE

(Recall that w8 /g! is the volume of the 2g-dimensional unit ball.) The volume of XNh, € &, is therefore

1 <:z,<¢>opT>_(£)Zg“_ 1 1
()

g9(®) 12l Z, Popr N g0@) ||| (2, popr)28C28+L’

by the definition of . Corollary 3.9 implies that ||¢opr|| < C+/2g + 1, and the definition of Z gives us
Z]| = O(g C*2). 1t follows that (£, popr) < 12|l - l|Poprll = O(g>/2C?€+1). The lemma now follows by
straightforward algebra. O

16 Homology Flows, Cohomology Cuts

Recall that the generic ellipsoid algorithm runs in O(T,d?log? A + d*1og® Alog®(d log A)) time. In
our application of the method, we have d = 2g + 1; Corollary 3.9 and Lemma 3.15 imply that A =
volEy/vol®, = Co(g)/C_O(gz) = Co(gz); and Corollary 3.6 implies that T, = O(g?nlog®n). We conclude
that our maximum-flow algorithm runs in O(g®nlog® nlog® C) time. (The O(g®log? Clog®logC) term
in the running time is dominated, because C = O(2").)

Theorem 3.16. Given an undirected graph G = (V, E) embedded on an orientable surface of genus g, a
positive integer capacity function c: E — 7", and two verticess,t € V, a maximum (s, t)-flow in G can
be computed in time O(g®nlog® nlog® C), where C is the sum of the edge capacities.

Other variants of this algorithm, with different dependencies on g and log C, are also possible. For
example, a binary search over the possible flow values reduces the maximum-flow problem to O(log C)
instances of finding a feasible flow with a given value. Finding a flow with any particular value can
be reduced to a 2g-dimensional LP-feasibility problem using our techniques, which we can solve in
0(g®nlog? nlog? C) time. This algorithm uses fewer ellipsoid steps in each iterations, because we can
stop as soon as the volume of € falls below 1/(2g)!. Finding the maximum flow value is now relatively
straightforward, but there are some additional technical difficulties in finding a flow with that value,
because the resulting homology polytope is not full-dimensional. We can resolve these difficulties using a
perturbation technique similar to Section 3.6 below. The resulting algorithm runs in O(g®nlog?® nlog® C)
time. We omit further details.

3.5 Multidimensional Parametric Search

We now describe a fully combinatorial algorithm that works for arbitrary capacities, but whose running
time is worse, even for fixed genus. Our algorithm uses the multidimensional parametric search paradigm,
a generalization of Megiddo’s parametric search technique [89] developed independently by Cohen
and Megiddo [23, 25, 26], Norton, Plotkin, and Tardos [96], and Aneja and Kabadi [7], and extended
by several other authors [1, 2, 3, 27, 75, 76, 112]. Specifically, we use the version of the technique
described by Agarwal, Sharir, and Toledo [3].

The multidimensional parametric search technique requires two black-box algorithms for the decision
problem, one serial and the other parallel. The parallel algorithm must be fully combinatorial, meaning
(as in the previous section) that every branch is based on the sign of an affine combination of the input
parameters. Unlike the ellipsoid method described in the previous section, multidimensional parametric
search requires only a membership oracle; thus our parallel algorithm (Corollary 3.7) need not actually
return a negative-length cycle if one exists.

Let T, denote the running time of the serial decision algorithm, T,, the running time of the parallel
decision algorithm, P the number of processors used by the parallel decision algorithm, and d the
number of parameters to be resolved. The running time of the resulting optimization algorithm is
do@ (T,P+(T,log p)¢ T,).'% In our application of the method, we have d = 2g + 1; Corollary 3.6 gives
us T, = 0(g?nlog®n); and Corollary 3.7 implies T, = O(log®n) and P = 0(n®?/10g®n). Thus, the
overall running time of our algorithm is g n3/2.

Theorem 3.17. Given a graph G = (V,E) embedded on an orientable surface of genus g, a positive
capacity function c: E — R, and two vertices s, t € V, a maximum (s, t)-flow in G can be computed in
g%@® n/2 time.

0Agarwal et al. [3] assume only the existence of a parallel decision algorithm, and thus report the running time as
do(d)(Tp log P)¢ T,P; the running time we report here follows by using a separate serial algorithm at the lowest level of
recursion. Agarwal and Sharir [2] report the running time as do(d)Ts(Tp log P); however, this time bound is incorrect if T, is
significantly smaller than T, P.

Erin Chambers, Jeff Erickson, and Amir Nayyeri 17

3.6 Directed Graphs

So far we have restricted our attention to flows in undirected graphs; however, our results can be
extended to directed graphs with only a little more effort. We assume without loss of generality that
the input graph is the symmetric directed graph G associated with some undirected graph G and that
the embedding of G is induced by a cellular embedding of G. However, the capacity function is not
necessarily symmetric; in particular, some edges in G may have zero capacity, even though their reversals
do not.

Because the residual graph G is already a directed graph, all the results in Sections 3.1 and 3.3
apply without modification to directed graphs. The multidimensional parametric search algorithm
described by Theorem 3.17 also applies immediately to the directed setting. However, our proof of
Theorem 3.16 does not generalize to directed graphs, because the flow homology polytope ® may
have zero volume. Specifically, Lemmas 3.10 and 3.15 no longer hold; all the other lemmas generalize
immediately. Fortunately, we can work around this problem by adapting a standard perturbation
technique proposed by Khachiyan [78, 79] for arbitrary linear programs. Our description closely follows
Papadimitriou and Steiglitz [99, Lemma 8.7].

Let c: E — N be the input capacity function, and C denote the sum of the edge capacities, as before.
Let m := |E|, and observe that m = O(C). We define a new capacity function ¢’: E — Z* by setting
c’(€) := c(€) + 1/m>3 for every directed edge €. After scaling up by a factor of m?, this capacity function
satisfies Lemma 3.10; the rest of the proof of Theorem 3.16 goes through unchanged, except with
C’ = 2m3C + m in place of C. Thus, we can compute a maximum flow ¢ opy for the new capacity
function in O(g®nlog?nlog?C’) = 0(g®nlog® nlog? C) time using our earlier algorithm. Finally, we
round ¢/, to the nearest integer flow and return the result as the solution to our original flow problem.
The overall running time of the algorithm is still O(g®nlog?nlog? C).

It remains to prove that this rounding algorithm actually works. Let & € R™ denote the polytope
of feasible flows with respect to the original capacity function c, and let ¥ denote the corresponding
polytope for ¢’. The polytope T is the intersection of 2m + n halfspaces, one for each linear constraint in
the maximum-flow linear program; let H denote the boundary hyperplanes of those halfspaces. Every
vertex of F is the intersection of m linearly-independent hyperplanes in 3. Similarly, let " denote the
corresponding hyperplanes for 5.

