If we had an index file, we could look it up in the index file under "index file".

— Tegan Jovanka [Janet Fielding], "Castrovalva (Part 1)", Doctor Who, Season 19 (January 4, 1982)

I started with the phone book. Looking up "mensa" was not going to be easy, what with having to follow the strict alphabetizing rules that are so common nowadays. I prefer a softer, more fuzzy alphabetizing scheme, one that allows the mind to float free and "happen" upon the word. There is pride in that. The dictionary is a perfect example of over-alphabetization, with its harsh rules and every little word neatly in place. It almost makes me never want to eat again.

Index

For some topics with multiple references, bold page numbers indicate the primary reference. Humans and pseudocode are indexed separately.

1-IN-3Sat, 405
2048 (game), 407
2COLOR, 417
2PARTITION, 417
2Sat, 406, 417
3CNF formula, 388
3COLOR, 395
 reduction from 3SAT, 395
3PARTITION, 405
3SAT, 388
 reduction from CIRCUITSat, 388, 393, 395
reduction to 3COLOR, 395
 reduction to
 DIRECTEDHAMCYCLE, 400
 reduction to MAXINDSET, 390, 393, 395
 rule of three, 395, 405, 408
4:20, 161
academic job market, 170
active vertex (depth-first search), 228
acyclic graph (= forest), 191
acyclic maximum flow, 339, 345
ad-hoc networks, 375
addition chains, 94
 increment and double only, 181
additional recurrence parameter, 295, 313, 318
adjacency matrix, 361
adjacent vertices, 191
airline scheduling, 362
alternating path, 356
amortized analysis, 264, 267
The Announcer’s Test, 17
antanairesis, see Euclid’s algorithm
Antarctica, 123, 143, 181
APSP, see shortest paths, all-pairs
arbitrage, 321
arithmetic takes time, 104, 325
arpedonaptai, 7, 317
arrow notation (a \[\uparrow^{b} c\]), 415
articulation point, see cut vertex
artificial source vertex, 227, 312, 355, 367
Āryabhaṭa’s pulverizer, see Euclid’s algorithm
assignment, see matching, tuple selection
augmenting path, 332
“average case” analysis, 31

B-tree, 147
back edge (depth-first search), 229
backtracking, 71
 recursive brute force, 80
 sequence of decisions, 79
 summary of past decisions, 79
backward induction, see dynamic programming
Baguenaudier, 45
balanced brackets, 148, 184
“The Barley Mow”, 18
base case, 23
baseball elimination, 363
BeAMillionaireAndNeverPayTaxes
reduction from
BeAMillionaire, 10
Bellman-Ford, 289
 as dynamic programming, 294
 Moore’s variant, 292
Bellman-Kalaba, see Bellman-Ford
Bellman-Shimbel, see Bellman-Ford
Bellman’s equation, see recurrence
“best case” analysis, 31
best-first search, 202
 Dijkstra’s algorithm, 288
 Jarník’s algorithm, 264
 widest-path algorithm
 (Edmonds-Karp), 340, 348
BFS, see breadth-first search
binary search trees, 67
 AA trees, 96, 145
 AVL trees, 96, 144, 341
 optimal, 91
 reconfiguration, 68
 red-black trees, 96, 144
 left-leaning, see AA trees
binary to decimal conversion, 56
bipartite graph, 207
bipartite maximum matching, 355
bitonic, 60
black box, 12, 21, 22, 416
 see also none of your business
Bob’s mama sees a ukulele, 129
bond (minimal edge cut), 347
boolean circuits, 190, 379
boolean formula, 386
boolean matrix multiplication, 323
Borůvka’s algorithm, 261
 advantages, 262
Boston Pool algorithm, 172
bottleneck, see also minimum cut
bottleneck distance, 270, 347
bottleneck spanning tree, 348
breadth-first search, 202, 278, 341
Bridges of Königsburg, 190
 see also Euler Tour
BST, see binary search trees
Bubba sees a banana, 128
bus scheduling, 362

c_f (residual capacity), 331
Camelot, 185
Candy Crush Saga, 407
capacity scaling, 351
careful graph coloring, 422
central vertex of a tree, 64
checkerboard, 59, 222, 371
checkers, see draughts
children's songs, 16
choosing the right problem to
reduce from, 407
circuit satisfiability, see CIRCUIT SAT
CIRCUIT SAT, 380
reduction to 3SAT, 388, 393, 395
reduction to SAT, 386
circulation, 337
clause, 388
clause gadget, 390, 395, 396, 401
clique, 394
closed walk in a graph, 191
CNF, see conjunctive normal form
CNF-SAT, see SAT
co-NP, 381
compass and straightedge, 7
component, 191
computationes canonica et legalis,
188
condensation, see strong component
graph
configuration graph, 194, 220, 221
conjunctive normal form, 388
connected component, see
component
connected graph, 191
conservation constraint, 328
convenience, 32, 79, 227, 237, 279, 396
Cook reduction, 384
Cookie Clicker, 407
counting graph components, 204
cover gadget, 399
cross edge (depth-first search), 229
crossing gadget, 410
psychomancy, 188
cut (vertex partition), 329
cut capacity ||S, T||, 329
cut vertex, 245
cycle cover, 371
cycle flow, 337
cycle in a graph, 191
dag, see directed acyclic graph
Dance Dance Revolution, 133
data structures for graphs, see
graphs
decision problem, 381
decision tree, 53
decision versus optimization, 85
degree of a vertex, 191
DeNile, 146
dependency graph, 107, 109, 114,
119, 193, 234, 366
depth-first order, see preorder,
postorder
depth-first search, 76, 201, 225, 282,
380
DFA, see finite-state automaton
DFS, see depth-first search
Dijkstra's algorithm, 203, 284
with negative edges, 288
exponential running time, 289, 300
with no negative edges, 286
Dinic's [Dinitz's] algorithm, 341
directed acyclic graph, 192, 231
directed cycle, 192
directed graph, 190
DIRECTED HAM CYCLE, 398
reduction from 3SAT, 400
reduction from \textsc{VertexCover}, 398
\textsc{DirectedHamPath}, 401
in a directed acyclic graph, 250
in a tournament, 208
reduction to shortest simple path, 275
directed path, 192
directed walk, 192
disconnected graph traversal, 203
disjoint paths
 edge-disjoint, 353
 vertex-disjoint, 354
disjoint-path cover, 253
 in directed acyclic graphs, 360
 NP-hard in general graphs, 360
disjoint-set data structure, 267, 271
disjunctive normal form, 416
dist$_{\leq i}(v)$ (length of shortest walk to v with at most i edges), 291
dist(u,v), 309
dist(v) (tentative distance), 276
distance multiplication, see
 min-plus matrix multiplication
distance tables, 310
divide and conquer, 26, 29, \textbf{31}, 37, 91, 315, 323
dominating set, 34, 56
\textsc{DominatingSet}, 407, 422
 in interval graphs, 178
dominos, 371, 421
Don’t try to be clever, 80, 82, 87, 89
DP, see \textit{Deadpool}, dynamic programming

