
CS 497: Concrete Models of Computation Spring 2003

13 Circuit Complexity (April 24–May 6)

In this final series of lectures, we’ll look at one of the most basic models of computation: Boolean
logic circuits. Formally, a boolean circuit is a directed acyclic graph. Nodes with indegree zero
are input nodes, labeled x1, x2, . . . , xn. A circuit has a unique node with outdegree zero, called the
output node. Every other node is a gate. Each gate with indegree d is labeled with a function of
the form f : {0, 1}d → {0, 1}. Unless otherwise specified, we will use only the standard binary And

and Or gates, and unary Not gates. (Later, we’ll allow And and Or with fan-in larger than 2, but
not yet.)

Any boolean circuit with n input nodes realizes some n-ary boolean function. The circuit

complexity of a function F : {0, 1}n → {0, 1}, denoted C(F ), is the minimum number of gates in
any realization of F .

Motivation. Obviously, building smaller circuits saves money, but a much more important moti-
vation for studying this model is its connection to the P = NP question. Consider a Turing machine
that computes a string recognition function F : {0, 1}∗ → {0, 1}. By restricting the input to strings
of each possible length, we obtain a family of functions Fn : {0, 1}n → {0, 1} for each n.

Theorem 1. If F ∈ P, then C(Fn) is bounded by a polynomial in n. (The converse is not
necessarily true!)

Thus, to prove P 6= NP, “all” we have to do is exhibit a problem in NP that does not have
polynomial circuit complexity!

13.1 A Specific Function

Let Fk,n : {0, 1}n → {0, 1} be the “at least k” function:

Fn,k(x1, x2, . . . , xn) =

[
n∑

i=1

xi ≥ k

]
.

What’s the circuit complexity of this function? More concretely, what is the circuit complexity of
the “at least two” function C2,n? (This is the first nontrivial special case, since C1,n is equivalent
to an n-ary Or, which clearly has complexity n− 1.)

A few base cases are obvious. Since F2,1 is identically 0, its complexity is clearly also 0. Similarly,
since F2,2 can be realized by a single And gate, its complexity is 1. Unfortunately, for general n,
we don’t have tight bounds.

Theorem 2. C(F2,n) ≤ 3n− 4 + (n mod 2)

Proof: Let X = (x1, x2, . . . , xn) denote the vector of input bits, and for notational convenience,
define y = (x1, . . . , xn−2) and z = (xn−1, xn). We have the following simple recurrence for F2,n(x):

F1,n(x) = F1,n−2(y) ∨ F1,2(z)

F2,n(x) = F2,n−2(y) ∨ F2,2(z) ∨ (F1,n−2(y) ∧ F1,2(z))

This recurrence describes a circuit that computes both F1,n(x) and F2,n(x). If Cn is the number of
gates in this circuit, we have the recurrence

C1 = 1, C2 = 2, Cn = Cn−2 + C2 + 4,

whose solution is the required upper bound. �

1



CS 497: Concrete Models of Computation Spring 2003

Before we prove a lower bound, we quickly observe that without loss of generality, we can
assume that the circuit has at most n inverters, each attached to one of the input nodes. If any
inverter appears after an And or Or gate, we can push it ahead of the gate using De Morgan’s
laws:

¬(x ∧ y) = (¬x) ∨ (¬y) ¬(x ∨ y) = (¬x) ∧ (¬y).

To prove a lower bound, it suffices to count the number of And and Or gates.

Theorem 3. C(F2,n) ≥ 2n− 3

Proof: We prove the bound by induction on n; the base cases n = 1 and n = 2 are trivial.
Consider a gate g in a minimal circuit for F2,n whose inputs are connected directly to (possibly

inverted) input variables. Gate g must take two different (possibly inverted) variables xi and xj as
input; otherwise, the circuit would not be minimal.

I claim that one of xi, xi, xj , and xj must occur as the input to at least one other gate.
Intuitively, the circuit must ‘know’ whether the number of 1s between xi and xj is 0, 1, or 2, but
one gate can’t distinguish between the three possibilities. For example, if g(0, 1) = g(1, 1) and
neither xi nor xj is an input to any other gate, then setting xk = 0 for all k 6= i, j would lead to
two inputs that the circuit can’t distinguish, even though their outputs should be different. The
remaining cases can be argued similarly.