Lemma 3.18. Let v be the intersection point of m linearly independent hyperplanes in H, and let v/ be
the intersection point of the corresponding hyperplanes in H'. Then ||v — V|| < 1/m®/%. In particular,
v is the closest integer point to v'.

Proof: The point v is the solution to an m x m linear system Av = b. Similarly, v’ is the solution to a
linear system Av = b’ with the same matrix A, where every coordinate in the vector b’ — b is either 0
or 1/m3. Let [A| b]; denote the matrix formed by replacing the ith column of A with the vector b. For
each index i, Cramer’s rule implies that

,_ detfA|b); _ detlA|b)+detfA| (5 =b))y _ 1 detfA]u]
Vi T detA detA — Vi m3 detA

for some (0, 1)-vector u. The matrix A is a minor of a totally unimodular matrix (namely, the constraint
matrix of a maximum-flow linear program), so |detA| = 1. Similarly, cofactor expansion around the ith
column implies that |det[A | u];| < m. Thus, |[v{ —v;| < 1/m? for all i, which implies ||v — /|| < 1/m>/2.
The total unimodularity of A also implies that v is an integer point. O

Lemma 3.19. Every point in ¥ has distance at most 2/m>/? from ¥.

18 Homology Flows, Cohomology Cuts

Proof: Let ¢’ be an arbitrary point in F’; then ¢’ is a feasible flow with respect to ¢’. Lower the
capacities of the edges one at a time, replacing c’(€) with ¢(€), and simultaneously modify the flow to
maintain feasibility. Each time we subtract 1/m® from the capacity of one edge, we must modify the
flow value of every edge by at most 1/m>. Thus, after all 2m edge capacities are changed, we have a
new feasible flow ¢ € F such that |¢(&) — ¢’(&)| < 2m/m® = 2/m? for every edge &. We conclude that
e —¢'ll < 2/m>>. O

Lemma 3.20. Every integer point that is not in § has distance at least 1/+/m from .

Proof: Fix a point y € Z™\J. This point must violate some constraint (a, x) < b in the constraint system
that defines F—either the capacity constraint of some edge, or the conservation constraint of some vertex.
In either case, every coefficient of a is either 0, 1, or —1, which implies that ||a|| < +/m, and b is either 0
or the capacity of an edge. Let y’ be the closest point on the hyperplane (a,x) = b to y; the distance
from y to JF is at least ||y — y’||. Because a and y are integral, we have {(a,y) > b+ 1= {(a,y’) +1,
so {(a,y —y’) > 1. On the other hand, we also have (a,y —y') <|la||-lly = ¥'l| < vm - |ly — ¥'|l. We
conclude that ||y — y’|| > 1/+/m. O

Let ¢’ be an arbitrary vertex of 3, and let ¢ be the closest integer point to ¢’. Lemmas 3.18 and 3.19
imply that ¢ has distance at most 3/ m®3/2 from F. Thus, Lemma 3.20 implies that ¢ € F. On the other
hand, Lemma 3.18 implies that ¢ is the intersection of m linearly-independent constraint hyperplanes,
each supporting a facet of F. It follows that ¢ is actually a vertex of F.

Let 2 € R™ denote the objective vector for the flow linear program, so that z - ¢ = ||; because every
coefficient of z lies in the set {—1,0, 1}, we have ||z|| < +/m. Thus, Lemma 3.18 implies that rounding
¢’ to ¢ changes the flow value by at most ||z]| [[¢ — ¢’|| < 1/m. Finally, we observe that the flow ¢(p;
computed by our ellipsoid-based algorithm is actually a vertex of 3. We conclude that the closest integer
point to ¢, is an optimal vertex in F, and so our reduction is correct.

Theorem 3.21. Given an directed graph G = (V, E) embedded on an orientable surface of genus g, a
positive integer capacity function c: E — 7, and two vertices s,t € V, a maximum (s, t)-flow in G can
be computed in time O(g®nlog® nlog® C), where C is the sum of the edge capacities.

3.7 Non-orientable Surfaces

Finally, we consider the case where the underlying surface X is non-orientable. There is no globally
consistent way to dualize a directed graph embedded on a non-orientable surface, so Lemma 3.1 cannot
be directly generalized to this setting. Instead, we show that we can compute a maximum flow by
considering a larger graph embedded on an orientable surface called the orientable double cover of X,
invoking our earlier maximum-flow algorithm a constant number of times, and projecting the resulting
flow back to the original graph.

We recall some standard definitions from topology. A continuous function p: ¥ — 3 is called a
covering map if every point x € ¥ has an open neighborhood U such that p~!(U) is the union of disjoint
open sets Ul. U, and the restriction of p to each open set U, is a homeomorphism. If such a map exists,
then ¥ is called a covering space of X. A point X € 3 is called a lift of its image p(%). The orientable
double cover of . is the unique orientable covering space ¥ whose covering map is 2-to-1; that is, every
point in ¥ has exactly two lifts in ¥. For example, the sphere is the orientable double cover of the
projective plane, and the torus is the orientable double cover of the Klein bottle. If ¥ is non-orientable
and has genus g, Euler’s formula implies that its orientable double cover ¥ has genus g — 1. If X is
orientable, its orientable double cover consists of two disjoint copies of X.

Erin Chambers, Jeff Erickson, and Amir Nayyeri 19

For any undirected graph G embedded on X, there is a corresponding lifted graph G embedded
on the double-cover 3. We can compute both G and its embedding using the following standard
voltage construction [55, Chapter 4]. Recall that a rotation system is a permutation 7 of the edges
specifying the ‘counterclockwise’ ordering of the darts leaving each vertex. The embedding of G can
be represented by a rotation system 7, together with a signature function ¢: E — {0, 1} specifying
whether the local ‘counterclockwise’ orientations at the endpoints of each edge are consistent (0) or
inconsistent (1). The lifted graph G = (V,E) is now defined by setting V := {vo,v; | v € V} and
E = {ugV,(uwy), U1V1-iwv) | UV € E}. The embedding of G onto % is defined by the following rotation
system: for each vertex v € V, darts leave v, in the same counterclockwise order as their lifts leave v,
and darts leave v; in the opposite order.

Now let s and t be vertices of G, and let c: E — R be a capacity function. We define a lifted
capacity function ¢: E — R by setting &(u;v;) = c(uv)/2. A multi-terminal (single-commodity) flow in G
is a function ¢ : E — R that satisfies the conservation constraint at every vertex except (possibly) at
S0,51, to, t1- The value of a multi-terminal flow is the total net flow out of s, and s; (or into ¢ty and t;).