Dr. Seuss [Theodor Suess Giesel]
 \textit{On Beyond Zebra}, 167
Dr. Seuss [Theodore Suess Giesel]
 \textit{The Cat in the Hat Comes Back}, 21
draughts, 100, 408
 English ("checkers"), 222
 international, 408
 reduction from
 \textsc{UndirectedHamCycle}, 409
drinking songs, 1, 16, 18
duplication and mediation, 5, 21, 23, 43
dynamic programming, \textbf{97}, \textbf{101}, 178, 183, 185, 222, 282
 as postorder traversal, 234, 255
 before Bellman, 101
 boilerplate, 106
 in directed acyclic graphs, 235, 250
 in trees, 120
 not always better than
 memoization, 117
 sequential, 105
 space optimization, 102
tree-shaped, 117

distance (pair of vertices), 187
distance capacity, 329
distance contraction, 269
distance demands, 347
distance gadget, 398, 402, 410
distance reweighting, 311
distance-complement \overline{G}, 394
distance-disjoint paths, 353
distedit distance, 111, 139, 149, 193, 235, 237
Edmonds-Karp algorithms
 fattest augmenting paths, 340
 shortest augmenting paths, 341
EDVAC, 27
Egyptian multiplication, see
duplication and mediation
\textsc{Elementary}, 415
elves, see \textit{Recursion Fairy}
empty edge (flows), 329
endpoints of an edge, 191
epiphany, 166, 242
errors, vii
escape problem, 369
Ethiopian peasant multiplication, see duplation and mediation
Euclid’s algorithm, 57
Euler tour, 190, 208, 223, 398
evaluation order, 107, 109, 114, 119
as postorder, 235
single and double arrows, 110, 120
EXACT3DIMENSIONALMATCHING, 405
EXP (exponential time), 413
EXP-hard, 414
exponential decay, 336, 340, 349, 351
exponentiation, 42