Suppose xi or xi occurs as an input to some other gate g. If we fix xi = 0, we can eliminate at
least two gates g and g′ from the circuit. The simplified circuit computes the (n− 1)-ary function
F2,n−1(x1, . . . , x̂i, . . . , xn).

By the inductive hypothesis, the resulting circuit has at least 2(n − 1) − 3 − 2n − 5 gates, so
the original circuit must have at least 2n− 3 gates, as claimed. �

13.2 Most Functions Are Hard, But We Don’t Have Any Bad Examples

To the everlasting shame of theoretical computer scientists everywhere, there is no known explicit

example of a family of functions Fn : {0, 1}n → {0, 1} such that C(Fn) − 3n = Ω(n). The best
lower bound known (as of late 1992) has the form 3n + o(n). However, we can prove by a simple
counting argument that most boolean functions have exponential circuit complexity.

Theorem 4 (Shannon). As n →∞, the fraction of n-ary functions with circuit complexity less
than 2n/3n tends to 0.

Proof: There are exactly 22n

n-ary boolean functions.
The number of circuits with t gates, assuming inverters have been pushed back to the inputs,

can be upper-bounded as follows. We can number the gates in any circuit from 1 to t. Each gate
has one of two types (And or Or). Each of the inputs to a gate is either a constant 0 or 1, an
input xi, an inverted input xi, or the output of another gate; thus, there are at most 2 +2n + t− 1
possible gate inputs. It follows that the number of circuits with t gates is at most 2t(t + 2n + 1)2t.
If t = 2n/3n, then

2t(t + 2n + 1)2t

22n
= o(1). �

13.3 Shannon’s Bound is Tight

It is not too hard to show that Shannon’s lower bound is tight up to constant factors. Before we
prove the matching upper bound, let’s prove something easier: any n-ary function can be realized

2



CS 497: Concrete Models of Computation Spring 2003

using O(2n) gates. We define a binary-to-positional converter Bn : {0, 1}n → {0, 1}2
n

as a circuit
that takes n inputs and has 2n outputs, exactly one of which is equal to 1. Specifically, if the input
bits are x0, x1, . . . , xn−1, then the output bit yx equals 1 if and only if

x =

n−1∑

i=1

xi2
i.

It is an easy exercise (really!) to realize Bn with O(2n) gates. We can then realize any function
F : {0, 1}n → {0, 1} by Oring together the outputs of Bn corresponding to 1s in the truth table of
F ; this requires at most 2n − 1 additional Or gates.

Theorem 5. There is a constant c such that every n-ary boolean function has circuit complexity
at most 2n/cn.

Proof: Fix an n-ary function F : {0, 1}n → {0, 1}. Let x = (x1, x2, . . . , xn) denote the input
vector, and for some integer k to be specified later, define y = (x1, . . . , xk) and z = (xk+1, . . . , xn).

We begin by constructing a 2k×2n−k truth table for F , where each row is specified by a possible
value of y, and each column by a possible value of z. Suppose that there are only t different column
vectors in this matrix. The inequality t ≤ 2n−k is obvious; less obvious but still trivial is the
inequality t ≤ 2t. Let Fi(z) = 1 if column z has the ith pattern and 0 otherwise. Similarly, let
Gi(y) be the function specified by the ith column vector. Then we can write

F (x) = F (y, z) =
t∨

i=1

Gi(y) ∧ Fi(z)

Suppose for the moment that all the 1s in this table are restricted to s of the 2k rows. This
immediately implies that t ≤ 2s. Under this assumption, we can build a circuit for F as follows. The
inputs are connected to two binary-to-positional converters Bk and Bn−k, which requires 2k +2n−k

gates. For each i between 1 and t, we add two trees of Ors connected by a single And to compute
Fi(y) ∧ Gi(z); for each i, this requires 2k + 2n−k + 1 gates. Finally, we connect all these with
another tree of t ≤ 2s Or gates. The total number of gates used in this special case is at most
2(2k + 2n−k) + 2s + 1.