Now we augment G by adding new source and target vertices § and f and infinite-capacity edges
§sg, 851, tof, and t,; let G’ denote the augmented graph. Adding these edges to the embedding of G
requires increasing the genus of ¥ by at most two. We can clearly extract a maximum multi-terminal
flow in G from a maximum (3, f)-flow in G’.

Alternatively, we can compute the maximum multi-terminal flow using the following decomposition
approach proposed by Miller and Naor [92]. Let f be a maximum (s, ty)-flow in G; let f/ be a maximum
(89, t1)-flow in the residual graph Gf ; let f” be a maximum (s, to)-flow in the residual graph Gf/; and
let f” be a maximum (s, t;)-flow in the residual graph G;». Miller and Noar’s results imply that
¢ =f+f +f"+f" is maximum multi-terminal flow in G. Even if the original input graph G is
undirected, the residual graphs Gf, Gf/, and Gf// are directed, so we need the results of the previous
section to use this approach.

For each edge uv € G, let ¢p(uv) := qg(uovb(w)) + ¢}(u1 Vi_,(uv))- We mechanically prove that ¢ is a
valid and feasible (s, t)-flow with the same value as ¢ as follows. For any vertex v, except possibly s
and t, we have 3¢ (v) = 8¢ (vy) + d¢p(v;) =0+ 0=0, so ¢ is a valid (s, t)-flow. For any edge uv, we
have

|¢(uv)| = |¢(u0vL(uv))| + |¢’(u1vl—t(uv))| < 6(uOvL(uv)) + 6(ulvl—L(uv)) = c(uv),

so ¢ is feasible. Finally, the definition of flow value implies that |¢| = 3¢ (s) = dp(sy) + 0P (s1) = |P|.
On the other hand, any (s, t)-flow ¢ in G can be lifted to a multi-terminal flow in G with the same
value, by setting ¢ (u;v;) = ¢(uv)/2. Thus, ¢ is a maximum flow in G.
The following results are now immediate:

Theorem 3.22. Given a graph G = (V, E) embedded on a non-orientable surface of genus g, a positive
integer capacity function c: E — Z%, and two vertices s,t € V, a maximum (s, t)-flow in G can be
computed in time O(g®nlog? nlog? C), where C is the sum of the edge capacities.

Theorem 3.23. Given a graph G = (V, E) embedded on a non-orientable surface of genus g, a positive
capacity function c: E — R, and two vertices s, t € V, a maximum (s, t)-flow in G can be computed in
g9@n3/2 time.

4 Cohomology Cuts

Suppose we are given an undirected graph G (with no source or sink), a positive capacity function
c: E —» R*, and a value function 6: E — R. The value of a circulation ¢ is the inner product

20 Homology Flows, Cohomology Cuts

($,0) =2z $(&)- 0(€). Like the capacity function c, the value function 6 is not (in general) a 1-chain;
the values of a dart and its reversal need not have any relationship. In particular, some darts may have
negative value. The goal of the maximum-value circulation problem is to compute a feasible circulation ¢
whose value (¢, 6) is as large as possible. The standard maximum-flow problem can be reduced to this
problem by adding an edge t—s with infinite capacity and value 1 to the flow network, and assigning
every other edge value 0. The maximum-value circulation problem is equivalently—and much more
commonly—formulated as finding a feasible circulation of minimum cost, where the cost of an edge is
just the negation of its value.

Our methods do not improve the fastest algorithms for the general maximum-value/minimum-cost
circulation problem in surface-embedded graphs; even for planar graphs, the fastest algorithms known
are those for arbitrary sparse graphs [31, 97]. However, a minor modification of our maximum-flow
algorithm allows us to solve two interesting special cases in roughly the same running time. In the first
special case, described in Section 4.1, we require that the value function is homology invariant; that is,
any two homologous circulations must have the same value. In the second special case, described in
Section 4.2, we find the minimum-cost circulation in a given homology class; this special case requires
each edge to have a non-negative cost and infinite capacity. These two special cases are related by a
combination of combinatorial (Poincaré) duality and linear programming duality.

4.1 Homology-Invariant Values

The maximum-flow algorithm described in the previous section can be easily modified to compute
maximum-value circulations, provided all circulations in the same homology class have the same
value. We call the value function 6: E — R is homology-invariant if (¢,0) = (1), 0) for any two
homologous circulations ¢ and 1), or equivalently, if (da, 8) = 0 for any 2-chain a. In particular, any
homology-invariant value function must be a 1-chain.

Theorem 4.1. Given a graph G = (V,E) embedded on a surface of genus g, a capacity function
c: E—R", and a homology-invariant value function 6: E — R, we can compute a maximum-value
circulation in g°®n3/? time, or in 0(g®nlog? nlog? C) time if capacities are integers that sum to C.

Proof: The homology space H(G) = R?8 can be generated by (the homology classes of) 2g directed
cycles v1,72,.-.,Y2, in independent homology classes. The proof of Lemma 3.5 implies that we can
construct such a homology basis in O(gn) time [39, 41]. (See also the proof of Lemma 3.8.)

Corollary 3.6 implies that it suffices to find the homology class of the maximum-value circulation.
Specifically, we need to find a feasible homology vector (¢, ..., ¢5.) such that the cost function

2g 2g
<Z¢1'Yi; 9> =Z¢i'<}’i,9>
i=1 i=1

is maximized. Corollary 3.6 gives us both strong membership and strong separation oracles for this
linear optimization problem, so we can apply either the central-cut ellipsoid method or multidimensional
parametric search, exactly as we did for the standard maximum-flow problem. The perturbation scheme
described in Section 3.4.3 requires only minor modifications to support more general objective functions;
the standard details are described by Grotschel et al. [57]. Otherwise, the optimization algorithm is
identical. O

The following lemma exactly characterizes homology-invariant value functions. Recall that a 1-chain
0: E — R is a cocirculation if its dual 1-chain 6*: E* — R, defined by setting 60*(€*) = 6(¢€), is a
circulation in G*.

Erin Chambers, Jeff Erickson, and Amir Nayyeri 21

Lemma 4.2. A value function 6 : E — R is homology invariant if and only if 0 is a cocirculation.

