1. Recall that an n-bit binary-to-positional converter B_n is a circuit with n input bits x_1, \ldots, x_n, representing an integer x in binary, and 2^n output bits $y_0, y_1, \ldots, y_{2^n-1}$, where $y_i = 1$ if and only if $i = x$. Show that B_n can be realized by a circuit consisting of $O(2^n)$ binary AND and OR gates and no NOT gates.

2. The *st-connectivity problem* is defined as follows: Given the adjacency matrix A of an undirected graph G, decide whether there is a path from the first vertex to the last vertex in G (implicitly represented by the first and last rows of A). Here, s and t stand for ‘source’ and ‘target’.

 (a) Prove that st-connectivity is evasive, that is, any boolean decision tree that determines whether s and t are connected must examine every bit in the adjacency matrix.

 (b) Prove that the st-connectivity problem can be solved using a circuit of depth $O(\log^2 n)$, using only standard gates. [*Hint: Use a communication protocol.*]

 (c) How many gates does your circuit have?

3. A *perfect matching* is an undirected graph where every vertex has degree exactly 1, or equivalently, a graph with n vertices and $n/2$ edges, where no two edges share a vertex.

 (a) Prove that being a perfect matching is an evasive graph property.

 (b) Prove that the randomized decision tree complexity of determining whether a graph is a perfect matching is $\Omega(n^2)$. [*Hint: Use Yao’s Lemma.*]

4. Given a list of n values x_1, x_2, \ldots, x_n, the *majority element problem* is to determine the value (if any) that occurs more than $n/2$ times in the list. This problem asks you to bound the complexity of this problem, in a decision tree model where every decision is an equality test of the form “$x_i = x_j$?”

 (a) Prove that the deterministic complexity of the majority element problem is exactly $\lceil 3(n - 1)/2 \rceil$.

 (b) Find the best upper and lower bounds you can for the randomized complexity of the majority element problem.

5. Recall that the property of having three consecutive 1s is an evasive string property when $n \mod 4 = 0$ or 3. Prove the best upper and lower bounds you can on the randomized decision tree complexity of this string property. [*Hint: The best bounds I know of are $\geq 9n/16$ (using Yao’s Lemma) and $\leq 7n/8$.]*