
Jeff Erickson
University of Illinois

Independent/joint work with
Dominique Attali, Jean-Daniel Biossonnat, and André Lieuiter

(to appear at SoCG 2003)

Well-spaced samples
of generic surfaces have

sparse Delaunay triangulations
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Nice samples
of nice surfaces have

nice Delaunay triangulations
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Delaunay triangulations
are neat!



Input: set P of sample points from an unknown 
smooth surface ∑

Output: an geometric approximation of ∑ with 
the correct topology

Several provable algorithms
[Amenta, Bern, Boissonnat, Cazals, Dey, Edelsbrunner, Eppstein, Funke, Giesen, Hiyoshi, ...]

Lots of practical heuristics and improvements!

Surface reconstruction



• ≤ 4 points form a 
Delaunay simplex
if they lie on the 
boundary of an 
empty Delaunay ball

• n points in space 
can have Ω(n2) 
Delaunay simplices

Delaunay triangulation



Theory:
Delaunay triangulations have quadratic 
complexity (in the worst case).

Practice:
Delaunay triangulations have linear complexity.

Theory ≠ Practice



Well, then it’s not a very 
good “theory”, is it?



Random points:

• in space: O(n) [Meijering ‘53, Miles ’72; Dwyer ‘91]

• on fixed convex polyhedron: O(n)
[Golin and Na ‘00]

• on fixed nonconvex polyhedron: O(n log4 n) 
[Golin and Na ‘02]

Practical Delaunay 
complexity



(ε,k)-sample of Σ: Any ball of radius ε centered 
on Σ contains at least 1 and at most k samples

• fixed polyhedron: O(k2 n)
[Attali and Boissonnat ’01]⇐!!!

• arbitrary fixed surface: Θ(k2 n3/2)
Lower bound: [E’01], Upper bound: [E’02]

• New: fixed generic surface: O(k2 n log n)

Practical Delaunay 
complexity



Any finite quantity that depends on the fixed 
surface Σ, but not on ε or k or any particular 

point, is considered a constant.

These constants are hidden in the O() notation.

“Delaunay condition number”

• diameter
• minimum local feature size
• min and max principal curvatures
• bounds on partial derivatives
• “genericity”

Warning:
fixed surfaces

• surface area
• number of facets
• aspect ratios of facets
• angles between facets
• angles between edges



Why fix the surface?

If the surface varies with n and ε,
we can get Ω(n2ε2) Delaunay simplices.

radius = 1

length = nε2

distance = nε

oval width < ε

[E’01]



Why limit sample 
density?

Σ

For any surface except the sphere,
we can get Ω(n2) Delaunay simplices

by locally oversampling.

radius = ε/10

n/3 points

n/3 points

[E’01]



The helix

ε-sample of a cylinder:
√n turns of a helix,

√n points on each turn

[E’01]

Two points are Delaunay 
neighbors iff they are less 

than a full turn apart.

Ω(n3/2) Delaunay simplices!



Spread = diameter/closest pair distance
[Goodman, Pollack, and Sturmfels ‘89; Valtr et al. ‘93-’97]

Roughly related to dimensionality:

• nicely distributed in a volume ⇔ ∆ ≈ n1/3

• nicely distributed on a surface ⇒ ∆ ≈ n1/2

• nicely distributed on a curve ⇒ ∆ ≈ n

Spread ∆



• The Delaunay triangulation of any set of 
points with spread ∆ has complexity O(∆3).

• The Delaunay triangulation of the union of k 
sets, each with spread ∆, has complexity 
O(k2∆3).

• An (ε,k)-sample of a fixed surface is the union 
of k sets with spread Θ(√n), so its Delaunay 
complexity is O(k2n3/2).

Spread upper bound

[E’02]



Theory:
Delaunay triangulations of nice surface samples 
have complexity Θ(n3/2) in the worst case, and 
the worst case example is simple!

