• Each student must submit individual solutions for this homework. You may use any source at your disposal—paper, electronic, or human—but you must cite every source that you use. See the academic integrity policies on the course web site for more details. For all future homeworks, groups of up to three students will be allowed to submit joint solutions.

• Submit your solutions on standard printer/copier paper. At the top of each page, please clearly print your name and NetID, and indicate your registered discussion section. Use both sides of the paper. If you plan to write your solutions by hand, please print the last three pages of this homework as templates. If you plan to typeset your homework, you can find a \LaTeX template on the course web site; well-typeset homework will get a small amount of extra credit.

• Submit your solutions in the drop boxes outside 1404 Siebel. There is a separate drop box for each numbered problem. Don't staple your entire homework together. Don't give your homework to Jeff in class; he is fond of losing important pieces of paper.

• Avoid the Three Deadly Sins! There are a few dangerous writing (and thinking) habits that will trigger an automatic zero on any homework or exam problem. Yes, we are completely serious.
  
  – Give complete solutions, not just examples.
  – Declare all your variables.
  – Never use weak induction.

• Answering any homework or exam problem (or subproblem) in this course with "I don't know" and nothing else is worth 25% partial credit. We will accept synonyms like "No idea" or "WTF", but you must write something.

See the course web site for more information.

If you have any questions about these policies, please don't hesitate to ask in class, in office hours, or on Piazza.
1. The Terminal Game is a two-person game played with pen and paper. The game begins by drawing a rectangle with \( n \) “terminals” protruding into the rectangles, for some positive integer \( n \), as shown in the figure below. On a player's turn, she selects two terminals, draws a simple curve from one to the other without crossing any other curve (or itself), and finally draws a new terminal on each side of the curve. A player loses if it is her turn and no moves are possible, that is, if no two terminals may be connected without crossing at least one other curve.

![The initial setup.](image1)

![The first turn.](image2)

![No more moves.](image3)

Analyze this game, answering the following questions (and any more that you determine the answers to): When is it better to play first, and when it is better to play second? Is there always a winning strategy? What is the smallest number of moves in which you can defeat your opponent? Prove your answers are correct.

2. Herr Professor Doktor Georg von den Dschungel has a 23-node binary tree, in which each node is labeled with a unique letter of the German alphabet, which is just like the English alphabet with four extra letters: Ä, Ö, Ü, and ß. (Don't confuse these with A, O, U, and B!) Preorder and postorder traversals of the tree visit the nodes in the following order:

- Preorder: B K Ü E H L Z I Ö R C B T S O A Ä D F M N U G
- Postorder: H I Ö Z R L E C Ü S O T A ß K D M U G N F Ä B

(a) List the nodes in Professor von den Dschungel's tree in the order visited by an inorder traversal.

(b) Draw Professor von den Dschungel's tree.

3. Recursively define a set \( L \) of strings over the alphabet \{0, 1\} as follows:

- The empty string \( \epsilon \) is in \( L \).
- For any two strings \( x \) and \( y \) in \( L \), the string \( 0x1y0 \) is also in \( L \).
- These are the only strings in \( L \).

(a) Prove that the string \( 000010101010010100 \) is in \( L \).

(b) Prove by induction that every string in \( L \) has exactly twice as many 0s as 1s.

(c) Give an example of a string with exactly twice as many 0s as 1s that is not in \( L \).

Let \( #(a, w) \) denote the number of times symbol \( a \) appears in string \( w \); for example,

\[
#(0, 000010101010010100) = 12 \quad \text{and} \quad #(1, 000010101010010100) = 6.
\]

You may assume without proof that \( #(a, xy) = #(a, x) + #(a, y) \) for any symbol \( a \) and any strings \( x \) and \( y \).
4. This is an extra credit problem. Submit your solutions in the drop box for problem 2 (but don’t staple your solutions for 2 and 4 together).

