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Abstract. We present a number of new results for the combinatorial game
Toads and Frogs. We begin by presenting a set of simplification rules, which
allow us to split positions into independent components or replace them
with easily computable numerical values. Using these simplication rules,
we prove that there are Toads and Frogs positions with arbitrary numerical
values and arbitrarily high temperatures, and that any position in which all
the pieces are contiguous has an integer value that can be computed quickly.
We also give a closed form for the value of any starting position with one
frog, and derive some partial results for two-frog positions. Finally, using
a computer implementation of the rules, we derive new values for a large
number of starting positions.

1. Introduction

Toads and Frogs is a two-player game, played on a one-dimensional board.
Left has a number of toads, and Right has a number of frogs, each on its own
square of the board. Each player has two types of legal moves: he may either
push one of his pieces forward into an adjacent empty square, or he may jump
one of his pieces over an adjacent opposing piece, into an empty square. Jumps
are never forced, and jumped-over pieces are not affected in any way. Toads
move to the right, frogs to the left. The first player without a legal move loses
the game.

Throughout the paper, we represent toads by T, frogs by F, and empty squares
by the symbol 2.

Here is a typical Toads and Frogs game. Left moves first and wins.
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TFFT2
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In this particular game, and in almost all previously analyzed positions, all
the moves are forced, but this is certainly not typical.

Toads and Frogs was described very early inWinning Ways [Berlekamp et al.
1982], in order to introduce some simple concepts such as numbers, fractions,
and infinitesimals. Winning Ways contains a complete analysis of a few simple
types of Toads and Frogs positions.

We assume the reader is familiar with the terminology (value of a game,
follower, temperature, atomic weight, . . . ) and notation ({x|y}, ∗, ↑, +x, . . . )
presented inWinning Ways . Throughout the paper, we will use the notation Xn

to denote n contiguous copies of the Toads and Frogs position X. For example,
(TF2)3F4 is shorthand for TF2TF2TF2FFFF.

2. Simplifying Positions

We will employ a number of general rules to simplify the evaluation of board
positions. These rules allow us to split positions into independent components,
or replace positions with easily derived values.

The simplest rule is to remove dead pieces. A piece is dead if it cannot be
moved, either in the current position or in any of its followers. For example, in
the position TFFT2, the first three pieces are dead, so we can simplify to the
position T2. Sometimes removing dead pieces causes the board to be split into
multiple independent components. For example, in the position T2TTFF2F,
the middle four pieces are dead. Furthermore, the pieces to the left of the dead
group can never interfere with the pieces to the right of the dead group. Thus,
this position is equivalent to the sum T2+2F. It’s possible that after we split
the board into components, some of the components have no pieces; obviously,
they can be ignored. For example, 22TTFF2TF = 22+2TF = 2TF.

Fortunately, it’s easy to tell what pieces are dead just by looking at the board.

Identifying Dead Pieces: Any contiguous sequence of toads and frogs begin-
ning with two toads (or the left edge of the board) and ending with two frogs (or
the right edge of the board) is dead . Any piece that is not in such a sequence is
alive.

In Winning Ways , the “Death Leap Principle” was used to help analyze Toads
and Frogs positions with only one space. We can generalize it to more compli-
cated positions. We call a space isolated if none of its neighboring squares is
empty.

The Death Leap Principle: Any position in which the only legal moves are
jumps into isolated spaces has value zero.

Proof. Suppose it’s Left’s turn. If she has no moves, Right wins. Otherwise,
she must jump a toad into a single space. Right’s response is to push the jumped-
over frog forward. Now Left is in the same situation as before—her only moves



NEW TOADS AND FROGS RESULTS 301

are jumps into single spaces. (Right may have more moves at this point, but
this only makes the situation better for him.) Eventually, Left has no moves,
and Right wins. We can argue symmetrically if Right goes first. �

We can also express this principle purely in syntactic terms, which makes it
somewhat easier to implement on a computer.

The Death Leap Principle: Any position that does not contain any of the
four subpositions TF22, 22TF, T2, or 2F has value zero.

If there are no frogs between a toad and the right edge of the board, we call
the toad terminal. If there are no toads between a frog and the left edge of the
board, we call the frog finished. Suppose Left has a terminal toad with three
spaces in front of it. Intuitively, this toad is worth exactly three free moves for
Left, since none of Right’s pieces can ever interfere with it. If we change the
position by moving this toad to the right end of the board (where it dies) and
crediting Left with three free moves, we expect the value of the game to stay the
same. After all, whenever she would have moved her terminal toad, she can just
take one of her free moves instead.

This intuition suggests the following simplification principle.