Proof: If the function 6: E — R is not a cocirculation, then for some face f, we have
(0f,0)= > 0@ #0
e: left(&)=f

Because 6 gives non-zero value to the boundary circulation df, it cannot be homology invariant.
On the other hand, suppose 6 is an arbitrary cocirculation and a: F — R is an arbitrary 2-chain. We
mechanically verify that (da, 8) = 0 as follows:

(8at, 0) = Zaa(a . 0(?)

ecE
= (alleft()) — a(right(#))) - (&)
eeE
= (S oape@ - Y a(f)-e(a))
fEF \E: left(@)=f e right(€)=f
= (a(f)- (IIGERDY e(a))
feF e: left(e)=f e: right(e)=f
=>"(a(f)-(0-0)) = 0.
feF
We conclude that 6 is homology-invariant. O

4.2 Minimum-Cost Homologous Circulation

The special case of maximum-value circulations considered in the previous section has the following
natural dual interpretation. Consider the following classical linear programming formulation of the
maximum-value circulation problem.

max > p(u—v)-0(u—v)

u—v

st. 2 (pu-v)—¢p(v-uw)) =0 forallveV

U:uveE _
- ¢(u—-v) < c(u—v) forallu»vekE

¢(u—-v)=>0 forallu—v e E

The dual of this linear program has a variable a(v) for each vertex v and a variable x(u—v) for each

dart u—v.
min > x(u—v) - c(u—v)
u—v

s.t. a(u) —a()+x(u—v) > 0(u—v) forallu—vekE
x(u-»v)=>0 forallu—veF

This dual linear program is more naturally cast in terms of the dual graph G*, as follows:

min 2. x(f1g)-c(f18)

frg
st. a(f)—a(g)+x(f1g)>0(frg) forall frgeE* (4.1)

x(f1g) >0 forall f1g e E*

22 Homology Flows, Cohomology Cuts

Let appr(f) and xopr(f 1g) denote the variables in the optimum solution to this dual-dual linear
program. We view the vector aqpr of face variables as a 2-chain. We define a 1-chain ¢: E* — R by
setting Topr(f 18) := xopr(f 1) — xopr(g1f) for every dart f 1g. Because every primal capacity c(u—v)
is non-negative, each dart variable xpr(f 1g) is individually as small as possible without violating any
constraint; that is,

xopr(f1g) =max {0, 6(f1g) — a(f)+a(g)}.

It follows immediately that ¥opr = 0 — da; thus, Fypr is a circulation in G*, homologous with the
circulation 8. Equivalently, ¥,pr is a cocirculation in G, in the same cohomology class as 6. Moreover, the
optimal objective value can be rewritten as follows:

> xopr(f18)-c(F18)= D c(e”)- [Fopr(e”)]

frg e*€E*

We conclude that ¥py is the minimum-capacity cocirculation in the same cohomology class as 6.

Theorem 4.3 (Homological Maxflow/Mincut). Let G = (V, E) be an undirected graph embedded on
a surface of genus g, let c: E — R™ be a capacity function, and let 6 : E — R be a cocirculation in G.
The maximum value (¢, 0) of any feasible circulation ¢ in G is equal to the minimum capacity of any
cocirculation cohomologous with 6.

The previous theorem is a special case of a more general result of Sullivan [109], relating optimal
homologous (d — 1)-chains (“surfaces”) in any orientable d-manifold cell complex to minimum-cost
flows in the 1-skeleton of the dual cell complex. Essentially the same result was rediscovered by Buehler
etal. [15, 51, 81]; see also recent results of Grady [52, 53].

A simple modification of our maximum-value circulation algorithm computes the minimum-cost
circulation in a given homology class, in any surface-embedded graph whose edges have non-negative
costs but no capacities.

Theorem 4.4. Given a graph G = (V,E) embedded on a surface of genus g, a cost functionc: E — R™,
and a circulation 0 : E — R, we can compute a minimum-cost circulation homologous with 6 in g®(&)n3/2
time, or in time O(g®nlog? nlog? C) if all capacities are integers that sum to C.

Proof: Within the stated time bounds, we can compute a maximum-value feasible circulation ¢, in
the dual graph G*, using c as a capacity function and 6 as a homology-invariant value function. Our
algorithm optimizes the homology class of the circulation, using a linear-programming formulation
similar to (LP):

28
max », ¢ - (6,A))
i=1

28 (4.2)
st. D ¢ - Al(y) < c(y) for every cycle y in G
i=1
Here, A7, A5,..., A , are cycles in G”* that generate the homology space of G*. As described in the proof

of Lemma 3.5, we can construct a suitable set of 2g cycles in O(gn) time.

In any feasible basis for the homology linear program (4.2), exactly 2g of the linear constraints are
satisfied with equality. These constraints are defined by 2g cycles y1,72,...,72, in G, which necessarily
lie in independent homology classes and thus comprise a basis for the homology space of G. (Moreover,
each cycle y; is the minimum-cost cycle in its homology class.)

Erin Chambers, Jeff Erickson, and Amir Nayyeri 23

The dual of linear program (4.2) has a non-negative variable a(y) for each directed cycle y in G.

max 3, c(y)-a(y)
cycle y in G
st. 2 Ai(y)-a(y) = (6,A]) foralll1<i<2g (4.3)
cycle y in G .
a(y) = 0 for every cycle v in G

The variables a(y) are the coefficients of a cycle decomposition of a circulation = ZY a(y)-y; conversely,
any circulation ¥ can be expressed as a weighted sum of cycles with non-negative coefficients a(y). The
objective function of (4.3) is just the cost of this circulation. Moreover, we can mechanically verify that

> Am-al) = (0,49),

cycley in G

so the equality constraints specify that # must be homologous with 6. In other words, the optimal
solution to (4.3) describes the minimum-cost circulation ¥,p; = ZY appr(y) - ¥ homologous with the
given circulation 6.

Complementary slackness implies that in the optimal solution to (4.3), any variable agpr(y) is
non-zero only if the corresponding capacity constraint in (4.2) is satisfied with equality. Thus, the
minimum-cost homologous circulation ¥,py is a weighted sum of the 2g homology basis cycles ;.

To simplify notation, let a; = appr(y;) for each index i, so that ¥ypr = Ziz:gl a;y;. After computing
the dual circulation ¢, and the saturated cycles y;, we can compute the coefficients a; time as follows.
For each index j, we have a linear equation

2g 2g
(0,17) = (Bopr, A}) = <Zam, A;*f> = iy, A0,

i=1 i=1

We compute the O(g?) inner products (6, Aj) and (y;, A*) each in O(n) time, by a brute-force sum over
the edges of G. Finally, we solve the resulting system of 2g linear equations in O(g®) time via Gaussian
elimination. O

Finally, consider the special case where the input circulation 8 is a single directed cycle. The
minimum-cost circulation ¥,pr homologous to 6 is not necessarily a single cycle, but the proof of the
previous theorem implies that it is a weighted sum of at most 2g directed cycles. Moreover, J,pr is
defined by a linear program (4.1) whose constraint matrix is totally unimodular, which implies that ¥py
is an integer circulation. For more general applications of total unimodularity to optimization within an
integer homology class, we refer the reader to Dey et al. [30] and Dunfield and Hirani [34].