A *perfect riffle shuffle*, also known as a *Faro shuffle*, is performed by cutting a deck of cards exactly in half and then *perfectly* interleaving the two halves. There are two different types of perfect shuffles, depending on whether the top card of the resulting deck comes from the top half or the bottom half of the original deck. An *out-shuffle* leaves the top card of the deck unchanged. After an in-shuffle, the original top card becomes the second card from the top. For example:

\[
\text{OutShuffle}(\text{A}\spadesuit 2\spadesuit 3\spadesuit 4\spadesuit 5\heartsuit 6\heartsuit 7\heartsuit 8\heartsuit) = \text{A}\spadesuit 5\heartsuit 2\spadesuit 6\heartsuit 3\spadesuit 7\heartsuit 4\spadesuit 8\heartsuit
\]

\[
\text{InShuffle}(\text{A}\spadesuit 2\spadesuit 3\spadesuit 4\spadesuit 5\heartsuit 6\heartsuit 7\heartsuit 8\heartsuit) = 5\heartsuit \text{A}\spadesuit 6\heartsuit 2\spadesuit 7\heartsuit 3\spadesuit 8\heartsuit 4\spadesuit
\]


Suppose we start with a deck of \(2^n\) distinct cards, for some non-negative integer \(n\). What is the effect of performing exactly \(n\) perfect in-shuffles on this deck? Prove your answer is correct!
1. Give regular expressions for each of the following languages over the alphabet \{0, 1\}. You do not need to prove your answers are correct.
   (a) All strings with an odd number of 1s.
   (b) All strings with at most three 0s.
   (c) All strings that do not contain the substring 010.
   (d) All strings in which every occurrence of the substring 00 occurs before every occurrence of the substring 11.

2. Recall that the reversal $w^R$ of a string $w$ is defined recursively as follows:
   
   $$w^R = \begin{cases} 
   \epsilon & \text{if } w = \epsilon \\
   x \cdot a & \text{if } w = ax \text{ for some symbol } a \text{ and some string } x
   \end{cases}$$

   The reversal $L^R$ of a language $L$ is defined as the set of reversals of all strings in $L$:
   $$L^R := \{w^R \mid w \in L\}$$

   (a) Prove that $(L^*)^R = (L^R)^*$ for every language $L$.
   (b) Prove that the reversal of any regular language is also a regular language. (You may assume part (a) even if you haven’t proved it yet.)

   You may assume the following facts without proof:
   
   - $L^* \cdot L^* = L^*$ for every language $L$.
   - $(w^R)^R = w$ for every string $w$.
   - $(x \cdot y)^R = y^R \cdot x^R$ for all strings $x$ and $y$.

   [Hint: Yes, all three proofs use induction, but induction on what? And yes, all three proofs.]

3. Describe context-free grammars for each of the following languages over the alphabet \{0, 1\}. Explain briefly why your grammars are correct; in particular, describe in English the language generated by each non-terminal in your grammars. (We are not looking for full formal proofs of correctness, but convincing evidence that you understand why your answers are correct.)

   (a) The set of all strings with more than twice as many 0s as 1s.
   (b) The set of all strings that are not palindromes.
   (c) [Extra credit] The set of all strings that are not equal to $ww$ for any string $w$.

   [Hint: $a + b = b + a$.]
1. **C comments** are the set of strings over alphabet $\Sigma = \{*, /, A, \diamond, \text{	extbackslash n}\}$ that form a proper comment in the C program language and its descendants, like C++, and Java. Here \text{	extbackslash n} represents the newline character, \diamond represents any other whitespace character (like the space and tab characters), and $A$ represents any non-whitespace character other than * or /.$^1$ There are two types of C comments:

- Line comments: Strings of the form // ... \text{	extbackslash n}.
- Block comments: Strings of the form /* ... */.

Following the C99 standard, we explicitly disallow nesting comments of the same type. A line comment starts with // and ends at the first \text{	extbackslash n} after the opening //. A block comment starts with /* and ends at the the first */ completely after the opening /*; in particular, every block comment has at least two *s. For example, the following strings are all valid C comments:

- /**
- //\diamond//\diamond\text{	extbackslash n}
- /**/\diamond\diamond\text{	extbackslash n}/**
- /*\diamond//\diamond\diamond*/

On the other hand, the following strings are not valid C comments:

- */
- //\diamond\diamond\diamond\text{	extbackslash n}
- //\diamond//\diamond//\diamond
- /*\diamond/*/\diamond/*

(a) Describe a DFA that accepts the set of all C comments.

(b) Describe a DFA that accepts the set of all strings composed entirely of blanks(\diamond), newlines(\text{	extbackslash n}), and C comments.