The Terminal Toads Theorem: Let X be any position. Then

XT2n = X2n + T2n = X2n + n.

Proof. The second player wins the difference XT2n − (X2n + T2n) by the
following mirror strategy. Initially, the last toad in the first component is marked
T∗. Any move in either copy of X is answered by the corresponding move in the
other copy. Any move in the third component is answered by moving T∗, and
vice versa.

This is enough to show that Left loses if she moves first, but there are two
special cases to consider when Right moves first. If Right moves a frog in the
second component whose twin in the first component is blocked by T∗, then Left
moves T∗ instead, and then moves the mark back to the blocked toad. If Right
moves in the third component, but there’s a toad in front of T∗, then Left moves
the mark forward and then pushes the new T∗. Any move by Right is answerable
by a corresponding move by Left, so Right also loses going first. �

Naturally, there is a symmetric version of this theorem for removing finished
frogs.

The Finished Frogs Formula: Let X be any position. Then

2
nFX = 2

nX +2nF = 2
nX − n.

Consider the position TFTFF2FT22TTFF2TFF22TT. At first glance it
might look too complicated to evaluate the usual way. Fortunately, our simpli-
fication rules let us get a value quickly, without recursively evaluating any of its
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followers:

TFTFF2FT22TTFF2TFF22TT = 2FT22+2TFF22

= 222+2TFF22+ 1

= 2TFF22+ 1

= 1.

(i) We remove the three groups of dead pieces, splitting the board into two
independent components.

(ii) The first component contains a terminal toad with two remaining moves,
and a finished frog with one remaining move. We remove them, crediting
Right with one free move and Left with two, for a net gain of one move for
Left.

(iii) The first component is now completely empty, so we remove it.
(iv) We remove the remaining component, since it has value zero by the Death

Leap Principle.

3. Arbitrary Numbers and Arbitrary Temperatures

We make two somewhat surprising observations. First, for any number, there
is a Toads and Frogs position with that number as its value. Second, there are
Toads and Frogs positions with arbitrarily high (half-integer) temperatures.

Theorem 3.1. (TF)mT2(TF)n = 2−n for all m and n.

Proof. We use induction on n. The base case n = 0 follows immediately
from the Death Leap Principle. Suppose n > 0. Left has only one legal move,
to the position (TF)m

2T(TF)n = (TF)m
2 = 0 by the Death Leap Principle.

Similarly, Right can only move to the position (TF)m+1T2(TF)n−1 = 2−n+1,
by the induction hypothesis. �

Corollary 3.2. For any dyadic rational number q, there is a Toads and Frogs
position with value q.

Proof. Write q = (2k+1)/2n, and assume without loss of generality that k ≥ 0.
Then the position (T2(TF)nTTFF)2k+1 has value q. �

Theorem 3.3. TF2F2n+3 = {n |0}.
Proof. Right has one legal move, to TFF2n+4, which clearly has value 0. Left
has one legal move, to 2FTF2n+3, which, by the Finished Frogs Formula, is
equivalent to 2TF2n+3−1 = {n |n+4}−1 = n. �

Corollary 3.4. For any integers a ≥ b, there is a Toads and Frogs position
with value {a |b}.
Proof. One of T2bTTFFTF2F2a−b+3 or TF2F2a−b+3TTFF2−bF has value
{a |b}, depending on whether b is positive or negative. �
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We do not know whether there are positions with arbitrary (dyadic rational)
temperatures. The following theorem gives us positions whose temperatures are
arbitrary sufficiently large multiples of 1

4 . We omit the proof, which follows from
exhaustive case analysis. Every position eight moves away is an integer.

Theorem 3.5. For any n ≥ 6, we have T2TF2F2n = {a+1
2 |1}.

4. Knots Have Integer Values

We now consider positions in which the toads and frogs form a single contigu-
ous group. We call such positions knots, the collective term for toads [Lipton
1991]. Somewhat surprisingly, every knot has an integer value, which can be
determined without evaluating any of the position’s followers. We derive a se-
ries of rules that allow us to reduce every such position to one of a few simple
cases. These rules are proved using relatively simple counting arguments, but
disinterested readers are encouraged to skip the proofs.

Thanks to our simplification rules, we only need to consider positions that
start with a toad and end with a frog, but not two toads and two frogs (or
similar positions in which the knot is against one edge of the board). In the
discussion that follows, unless otherwise stated, all superscripts are positive.

Lemma 4.1. 2aTF2b = {b−a−2 |b−a+2} =




b − a − 1 if b − a ≥ 2,
0 if |b − a| ≤ 1,
b − a + 1 if b − a ≤ −2.