5 Conclusions and Open Problems

We have described the first algorithm to compute maximum flows in graphs embedded on any fixed
surface, with polynomially-bounded integer capacities, in near-linear time. In two related papers
[20, 40], we describe the first algorithms to compute minimum cuts in undirected surface-embedded
graphs in O(nlogn) time for any fixed genus; this running time was recently improved to O(nloglogn)
by Italiano et al. [72]. Both in this paper and in related work, we also consider the problem of finding
the minimum-cost representative in a given homology class; the results depend on the coefficient ring
used to define homology. For real or integer coefficients, the problem is a special case of minimum-cost
circulation [109] and thus can be solved using our maximum flow algorithm. For Z,-coefficients, on the

24 Homology Flows, Cohomology Cuts

other hand, the problem is NP-hard, by a reduction from MaxCut [20], and thus can be solved efficiently
only when the genus is small.

We regard the results in this paper largely as a ‘proof of concept’ that topology can helpful in
solving flow problems. Our algorithms are in no way practical; we expect that for all but the simplest
examples, existing algorithms for general graphs will significantly outperform all of our algorithms in
practice. We optimistically conjecture that maximum flows and minimum cuts in embedded graphs can
be computed in O(g¥nlogn) time for some small constant k, perhaps by decomposing the graph into
planar components, or using a generalization of the planar network-simplex algorithm of Borradaile and
Klein [11, 13, 38]. Even the special case of undirected graphs with unit capacities on the torus is open.

Acknowledgments. Thanks to Cora Borradaile, Chandra Chekuri, Sariel Har-Peled, Shay Mozes,
Aparna Sundar, and Kim Whittlesey for many helpful discussions. In particular, we would like to thank
Sariel Har-Peled for suggesting the use of the ellipsoid method, and Shay Mozes for pointing out that
Theorem 3.3 was not as simple as we claimed.

References

[1] R. Agarwala and D. Fernandez-Baca. Weighted multidimensional search and its application to
convex optimization. SIAM J. Comput. 25:83-99, 1996.

[2] P K. Agarwal and M. Sharir. Efficient algorithms for geometric optimization. ACM Comput. Surv.
30:412-458, 1998.

[3] P K. Agarwal, M. Sharir, and S. Toledo. An efficient multi-dimensional searching technique
and its applications. Tech. Rep. CS-1993-20, Dept. Comp. Sci., Duke Univ., August 1993. (ftp:
//ftp.cs.duke.edu/pub/dist/techreport/1993/1993-20.ps.gz).

[4] R. K. Ahuja, T. L. Magnanti, and J. Orlin. Network Flows: Theory, Algorithms, and Applications.
Prentice Hall, 1993.

[5] L. Aleksandrov and H. Djidjev. Linear algorithms for partitioning embedded graphs of bounded
genus. SIAM J. Discrete Math. 9(1):129-150, 1996.

[6] H. Alt. Functions equivalent to integer multiplication. Proc. 7th Int. Colloq. Automata Lang. Prog.,
30-37, 1980. Lecture Notes Comput. Sci. 85, Springer.

[7] Y. P Aneja and S. N. Kabadi. Polynomial algorithms for Lagrangean relaxations in combinatorial
problems. Faculty of Business Working Paper Series W91-03, University of Windsor, 1991. Cited
in [76].

[8] B. S. Baker. Approximation algorithms for NP-complete problesm on planar graphs. J. Assoc.
Comput. Mach. 41:153-180, 1994.

[9] R. G. Bland, D. Goldfarb, and M. J. Todd. The ellipsoid method: A survey. Oper. Res. 29(6):1039-
1091, 1981.

[10] A. 1. Bobenko, P Schroder, J. M. Sullivan, and G. M. Ziegler. Discrete Differential Geometry.
Olberwolfach Seminars 38. Birkhauser Verlag, 2008.

[11] G. Borradaile. Exploiting Planarity for Network Flow and Connectivity Problems. Ph.D. thesis,
Brown University, May 2008. (http://www.cs.brown.edu/research/pubs/theses/phd/2008/
glencora.pdf).

ftp://ftp.cs.duke.edu/pub/dist/techreport/1993/1993-20.ps.gz
ftp://ftp.cs.duke.edu/pub/dist/techreport/1993/1993-20.ps.gz
http://www.cs.brown.edu/research/pubs/theses/phd/2008/glencora.pdf
http://www.cs.brown.edu/research/pubs/theses/phd/2008/glencora.pdf

Erin Chambers, Jeff Erickson, and Amir Nayyeri 25

[12] G. Borradaile, E. D. Demaine, and S. Tazari. Polynomial-time approximation schemes for subset-
connectivity problems in bounded-genus graphs. Proc. 26th Int. Symp. Theoretical Aspects Comput.
Sci., 171-182, 2009. Dagstuhl Seminar Proceedings. (http://drops.dagstuhl.de/opus/volltexte/
2009/1835/).

[13] G. Borradaile and P Klein. An O(nlogn) algorithm for maximum st-flow in a directed planar
graph. J. ACM 56(2): 9:1-30, 2009.

[14] G. Borradaile, P Klein, and C. Mathieu. An O(nlogn) approximation scheme for Steiner tree in
planar graphs. ACM Trans. Algorithms 5(3):article 31, 2009.

[15] C. Buehler, S. J. Gortler, M. E Cohen, and L. McMillan. Minimal surfaces for stereo. Proc. 7th
European Conf. Comput. Vision, vol. 3, 885-899, 2002.

[16] S. Cabello and E. W. Chambers. Multiple source shortest paths in a genus g graph. Proc. 18th
Ann. ACM-SIAM Symp. Discrete Algorithms, 89-97, 2007.

[17] S. Cabello, E. Colin de Verdiere, and E Lazarus. Finding cycles with topological properties in
embedded graphs. Preprint, October 2010. (http://www.di.ens.fr/~colin/textes/09truecycle.
pdf). To appear in SIAM J. Discrete Math.

[18] E. W. Chambers, E. Colin de Verdiére, J. Erickson, E Lazarus, and K. Whittlesey. Splitting
(complicated) surfaces is hard. Comput. Geom. Theory Appl. 41(1-2):94-110, 2008.

[19] E. W. Chambers, J. Erickson, and A. Nayyeri. Homology flows, cohomology cuts. Proc. 42nd Ann.
ACM Symp. Theory Comput., 273-282, 2009.