**You must explain in English how your DFAs work.** Drawings or formal descriptions without English explanations will receive no credit, even if they are correct.
2. Construct a DFA for the following language over alphabet \{0, 1\}:

\[ L = \left\{ w \in \{0, 1\}^* \mid \text{the number represented by binary string } w \text{ is divisible by 19, but the length of } w \text{ is not a multiple of 23} \right\}. \]

You must explain in English how your DFA works. A formal description without an English explanation will receive no credit, even if it is correct. Don't even try to draw the DFA.

3. Prove that each of the following languages is not regular.

(a) \( \{ w \in \{0\}^* \mid \text{length of } w \text{ is a perfect square; that is, } |w| = k^2 \text{ for some integer } k \} \).
(b) \( \{ w \in \{0, 1\}^* \mid \text{the number represented by } w \text{ as a binary string is a perfect square} \} \).

4. [Extra credit] Suppose \( L \) is a regular language which guarantees to contain at least one palindrome. Prove that if an \( n \)-state DFA \( M \) accepts \( L \), then \( L \) contains a palindrome of length polynomial in \( n \). What is the polynomial bound you get?

---

\(^1\)The actual C commenting syntax is considerably more complex than described here, because of character and string literals.

- The opening /* or // of a comment must not be inside a string literal ("...") or a (multi-)character literal ('...').
- The opening double-quote of a string literal must not be inside a character literal ('"') or a comment.
- The closing double-quote of a string literal must not be escaped ("").
- The opening single-quote of a character literal must not be inside a string literal ("...") or a comment.
- The closing single-quote of a character literal must not be escaped (\')
- A backslash escapes the next symbol if and only if it is not itself escaped (\") or inside a comment.

For example, the string /*\*/"*/"*/"*/" is a valid string literal (representing the 5-character string */\*/\*/, which is itself a valid block comment!) followed immediately by a valid block comment. For this homework question, just pretend that the characters ', "', and \ don't exist.

The C++ commenting is even more complicated, thanks to the addition of raw string literals. Don't ask.

Some C and C++ compilers do support nested block comments, in violation of the language specification. A few other languages, like OCaml, explicitly allow nesting comments.
1. For each of the following regular expressions, describe or draw two finite-state machines:
   
   • An NFA that accepts the same language, using Thompson’s algorithm (described in class and in the notes)
   • An equivalent DFA, using the incremental subset construction described in class. For each state in your DFA, identify the corresponding subset of states in your NFA. Your DFA should have no unreachable states.
   
   (a) \((01 + 10)^* (0 + 1 + \epsilon)\)
   (b) \(1^* + (10)^* + (100)^*\)

2. Prove that for any regular language \(L\), the following languages are also regular:
   
   (a) \(\text{SUBSTRINGS}(L) := \{ x \mid wxy \in L \text{ for some } w, y \in \Sigma^+ \}\)
   
   (b) \(\text{HALF}(L) := \{ w \mid ww \in L \}\)

   [Hint: Describe how to transform a DFA for \(L\) into NFAs for \(\text{SUBSTRINGS}(L)\) and \(\text{HALF}(L)\). What do your NFAs have to guess? Don’t forget to explain in English how your NFAs work.]

3. Which of the following languages over the alphabet \(\Sigma = \{0, 1\}\) are regular and which are not? Prove your answers are correct. Recall that \(\Sigma^+\) denotes the set of all nonempty strings over \(\Sigma\).
   
   (a) \(\{wxw \mid w, x \in \Sigma^+\}\)
   
   (b) \(\{wxw \mid w, x \in \Sigma^+\}\)
   
   (c) \(\{wxwy \mid w, x, y \in \Sigma^+\}\)
   
   (d) \(\{wxxy \mid w, x, y \in \Sigma^+\}\)
1. For this problem, a subtree of a binary tree means any connected subgraph. A binary tree is complete if every internal node has two children, and every leaf has exactly the same depth. Describe and analyze a recursive algorithm to compute the largest complete subtree of a given binary tree. Your algorithm should return both the root and the depth of this subtree.

![Binary Tree Diagram](image)

The largest complete subtree of this binary tree has depth 2.