$|f|$ (flow value), 328
factorial, 57
fake-sugar-packet game, 74
Fantastic Mr. Fox, 133
fast Fourier transform, 42
feasible flow, 329
FFT, see fast Fourier transform
Fibonacci heaps, 264, 288
Fibonacci numbers, 98, 193, 249
Fight Club, 180
finished vertex (depth-first search), 228
finite-state automaton, 194, 253, 255
non-deterministic, 195
PSPACE-hard problems, 413
First make it work, then make it fast, 22, 26, 40, 80, 84, 95, 96, 99, 106, 108, 109, 123, 289
First what, then how, 106
Fizbuzz (standard interview question), 17
flood fill, 205
flow, 328
flow decomposition, 336, 358 algorithm, 339
flow value $|f|$, 328
flow vector space, 346
flying kings, 223, 408
Ford-Fulkerson, 334
can run forever, 335, 340, 349
exponential running time, 335
fattest augmenting paths, 340
shortest augmenting paths, 341
Ford’s relaxation algorithm, 276
exponential running time, 300
forest (= acyclic graph), 191
formula satisfiability, see SAT
forward edge (depth-first search), 229
French flag walk, 303
French invasion of Indochina, 24
funny matrix multiplication, see min-plus matrix multiplication
G_f (residual graph), 332
gadgets, 395
Gale-Shapley algorithm, 173
game state, 75, 194
game trees, 74, 75, 79, 80, 100
garbage collection, 210
gate gadgets, 395
general patterns
backtracking, 79
divide and conquer, 31
dynamic programming, 105
graph traversal, 199
greedy exchange arguments, 164
minimum-spanning-tree algorithms, 259
NP-hardness proofs, 392
shortest-path algorithms, 276
generic graph traversal, see
 whatever-first search
George of the Jungle, 65
Giggle, 151, 301
Gilbert and Sullivan
HMS Pinafore, 108
The Mikado, 404
The Pirates of Pensance, 374
golden ratio, 99, 335, 349
good pivot, 33, 36
median of medians, 37
graph coloring, 395
in interval graphs, 178
graph embedding, 192
graph reduction, 205, 212
graph traversal, 199, 209, 247
disconnected graphs, 203, 205, 227
graphical statics, 189
graphs
data structures
adjacency list, 195, 198
adjacency matrix, 196, 198
comparison, 198
implicit, 198, 207, 235
historical examples, 187
modern examples, 192
terminology, 190
greatest common divisor, 57
greedy algorithms, 159
are usually wrong, 107
that don’t work, 172, 177, 183, 185, 223, 349, 373
try dynamic programming first, 108
greedy exchange arguments, 160, 161, 163, 164, 168, 258, 260
guillotine subdivision, 145
see also kd-tree
Gulliver’s Travels, 2, 3, 96, 98, 145
Hamiltonian cycle, see
 DIRECTEDHAMCYLE,
 UNDIRECTEDHAMCYLE
 definition, 208, 398
Hamiltonian path, see
 DIRECTEDHAMPATH,
 UNDIRECTEDHAMPATH
 definition, 401
Handshake Lemma, 218
hashtags, 80
head of an edge, 191
Hellenistic snobbery, 57
helpful drawings
evaluation order arrows, 110, 120
NP-hardness reduction, 387
recursion trees, 32
heuristic, 30, 76
see also algorithm that doesn’t work
HITTINGSET, 406
How do I…
 choose the right problem to reduce from?, 407
derive a dynamic programming algorithm?, 106
design a backtracking algorithm?, 79
prove that a greedy algorithm is correct?, 164
prove that a problem is NP-hard?, 386, 392
Huffman codes, 165, 179
Huntington-Hill algorithm, 22
Hyperbole and a Half, 261, 291
hypercube, 208
IBM, 26
implicit graph representation, 195
in-degree of a vertex, 191
incorrect proofs that P=NP, 404, 415, 416
independent set, see MAXINDSET, 390
index formulation, 77, 83, 88
indice, see index (dammit)
backward, see dynamic programming
see also recursion
induction hypothesis, see Recursion Fairy
infinite loop, 16, 172, 277, 294, 313, 335, 349
input size, 404
integer maximum flow, 334, 348, 358
integer multiplication
divide-and-conquer, 40
duplation and mediation, 5
Karatsuba’s algorithm, 41
Toom-Cook algorithm, 42
via fast Fourier transform, 42
integer multiplication lattice algorithm, 3
Integrality Theorem (maximum flows), 334
international draughts, see draughts
interpuncts (word-spacing), 80
intersection graph, 192
interval graph, 192
interview questions, 124, 143, 156
inverse Ackerman function $\alpha(n)$, 267
inversion counting, 51

Jarník’s algorithm, 203, 263
Jeff actually did this, 249, 349
Johnson’s algorithm, 312
jump in the middle, 80, 81, 86, 89
Kaniel the Dane, 218
Karp reduction, 385
kd-tree, 65
see also guillotine subdivision
Klondike, 407
knights and knaves, 59
Kosaraju-Sharir algorithm, 240
Kruskal’s algorithm, 265
Kubla Khan, 134
kuṭṭaka, see Euclid’s algorithm

label of a path, 251–253
labeling graph components, 204
language (set of strings), 384
largest common subtree, 377
Latin, 2, 80, 428
lattice multiplication, 3
laws of physics, irrelevance of, 336
Let that which does not matter truly slide, 12, 14, 80, 82
level of a vertex, 341
Levenshtein distance, see edit distance
line breaking, 130
linear-time selection, 37, 53, 55
list of NP-hard problems, 404
literal, 388
local maximum, 63
local minimum, 61
logarithmic-space reduction, 385
logic gates, 379
longest common increasing subsequence, 126
longest common subsequence, 94, 115, 125
longest increasing digital subsequence, 140
longest increasing subsequence, 86, 109, 237
INDEX

LONGESTPATH, 406
 in directed acyclic graphs, 86, 88, 90, 236
 reduction from
 TRAVELINGSALESMAN, 236
loop invariant, see induction hypothesis
low(v), 242
lower bound via adversary argument, 380

