F Randomized Minimum Cut

F.1 Setting Up the Problem

This lecture considers a problem that arises in robust network design. Suppose we have a connected multigraph G representing a communications network like the UIUC telephone system, the internet, or Al-Qaeda. In order to disrupt the network, an enemy agent plans to remove some of the edges in this multigraph (by cutting wires, placing police at strategic drop-off points, or paying street urchins to ‘lose’ messages) to separate it into multiple components. Since his country is currently having an economic crisis, the agent wants to remove as few edges as possible to accomplish this task.

More formally, a cut partitions the nodes of G into two nonempty subsets. The size of the cut is the number of crossing edges, which have one endpoint in each subset. Finally, a minimum cut in G is a cut with the smallest number of crossing edges. The same graph may have several minimum cuts.

![A multigraph whose minimum cut has three edges.](image)

This problem has a long history. The classical deterministic algorithms for this problem rely on network flow techniques, which are discussed in another lecture. The fastest such algorithms (that we will discuss) run in $O(n^3)$ time and are quite complex and difficult to understand (unless you’re already familiar with network flows). Here I’ll describe a relatively simple randomized algorithm discovered by David Karger when he was a Ph.D. student.

Karger’s algorithm uses a primitive operation called collapsing an edge. Suppose u and v are vertices that are connected by an edge in some multigraph G. To collapse the edge $\{u, v\}$, we create a new node called uv, replace any edge of the form $\{u, w\}$ or $\{v, w\}$ with a new edge $\{uv, w\}$, and then delete the original vertices u and v. Equivalently, collapsing the edge shrinks the edge down to nothing, pulling the

1. A multigraph allows multiple edges between the same pair of nodes. Everything in this lecture could be rephrased in terms of simple graphs where every edge has a non-negative weight, but this would make the algorithms and analysis slightly more complicated.
two endpoints together. The new collapsed graph is denoted \(G/\{u, v\} \). We don’t allow self-loops in our multigraphs; if there are multiple edges between \(u \) and \(v \), collapsing any one of them deletes them all.

![A graph and two collapsed graphs](image)

I won’t describe how to actually implement collapsing an edge—it will be a homework exercise later in the course—but it can be done in \(O(n) \) time. Let’s just accept collapsing as a black box subroutine for now.

The correctness of our algorithms will eventually boil down the following simple observation: For any cut in \(G/\{u, v\} \), there is cut in \(G \) with exactly the same number of crossing edges. In fact, in some sense, the ‘same’ edges form the cut in both graphs. The converse is not necessarily true, however. For example, in the picture above, the original graph \(G \) has a cut of size 1, but the collapsed graph \(G/\{c, d\} \) does not.

This simple observation has two immediate but important consequences. First, collapsing an edge cannot decrease the minimum cut size. More importantly, collapsing an edge increases the minimum cut size if and only if that edge is part of every minimum cut.

F2 Blindly Guessing

Let’s start with an algorithm that tries to guess the minimum cut by randomly collapsing edges until the graph has only two vertices left.

GuessMinCut(\(G \)):

\[
\text{for } i \leftarrow n \text{ downto } 2 \\
\text{pick a random edge } e \text{ in } G \\
G \leftarrow G/e \\
\text{return the only cut in } G
\]

Since each collapse takes \(O(n) \) time, this algorithm runs in \(O(n^2) \) time. Our earlier observations imply that as long as we never collapse an edge that lies in every minimum cut, our algorithm will actually guess correctly. But how likely is that?

Suppose \(G \) has only one minimum cut—if it actually has more than one, just pick your favorite—and this cut has size \(k \). Every vertex of \(G \) must lie on at least \(k \) edges; otherwise, we could separate that vertex from the rest of the graph with an even smaller cut. Thus, the number of incident vertex-edge pairs is at least \(kn \). Since every edge is incident to exactly two vertices, \(G \) must have at least \(kn/2 \) edges. That implies that if we pick an edge in \(G \) uniformly at random, the probability of picking an edge in the minimum cut is at most \(2/n \). In other words, the probability that we don’t screw up on the very first step is at least \(1 - 2/n \).