Proof. Immediate. �

Lemma 4.2. 2aTFTF2b =




b − 1 if 2a ≤ b,
2(b − a) − 1 if a < b ≤ 2a,
0 if b = a,
2(b − a) + 1 if b < a ≤ 2b,
1 − a if 2b ≤ a.

Proof. This follows from Lemma 4.1 and the Terminal Toads Theorem by case
analysis. See Figure 1. �

Lemma 4.3. 2aTTF2b =




2b − a − 2 if a ≤ b − 1,
b − 1 if b − 1 ≤ a ≤ b + 1,
2b − a if b + 1 ≤ a ≤ 2b,
0 if 2b ≤ a.

Proof. This follows from Lemma 4.1 and the Terminal Toads Theorem by
simple case analysis. Every position three moves away is an integer. �

Lemma 4.4. 2aTbF2c = (b − 2)(c − 1) +2aTTF2c.

Proof. We use induction on b. The base case b = 2 follows from Lemma 4.3.
To complete the proof, we need to show that the second player wins the game
2

aTbF2c−2aTb−1F2c−(c−1). This follows from a simple counting argument.
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Figure 1. Followers of 2aTFTF2b, with integer components (from the

Terminal Toads Theorem) omitted.

Provided neither frog ever jumps, each player will move exactly bc + a + b − 1
times before the game ends. Moreover, as long as the second player’s frog never
jumps, the first player will run out of moves first. The second player can keep his
frog from jumping by always pushing it immediately after the opponent’s toad
jumps over it. �

Lemma 4.5. If neither player can move from the position XF2, then

XTaF2b = a(b − 1).

Proof. The base case a = 0 is trivial. Otherwise, the second player wins the
game XTaF2b − a(b − 1) as follows.
Left moves first. Left is forced to jump her rightmost toad. Right responds by

moving his frog forward, leaving the position XTa−1F2b − a(b− 1) + (b − 1) by
the Terminal Toads Theorem. This position has value zero by induction. Thus,
Right wins going second.
Right moves first. Left wins by a simple counting argument. Each of her a

toads will move or jump at least b times before reaching the edge of the board,
for a total of ab moves. Right’s frog will move at most a times before hitting
X, and he has ab − a moves available in the integer component. If Right never
jumps his frog, each player will have the same number of moves, but that’s the
best Right can do. So when Right uses up all his moves, Left will have at least
one move left, to the winning position XF2b = 0. �
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The previous lemmas let us evaluate any knotted position from which only one
player can legally move. Of course, we already knew that such positions had
integer values, but we can now easily determine what integer. The only positions
left to analyze are those in which both sides can legally move.

Lemma 4.6. If neither player can move from the position 2TXF2, then

2
aTFbXTcF2d = 2aTFb + TcF2d = c(d − 1) − b(a − 1).

Proof. The second player wins 2aTFbTXFTcF2d + b(a − 1)− c(d − 1) by the
same counting argument. Each player can move at most ab + cd times, with
equality if neither of the lone pieces ever jumps. Thus, as long as the second
player’s lone piece never jumps, which is easy to guarantee, the first player will
run out of moves first. �

Lemma 4.7. 2aTFbTcF2d = 2aTFTF2d + (c − 1)(d − 1) − (a − 1)(b − 1).

Proof. The base case b = c = 0 follows immediately from Lemma 4.2. To
complete the inductive proof, it suffices to prove that

2
aTFbTcF2d = 2aTFbTc−1F2d + (d − 1).

The second player wins the difference game by the usual counting argument.
If Right moves first, Left marks the first toad in the first component and the
last frog in the second. If Left moves first, right marks the last frog in the first
component and the first toad in the second. Either way, the second player moves
so that the marked pieces never jump. This guarantees at least ab + cd+ a+ b +
c + d + 1 moves to the second player, and at most that many to the first player,
so the first player will always run out of moves first and lose.

This guarantees that Left will get at least cd + b + d + 1 moves in the first
component and ab + a+ c in the second. Right gets at most ab + a+ c+ 1 moves
in the first component, cd− c+ b + d+ 1 in the second, and d− 1 in the third. �

Theorem 4.8. Every knot has an integer value, which can be determined di-
rectly, without evaluating its followers . �

5. One-Frog Starting Positions

Starting positions are those in which all toads are against the left edge of the
board, and all frogs are against the right edge. In this section, we give a closed
form for the value of a starting position in which there is only one frog.

Lemma 5.1. T2aF = a · ∗ =
{ ∗ if a is odd ,

0 if a is even.

