
CS 497: Concrete Models of Computation Spring 2003

5 Boolean Decision Trees (February 11)

5.1 Graph Connectivity

Suppose we are given an undirected graph G, represented as a boolean adjacency matrix A = (aij),
where aij = 1 if and only if vertices i and j are connected by an edge. How hard is it to decide
whether G is connected? Specifically, how many entries in the adjacency matrix do we have to
examine? As usual, we want the worst-case running time of the best possible algorithm, as a
function of n, the number of vertices:

D(n) = min
A

max
G

T (A,G)

Here I’ll use D(n) instead of T (n) to emphasize that we are looking at deterministic algorithms.
Clearly D(n) ≤

(n
2

)

, since the adjacency matrix is symmetric and has zeros on the diagonal.
One way to derive a lower bound for any decision problem is to consider the size of the smallest

proof or certificate that verifies the result. To prove that a graph is connected, it is clearly both
necessary and sufficient to reveal the edges in an arbitrary spanning tree of G. This tree constitutes
a certificate that G is connected, or a 1-certificate for short. Conversely, if we want to prove that a
graph is disconnected, we need to demonstrate a cut with no crossing edges, that is, a partition of
the vertices into two disjoint subsets, such that no edge has one endpoint in each subset. Such a cut
is called a 0-certificate. Clearly, any algorithm that tests connectedness must check all the edges
in some 1-certificate before returning True and all the edges in a 0-certificate before returning
False.

Let C0(n) and C1(n) respectively denote the maximum size of a 0- or 1-certificate in an n-vertex
graph, and let C(n) = max{C0(n), C1(n)}. We immediately have the following general result.

Theorem 1. D(n) ≥ C(n).

In the case of graph connectivity, we have

C0(n) = dn/2e · bn/2c = (n2 − (n mod 2))/4 and C1(n) = n− 1,

so D(n) ≥ C(n) = (n2 − (n mod 2))/4 = Ω(n2). In other words, the trivial algorithm “check
every edge” is optimal up to a small constant factor. Surprisingly, this algorithm is actually exactly

optimal!

Theorem 2. D(n) =
(n
2

)

Proof: I’ll describe an adversary strategy that requires any algorithm to examine every edge. The
adversary maintains two graphs, Y and M , each with n vertices; initially, Y is empty and M is
a clique. Y (‘yes’) contains the edges that the algorithm has examined and found to be present
in the fictional input graph. M (‘maybe’) contains any edge that might be in the fictional input
graph; in other words, an edge (i, j) is absent from M if the algorithm knows that aij = 0. Note
that Y is a subgraph of M .

The adversary uses the following simple strategy when the algorithm examines an potential
edge: return False unless that answer would force the fictional input graph to be disconnected.

1

CS 497: Concrete Models of Computation Spring 2003

Examine(i, j):

if (i, j) ∈ Y
derisively return True

else if (i, j) 6∈ M
mockingly return False

else if M \ (i, j) is disconnected
add (i, j) to Y
grudgingly return True

else
remove (i, j) from M
sigh and return False

We easily observe that with this strategy M is always connected and Y is always acyclic. Moreover,
whenever the adversary adds an edge between two components of Y , every other edge joining those
two components of Y has already been queried and removed from M . It follows that Y becomes
connected only after

(n
2

)

queries; at that moment, both Y and M consist of the same spanning
tree, and the algorithm can safely return True. Before the

(n
2

)

th query, M is connected and Y
is disconnected. Since both graphs are consistent with the adversary’s answers, either could serve
as the fictional input graph, which means the algorithm cannot possibly determine the correct
output. �

A graph property like connectivity that requires looking at every possible edge to detect is
called evasive. We will return to evasive graph properties in a future lecture.

5.2 String Properties (Boolean functions, languages, whatever. . .)

Let’s look at these ideas in a little more generality. A string property 1 is any function of the form
F : {0, 1}n → {0, 1}. Let T (A, s) denote the number of bits in an n-bit input string s that an
algorithm A examines before correctly returning F (s). The deterministic decision tree complexity

of a string property F is, as usual, the worst-case running time of any algorithm to compute it, as
a function of the input size n:

D(n) = min
A

max
|s|=n

T (A, s)

The model of computation is the same boolean decision tree that we saw in the very first lecture.
For each input size n, we can model any algorithm by a rooted binary tree, where each internal node
stores the index of the next bit to examine, and each leaf stores an output value. In this model,
T (A, s) is the depth of the path traversed by the input string s in tree A, and the deterministic
complexity of any string property is the minimum depth of any tree that correctly computes it. A
string property is evasive if D(n) = n.

