
CS 497: Concrete Models of Computation Spring 2003

10 Evaluating Polynomials (March 10)

10.1 Horner’s Rule

Suppose we want to evaluate an arbitrary univariate polynomial p(x) =
∑n

i=0
aix

i. The obvious
algorithm—computing all the relevant powers of x and then computing their weighted sum—
requires 2n + 1 multiplications and n additions in the worst case. We can reduce the number of
multipplcations to n by using the following recurrence for p(x) = pn(x):

p0(x) = an

pi(x) = an−i + x · pi−1(x)

This recurrence is commonly known as Horner’s rule. In the mid-1950’s, Ostrowski asked whether
this is the fastest possible algorithm for computing arbitrary polynomials. Specifically, is there
a straight-line program that accepts n + 2 arbitrary real numbers a0, a1, . . . , zn, x as input and
computes

∑n
i=0

aix
i using less than n additions (or subtractions) or less than n multiplications?

Surprisingly, the answer is no!

10.2 ...is optimal for additions...

Ostrowski proved almost immediately that Horner’s rule uses the minimum possible number of
additions and subtractions, even if we know in advance that x = 1. In other words, any straight-
line program that computes the scalar sum

∑n
i=0

ai contains at least n additions or subtractions.
We can prove Ostrowski’s theorem by induction on n as follows. Suppose n = 1. If our straight-

line program has no additions or subtractions, it can only compute expressions of the form cai
0a

j
i ,

where c is a real1 constant and i and j are non-negative integers. Since the equation

cai
0a

j
i = a0 + a1

is not true for all values of a0 and a1, we must perform at least one addition or subtraction to
compute a0 + a1.

Now let A be a straight-line program that computes
∑n

i=0
ai for some n > 1. Suppose the first

addition or subtraction in A is
vi ← vj ± vk;

Both vj and vk must be of the form cai0
0
· · · ain

n . Without loss of generality, we can assume that an

appears with non-zero exponent in vk. Now suppose a Little Birdie tells us that an = 0. Then we
can eliminate this instruction from our straight-line program (since it is equivalent to vi ← vj). If we
simplify the rest of the program by replacing every instance of xn with 0, we obtain a new straight-
line program to compute the sum

∑n−1

i=0
ai. By the inductive hypothesis, this new program has at

least n− 1 additions and subtractions, and therefore A has at least n addditions and subtractions.

10.3 ...and multiplications!

Over a decade later, Pan proved the corresponding optimality result for multiplications, using
what is now known as the method of linear independence. The key idea is to consider the space of
linear combinations of the inputs ai as a vector space IRn+1. The coefficients of any intermediate
polynomial in x that is computed by our straight-line program can be considered vectors in this

1Actually, this argument—in fact, the entire lecture—applies to computing polynomials over any field, but for

simplicity, I’ll phrase everything over the reals.

1



CS 497: Concrete Models of Computation Spring 2003

space. The method of linear independence analyzes the number of linearly independent vectors
among these coefficients.

Throughout this section, I’ll use the notation `(a1, . . . , an) denote some linear combination of
a1, . . . , an; that is,

`(a1, . . . , an) =
n
∑

i=1

ciai

for some real constants ci. In other words, `(a1, . . . , an) is an unspecified vector in the real vector
space whose basis is a1, . . . , an. Recall that the rank of a set of vectors is the maximum number
of linearly independent elements. The method of linear independence relies on the following fact
(which I won’t prove).

Lemma 1. Let L = {`1(a1, . . . , an), . . . , `u(a1, . . . , an)} be a set of linear combinations of a1, . . . , an,

and let `(a2, . . . , an) be some other linear combination of a2, . . . , an. For each i, define

`′i(a2, . . . , an) = `i(`(a2, . . . , an), a2, . . . , an),

and let L
′ = {`′1(a2, . . . , an), . . . , `′u(a2, . . . , an)}. The rank of L

′ is at most one less than the rank

of L.

Now consider a striaght-line program to compute p(x). Every multiplication instruction multi-
plies two polynomials in the ring IR[a1, . . . , an, x]. We’ll say that a mutliplication is insignificant if
either both arguments are in IR[x] or if one argument is in IR[a1, . . . , an] and the other argument
is a scalar.