Proof. For any follower of the game T2aF, both players’ moves are forced.
Now suppose a is even. The second player’s (a/2)-th move leaves the position
2

a/2TF2a/2, which equals 0 by Lemma 4.1, so the value of the original game is
zero.
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Suppose a is even. Then the second player wins the game T2aF + ∗ as
follows. Suppose Left moves first. If Left moves in ∗ before the two pieces meet,
then Right’s �a/2-th moves leaves the winning position 2�a/2�TF2�a/2� = 0
by Lemma 4.1. Otherwise, Right’s �a/2�-th move leaves the winning position
2

�a/2�T2F2�a/2� + ∗ = 0 by Lemma 4.1. �

Theorem 5.2. Ta
2

bF =




{{a−2 |1}|0} if b = 1,
(a−1)(b−1)∗ if b > 1 is odd ,
(a−1)(b−1) if b is even.

Proof. The base case a = 1 follows immediately from the previous lemma, and
the case b = 1 follows from the analysis in Winning Ways (p. 126). Otherwise,
it suffices to prove that Ta

2
bF = Ta−1

2
bF + (b − 1), since the theorem then

follows by induction. The second player wins the difference by the usual counting
argument. If the second player never jumps his frog, then he will get at least
ab+a−b+1 moves, provided that all of his pieces eventually reach the appropriate
end of the board. He can guarantee this by moving his frog forward on his first
move. The first player gets at most ab + a − b + 1 moves, so the second player
will win. �

6. Partial Results for Two-Frog Starting Positions

We were unable to derive a closed form for two-frog starting positions, but we
do have some interesting partial results.

Lemma 6.1. TaF2TbFTc
2 = c for all b �= 0.

Proof. Follows immediately from the Terminal Toads Theorem and the Death
Leap Principle. �

Lemma 6.2. TaF2FTc
2 ≤ c.

Proof. It suffices to show that Right can win the game TaF2F2 if he moves sec-
ond. Left’s first move is forced, and Right responds by moving to Ta−1F2TF2 =
0 by the Death Leap Principle. �

Lemma 6.3. Tn
2F2F = 0 for all n ≥ 2.

Proof. The second player wins as follows.
Left moves first. Right moves his leftmost frog on his first move, and his

rightmost frog on his second move. Left’s moves are forced. Right’s second
move leaves the position Tn−1F2TF2, which has value zero by the Death Leap
Principle. Thus, Right wins moving second.
Right moves first. Right has two options. If he moves the rightmost frog for-

ward, Left will move her rightmost toad forward three times. This forces Right’s
next two moves. Left’s third move leaves the winning position Tn−1FF2T2 = 1.

If Right moves his leftmost Frog forward, Left must respond by jumping it,
leaving Tn−1

2FT2F. Again, Right has two options. If he moves his rightmost
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frog, Left responds by jumping it, leaving the positions Tn−1
2F2F, which is

zero by induction. (One can check the base case n = 2 directly, or see Winning
Ways , p. 135.) Otherwise, Right moves to the position Tn−1F2T2F, and Left
can force the following sequence of moves:

Tn−1F22TF

Tn−2
2FTFT2

Tn−2F2TF2

↙
↘
↙
↘
↙

Tn−1F2T2F

Tn−1F2FT2

Tn−2F2TFT2

The final position is zero by the Death Leap Principle. Thus, Left wins moving
second. �

7. Known Values and Open Questions

We list here all known values for positions in which all toads are on the left
edge of the board and all frogs are on the right edge of the board. These values,
and the values of most of the positions used earlier in the paper, were derived
with the help of David Wolfe’s games package [Wolfe 1996]. I added code (about
600 lines of ANSI C) for evaluating Toads and Frogs positions, using all the
simplification rules described in Section 2.

Here are all known values for symmetric games of the form Ta
2

bFa, apart
from the cases a = 1 and b = 1, for which all values were previously known (see
Winning Ways).

b

a 1 2 3 4 5 6

1 ∗ 0 ∗ 0 ∗ 0
2 ∗ ∗ ∗ ∗ 0 0
3 ∗ ± 1

8
0 ∗ 0

4 ∗ · · · ∗ 0
5 ∗ · · · ∗
6 ∗ · · ·

T4
22F4 = ±�{1|∗}, {{ 3

2
|||1||0|0, ↓∗}|0}�

T5
22F5 = ±�{2|∗}, { 5

2
|{2|||0||{0|||↑∗|0||−1}, {0|{0||− 1

32
|−2|||− 1

2
∗}}|{↑∗|0||− 1

2
|||−1∗}}

||0}�

T6
22F6 = ±�{3|∗}, { 7

2
||3|{0, G|||{0, G|{ 1

2
↓|m1 ||0|||−2}},

{0|{0||m2 |−3|||−1↓}}||{ 1
2
↓|m1 ||0|||− 1

2
}|−2∗}

|||0}�,
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where m1 = −2||0|+ 1
64
, m2 = −1||0|+↑↑↑∗ , and

G = { 1
2
|0}, 1

2
{0||↓|−2}|{0||m1 |−2}, { 1

2
↓|m1 ||− 3

2
|−2}.