We can define the certificate complexity of a string property F as follows. Intuitively, a 1-
certificate is a subset of the bits in the input s that forces F (s) = 1, and a 0-certificate is a subset
of bits that forces F (s) = 0. The certificate complexity C(s) of a string s is the size of the smallest
certificate consistent with s. Finally, the certificate complexity C(n) of F is the maximum certificate
complexity of any n-bit input string. Equivalently, we have

C(n) = max
|s|=n

min
A

T (A, s)

1Admittedly, this is a rather bizarre name, but it is analogous to graph properties such as connectedness (which
we just saw), acyclicity, planarity, and the like. A string property is just a boolean function with n arguments, or
equivalently, a set of n-bit strings, or equivalently, a language.

2

CS 497: Concrete Models of Computation Spring 2003

where (as above) the min is taken over all algorithms A that correctly compute F for all inputs.
Originally, certificate complexity was known as non-deterministic decision tree complexity, since

it corresponds to a nondeterministic variant of the boolean decision tree model. The best way to
think of a nondeterministic decision tree is as a family of deterministic decision trees, where for
each input, we use the best decision tree in the set for that input.2

We’ve seen one example of these definitions already. For the function F : {0, 1}(
n

2
) → {0, 1} that

indicates the connectivity of an n-vertex graph, we have D(
(

n
2

)

) =
(

n
2

)

and C(
(

n
2

)

) = n2−n mod 2

2
.

As another example, let F : {0, 1}2n → {0, 1} denote the “exactly half” function: F (s) = 1 if
and only if s contains exactly n 1s and exactly n 0s. For this function, we easily observe that
D(2n) = C(2n) = 2n.

5.3 Blum’s Theorem

One of the most general results about decision tree complexity was proved by Manuel Blum.

Theorem 3 (Blum). For any string property, C(n) ≤ D(n) ≤ C(n)2.

Proof: The first inequality C(n) ≤ D(n) is almost trivial, since any algorithm must examine all
the bits in a certificate before returning its output. Alternately, the inequality

max
x

min
y

f(x, y) ≤ min
y

max
x

f(x, y)

is easy to prove for any function f(x, y).
To prove the other inequality, we describe an algorithm that examines C(n)2 bits. Let πs denote

the smallest certificate for any input string s. Let S0 = {πs | F (s) = 0} and S1 = {πs | F (s) = 1}
be the sets of all minimal 0- and 1-certificates, respectively. To simplify notation, let f = C(n).

Our algorithm works in k phases, examining at most k bits in each phase. At each phase, we
keep only the certificates that are consistent with the bits we’ve examined so far. Let S i

0 denote
the subset of S0 consistent with the bits seen in the first i phases, and define S i

1 similarly. In
particular, we have S0

0 = S0 and S0
1 = S1. However, since it is pointless to carry around any bit

whose value we already know, the algorithm only maintains the bits in each certificate that have
not yet been queried. Thus, after each input bit xj is queried, any certificate π that is defined in
that bit position is either removed (if πj 6= xj) or its length is decreased by one (if πj = xj).

In the ith phase, the algorithm simply chooses an arbitrary 0-certificate π ∈ S i−1
0 and queries

all its (previously unqueried) bits. If all the queries agree with π, the algorithm correctly returns
False; otherwise, it continues with the next phase.

Now I claim that each phase reduces the length of every surviving 1-certificate by at least 1.
Let σ be an arbitrary 1-certificate in S i−1

1 . Since every input string contains either a 0-certificate
or a 1-certificate, but not both, there must be at least one bit position that appears in both σ
and the chosen 0-certificate π. Moreover, this bit position was not queried in any earlier phase,
because otherwise, at most one of them would have survived. If the input string agrees with π at
that common bit position, σ is discarded; otherwise, the length of σ decreases, as claimed.

It follows that after at most k phases, we are left with either no 1-certificates, in which case the
output must be False, or a single empty 1-certificate (i.e., a 1-certificate that matches the input
in every bit position), in which case the output must be True. Since each phase examines at most
k bits, the algorithm examines at most k2 bits altogether. �

2“Nondeterminism means never having to admit you’re wrong.”