2. Consider the following cruel and unusual sorting algorithm.

```plaintext
CRUEL(A[1..n]):
  if n > 1
    CRUEL(A[1..n/2])
    CRUEL(A[n/2+1..n])
  UNUSUAL(A[1..n])

UNUSUAL(A[1..n]):
  if n = 2
    else
      for i ← 1 to n/4  ⟨swap 2nd and 3rd quarters⟩
        swap A[i+n/4] ↔ A[i+n/2]
      UNUSUAL(A[1..n/2])  ⟨recurse on left half⟩
      UNUSUAL(A[n/2+1..n])  ⟨recurse on right half⟩
      UNUSUAL(A[n/4+1..3n/4])  ⟨recurse on middle half⟩
```

Notice that the comparisons performed by the algorithm do not depend at all on the values in the input array; such a sorting algorithm is called oblivious. Assume for this problem that the input size n is always a power of 2.

(a) Prove by induction that CRUEL correctly sorts any input array. [Hint: Consider an array that contains n/4 1s, n/4 2s, n/4 3s, and n/4 4s. Why is this special case enough?]

(b) Prove that CRUEL would not correctly sort if we removed the for-loop from UNUSUAL.

(c) Prove that CRUEL would not correctly sort if we swapped the last two lines of UNUSUAL.

(d) What is the running time of UNUSUAL? Justify your answer.

(e) What is the running time of CRUEL? Justify your answer.
3. In the early 20th century, a German mathematician developed a variant of the Towers of Hanoi game, which quickly became known in the American literature as “Liberty Towers”\(^1\). In this variant, there is a row of \(k \geq 3\) pegs, numbered in order from 1 to \(k\). In a single turn, for any index \(i\), you can move the smallest disk on peg \(i\) to either peg \(i - 1\) or peg \(i + 1\), subject to the usual restriction that you cannot place a bigger disk on a smaller disk. Your mission is to move a stack of \(n\) disks from peg 1 to peg \(k\).

(a) Describe and analyze a recursive algorithm for the case \(k = 3\). \textbf{Exactly} how many moves does your algorithm perform?

(b) Describe and analyze a recursive algorithm for the case \(k = n + 1\) that requires at most \(O(n^3)\) moves. To simplify the algorithm, assume that \(n\) is a power of 2. [\textit{Hint: Use part (a).}]

(c) \textbf{[Extra credit]} Describe and analyze a recursive algorithm for the case \(k = n + 1\) that requires at most \(O(n^2)\) moves. Do not assume that \(n\) is a power of 2. [\textit{Hint: Don’t use part (a).}]

(d) \textbf{[Extra credit]} Describe and analyze a recursive algorithm for the case \(k = \sqrt{n} + 1\) that requires at most a polynomial number of moves. To simplify the algorithm, assume that \(n\) is a power of 4. What polynomial bound do you get? [\textit{Hint: Use part (a)!!!}]

\* (e) \textbf{[Extra extra credit]} Describe and analyze a recursive algorithm for arbitrary \(n\) and \(k\). How small must \(k\) be (as a function of \(n\)) so that the number of moves is bounded by a polynomial in \(n\)? (This is actually an open research problem, a phrase which here means “Nobody knows the best answer.”)

\(^1\)No, not really. During World War I, many German-derived or Germany-related names were changed to more patriotic variants. For example, sauerkraut became “liberty cabbage”, hamburgers became “liberty sandwiches”, frankfurters became “Liberty sausages” or “hot dogs”, German measles became “liberty measles”, dachshunds became “liberty pups”, German shepherds became “Alsatians”, and pinochle (the card game) became “Liberty”. For more recent anti-French examples, see “freedom fries”, “freedom toast”, and “liberty lip lock”. Americans are weird.
1. *Dance Dance Revolution* is a dance video game, first introduced in Japan by Konami in 1998. Players stand on a platform marked with four arrows, pointing forward, back, left, and right, arranged in a cross pattern. During play, the game plays a song and scrolls a sequence of \( n \) arrows (\( \downarrow \), \( \uparrow \), \( \leftarrow \), or \( \rightarrow \)) from the bottom to the top of the screen. At the precise moment each arrow reaches the top of the screen, the player must step on the corresponding arrow on the dance platform. (The arrows are timed so that you'll step with the beat of the song.)

You are playing a variant of this game called “Vogue Vogue Revolution”, where the goal is to play perfectly but move as little as possible. When an arrow reaches the top of the screen, if one of your feet is already on the correct arrow, you are awarded one style point for maintaining your current pose. If neither foot is on the right arrow, you must move one (and only one) of your feet from its current location to the correct arrow on the platform. If you ever step on the wrong arrow, or fail to step on the correct arrow, or move more than one foot at a time, or move either foot when you are already standing on the correct arrow, or insult Beyoncé, all your style points are immediately taken away and you lose.