[20] E. W. Chambers, J. Erickson, and A. Nayyeri. Minimum cuts and shortest homologous cycles.
Proc. 25th Ann. Symp. Comput. Geom., 377-385, 2009.

[21] C. Chen and D. Freedman. Hardness results for homology localization. Proc. 21st Ann. ACM-SIAM
Symp. Discrete Algorithms, 1594-1604, 2010.

[22] J. Chen, S. P Kanchi, and A. Kanevsky. A note on approximating graph genus. Inform. Proc. Lett.
61(6):317-322, 1997.

[23] E. Cohen. Combinatorial Algorithms for Optimization Problems. Ph.D. thesis, Dept. Comput.
Sci., Stanford Univ., June 1991. (http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=
html&identifier=ADA254553). Tech. Report STAN-CS-91-1366.

[24] E. Cohen. Efficient parallel shortest-paths in digraphs with a separator decomposition. J.
Algorithms 21:331-357, 1996.

[25] E. Cohen and N. Megiddo. Maximizing concave functions in fixed dimension. Complexity in
Numerical Optimization, 74-87, 1993. World Scientific.

[26] E. Cohen and N. Megiddo. Strongly polynomial-time and NC algorithms for detecting cycles in
periodic graphs. J. Assoc. Comput. Mach. 40(4):791-830, 1993.

[27] E. Cohen and N. Megiddo. Algorithms and complexity analysis for some flow problems. Algorith-
mica 11(3):320-340, 1994.

[28] E.D. Demaine, M. Hajiaghayi, and B. Mohar. Approximation algorithms via contraction decom-
position. Proc. 18th Ann. ACM-SIAM Symp. Discrete Algorithms, 278-287, 2007.

http://drops.dagstuhl.de/opus/volltexte/2009/1835/
http://drops.dagstuhl.de/opus/volltexte/2009/1835/
http://www.di.ens.fr/~colin/textes/09truecycle.pdf
http://www.di.ens.fr/~colin/textes/09truecycle.pdf
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA254553
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA254553

26 Homology Flows, Cohomology Cuts

[29] M. Desbrun, E. Kanso, and Y. Tong. Discrete differential forms for computational modeling.
SIGGRAPH ’06: ACM SIGGRAPH 2006 Courses, 39-54, 2006.

[30] T. K. Dey, A. N. Hirani, and B. Krishnamoorthy. Optimal homologous cycles, total unimodularity,
and linear programming. SIAM J. Comput. 40(4):1026-1044, 2011.

[31] S.I. Diatch and D. A. Spielman. Faster lossy generalized flow via interior point algorithms. Proc.
40th Ann. ACM Symp. Theory Comput., 451-460, 2008. ArXiv:0803.0988.

[32] H. N. Djidjev and S. M. Venkatesan. Planarization of graphs embedded on surfaces. Proc. 21st
Workshop Graph-Theoretic Concepts Comput. Sci., 62-72, 1995. Lecture Notes Comput. Sci. 1017,
Springer-Verlag.

[33] D. P Dobkin and R. J. Lipton. On the complexity of computations under varying sets of primitives.
J. Comput. Syst. Sci. 18:86-91, 1979.

[34] N. M. Dunfield and A. N. Hirani. The least spanning area of a knot and the optimal bounding
chain problem. Proc. 27th Ann. Symp. Comput. Geom., 135-144, 2011.

[35] D. Eppstein. Subgraph isomorphism in planar graphs and related problems. J. Graph Algorithms
Appl. 3(3):1-27, 1999.

[36] D. Eppstein. Diameter and treewidth in minor-closed graph families. Algorithmica 27:275-291,
2000. ArXiv:math.CO/9907126.

[37] D. Eppstein. Dynamic generators of topologically embedded graphs. Proc. 14th Ann. ACM-SIAM
Symp. Discrete Algorithms, 599-608, 2003. ArXiv:cs.DS/0207082.

[38] J. Erickson. Maximum flows and parametric shortest paths in planar graphs. Proc. 21st Ann.
ACM-SIAM Symp. Discrete Algorithms, 794-804, 2010.

[39] J. Erickson and S. Har-Peled. Optimally cutting a surface into a disk. Discrete Comput. Geom.
31(1):37-59, 2004.

[40] J. Erickson and A. Nayyeri. Shortest homologous cycles and minimum cuts via homology covers.
Proc. 22nd Ann. ACM-SIAM Symp. Discrete Algorithms, 1166-1176, 2011.

[41] J. Erickson and K. Whittlesey. Greedy optimal homotopy and homology generators. Proc. 16th
Ann. ACM-SIAM Symp. Discrete Algorithms, 1038-1046, 2005.

[42] J. Fakcharoenphol and S. Rao. Planar graphs, negative weight edges, shortest paths, and near
linear time. J. Comput. Syst. Sci. 72(5):868-889, 2006.

[43] L.R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian J. Math. 8(399-404),
1956. First published as Research Memorandum RM-1400, The RAND Corporation, Santa Monica,
California, November 19, 1954.

[44] G. N. Frederickson. Fast algorithms for shortest paths in planar graphs with applications. SIAM J.
Comput. 16(6):1004-1004, 1987.

[45] P Gacs and L. Lovasz. Khachiyan’s algorithm for linear programming. Math. Program. Stud.
14:61-68, 1981.

http://arxiv.org/abs/0803.0988
http://arxiv.org/abs/math.CO/9907126
http://arxiv.org/abs/cs.DS/0207082

Erin Chambers, Jeff Erickson, and Amir Nayyeri 27

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

S. O. Gharan and A. Saberi. The asymmetric traveling salesman problem on graphs with bounded
genus. Proc. 22nd Ann. ACM-SIAM Symp. Discrete Algorithms, 967-975, 2011.

J. R. Gilbert, J. P Hutchinson, and R. E. Tarjan. A separator theorem for graphs of bounded genus.
J. Algorithms 5(3):391-407, 1984.

A. V. Goldberg and S. Rao. Beyond the flow decomposition barrier. J. ACM 45(5):783-797, 1998.

A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem. J. Assoc. Comput.
Mach. 35(4):921-940, 1988.

M. T. Goodrich. Planar separators and parallel polygon triangulation. J. Comput. Syst. Sci.
51(3):374-389, 1995.

S. J. Gortler and D. Kirsanov. A discrete global minimization algorithm for continuous variational
problems. Comput. Sci. Tech. Rep. TR-14-04, Harvard Univ., 2004. (http://gvi.seas.harvard.edu/
sites/all/files/Gortler DiscreteGlobal.pdf).