magnetic tape, 159
MAJORITY3Sat, 419
majority gate, 396
many-one reduction, 385
marketing buzzwords, 102
Master Theorem, see recursion trees
matching, 355
 non-crossing, 377
 other special cases, 377
mātrāvṛtta, 97
matrice, see matrix (dammit)
matrix multiplication
 boolean, 323
 in sub-cubic time, 324
 min-plus, 316, 323, 325
 standard, 323, 325
matrix rounding, 182, 374
Max2Sat, 406
MaxCLIQUE, 394
 reduction from MAXINDSET, 394
MaxCut, 406
MaxINDSET, 390
 in circular arc graphs, 185
 in interval graphs, 162
 in trees, 120
 reduction from 3Sat, 390, 393, 395
 reduction to MaxCLIQUE, 394
 reduction to MINVERTEXCOVER, 394
maximum flows, 329
 acyclic, 339, 345
 integer, 334
 multiple sources and targets, 368
 with vertex capacities, 354
maximum independent set, see MAXINDSET
maximum matching in bipartite graphs, 355
maximum subarray problem, 124
two-dimensional, 138
Maxwell-Cremona diagrams, 189
mazes, 190, 247
 acute-angle, 216, 304
 number, 212
median, see selection
median-of-medians selection, 37, 53
median-of-medians-of-medians selection, 55
median-of-three heuristic, 30, 50
memoization, 99, 194, 234, 271, 278
 see also dynamic programming
memoized recursion is depth-first search, 234
mergesort, 26
mergesort recurrence, 28, 30, 33
metagraph, see strong component graph
methodisches Tatonnieren, 72
MINVERTEXCOVER, 394
 reduction from MAXINDSET, 394
 reduction to DIRECTEDHAMCYCLE, 398
 reduction to SUBSETSUM, 402
min-plus matrix multiplication, 316, 323, 325
Minesweeper, 406
minimum clique cover
 in circular arc graphs, 186
 in interval graphs, 178
minimum cuts, 330
minimum spanning trees, 203, 257
uniqueness, 258, 268
Minty’s algorithm, see Dijkstra’s algorithm
mom, see median of medians
mondegreen, 18
Monopoly, actual rules of, 386
Moore’s algorithm, 292
Morse code, 97, 165
mountain climbing problem, 217
MST, see minimum spanning trees
multigraph, 275, 277
n queens, 71, 79, 80
Nadirian Dream-Dollars, 123, 181
Napoleon Dynamite, 131
National Resident Matching Program, 171
“Needleman-Wunch” algorithm, 115
negative cycle detection, 292, 294, 299
negative cycles, 275, 277
negative edges, 274
neighbor, 191
Neitherlands (The Magicians), 376
nesting boxes, 372
new vertex (depth-first search), 228
NFA, see finite-state automaton
Nobel Prize in Algorithms Economics, 173
node, see vertex
none of your business, 21, 23, 25, 80, 206
see also black box
NOTALLEQUAL3Sat, 405
NP (nondeterministic polynomial time), 381
NP versus co-NP, 382
NP versus EXP, 414
NP versus PSPACE, 412
NP-complete, 383
NP-hard, 121, 138, 140, 235, 275, 358, 360, 381, 382
formal definition, 384
weakly, 117, 404
obvious, 14, 76, 80, 317, 382, 383
Oh yeah, we already did this, 30, 78
one-armed quicksort, see quickselect
open problems
all-pairs shortest paths, 317
matrix multiplication, 317
optimal addition chains, 44
optimal pancake flipping, 49
P versus NP, 381
sorting binary trees by swaps and rotations, 69
winning international draughts in one turn, 411
open-pit mining
see project selection, 366
optimal binary trees
binary search trees, 91, 117
variants, 96, 144
expression trees, 141, 142
prefix-free binary codes, 165
optimal substructure, see also correct recurrence, 112
ordered subtree, 156
Orlin’s algorithm, 344
out-degree of a vertex, 191
P (polynomial time), 381
P versus NP, 382
P versus PSPACE, 412
P≠NP as a law of nature, 382
Pac-Man, 407
palindrome, 81, 128, 218, 222, 252, 377
pancake sorting, 49, 151
parallel assignment, 249
parent, 200, 276
see also mom

Partition
NP-hard problem, 405
subroutine in quicksort and quickselect, 29
party planning, 182
path compression, 271
path flow, 337
path in a graph, 191
peasant multiplication, see
duplation and mediation
pebbling, 422
pecking order, 208
pixels, 206
PLANAR3Sat, 405
PLANARCIRCUITSat, 405
planar graph, 192
PLANARNOTALLEQUAL3Sat, 405
Plankalkül, 205, 278
plumbus, 322
politics
academic, 59, 373, 376, 384
Illinois, 373
Renaissance Italian, 47, 59
Soviet, 383
postorder, 227
tree traversal, 65, 66, 122
power, see exponentiation
pred(u, v), 309
pred(v) (tentative predecessor), 276
predecessor of a vertex, 191
prefix, 77
prefix-free binary code, 165
preorder, 227
tree traversal, 65, 66
prerequisites, i
references, ii
Prim’s algorithm, see Jarník’s algorithm
project selection, 366
proper k-coloring, 395
proper subgraph, 191