How should you move your feet to maximize your total number of style points? For purposes of this problem, assume you always start with you left foot on \( \leftarrow \) and you right foot on \( \rightarrow \), and that you've memorized the entire sequence of arrows. For example, if the sequence is \( \uparrow \uparrow \downarrow \downarrow \leftarrow \rightarrow \), you can earn 5 style points by moving you feet as shown below:

```
Begin!  Style point!  Style point!  Style point!  Style point!
```

Describe and analyze an efficient algorithm to find the maximum number of style points you can earn during a given VVR routine. Your input is an array \( \text{Arrow}[1..n] \) containing the sequence of arrows.

2. Recall that a *palindrome* is any string that is exactly the same as its reversal, like \( I \), or \( DEED \), or \( RACECAR \), or \( AMANAPLANACATACANALPANAMA \).

Any string can be decomposed into a sequence of palindrome substrings. For example, the string \( \text{BUBBASEESABANANA} \) (“Bubba sees a banana.”) can be broken into palindromes in the following ways (among many others):

```
BUB • BASEESAB • ANANA
B • U • BB • A • SEES • ABA • NAN • A
B • U • BB • A • SEES • A • B • ANANA
B • U • B • A • S • E • E • S • A • B • ANA • N • A
```

Describe and analyze an efficient algorithm to find the smallest number of palindromes that make up a given input string. For example, given the input string \( \text{BUBBASEESABANANA} \), your algorithm would return the integer 3.
3. Suppose you are given a DFA $M = (\{0, 1\}, Q, s, A, \delta)$ and a binary string $w \in \{0, 1\}^*$. 

(a) Describe and analyze an algorithm that computes the longest subsequence of $w$ that is accepted by $M$, or correctly reports that $M$ does not accept any subsequence of $w$.

*(b) [Extra credit] Describe and analyze an algorithm that computes the shortest supersequence of $w$ that is accepted by $M$, or correctly reports that $M$ does not accept any supersequence of $w$. (Recall that a string $x$ is a supersequence of $w$ if and only if $w$ is a subsequence of $x$.)

Analyze both of your algorithms in terms of the parameters $n = |w|$ and $k = |Q|$.

**Rubric (for all dynamic programming problems):** As usual, a score of $x$ on the following 10-point scale corresponds to a score of $\lceil x/3 \rceil$ on the 4-point homework scale.

- 6 points for a correct recurrence, described either using mathematical notation or as pseudocode for a recursive algorithm.
  - + 1 point for a clear **English** description of the function you are trying to evaluate. (Otherwise, we don’t even know what you’re trying to do.)
  - Automatic zero if the **English description is missing**.
  - + 1 point for stating how to call your function to get the final answer.
  - + 1 point for base case(s). −$\frac{1}{2}$ for one minor bug, like a typo or an off-by-one error.
  - + 3 points for recursive case(s). −1 for each minor bug, like a typo or an off-by-one error. **No credit for the rest of the problem if the recursive case(s) are incorrect.**

- 4 points for details of the dynamic programming algorithm
  - + 1 point for describing the memoization data structure
  - + 2 points for describing a correct evaluation order; a clear picture is sufficient. If you use nested loops, be sure to specify the nesting order.
  - + 1 point for time analysis

- It is **not** necessary to state a space bound.

- For problems that ask for an algorithm that computes an optimal structure—such as a subset, partition, subsequence, or tree—an algorithm that computes only the value or cost of the optimal structure is sufficient for full credit.

- Official solutions usually include pseudocode for the final iterative dynamic programming algorithm, **but this is not required for full credit**. If your solution includes iterative pseudocode, you do not need to separately describe the recurrence, data structure, or evaluation order. (But you still need to describe the underlying recursive function in English.)

- Official solutions will provide target time bounds. Algorithms that are faster than this target are worth more points; slower algorithms are worth fewer points, typically by 2 or 3 points for each factor of $n$. Partial credit is scaled to the new maximum score, and all points above 10 are recorded as extra credit.