Once we’ve collapsed the first random edge, the rest of the algorithm proceeds recursively (with independent random choices) on the remaining \((n-1)\)-node graph. So the overall probability \(P(n) \) that **GuessMinCut** returns the true minimum cut is given by the following recurrence:

\[
P(n) \geq \frac{n-2}{n} \cdot P(n-1).
\]
The base case for this recurrence is $P(2) = 1$. We can immediately expand this recurrence into a product, most of whose factors cancel out immediately.

$$P(n) \geq \prod_{i=3}^{n} \frac{i-2}{i} = \prod_{i=3}^{n} \frac{i(i-2)}{i} = \prod_{i=3}^{n-2} \frac{2}{n(n-1)}$$

E3 Blindly Guessing Over and Over

That’s not very good. Fortunately, there’s a simple method for increasing our chances of finding the minimum cut: run the guessing algorithm many times and return the smallest guess. Randomized algorithms folks like to call this idea *amplification*.

```
KargerMinCut(G):
    mink ← ∞
    for i ← 1 to N
        X ← GuessMinCut(G)
        if |X| < mink
            mink ← |X|
            minX ← X
    return minX
```

Both the running time and the probability of success will depend on the number of iterations N, which we haven’t specified yet.

First let’s figure out the probability that KargerMinCut returns the actual minimum cut. The only way for the algorithm to return the wrong answer is if GuessMinCut fails N times in a row. Since each guess is independent, our probability of success is at least

$$1 - \left(1 - \frac{2}{n(n-1)}\right)^N.$$

We can simplify this using one of the most important (and easiest) inequalities known to mankind:

$$1 - x \leq e^{-x}$$

So our success probability is at least

$$1 - e^{-2N/n(n-1)}.$$

By making N larger, we can make this probability arbitrarily close to 1, but never equal to 1. In particular, if we set $N = c\binom{n}{2} \ln n$ for some constant c, then KargerMinCut is correct with probability at least

$$1 - e^{-c \ln n} = 1 - \frac{1}{n^c}.$$

When the failure probability is a polynomial fraction, we say that the algorithm is correct with high probability. Thus, KargerMinCut computes the minimum cut of any n-node graph in $O(n^4 \log n)$ time.

If we make the number of iterations even larger, say $N = n^2(n-1)/2$, the success probability becomes $1 - e^{-n}$. When the failure probability is exponentially small like this, we say that the algorithm is correct with very high probability. In practice, very high probability is usually overkill; high probability is enough. (Remember, there is a small but non-zero probability that your computer will transform itself into a kitten before your program is finished.)
E4 Not-So-Blindly Guessing

The $O(n^4 \log n)$ running time is actually comparable to some of the simpler flow-based algorithms, but it’s nothing to get excited about. But we can improve our guessing algorithm, and thus decrease the number of iterations in the outer loop, by observing that as the graph shrinks, the probability of collapsing an edge in the minimum cut increases. At first the probability is quite small, only $2/n$, but near the end of execution, when the graph has only three vertices, we have a $2/3$ chance of screwing up!

A simple technique for working around this increasing probability of error was developed by David Karger and Cliff Stein. Their idea is to group the first several random collapses a ‘safe’ phase, so that the cumulative probability of screwing up is small—less than $1/2$, say—and a ‘dangerous’ phase, which is much more likely to screw up.

The safe phase shrinks the graph from n nodes to $n/\sqrt{2} + 1$ nodes, using a sequence of $n - n/\sqrt{2} - 1$ random collapses. Following our earlier analysis, the probability that none of these safe collapses touches the minimum cut is at least

$$\prod_{i=n/\sqrt{2}+2}^{n} \frac{i-2}{i} = \frac{(n/\sqrt{2})(n/\sqrt{2}+1)}{n(n-1)} = \frac{n + \sqrt{2}}{2(n-1)} > \frac{1}{2}.$$

Now, to get around the danger of the dangerous phase, we use amplification. However, instead of running through the dangerous phase once, we run it twice and keep the best of the two answers. Naturally, we treat the dangerous phase recursively, so we actually obtain a binary recursion tree, which expands as we get closer to the base case, instead of a single path. More formally, the algorithm looks like this:

```
CONTRACT(G, m):
    for i ← n downto m
        pick a random edge e in G
        G ← G/e
    return G

BETTERGUESS(G):
    if G has more than 8 vertices
        X_1 ← BETTERGUESS(CONTRACT(G, n/\sqrt{2} + 1))
        X_2 ← BETTERGUESS(CONTRACT(G, n/\sqrt{2} + 1))
        return min{X_1, X_2}
    else
        use brute force
```

This might look like we’re just doing to same thing twice, but remember that CONTRACT (and thus BETTERGUESS) is randomized. Each call to CONTRACT contracts an independent random set of edges; X_1 and X_2 are almost always different cuts.

BETTERGUESS correctly returns the minimum cut unless both recursive calls return the wrong result. X_1 is the minimum cut of G if and only if (1) none of the min cut edges are CONTRACTed and (2) the recursive BETTERGUESS returns the minimum cut of the CONTRACTed graph. If $P(n)$ denotes the probability that BETTERGUESS returns a minimum cut of an n-node graph, then X_1 is the minimum cut with probability at least $1/2 \cdot P(n/\sqrt{2})$, and X_2 is the minimum cut with the same probability. Since these two events are independent, we have the following recurrence, with base case $P(n) = 1$ for all $n \leq 6$.

$$P(n) \geq 1 - \left(1 - \frac{1}{2} P \left(\frac{n}{\sqrt{2} + 1}\right)\right)^2$$

Using a series of transformations, Karger and Stein prove that $P(n) = \Omega(1/\log n)$. I’ve included the proof at the end of this note.