L. Grady. Computing exact discrete minimal surfaces: Extending and solving the shortest path
problem in 3D with applicaton to segmentation. Proc. IEEE CS Conf Comput. Vis. Pattern Recog.,
vol. 1, 67-78, 2006.

L. Grady. Minimal surfaces extend shortest path segmentation methods to 3D. IEEE Trans. Pattern
Anal. Mach. Intell. 32(2):321-334, 2010.

M. Grohe. Isomorphism testing for embeddable graphs through definability. Proc. 32nd ACM
Symp. Theory Comput., 63-72, 2000.

J. L. Gross and T. W, Tucker. Topological graph theory. Dover Publications, 2001.

M. Grotschel, L. Lovasz, and A. Schrijver. The ellipsoid method and its consequences in combina-
torial optimization. Combinatorica 1(2):169-197, 1981.

M. Grotschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization,
2nd edition. Algorithms and Combinatorics 2. Springer-Verlag, 1993.

T. Hagerup, J. Katajainen, N. Nishimura, and P Ragde. Characterizing multiterminal flow networks
and computing flows in networks of small treewidth. J. Comput. Syst. Sci. 57(3):366-375, 1998.

T. E. Harris and E S. Ross. Fundamentals of a method for evaluating rail net capacities. Memo-
randum RM-1573, The RAND Corporation, Santa Monica, California, October 24, 1955. Cited in
[106].

R. Hassin. Maximum flow in (s, t) planar networks. Inform. Proc. Lett. 13:107, 1981.

R. Hassin and D. B. Johnson. An O(nlog? n) algorithm for maximum flow in undirected planar
networks. SIAM J. Comput. 14(3):612-624, 1985.

A. Hatcher. Algebraic Topology. Cambridge Univ. Press, 2002. (http://www.math.cornell.edu/
~hatcher/AT/ATpage.html).

M. R. Henzinger, P Klein, S. Rao, and S. Subramanian. Faster shortest-path algorithms for planar
graphs. J. Comput. Syst. Sci. 55(1):3-23, 1997.

http://gvi.seas.harvard.edu/sites/all/files/Gortler_DiscreteGlobal.pdf
http://gvi.seas.harvard.edu/sites/all/files/Gortler_DiscreteGlobal.pdf
http://www.math.cornell.edu/~hatcher/AT/ATpage.html
http://www.math.cornell.edu/~hatcher/AT/ATpage.html

28

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

Homology Flows, Cohomology Cuts

A. N. Hirani. Discrete Exterior Calculus. Ph.D. thesis, California Institute of Technology, 2003.
(http://resolver.caltech.edu/CaltechETD:etd-05202003-095403).

J. M.. Hochstein and K. Weihe. Maximum s-t-flow with k crossings in O(k®nlogn) time. Proc.
18th Ann. ACM-SIAM Symp. Discrete Algorithms, 843-847, 2007.

J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of planar graphs (prelimi-
nary report). Proc. 6th Ann. ACM Symp. Theory Comput., 172-184, 1974.

J. P Hutchinson. On short noncontractible cycles in embedded graphs. SIAM J. Discrete Math.
1(2):185-192, 1988.

J. P Hutchinson. On genus-reducing and planarizing algorithms for embedded graphs. Graphs
and Algorithms, Proc. AMS-IMS-SIAM Joint Summer Res. Conf., 19-26, 1989. Contemporary
Mathematics 89, American Mathematical Society.

J. P Hutchinson and G. L. Miller. Deleting vertices to make graphs of positive genus planar.
Discrete Algorithms and Complexity Theory, Proceedings of the Japan-US Joint Seminar, Kyoto,
Japan, 81-98, 1987. Academic Press.

H. Imai and K. Iwano. Efficient sequential and parallel algorithms for planar minimum cost flow.
Proc. SIGAL Int. Symp. Algorithms, 21-30, 1990. Lecture Notes Comput. Sci. 450, Springer-Verlag.

A. Ttai and Y. Shiloach. Maximum flow in planar networks. SIAM J. Comput. 8:135-150, 1979.

G. E Italiano, Y. Nussbaum, P Sankowski, and C. Wulff-Nilsen. Improved minimum cuts and
maximum flows in undirected planar graphs. Proc. 43rd Ann. ACM Symp. Theory Comput., to
appear, 2011.

D. B. Johnson. Efficient algorithms for shortest paths in sparse networks. J. Assoc. Comput. Mach.
24(1):1-13, 1977.

D. B. Johnson and S. M. Venkatesan. Partition of planar flow networks (preliminary version).
Proc. 24th IEEE Symp. Found. Comput. Sci., 259-264, 1983. IEEE Computer Society.

S. N. Kabadi and Y. P Aneja. e-approximation minimization of convex functions in fixed dimension.
Oper. Res. Lett. 18:171-176, 1996.

S. N. Kabadi and Y. P Aneja. Equivalence of e-approximate separation and optimization in fixed
dimensions. Algorithmica 29:582-594, 2001.

K. Kawarabayashi, B. Mohar, and B. Reed. A simpler linear time algorithm for embedding graphs
into an arbitrary surface and the genus of graphs of bounded tree-width. Proc. 49th IEEE Symp.
Found. Comput. Sci., 771-780, 2008.

L. G. Khachiyan. A polynomial algorithm in linear programming. Soviet Math. Dokl. 20(1):191-
194, 1979. Translated from Doklady Akademiia Nauk SSSR 244:1093-1996, 1979.

L. G. Khachiyan. Polynomial algorithms in linear programming. USSR Comp. Math. and Math.
Phys. 20:53-72, 1980. Translated from Zhurnal VychisditeI'noi Matematiki i Matematicheskoi
Fiziki 20:51-68, 1980.

S. Khuller, J. Naor, and P Klein. The lattice structure of flow in planar graphs. SIAM J. Discrete
Math. 477-490, 1993.

http://resolver.caltech.edu/CaltechETD:etd-05202003-095403

Erin Chambers, Jeff Erickson, and Amir Nayyeri 29

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]
[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

D. Kirsanov. Minimal discrete curves and surfaces. Ph.D. thesis, Div. Engin. Appl. Sci., Harvard
Univ., September 2004. (http://www.eecs.harvard.edu/~sjg/papers/danilthesis.pdf).

M. M. Klawe and D. J. Kleitman. An almost linear time algorithm for generalized matrix searching.
SIAM J. Discrete Math. 3(1):81-97, 1990.

P Klein. Multiple-source shortest paths in planar graphs. Proc. 16th Ann. ACM-SIAM Symp.
Discrete Algorithms, 146-155, 2005.