  We rarely include these target time bounds in the actual questions, because when we do include them, significantly more students turn in algorithms that meet the target time bound but don’t work (earning 0/10) instead of correct algorithms that are slower than the target time bound (earning 8/10).
1. Every year, as part of its annual meeting, the Antarctic Snail Lovers of Upper Glacierville hold a Round Table Mating Race. Several high-quality breeding snails are placed at the edge of a round table. The snails are numbered in order around the table from 1 to $n$. During the race, each snail wanders around the table, leaving a trail of slime behind it. The snails have been specially trained never to fall off the edge of the table or to cross a slime trail, even their own. If two snails meet, they are declared a breeding pair, removed from the table, and whisked away to a romantic hole in the ground to make little baby snails. Note that some snails may never find a mate, even if the race goes on forever.

For every pair of snails, the Antarctic SLUG race organizers have posted a monetary reward, to be paid to the owners if that pair of snails meets during the Mating Race. Specifically, there is a two-dimensional array $M[1..n, 1..n]$ posted on the wall behind the Round Table, where $M[i, j] = M[j, i]$ is the reward to be paid if snails $i$ and $j$ meet. Rewards may be positive, negative, or zero.

Describe and analyze an algorithm to compute the maximum total reward that the organizers could be forced to pay, given the array $M$ as input.

2. Consider a weighted version of the class scheduling problem, where different classes offer different number of credit hours, which are of course totally unrelated to the duration of the class lectures. Given arrays $S[1..n]$ of start times, an array $F[1..n]$ of finishing times, and an array $H[1..n]$ of credit hours as input, your goal is to choose a set of non-overlapping classes with the largest possible number of credit hours.

(a) Prove that the greedy algorithm described in class — Choose the class that ends first and recurse — does not always return the best schedule.

(b) Describe an efficient algorithm to compute the best schedule.

In addition to submitting a solution on paper as usual, please individually submit an electronic solution for this problem on CrowdGrader. Please see the course web page for detailed instructions.
3. Suppose you have just purchased a new type of hybrid car that uses fuel extremely efficiently, but can only travel 100 miles on a single battery. The car's fuel is stored in a single-use battery, which must be replaced after at most 100 miles. The actual fuel is virtually free, but the batteries are expensive and can only be installed by licensed battery-replacement technicians. Thus, even if you decide to replace your battery early, you must still pay full price for the new battery to be installed. Moreover, because these batteries are in high demand, no one can afford to own more than one battery at a time.

Suppose you are trying to get from San Francisco to New York City on the new Inter-Continental Super-Highway, which runs in a direct line between these two cities. There are several fueling stations along the way; each station charges a different price for installing a new battery. Before you start your trip, you carefully print the Wikipedia page listing the locations and prices of every fueling station on the ICSH. Given this information, how do you decide the best places to stop for fuel?

More formally, suppose you are given two arrays $D[1..n]$ and $C[1..n]$, where $D[i]$ is the distance from the start of the highway to the $i$th station, and $C[i]$ is the cost to replace your battery at the $i$th station. Assume that your trip starts and ends at fueling stations (so $D[1] = 0$ and $D[n]$ is the total length of your trip), and that your car starts with an empty battery (so you must install a new battery at station 1).

(a) Describe and analyze a greedy algorithm to find the minimum number of refueling stops needed to complete your trip. Don't forget to prove that your algorithm is correct.

(b) But what you really want to minimize is the total cost of travel. Show that your greedy algorithm in part (a) does not produce an optimal solution when extended to this setting.

(c) Describe an efficient algorithm to compute the locations of the fuel stations you should stop at to minimize the total cost of travel.
1. You are standing next to a water pond, and you have three empty jars. Each jar holds a positive integer number of gallons; the capacities of the three jars may or may not be different. You want one of the jars (which one doesn’t matter) to contain exactly \( k \) gallons of water, for some integer \( k \). You are only allowed to perform the following operations:

(a) Fill a jar with water from the pond until the jar is full.
(b) Empty a jar of water by pouring water into the pond.
(c) Pour water from one jar to another, until either the first jar is empty or the second jar is full, whichever happens first.

For example, suppose your jars hold 6, 10, and 15 gallons. Then you can put 13 gallons of water into the third jar in six steps:

- Fill the third jar from the pond.
- Fill the first jar from the third jar. (Now the third jar holds 9 gallons.)
- Empty the first jar into the pond.
- Fill the second jar from the pond.
- Fill the first jar from the second jar. (Now the second jar holds 4 gallons.)
- Empty the second jar into the third jar.