Propositiones ad Acuendos Juvenes,
428
prosody, 97
see also Fibonacci numbers
see also Morse code
pseudo-polynomial time, 117, 404
PSPACE (polynomial space), 412
PSPACE versus EXP, 414
PSPACE-hard, 412
punched cards, 26
QBF (quantified boolean formula),
413
quickselect, 35
quicksort, 29
quicksort recurrence, 33, 34
Racetrack, 220
rainbow, 387
RAND Corporation, 101
random-access machine, 384
reach(v), 226
reach^−1(v), 238
reachability, 191, 199
directed, 226
reciprocal diagrams, 189
recommended course policies, 108,
123
reconfiguration problems, 24, 45,
49, 68, 213, 215, 216, 219,
221, 428
recurrences
full history, 85, 92
removing floors and ceilings,
34
scary, 84, 92
solving with recursion trees, 31
recursion, 22, 261, 291, 353
backtracking, 71
depth-first search, 225
divide and conquer, 26
smart, see dynamic programming
see also induction
Recursion Fairy, 22, 25, 26, 28, 37, 337
recursion trees, 31, 49, 99
 all levels equal, 28, 30, 33, 33, 39, 49
backtracking, 72, 76
exponential decay, 33, 37–39, 43, 49
exponential growth, 33, 40, 49, 78, 85
path, 36, 37
weird, 30, 49
recursive brute force, see backtracking
reduced flow network, 331, 345
reduction, 21, 56, 205, 212, 385
regular expressions, 151
 generalized, 414, 415, 417
PSPACE-hard problems, 413
relaxing a tense edge, 276
repeated squaring, 43, 44, 103, 317
replacement paths, 298
repricing, see vertex reweighting
residual capacity c_f, 331
residual graph G_f, 332
results by RAND researchers, 101, 276, 284, 331
results by students, 35, 40, 42, 166, 278, 324, 341, 383, 407
Revelation 13:15–18, 161
reversal $rev(G)$ of directed graph G, 234
reverse topological order, see postorder
Rick and Morty, 322
road maps, 187, 274, 310
rock climbing, 153, 184, 253
rooted subtree, 121
Rubik’s Cube, 407
rule of three, 392, 393, 395, 405, 407, 408, 417
ruler function, 45, 46
Russian peasant multiplication, see Russian peasant multiplication, see
duplation and mediation
$\|S, T\|$ (cut capacity), 329
(s, t)-cut, 329
(s, t)-flow, 328
safe edge, 259
SAT, 386
 reduction from CircuitSAT, 386
satisfiability
 circuit, see CircuitSAT
 formula, see Sat
saturated edge (flows), 329
$scc(G)$ (strong component graph), 237
scheduling, 161
 greedy algorithms that don’t work, 177
 via dynamic programming, 162
 via greedy algorithm, 162, 363
 via maximum flows, 358, 362
Scrabble, 134
scriptio continua, 80, 166
Seidel’s algorithm, 317, 324
selection, 35, 52
 median-of-medians, 37, 53
 median-of-medians-of-medians,
 55
 quickselect, 35
self-descriptive sentence, 166
self-reduction, 416
semi-connected graph, 244
sequence alignment, see edit distance
sequence of decisions, 79, 112
series-parallel graph, 350
SetCover, 406
Sham-Poobanana University, 142, 161, 359, 362, 373
Shimbel’s algorithm, see Bellman-Ford
shortest common supersequence, 95, 125
shortest path tree, 274
shortest paths, 203
 all-pairs, 309
 analog algorithms, 278
 in directed acyclic graphs, 282
 in unweighted graphs, 278
 single-source, 273
 versus shortest walks, 275
 with negative edges, 274, 288
 in undirected graphs, 275
 with non-negative edges, 284
shortest simple path
reduction from
 DirectedHamPath, 275
shuffle, 126
simple graph, 191
sink (vertex with out-degree 0), 231
sink component, 239, 242
snails, 143
Snakes and Ladders, 212
soapbox, vi, 12, 106
Sollin’s algorithm, see Borůvka’s algorithm
solving a more general problem, 36, 80
solving the right problem, 83, 87, 88, 90, 91
sorting algorithms
 mergesort, 26
 quicksort, 29
source (in a flow network), 328
source (vertex with in-degree 0), 231
source component, 240
spanning forest, 192
spanning tree, 192
squaring and mediation, 44
SSSP, see shortest paths, single-source
stable matching, 170, 179
starting time of a vertex (depth-first search), 228, 242
STEINERTree, 406
Stigler’s Law of Eponymy, 42, 98, 114, 189, 261, 263, 284, 289, 383
Strassen’s algorithm, 317
strong component graph, 237
strong components, 237
 connected in depth-first forest, 239
 in linear time, 238
 Kosaraju-Sharir, 240
 Tarjan’s algorithm, 242
strong connectivity, 237
strongly connected components, see strong components
strongly connected graph, 192
subgraph, 191
subsequence, 86
subset construction, 195
SUBSETSUM, 76, 79, 80, 93, 116, 237, 402
dynamic programming
 algorithm, 404
 in pseudo-polynomial time, 117
 reduction from VERTEXCOVER, 402
successor of a vertex, 191
Sudoku, 406
suffix, 83
Sumerian clay tablets, 56
summary of past decisions, 79
Super Mario Brothers, 407
Tabula Peutingeriana, 187
tail of an edge, 191
talking dog joke, 318, 383	
tape sorting, 159
target (in a ﬂow network), 328
Tarjan’s algorithm, 242
tâtonner, 72
tense edge, 276, 312
Tetris, 407
text segmentation, 80, 94, 105, 124, 130, 237
Theseus (maze-solving robot), 100, 278
Threes (game), 407
Tibetan Memory Trick, see The Announcer’s Test
token (breadth-ﬁrst search), 279
token (Moore’s algorithm), 293
topological order, see reverse postorder
- topological sort, 232
- implicit, 232
Tower of Hanoi, 24, 44
- conﬁguration graph, 194
- non-recursive solutions, 44
- recurrence, 26, 78, 85, 89
- variants, 46–48, 140
Trainyard, 407
transforming certificates, 392
transitive closure, 246, 323
transitive reduction, 246
TRAVELINGSALESMAN, 402
- dynamic programming, 139
- Euclidean, convex position, 139
- reduction from
 DIRECTEDHAMCYCLE, 402
- reduction to LONGESTPATH, 236
tree (connected acyclic graph), 191
- equivalent deﬁnitions, 207
tree edge (depth-ﬁrst search), 229
tree traversal, 66, 227
- postorder, 122
trivial but useless O(1)-time algorithms, 17, 409
truth gadget, 396
TSP, see TRAVELINGSALESMAN
tuple selection, 357
Turing machines, 384
Turing reduction, 384
Twitbook, 152, 301
typography, 80, 130
Ulam distance, see edit distance
undecided edge, 260
undirected graph, 190
UNDIRECTEDHAMCYCLE, 402
- in a hypercube, 208
- reduction to international draughts, 409
UNDIRECTEDHAMPATH, 402
union-ﬁnd, see disjoint-set data structure
unordered subtree, 156
UnSAT, 385
useful deliberate ignorance, 22, 26, 35
useless edge, 259
vacuous base case, 25, 76, 87, 92
value of a node in a recursion tree, 31
Vankin’s Kilometer, 138
Vankin’s Mile, 137
variable gadget, 390, 395, 396, 400
vertex, 187
vertex cover, 394
vertex gadget, 398, 403, 410
vertex-disjoint paths, 354
vertex, see vertex (dammit)
Vidrach Itky Leda, 213
walk in a graph, 191
wavefront, 281, 284, 286
weakly NP-hard, 117, 404
weighted median, 53
WFS, see whatever-ﬁrst search
Whackbat, 133
whatever-ﬁrst search, 199
best-first (priority queue), see best-first search, 202
also breadth-first (queue), 202
depth-first (stack), 201
widest paths, 203, 270
word RAM model, 384

X3M, 405
XCNF-Sat, 419
xkcd, 407
zero cycles, 321
Dicebat Bernardus Carnotensis nos esse quasi nanos gigantium humeris insidentes, ut possimus plura eis et remotiora videre, non utique proprii visus acumine, aut eminentia corporis, sed quia in altum subvehimur et extollimur magnitudine gigantea.