3

CS 497: Concrete Models of Computation Spring 2003

We have already seen examples where the first inequality is tight. The second inequality can
be tight as well. Consider the function

Fk(x1, x2, . . . , x2k) =

x1 if k = 0

Fk−1(x1, x2, . . . , x2k−1) ∧ Fk−1(x2k−1+1, x2k−1+2, . . . , x2k) if k is even

Fk−1(x1, x2, . . . , x2k−1) ∨ Fk−1(x2k−1+1, x2k−1+2, . . . , x2k) if k is odd

This function Fk models an “And-Or” tree of depth k: a boolean circuit in the form of a complete
binary tree, where the leaves are inputs, gates alternate between And and Or at each level, and
the value at the root is the output. (Don’t confuse the And-Or tree with the decision tree that
evaluates it!)

x1 x2 x3 x4

∧

∨∨x1
x1 x2

∨

x1 x2 x3 x4

∧

∨

∨

∨

x5 x6 x7 x8

∧

∨∨

And-Or trees of depth 0 through 3

It’s easy to show that this function is evasive, but that it has much smaller certificate complexity:

D(Fk) = 2k C(Fk) = 2dk/2e

In fact, it’s so easy that I’ll leave it as a homework exercise.

5.4 Randomized complexity

Recall that a randomized decision tree is just a probability distribution over a set of deterministic
decision trees, and that the randomized complexity of a string property is the worst-case expected
running time of the fastest randomized decision tree:

R(n) = min
P

max
s

∑

A

PrP [A] · T (A, s)

Again, I’m using R(n) instead of the earlier notation T (n) to emphasize the randomization.
We’ve already seen examples where randomness helps a little bit, but a more extreme example

might be more helpful. Let M : {0, 1}3 → {0, 1} denote the boolean median (or majority) function

M(x, y, z) =

⌊

x + y + z

2

⌋

.

Then we can define the iterated median function Mk : {0, 1}3k

→ {0, 1} as M0(x1) = x1 and

Mk(x1, . . . , x3k) = M(Mk−1(x1, . . . , x3k−1),Mk−1(x3k−1+1, . . . , x2·3k−1),Mk−1(x2·3k−1+1, . . . , x3k))

for all k ≥ 1.3

3Douglas Hofstadter defined a three-player game called Hruska based on iterated medians. In a level-0 Hruska
game, each player chooses an integer between 0 and 5; the player with the median choice wins the game, and adds
his chosen number to his level-1 score. For any i ≥ 1, a level-i game consists of six level-(i− 1) games, starting with
level-i scores of zero; the winner is the player with the median level-i score at the end of the game, which is then
added to that player’s score at level i + 1. In order to make the game fair (and well-defined), each round uses a
different permutation of the players to break ties. I once won a level-3 Hruska game by having the median level-3
score, by having the lowest level-2 score, by having the median level-1 score, by choosing the number 5 on my 216th
level-0 turn. I don’t recommend playing a level-4 game, unless you want your brain to explode.

4

CS 497: Concrete Models of Computation Spring 2003

It is not hard to prove that D(Mk) = 3k and C(Mk) = 2k; this is a good warm-up for the
previous homework exercise. The randomized complexity fits between these two bounds. Consider
the following randomized algorithm for computing M(x, y, z):

Query two of x, y, z at random. If they are equal, return their common value. Otherwise,
query the remaining variable and return its value.

The probability of two variables that agree is at least 1/3, so the expected running time of this
algorithm is at most 8/3. We can use this idea recursively to evaluate Mk quickly as well. Randomly
choose two of the three instances of Mk−1 and evaluate them recursively. If they return the same
value, we’re done; otherwise (with probability at most 2/3) we have to evaluate the third instance.
We have the recurrence

R(Mk) ≤
8

3
R(Mk−1),

which has the obvious solution R(Mk) ≤ (8/3)k .
As it turns out, this algorithm is optimal—so R(Mk) = (8/3)k—but we don’t have the tools to

prove this yet. Soon. Promise.
Notice that in this case, the randomized complexity falls strictly between the certificate com-

plexity and the deterministic complexity. This should not be a surprise; even randomized algorithms
have to run long enough to certify their answers. In general, we have the following trivial extension
of Blum’s theorem for any boolean function.

C(n) ≤ R(n) ≤ T (n) ≤ C(n)2

For the And-Or tree function Fk, the randomized complexity is (1+
√

33

4
)k ≈ 1.68614k ≈ n0.753.

The upper bound follows from a careful randomized algorithm, which I will leave as the third part
of the homework exercise. The matching lower bound is due to Saks and Widgerson4. In fact, Saks
and Widgerson conjecture that this is a lower bound on the randomized complexity of any evasive
boolean function. As far as I know, this conjecture is still open.

4
Proc. STOC 1986

5