P Klein, S. Mozes, and O. Weimann. Shortest paths in directed planar graphs with negative
lengths: A linear-space O(nlog? n)-time algorithm. ACM Trans. Algorithms 6(2):article 30, 2010.

M. Kutz. Computing shortest non-trivial cycles on orientable surfaces of bounded genus in almost
linear time. Proc. 22nd Ann. Symp. Comput. Geom., 430-438, 2006.

R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM J. Numer. Anal.
16:346-358, 1979.

M. MareS. Two linear time algorithms for MST on minor closed graph classes. Archivum
Mathematicum 40(3):315-320, 2004.

W. S. Massey. A basic course in algebraic topology. Springer-Verlag, 1991.

N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms. J. Assoc.
Comput. Mach. 30(4):852-865, 1983.

G. L. Miller. Isomorphism testing for graphs of bounded genus. Proc. 12th Ann. ACM Symp. Theory
Comput., 225-235, 1980.

G. L. Miller. Finding small simple cycle separators for 2-connected planar graphs. J. Comput.
System Sci. 32(3):265-279, 1986.

G. L. Miller and J. Naor. Flow in planar graphs with multiple sources and sinks. SIAM J. Comput.
24(5):1002-1017, 1995.

B. Mohar. A linear time algorithm for embedding graphs in an arbitrary surface. SIAM J. Discrete
Math. 12(1):6-26, 1999.

B. Mohar and C. Thomassen. Graphs on Surfaces. Johns Hopkins Univ. Press, 2001.

S. Mozes and C. Wulff-Nilsen. Shortest paths in planar graphs with real lengths in
O(nlog?n/loglogn) time. Proc. 18th Ann. Europ. Symp. Algorithms, 206217, 2010. Lecture
Notes Comput. Sci. 6347, Springer-Verlag.

C. H. Norton, S. A. Plotkin, and E. Tardos. Using separation algorithms in fixed dimension. J.
Algorithms 13(1):79-98, 1992.

J. B. Orlin. A faster strongly polynomial minimum cost flow algorithm. Oper. Res. 41(2):338-350,
1993.

V. Y. Pan and J. H. Reif. Fast and efficient parallel solution of sparse linear systems. SIAM J.
Comput. 22(6):1227-1250, 1993.

C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity.
Dover Publications, 1998.

http://www.eecs.harvard.edu/~sjg/papers/danilthesis.pdf

30

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

Homology Flows, Cohomology Cuts

D. Pe’er. On minimum spanning trees. Master’s thesis, Hebrew University, 1998. (http://www.
math.ias.edu/~avi/STUDENTS/dpthesis.pdf).

H. Poincaré. Second complément a 'Analysis Situs. Proc. London Math. Soc. 32:277-308, 1900.

J. Reif. Minimum s-t cut of a planar undirected network in O(nlog?n) time. SIAM J. Comput.
12:71-81, 1983.

A. Schonhage and V. Strassen. Schnelle Multiplikation grof3er Zahlen. Computing 7:281-292,
1971.

A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, Inc., New York, 1986.

A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Algorithms and Combina-
torics 24. Springer-Verlag, 2003.

A. Schrijver. On the history of combinatorial optimization (till 1960). Handbook of Discrete
Optimization, 1-68, 2005. Elsevier.

N. Z. Shor. Cut-off method wth space extension in convex programming problems. Cybernetics
13(1):94-96, 1977. Translated from Kibernetika (1):94-95, 1977. Cited in [9, 57].

D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J. Comput. Syst. Sci. 26(3):362—
391, 1983.

J. M. Sullivan. A Crystalline Approximation Theorem for Hypersurfaces. Ph.D. thesis, Princeton
Univ., October 1990. (http://torus.math.uiuc.edu/jms/Papers/thesis/thesis.pdf).

S. Tazari and M. Miiller-Hannemann. Shortest paths in linear time on minor-closed graph classes,
with an application to Steiner tree approximation. Discrete Appl. Math. 157:673-684, 2009.

C. Thomassen. The graph genus problem is NP-complete. J. Algorithms 10(4):568-576, 1989.

S. Toledo. Maximizing non-linear concave functions in fixed dimension. Complexity in Numerical
Optimization, 429-447, 1993. World Scientific.

P M. Vaidya. Speeding-up linear programming using fast matrix multiplication. Proc. 30th IEEE
Symp. Found. Comput. Sci., 332-337, 1989.

S. M. Venkatesan. Algorithms for network flows. Ph.D. thesis, The Pennsylvania State University,
1983. Cited in [74].

K. Weihe. Edge-disjoint (s, t)-paths in undirected planar graphs in linear time. J. Algorithms
23(1):121-138, 1997.

K. Weihe. Maximum (s, t)-flows in planar networks in O(|V|log|V|)-time. J. Comput. Syst. Sci.
55(3):454-476, 1997.

A. C.-C. Yao. On the complexity of comparison problems using linear functions (preliminary
report). Proc. 16th IEEE Ann. Symp. Foundations Comput. Sci., 85-89, 1975.

D. B. Yudin and A. S. Nemirovskii. Evaluation of the informational complexity of mathematical
programming problems. Matekon 13(2):3-25, 1976-7. Translated from Ekonomika i Matem-
aticheskie Metody 12:357-369, 1976. Cited by [9, 57].

http://www.math.ias.edu/~avi/STUDENTS/dpthesis.pdf
http://www.math.ias.edu/~avi/STUDENTS/dpthesis.pdf
http://torus.math.uiuc.edu/jms/Papers/thesis/thesis.pdf

Erin Chambers, Jeff Erickson, and Amir Nayyeri 31

[119] D. B. Yudin and A. S. Nemirovskii. Informational complexity and effective methods of solu-
tion for convex extremal problems. Matekon 13:25-45, 1977. Translated from Ekonomika i
Matematicheskie Metody 12:357-369, 1976. Cited by [9, 57].

	Introduction
	Dramatis Personae
	Surfaces
	Graphs and Embeddings
	Chains, Circulations, and Flows
	Boundary Circulations and Homology
	Capacities and Residual Networks
	Dual Graphs, Cocycles, and Cohomology

	Homology Flows
	Homologous Feasible Flows
	Shortest Paths with Negative Edges
	Basic Flows and Optimization
	The Ellipsoid Method
	A Brief Sketch
	The Flow Homology Polytope
	Finding the Optimal Flow Homology Class

	Multidimensional Parametric Search
	Directed Graphs
	Non-orientable Surfaces

	Cohomology Cuts
	Homology-Invariant Values
	Minimum-Cost Homologous Circulation

	Conclusions and Open Problems
	References

