
CS 473 Homework 1 (due 9/19/03) Fall 2004

To help make grading easier, please start each numbered problem on a new sheet of paper,
make sure your name appears on each page of your solutions. and staple everything together.
Groups of up to three people can turn in a single solution. You are strongly encouraged, but
not required, to typeset your solutions using LATEX. You may use books, journal articles, notes,
the web, other students, faculty, flying monkeys, or the Oracle at Delphi to help solve these
problems, but you must cite any source that you use!
?Stars indicate problems whose answers I don’t know. The larger the star, the less sure I am of
the answer. A star does not necessarily imply that the problem is open, or even difficult—try it
anyway! On the other hand, some unstarred problems may be unfairly hard—try them anyway!

1. Blum, Floyd, Pratt, Rivest, and Tarjan discovered the following deterministic algorithm for
selecting the kth largest element in an unsorted array in linear time. The algorithm actually
returns the index of the selected element.

Select(A[1 .. n], k):
for i← 1 to dn/5e

B[i]←Median(A[5i− 4 .. max{5i, n}])
p← Select(B, dn/10e) 〈〈Recurse!〉〉
q ← Partition(A,B[p])

if k < q
return Select(A[1 .. q − 1], k)

else if k > q
return Select(A[q + 1 .. n], k − q)

else
return q

The algorithm uses two subroutines. Median computes the median element in an array
with up to five elements, obviously in constant time. Partition is directly from Quicksort;
it partitions the array into two subarrays, one containing all the elements smaller than the
pivot value, the other containing all the elements larger than the pivot value, and then
returns the index of the pivot value itself in the partitioned array. Since the pivot is smaller
than at least three of the elements in half of the 5-element chunks, and larger than at least
three elements in the other half, we can bound the running time by the recurrence T (n) ≤
O(n) + T (n/5) + T (7n/10), whose solution is T (n) = O(n).

Describe and analyze an external version of this algorithm that can select the kth largest
element in an array of N elements (on disk) in O(n) time. For simplicity, assume all the
input elements are distinct.

2. Design and analyze an external memory algorithm to remove all duplicate elements from an
unsorted array. The running time of your algorithm should be

O

(
n +

K∑
i=1

ni logm

n

Ni

)
I/Os, where K is the number of distinct input elements (or equivalently, the size of the output),
and Ni is the multiplicity of ith largest element in the output. In particular,

∑K
i=1 Ni = N ,

so if Ni = 1 for all i, the running time simplifies to the sorting bound O(n logM n).

[Hint: Modify mergesort to remove duplicates as soon as they are found. How many of the Ni

copies of element i can you still have after j merge passes? Try it in internal memory first!]

1



CS 473 Homework 1 (due 9/19/03) Fall 2004

?3. The previous algorithm can be used to reduce the worst-case running time of quicksort to
O(n log n), by choosing the median of the array as the pivot at every level of recursion.
However, we can achieve the same effect with high probability by choosing a random pivot.1

Find the expected running time (in I/Os) of the following randomized external sorting algo-
rithm, the obvious external analogue of randomized quicksort. The subroutine Distribute
partitions the array A into m chunks using the elements of B as pivots, where elements in
earlier chunks are smaller than elements of later chunks, and returns the indices of the pivots
in an array L. For convenience, we set L[0] = 0 and L[m + 1] = N .

RandomDistributionSort(A[1 .. N ]):
if N ≤M

sort A in internal memory 〈〈O(n) time〉〉
else

for i← 1 to m− 1 〈〈O(m) = o(n) time〉〉
B[i]← A[Random(1, N)]

L← Distribute(A,B) 〈〈O(n) time〉〉
for i← 0 to m

RandomDistributionSort(A[L[i] + 1 .. L[i + 1]])

4. In the first lecture, we saw the classical proof that any comparison-based sorting algorithm
requires Ω(n log n) time in the worst case. This lower bound actually holds in much more
powerful models of computation.2 Unfortunately, no such generalizations are known—or at
least, none have ever been published—for the Ω(n logm n) external-memory lower bound.
Until now!

(a) Let W be a constant-size set of real numbers. A weighted comparison tree is a binary
decision tree, where decisions have the form “if ω · A[i] < A[j]” for some weight ω ∈ W
and some array indices i and j. For example, a standard comparison tree uses the set
W = {1}.
Define an external-memory version of the weighted comparison tree model, and prove
an Ω(n logm n) I/O lower bound for sorting in this model.

F(b) Let d be a constant and let W be a constant-size set of vectors in IRd. In a restricted
d-linear decision tree, every decision has the form “if

∑d
k=1 ωk · A[ik] > 0” for some

weight vector (ω1, ω2, . . . , ωd) ∈ W and some array indices i1, i2, . . . , id. For example, a
restricted 2-linear decision tree is just a weighted comparison tree.
Define an external-memory version of the restricted d-linear decision tree model, and
prove an Ω(n logm n) I/O lower bound for sorting in this model.

F(c) Generalize!

[Students who took CS 497 from me last semester will have a slightly easier time with this
problem, but only slightly.]

1You can find four different ways to analyze randomized quicksort in my algorithms lecture notes: http://www.
cs.uiuc.edu/∼jeffe/teaching/373/.

2See my lecture notes at http://www.cs.uiuc.edu/∼jeffe/teaching/473/ for details.

2