For the running time, we get a simple recurrence that is easily solved using recursion trees or the Master theorem (after a domain transformation to remove the +1 from the recurrence).

\[T(n) = O(n^2) + 2T\left(\frac{n}{\sqrt{2}} + 1\right) = O(n^2 \log n) \]

So all this splitting and recursing has slowed down the guessing algorithm slightly, but the probability of failure is exponentially smaller!

Let's express the lower bound \(P(n) = \Omega(1/\log n) \) explicitly as \(P(n) \geq \alpha / \ln n \) for some constant \(\alpha \).

(Karger and Klein's proof implies \(\alpha > 2 \)). If we call BETTERGUESS \(N = c \ln^2 n \) times, for some new constant \(c \), the overall probability of success is at least

\[
1 - \left(1 - \frac{\alpha}{\ln n}\right)^{c \ln^2 n} \geq 1 - e^{-(c/\alpha) \ln n} = 1 - \frac{1}{n^{c/\alpha}}.
\]

By setting \(c \) sufficiently large, we can bound the probability of failure by an arbitrarily small polynomial function of \(n \). In other words, we now have an algorithm that computes the minimum cut with high probability in only \(O(n^2 \log^3 n) \) time!

*E5 Solving the Karger/Stein recurrence

Recall the following recurrence for the probability that BETTERGUESS successfully finds a minimum cut of an \(n \)-node graph:

\[p(n) \geq 1 - \left(1 - \frac{1}{2}p\left(\frac{n}{\sqrt{2}} + 1\right)^2 \right) \]

Karger and Stein solve this rather ugly recurrence through a series of functional transformations. Let \(p(k) \) denote the probability of success at the \(k \)th level of recursion, counting upward from the base case. This function satisfies the recurrence

\[p(k) \geq 1 - \left(1 - \frac{p(k-1)}{2}\right)^2 \]

with base case \(p(0) = 1 \). Let \(\tilde{p}(k) \) be the function that satisfies this recurrence with equality; clearly, \(p(k) \geq \tilde{p}(k) \). Now consider the function \(z(k) = 4/\tilde{p}(k) - 1 \). Substituting \(\tilde{p}(k) = 4/(z(k) + 1) \) into our old recurrence implies (after a bit of algebra) that

\[z(k) = z(k-1) + 2 + \frac{1}{z(k-1)}. \]

Since clearly \(z(k) > 1 \) for all \(k \), we have a conservative upper bound

\[z(k) < z(k-1) + 2, \]

which implies inductively that \(z(k) \leq 2k + 3 \), since \(z(0) = 3 \). It follows that

\[p(k) \geq \tilde{p}(k) > \frac{1}{2k + 4} = \Omega(1/k). \]

To compute the number of levels of recursion that BETTERGUESS executes for an \(n \)-node graph, we solve the secondary recurrence

\[k(n) = 1 + k\left(\frac{n}{\sqrt{2}} + 1\right) \]

with base cases \(k(n) = 0 \) for all \(n \leq 8 \). After a domain transformation to remove the +1 from the right side, the recursion tree method (or the Master theorem) implies that \(k(n) = \Theta(\log n) \).

We conclude that \(P(n) = p(k(n)) = \Omega(1/\log n) \), as promised.
Exercises

1. Suppose you had an algorithm to compute the minimum spanning tree of a graph in $O(m)$ time, where m is the number of edges in the input graph. Use this algorithm as a subroutine to improve the running time of GUESSMinCut from $O(n^2)$ to $O(m)$.

2. Suppose you are given a graph G with weighted edges, and your goal is to find a cut whose total weight (not just number of edges) is smallest.

 (a) Describe an algorithm to select a random edge of G, where the probability of choosing edge e is proportional to the weight of e.

 (b) Prove that if you use the algorithm from part (a), instead of choosing edges uniformly at random, the probability that GUESSMinCut returns a minimum-weight cut is still $\Omega(1/n^2)$.

 (c) What is the running time of your modified GUESSMinCut algorithm?

3. Prove that GUESSMinCut returns the second smallest cut in its input graph with probability $\Omega(1/n^3)$. (The second smallest cut could be significantly larger than the minimum cut.)

4In fact, there is a randomized MST algorithm (due to Philip Klein, David Karger, and Robert Tarjan) whose expected running time is $O(m)$.