Theorem 2. Let A be a straight-line rpgroam over {+,−,×} with input a0, . . . , an, x that com-

putes the expression
u
∑

i=0

`i(a1, . . . , an)xi + r(x),

where each `i is a nontrivial linear combination of a1, . . . , an and r(x) is a polynomial in x. The

number of significant multiplications in A is at least the rank of L = {`1, . . . , `u}.

Proof: The proof is by induction on the number of significant multiplications. If our program has
no significant multiplications, it can only compute expressions of the form `0(a1, . . . , an) + r(x). In
this case, L is actually empty, so it has rank 0.

Suppose our program A has k significant multiplications. The first one must be of the form
(

n
∑

i=1

ciai + s(x)

)

×
(

n
∑

i=1

diai + t(x)

)

,

where the ci and di are scalars, with at least one of each not equal to zero, and s and t are
polynomials in x. Without loss of generality, assume that c1 6= 0. For some constant c, define

`(a2, . . . , an) =
c−

∑n
i=2

ciai

c1

and p(x) =
−s(x)

c1

.

Now consider the restriction of A to inputs where a1 = `(a2, . . . , an) + p(x). Under this restric-
tion, our program actually computes

u
∑

i=0

`i(`(a2, . . . , an) + p(x), a2 . . . , an)xi + r(x) =

u
∑

i=0

`′i(a2 . . . , an)xi + r′(x),

2



CS 497: Concrete Models of Computation Spring 2003

where the `′i are defined exactly as in Lemma 1 and r ′(x) is some other polynomial.2 Moreover,
the first significant multiplication in A is no longer significant under this restriction.

Thus, we obtain a new straight-line program A′ with at most k − 1 significant multiplcations.
The inductive hypothesis implies that the rank of L

′ = {l′1, . . . , `′u} is at most k− 1. It now follows
from Lemma 1 that L has rank at most k. �

This theorem immediately implies the desired lower bound of n multiplications, since the set of
linear combinations {a1, a2, . . . , an} clearly has rank n.

10.4 Preprocessing Helps...

Now suppose we are told the coefficients a0, . . . , an in advance, and asked to write a straight-line
program to evaluate p(x) =

∑n
i=0

aix
i given only the value of x as input. In other words, instead

of a program to evaluate arbitrary polynomials, we want a program to evaluate some specific

polynomial.
It’s not hard to discover specific poylynomials that can be evaluated using less than n additions

and n multiplications. For example, we can evaluate the polynomial xn using at most 2dlg ne
multiplications (using prepeated squaring) and no additions at all. Somewhat surprisingly, any

specific polynomial of degree n can be evaluated using roughly n/2 multiplications; even more
surprisingly, this bound is tight in the worst case.

I’ll only sketch the upper bound; for details, see Knuth II. For simplicity, assume that n is even.
The basic idea is to write the polynomial p(x) in the alternate form

p(x) = pn(x) = (x2 − an)pn−2(x) + bnx + cn,

where pn−2(x) has degree at most n− 2 and an, bn, cn are real constants. Continuing recursively,
we obtain a series of polynomials pn−4(x), pn−6(x), . . . , p0(x), where

pi(x) = (x2 − ai)pi−2(x) + bix + ci

and p0(x) = c0. The key insight is that it is possible to choose the constants ai and ci so that
bi = 0 for all i. Once we know these constants, the previous recurrence gives us an algorithm that
uses only n/2 + 1 multiplications; one to compute x2, and one to compute each polynomial pi(x)
from its predecessor pi−2(x).

10.5 ...but not very much

To prove that n/2 multiplcaitions are sometimes necessary, we use a generalization of the method
of linear independence, called the method of algebraic independence.

A set of real numbers {a1, a2, . . . , an} is algebraically dependent (over the rationals) if there
is a nonzero polynomial p(x1, x2, . . . , xn) with rational coefficients such that p(a1, a2, . . . , an) = 0.
The transcendence degree of a set is the size of its largest algebraically independent subset. For
example, the set {1,

√
2, π} has transcendence degree 2.

2This is a lie.

3