[Bernard of Chartres used to say that we were like dwarfs seated on the shoulders of giants. He pointed out that we see more and farther than our predecessors, not because we have keener vision or greater height, but because we are lifted up and borne aloft on their gigantic stature.]

— John of Salisbury, Metalogicon (1159), translated by Daniel D. McGarry (1955)

The secret to productivity is getting dead people to do your work for you.

— Robert J. Lang (2009)

Index of People

Adelson-Velsky, Georgy, 96, 144, 341
Adler, Ilan, 364
al-Adli ar-Rumi, 190
Adversary, All-Powerful Malicious, 31, 161, 376, 379
Alcuin of York, 428
Alice, 217
Alighieri, Dante, 2
Alon, Noga, 317
Andersson, Arne, 96, 145
Apollonius of Perga, 3
Approximate Median Fairy, 33, 37
Archimedes, 3
Atlas, Charles, 102
St. Augustine of Hippo, 81
Bayer, Rudolf, 96, 144
Bellman, Richard, 101, 289
Berge, Claude, 356
Blažej Blažek, 261
Blagajte, Rod, 373
Blum, Manuel, 35
Bob, 217
Borůvka, Otakar, 261
Brahmagupta, 3
Brosh, Allie, 261, 291
Cayley, Arthur, 190
Cegłowski, Maciej, 182

443
<table>
<thead>
<tr>
<th>INDEX OF PEOPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaucer, Geoffrey, 2</td>
</tr>
<tr>
<td>Chazelle, Bernard, 217</td>
</tr>
<tr>
<td>Chazelle, Damien, 217</td>
</tr>
<tr>
<td>Choquet, Gustav, 261</td>
</tr>
<tr>
<td>Chowdhury, Rezaul, 324</td>
</tr>
<tr>
<td>Cicero, Marcus Tullius, 80</td>
</tr>
<tr>
<td>Claus, N. (de Siam), see Lucas, Édouard</td>
</tr>
<tr>
<td>Clifford, William, 190</td>
</tr>
<tr>
<td>Cobham, Alan, 381</td>
</tr>
<tr>
<td>Cook, Stephen, 42, 383</td>
</tr>
<tr>
<td>Couper, Archibald, 190</td>
</tr>
<tr>
<td>Cremona, Luigi, 189</td>
</tr>
<tr>
<td>Culmann, Carl, 189</td>
</tr>
<tr>
<td>Dantzig, George, 276, 284, 289, 328</td>
</tr>
<tr>
<td>Demaine, Erik, 413</td>
</tr>
<tr>
<td>Dijkstra, Edsger, 210, 263, 269, 284</td>
</tr>
<tr>
<td>DiMaggio, Joe, 318</td>
</tr>
<tr>
<td>Dinitz, Yefim, 341</td>
</tr>
<tr>
<td>Durden, Tyler, 180</td>
</tr>
<tr>
<td>Dweighter, Harry (pseudonym of Jacob Goodman), 49</td>
</tr>
<tr>
<td>Dictionaries, 4</td>
</tr>
<tr>
<td>Elias, Peter, 331</td>
</tr>
<tr>
<td>“Engine Charlie”, see Wilson, Charles Erwin</td>
</tr>
<tr>
<td>Eppstein, David, 209</td>
</tr>
<tr>
<td>Erera, Alan, 364</td>
</tr>
<tr>
<td>Erickson, Hannah, 216, 252</td>
</tr>
<tr>
<td>Erickson, Kay, 387</td>
</tr>
<tr>
<td>Euclid, 7, 57</td>
</tr>
<tr>
<td>Euler, Leonhard, 190, 247</td>
</tr>
<tr>
<td>Eutocius of Ascalon, 3</td>
</tr>
<tr>
<td>Füller, Martin, 42</td>
</tr>
<tr>
<td>Fahlberg, Constantin, 74</td>
</tr>
<tr>
<td>Fano, Robert, 166</td>
</tr>
<tr>
<td>Feinerman, Amiel, 331</td>
</tr>
<tr>
<td>Fernández-Baca, David, 364</td>
</tr>
<tr>
<td>Fibonacci, see Leonardo of Pisa</td>
</tr>
<tr>
<td>Fischer, Michael, 114, 315</td>
</tr>
</tbody>
</table>
Kalaba, Robert, 291
Kane, Daniel, 218
Karatsuba, Anatolii, 40
Karp, Richard, 311, 334, 340, 356, 405
Karzanov, Alexander, 344
Kekulé, August, 190
al-Khwārizmī, Muḥammad ibn Mūsā, 2
Kirchhoff, Gustav, 190
Kleene, Stephen, 318
Kolmogorov, Andrei, 40
Kosaraju, Rao, 240
Kruskal, Joseph, 263
Kuhn, Harald, 356

Lamport, Leslie, 210
Landis Evgenii, 96, 144
Laquière, Emmanuel, 72
Ledger, Heath, 380
Lee, Chin Yang, 278
Leonardo of Pisa, 2, 4, 46, 97, 98, 101
Levin, Leonid, 383
Leyzorek, Michael, 284, 316
Loberman, Harry, 263, 266
Lucas, Édouard, 24, 72, 103
Łukaszewicz, Józef, 261