Except for TTT22FFF = ± 1
8 , all values are infinitesimals with atomic weight

zero. The values for b = 2 are particularly interesting, since they seem to be
totally patternless. The other values are certainly much tamer, but there are
still no apparent patterns.

The table on the next page lists all known values for positions of the form
Ta
2

bFc for 1 ≤ c < a ≤ 7. The only really nasty value we get is for T7
2

4F3,
which is (7∗| 9

2 ||4)-ish.
These values naturally suggest a number of patterns, some of which we con-

firmed earlier in the paper. We list here several conjectures that we have been
unable to prove, all of which are strongly supported by our experimental results.

Conjecture 7.1. Ta
22Fb = {{a−3 |a−b}|{∗|3−b}} for all a > b ≥ 2.

Conjecture 7.2. Ta
222FF = (a − 2)∗ for all a ≥ 2.

Conjecture 7.3. Ta
222F3 = a − 7

2 for all a ≥ 5.

Conjecture 7.4. Ta
2

aFa−1 = 1 or 1∗ for all a ≥ 1.

Conjecture 7.5. Ta
2

bFa is an infinitesimal for all a, b except (a, b) = (3, 2).

Many of our results seem to be special cases of a more general principle, which
sometimes allows us to split board positions into multiple independent compo-
nents. An important open problem is to characterize exactly what positions can
be split this way.

We finish with a much more ambitious conjecture. Despite the existence
of simple rules for special positions, Toads and Frogs positions are in general
extremely hard to evaluate. It seems difficult, in general, to even determine
the winner of a given Toads and Frogs position. We conjecture that Toads
and Frogs is at least as hard as other seemingly richer games such as Red-Blue
Hackenbush [Berlekamp et al. 1982].

Conjecture 7.6. Toads and Frogs is NP-hard .

To prove this conjecture, it would suffice to prove that for any integers a > b > c,
there is a Toads and Frogs position whose value is {{a |b}|c}. The conjecture
would then follow from a theorem of Yedwab and Moews. (See [Yedwab 1985,
pp. 29–45] or [Berlekamp and Wolfe 1994, pp. 109–111].) The closest we can
get is the following theorem, which can be verified by drawing out the complete
game tree.

Theorem 7.7. For any a ≥ 0, TF2F2F2a = {{a−6 |−1}|−2}.
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b

a 1 2 3 4 5

c = 1

2 1
2
|0 1 2∗ 3 4∗

3 1∗|0 2 4∗ 6 8∗
4 2|1||0 3 6∗ 9 12∗
5 3|1||0 4 8∗ 12 16∗
6 4|1||0 5 10∗ 15 20∗
7 5|1||0 6 12∗ 18 24∗

c = 2

3 ∗ 1
2
|0 1∗ 2∗ 3

4 ∗ 3
2
|0 2∗ 4∗ 95

16

5 ∗ 5
2
|0 3∗ 6| 11

2
17
2
|8

6 ∗ 7
2
|0 4∗ 15

2
|7∗ 21

2

7 ∗ 9
2
|0 5∗ 9 13

c = 3

4 ∗ 1∗|↓ 1|| 1
2
|0 1∗ 2

5 ∗ 2∗|↓ 3
2

3∗| 5
2
||2 4

6 ∗ 3∗|↓ 5
2

5∗| 7
2
||3, 3↑∗ 41

8

7 ∗ 4∗|↓ 7
2

see below

c = 4

5 ∗ 2|1||∗|−1 1∗ 2∗|1∗|| 1
2
|0 1

6 ∗ 3|2||∗|−1 2∗ 4∗|2∗|| 3
2
|1

7 ∗ 4|3||∗|−1 3∗

T7
2

4F3 = 7∗| 9
2
||4, 4{0|{{{2| 1

2
∗||{2| 3

2
||+ 1

2
|||0, {0, ∗||∗|− 1

4
}}}, { 3

2
∗|+ 1

2
}|0, {0, ∗||∗|− 1

4
}},

{ 3
2
∗|+ 1

2
||0}|0}}

Known values for positions Ta
2

bFc. See Theorem 5.2 for c = 1.
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