Now back to the general case. We can write any n-ary function F as a disjunction of 2k/s
different n-ary functions, each of which has a truth table with at most s non-zero rows. To
construct a circuit for F , we build a circuit for each of its s-row compoments, sharing a single
pair of binary-to-positional converters. The total gate count for this construction is at most

2k + 2n−k +
2k

s
(2k + 2n−k + 2s + 1) = 2k + 2n−k +

2n + 2k(2s + 2k + 1)

s
.

Finally, we are free to choose the parameters k and s to minimize this gate count. If we take

k = 2 lg n and s = n− 2 lg n,

then the total gate count is at most

n2 +
2n

n2
+

2n + n2(2n/n2 + n2 + 1)

n− 2 lg n
= n2 +

2n

n2
+

2n+1 + n4 + n2

n− 2 lg n

= O

(
2n

n

)

�

3



CS 497: Concrete Models of Computation Spring 2003

13.4 Circuit Depth and Communication Complexity

In addition to the number of gates, another useful measure of circuit complexity is the depth,
defined as the length of the longest path from an input node to the output node. Let d(F ) denote
the minimum depth of any circuit that realizes any fucntion F .

There is a nice connection between circuit depth and the communication complexity of the
following game.

Let A and B be fixed, non-empty, disjoint sets of n-bit strings. Alice is given a string x ∈ A,
and Bob is given a string y ∈ B. The goal off the game is to find an index i such that xi 6= yj.
Such an index must exist, since A∩B = ∅. Let C(A,B) denote the minimum number of bits that
must be transmitted to compute this index in the worst case.

Theorem 6. d(f) = C(F−1(0), F−1(1)) for any nonconstant function F .

Proof (Upper Bound): We prove the following more general claim by induction on d(F ): For
any function F and any sets A ⊆ F−1(0) and B ⊆ F−1(1), we have C(A,B) ≤ d(f). Specifically,
given a circuit for F , we inductively construct a protocol whose cost is the depth of the circuit.

In the base case d(F ) = 0, we have F ≡ xi or F = xi for some index i. In this case, we do not
need to transmit any bits, since F (x) 6= F (y) implies that xi 6= yi, so C(A,B) is also zero.

Otherwise, consider a minimum-depth circuit that computes F , without loss of generality with-
out inverters except at the inputs. Suppose the last gate is an And. (The Or case is similar.)
The inputs to this gate are described by two functions F0 and F1. Alice has a string x such that
F (x) = 0, which implies that F0(x) = 0 or F1(x) = 0. Bob holds a string y such that F (y) = 1,
so F0(y) = F1(y) = 1. The protocol begins by Alice sending an bit b such that Fb(x) = 0, and
continues by recursively evaluating Fb, which by construction has depth at most d(F )− 1. �

Proof (Lower Bound): Given any disjoint nonempty sets A and B, there is a function F such
that F (x) = 0 for all x ∈ A and F (y) = 0 for all y ∈ B. We claim that there is at least one such
function where d(F ) ≤ C(A,B). Given a protocol for A and B, we construct the function F and
a low-depth circuit that realizes it, as follows.

The construction proceeds by induction on C(A,B). In the base case C(A,B) = 0, we must
have F (x) = xi or F (x) = xi for some index i, which implies that d(F ) = 0.

Otherwise, consider a minimum-length protocol for the sets A and B. Without loss of generality,
suppose Alice transmits first. Her transmission splits A into two subsets A0 and A1; by construction,
C(A0, B) ≤ C(A,B)− 1 and C(A1, B) ≤ C(A,B)− 1. By the inductive hypothesis, there are two
functions F0 and F1 such that

Ab ⊆ F−1

b
(0), B ⊆ F−1

b
(1), d(Fb) ≤ C(Ab, B)

for any b ∈ {0, 1}. If we set F = F0 ∧ F1, we have

d(F ) ≤ 1 + max{d(F0), d(F1)} ≤ 1 + C(A,B)− 1 = C(A,B)

A = A0 ∪A1 ⊆ F−1
0

(0) ∪ F−1
1

(0) ⊆ F−1(0) ∪ F−1(0) = F−1(0)

B ⊆ F−1
0

(1) ∩ F−1
1

(1) ⊆ F−1(1) �

4