Mądry, Aleksander, 344
Margalit, Oded, 317
Marston, John, 18
Martel, Charles, 364
Martin, Alain J., 210
Martin, Steve, 10
Massé, Pierre, 101
Maxwell, James Clerk, 189
McKenna, Terence, 23
Meyer, Albert, 315
Michie, Donald, 100, 117
Miller, Gary, 50
Minty, George, 276, 284, 289
Mom, 38
Moore, Edward, 205, 273, 278, 289
Moreno, Jacob, 190
Morgenstern, Oskar, 101
Murena, Lucius Licinius, 80
Musk, Elon, 182
Nash, John, 381
Nauck, Franz, 72

Okasaki, Chris, 13
Olinick, Eli, 364
Orlin, James, 343

Pacioli, Luca, 45
Papadimitriou, Christos, 49
Pappus of Alexandria, 3
Park, Joon-Sang, 324
Peirce, Charles Sanders, 190
Penner, Michael, 324
Peranson, Elliott, 172
Piṅgala, 43, 97, 103
Pinker, Steven, 13
Pitt, Lenny, 74
Prasanna, Viktor, 324
Pratt, Vaughan, 35
Prim, Robert, 260, 263

Queyranne, Maurice, 349

Rabin, Michael, 381
Ramachandran, Vijaya, 324
Rebaudi, Ovidio, 74
Recursion Fairy, ii, 22, 77, 80, 82, 89, 164, 169
Remsen, Ira, 74
Rivest, Ronald, 35
Ross, Frank, 327
Roy, Bernard, 318
Rudraṭa, 190

Sainte-Laguë, André, 190
Sallows, Lee, 166
Samuel, Arthur, 100
Saxel, Jindřich, 261
Schönhage, Arnold, 42
Scholten, Carel S., 210
Schrijver, Lex, 327
Schumacher, Heinrich, 72
Schwartz, Benjamin, 364
Sedgewick, Robert, 96, 144, 145
Shannon, Claude, 100, 166, 190, 278, 331
Shapley, Lloyd, 172
Sharir, Micha, 240
Shier, Douglas, 289
Shimbel, Alfonso, 289, 314
Siedel, Raimund, 317
Skiena, Steve, vii
Smullyan, Raymond, 59
Snell, Willebrod, 190
Sollin, George, 261
Steele, Guy, 16
Steffens, Elisabeth, 210
Stevin, Simon, 189
Stigler, Stephen, 98
Stockmeyer, Larry, 415
Strassen, Volker, 42, 317
al-Suli, Abu Bakr Muhammad bin Yahya, 190
Sulpicius Rufus, Servius, 81
Sylvester, James, 190
Tarjan, Robert, 35, 242, 264
Tarry, Gaston, 247
Tomizawa, Nobuaki, 311
Toom, Andrei, 42
Trémaux, Charles, 247
Tseitin, Grigorii, 389
Turing, Alan, 101
Varignon, Pierre, 189
Virahãŋka, 98, 101
von Neumann, John, 26, 101, 381
von Staudt, Karl, 190
Wagner, Robert, 114
Waits, Tom, 379
Warshall, Stephen, 318
Wayne, Kevin, 366
Weinberger, Arnold, 263, 266
Weiss, Mark Allen, 96, 145
Whiting, Peter, 284
Whittlesey, Kim, 273
Wiener, Christian, 247
Wilson, Charles Erwin, 102
Witzgall, Christoph, 289
Woodbury, Max, 289
Yuval, Gideon, 325
Zermelo, Ernst, 75
Zuse, Konrad, 205, 278
Zwick, Uri, 335
We should explain, before proceeding, that it is not our object to consider this program with reference to the actual arrangement of the data on the Variables of the engine, but simply as an abstract question of the nature and number of the operations required to be performed during its complete solution.

— Ada Augusta Byron King, Countess of Lovelace, translator’s notes for Luigi F. Menabrea, “Sketch of the Analytical Engine invented by Charles Babbage, Esq.” (1843)

How to play the flute. [picks up a flute] Well, here we are. You blow there and you move your fingers up and down here.

— Alan [John Cleese], “How to Do It”, Monty Python’s Flying Circus, episode 28 (aired October 26, 1972)

Index of Pseudocode

This index includes only algorithms with explicit pseudocode; see the main index for other named algorithms.

ADDALLSAFE EDGES, 262
ADDSAFE EDGES, 272
ALLPAIRS BELLMANFORD, 314
ALOUETTE, 16
APPORTION CONGRESS, 9
BFS, 279
BFSWITHTOKEN, 279
BINARY GCD, 58
BORŮVKA, 262, 272
BOTTLESOFBEER, 1
CIRCUIT SAT, 388
COLLECTSTEP, 211
COMPUTE OPT COST, 119
CONSTRUCT SUBSET, 79
COUNT ANDLABEL, 204
COUNT COMPONENTS, 204
CRUEL, 51
INDEX OF PSEUDOCODE