Practice:
Okay, sure, but Delaunay triangulations of real 
surface samples always have linear complexity!

Theory ≠ Practice



So it’s still not a very 
good “theory”, is it?



Medial axis

medial ball: empty interior, touches Σ more than once

medial axis: centers of medial balls



Generic contact types

A1: simple tangency

A3: osculation ⇒ local maximum of curvature



• Σ is generic if no medial ball touches Σ more 
than four times, counting with multiplicity

• Generically, only A1 and A3 contacts.

• A3 contacts lie on ridge curves on Σ:
local max of principal curvature

• Almost every surface is generic, but not surfaces of revolution or 
Herbert’s skin.

Generic surfaces



• Exactly 5 generic medial axis features
[Bryzgalova ‘77; Mazov ‘82; Bruce, Giblin, and Gibson ‘85;
Bogaevsky ’89; Giblin and Kimia ‘00; Leymarie and Kimia ‘03]

•

•

Generic medial axes

A1A1

A1A1A1

A3

A1A1A1A1

A1A3



As the sampling density increases, Delaunay 
balls behave more and more like medial balls.

So to understand the combinatorial behavior of 
Delaunay balls in the limit as ε→0, we need to 
study the differential behavior of medial balls!

Intuition



• r(p) = radius of medial ball tangent at p

• κ1(p) = maximum principal curvature at p

• κ2(p) = minimum principal curvature at p

• κ2 < κ1 < 1/r except

• κ2 = κ1 < 1/r only at umbilic points

• κ2 < κ1 = 1/r only at A3 contact curves

Curvature measures



Delaunay ball 
intersecting surface

∑ p

q

B



p

Taylor series approximation ⇒ B∩Σ fits between
two ellipses with aspect ratio√

1 − rκ2

1 − rκ1

Expand a medial ball tangent at some point p
 far from A3 contact curves, so κ1 < 1/r.



p
ε

Area of blob < Area of larger ellipse <

B is a Delaunay ball
 ⇒ small ellipse can’t contain ε-disk

 ⇒ larger ellipse can’t contain 2ε-disk

4πε2

√
1 − rκ2

1 − rκ1



p

• Let p be a sample far from A3 contact curves.

• Every local Delaunay neighbor of p carves out 
an empty blob on Σ.

• Since local neighbors are close, these blobs 
all look about the same.



• Union of all blobs fits in ellipse with area

• Large ellipse covered by O(1) ε-balls, each 
containing O(1) sample points

p

64πε2

√
1 − rκ2

1 − rκ1
= O(ε2)



Lemma:

Any point far from A3 contact 
curves has O(1) local Delaunay 

neighbors.



Suppose p is distance x from an A3 curve

• x > √ε: 
1-κ1r = Θ(x2) ⇒ O(1/x) local neighbors

• x ≤ √ε
higher-order Taylor approximation ⇒
O(1/√ε)=O(n1/4) local neighbors

Now integrate over x...

Near A3 contact curves

Danger!



Theorem:

O(n log n) local Delaunay edges

However, points near A3 curves 
might still have high degree!



• Count remote Delaunay edges, which cross 
from one side of the surface to the other

• Remote neighborhood is only O(1) bigger than local neighborhood.

• Count external Delaunay edges, whose 
Delaunay balls are centered outside Σ.
• Apply a conformal transformation to turn the surface inside out!

What’s left to do?



Fix a generic surface Σ.

The Delaunay triangulation of any 
(ε,O(1))-sample of Σ has complexity 
O(n log n).

Main Result



What is the expected complexity of the Delaunay 
triangulation of a set of random points from a 
surface?

• Theorem: For cylinder, Θ(n log n)!

• Conjecture: For any generic surface, Θ(n)

• Conjecture: For any smooth surface, Θ(n log n)

Future work

α n log n + Θ(n) for some small absolute 
constant α (independent of Σ)



Thanks for listening, and 
thanks to the organizers 
for a great workshop!