DagSSSP, 283
DFS, 225, 226, 228, 235
DFSALL, 227, 228
Dijkstra, 285
DynamicProgramming, 235
EagerWFS, 209
EuclidGCD, 58
Factorial, 57
Falling, 57
FastEuclidGCD, 58
FastLIS, 110
FastLIS2, 111
FastMultiply, 41
FastRecFibo, 104
FastSplittable, 106
FastSubsetSum, 117
FellmanBored, 299
FetchBit, 63
FibonacciMultiply, 4
FindLow, 243
FindLowDFS, 243
FindSafeEdges, 272
FischerMeyerAPSP, 315
FloydWarshall, 319
FloydSSSP, 277
GarbageCollect, 211
GreedyFlow, 349
GreedySchedule, 163
Hanoi, 26
HGGuess, 19
InitF, 118
InitSSSP, 276
IsAcyclic, 231
IsAcyclicDFS, 231
IterativeDFS, 199
IterFibo, 101
IterFibo2, 103
Jarník, 265
JarníkInit, 265
JarníkLoop, 265
JohnsonAPSP, 313
KleeneAPSP, 319
KosarajuSharir, 241
Kruskal, 267
LabelOne, 204
LezyrekAPSP, 316
LIS, 89, 90
LISbigger, 88
LISfirst, 90
LongestPath, 236, 237
MarkEveryVertexDuh, 203
MemFibo, 100
Memoize, 235
Merge, 27
MergeSort, 27
MomMomSelect, 55
MomSelect, 37
MombSelect, 53
Moore, 293
MultiplyOrDivide, 8
Mutate, 212
NonnegativeDijkstra, 288
ObviousAPSP, 310
OptimalBST, 119
OptimalBST2, 120
OptimalBST3, 120
Partition, 29
PeasantMultiply, 6, 23
PeasantPower, 44
PiñgalPower, 43
PlaceQueens, 73
PlayAnyGame, 76
PostProcess, 233
PostProcessDag, 233
PostProcessDagDFS, 233
PostProcessDFS, 233
PostVisit, 227
Preprocess, 227
PreVisit, 227
PushDagSSSP, 284
QueyranneFatPaths, 350
QuickSelect, 36
QuickSort, 29
RecFibo, 99
RecTarry, 247
RecTarry2, 248
RecursiveDFS, 199
Relax, 277
RightAngle, 8
RulerHanoi, 45
ShimmelAPSP, 314
ShorterEdge, 259
SlowPower, 43
SplitMultiply, 40
Splittable, 83
SqrtSort, 52
StoogeSort, 50
StrongComponents, 239
SubsetSum, 77, 78
Tarjan, 244
TarjanDFS, 244
Tarry, 247
Tarry2, 248
ThreeColorQueueSearch, 211
ThreeColorQueueStep, 211
ThreeColorSearch, 210
ThreeColorStackSearch, 210
ThreeColorStackStep, 210
ThreeColorStep, 210
TopologicalSort, 233, 234
TopSortDFS, 233
TreeMIS, 122
Unusual, 51
WFSAll, 203
WhateverFirstSearch, 200, 205
WhoTargetsWhom, 62
A wisely chosen illustration is almost essential to fasten the truth upon the ordinary mind, and no teacher can afford to neglect this part of his preparation.

— Howard Crosby (c.1880)

One showing is worth a hundred sayings.

— Alan Watts (misquoting a Chinese proverb), The Way of Zen (1957)

Please do not think that this is a neutral matter and that the only advantage of doing without pictures is that of saving space. Pictures in textbooks actually interfere with the learning process.

— Neville Martin Gwynne, Gwynne’s Grammar (2013)

Image Credits

All figures in this book, including the front cover, are original works of the author, except those listed below. All listed works are in the public domain unless otherwise indicated.

• Figure 0.1 (page 5) — Biblioteca nazionale Braidense (Milano)
 http://atena.beic.it/webclient/DeliveryManager?pid=2953344

• Figure 0.2 (page 5) — Internet Archive
 https://archive.org/details/archimedisopera05eutogoog/page/n377

• Figure 1.16 (page 45) — Internet Archive
 https://archive.org/details/pr1crationsmoolucaucof/page/162

• Figure 1.25 (page 61) — Derived from a crayon portrait of the author by Tina Erickson (2000); included with permission of the artist.

• Figure 5.1 (page 188) — Wikimedia Commons
 https://commons.wikimedia.org/wiki/File:Tabula_Peutingeriana_-_Miller.jpg
• Figure 5.2 (page 189) — Gallery of “Legal Trees” published by the Yale Law
Library under a Creative Commons Licence
https://www.flickr.com/photos/yalelawlibrary/albums/72157621954683764

• Figure 5.3 (page 189) — Internet Archive
https://archive.org/details/A077240124/page/n261

• Exercises 5.20 (page 216) and 8.22 (page 304) — Original puzzles by the
author, inspired by Jason Batterson and Shannon Rogers, Beast Academy
https://www.beastacademy.com/resources/printables.php

• Figure 10.1 (page 328) — T[omas] E. Harris and F[rank] S. Ross. Fundamen-
tals of a method for evaluating rail net capacities. The RAND Corporation,
Research Memorandum RM-1517, October 24, 1955. United States Govern-
ment work in the public domain.
1. Have something to say.
2. Say it.
3. Stop when you have said it.
4. Give the paper a proper title.

— John Shaw Billings, "An Address on Our Medical Literature",
International Medical Congress, London (1881)

You know, I could write a book.
And this book would be thick enough to stun an ox.

Colophon

This book was edited in TeXShop (version 4.27) and typeset with pdfLaTeX (MacTeX-2018) using the memoir document class (with madsen chapter style, komalike head style, and Ruled page style); several standard packages including amsmath, babel, enumitem, imakeidx, mathdesign, microtype, and standalone; and an embarrassing amount of customization and TeX-haxing. The text is typeset in Bitstream Charter, Αργεμοσία, Roboto, and Inconsolata. Except as indicated in the Image Credits, all figures were drawn by the author using OmniGraffle Pro, exported at PDF files, and included using the graphicx package.

Portions of our programming have been mechanically reproduced, and we now conclude our broadcast day.