Describe an efficient algorithm that finds the minimum number of operations required to obtain a jar containing exactly \( k \) gallons of water, or reports correctly that obtaining exactly \( k \) gallons of water is impossible, given the capacities of the three jars and a positive integer \( k \) as input. For example, given the four numbers 6, 10, 15 and 13 as input, your algorithm should return the number 6 (for the sequence of operations listed above).

2. Consider a directed graph \( G \), where each edge is colored either red, white, or blue. A walk\(^1\) in \( G \) is called a French flag walk if its sequence of edge colors is red, white, blue, red, white, blue, and so on. More formally, a walk \( v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_k \) is a French flag path if, for every integer \( i \), the edge \( v_i \rightarrow v_{i+1} \) is red if \( i \mod 3 = 0 \), white if \( i \mod 3 = 1 \), and blue if \( i \mod 3 = 2 \).

Describe an efficient algorithm to find all vertices in a given edge-colored directed graph \( G \) that can be reached from a given vertex \( v \) through a French flag walk.

3. Suppose we are given a directed acyclic graph \( G \) where every edge \( e \) has a positive integer weight \( w(e) \), along with two specific vertices \( s \) and \( t \) and a positive integer \( W \).

(a) Describe an efficient algorithm to find the longest path (meaning the largest number of edges) from \( s \) to \( t \) in \( G \) with total weight at most \( W \). \([\text{Hint: Use dynamic programming.}]\)

(b) [Extra credit] Solve part (a) with a running time that does not depend on \( W \).

\(^1\)Recall that a walk in \( G \) is a sequence of vertices \( v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_k \), such that \( v_{i-1} \rightarrow v_i \) is an edge in \( G \) for every index \( i \). A path is a walk in which no vertex appears more than once.
1. After a grueling algorithms midterm, you decide to take the bus home. Since you planned ahead, you have a schedule that lists the times and locations of every stop of every bus in Champaign-Urbana. Champaign-Urbana is currently suffering from a plague of zombies, so even though the bus stops have fences that supposedly keep the zombies out, you’d still like to spend as little time waiting at bus stops as possible. Unfortunately, there isn’t a single bus that visits both your exam building and your home; you must transfer between buses at least once.

Describe and analyze an algorithm to determine a sequence of bus rides from Siebel to your home, that minimizes the total time you spend waiting at bus stops. You can assume that there are $b$ different bus lines, and each bus stops $n$ times per day. Assume that the buses run exactly on schedule, that you have an accurate watch, and that walking between bus stops is too dangerous to even contemplate.

2. It is well known that the global economic collapse of 2017 was caused by computer scientists indiscriminately abusing weaknesses in the currency exchange market. Arbitrage was a money-making scheme that takes advantage of inconsistencies in currency exchange rates. Suppose a currency trader with $1,000,000 discovered that 1 US dollar could be traded for 120 Japanese yen, 1 yen could be traded for 0.01 euros, and 1 euro could be traded for 1.2 US dollars. Then by converting his money from dollars to yen, then from yen to euros, and finally from euros back to dollars, the trader could instantly turn his $1,000,000 into $1,440,000! The cycle of currencies $\$ \rightarrow ¥ \rightarrow € \rightarrow \$$ was called an arbitrage cycle. Finding and exploiting arbitrage cycles before the prices were corrected required extremely fast algorithms. Of course, now that the entire world uses plastic bags as currency, such abuse is impossible.

Suppose $n$ different currencies are traded in the global currency market. You are given a two-dimensional array $Exch[1..n, 1..n]$ of exchange rates between every pair of currencies; for all indices $i$ and $j$, one unit of currency $i$ buys $Exch[i, j]$ units of currency $j$. (Do not assume that $Exch[i, j] \cdot Exch[j, i] = 1$.)

(a) Describe an algorithm that computes an array $Most[1..n]$, where $Most[i]$ is the largest amount of currency $i$ that you can obtain by trading, starting with one unit of currency 1, assuming there are no arbitrage cycles.

(b) Describe an algorithm to determine whether the given array of currency exchange rates creates an arbitrage cycle.

3. Describe and analyze an algorithm to find the second smallest spanning tree of a given undirected graph $G$ with weighted edges, that is, the spanning tree of $G$ with smallest total weight except for the minimum spanning tree. Because the minimum spanning tree is haunted, or something.
The following questions ask you to describe various Turing machines. In each problem, give both a formal description of your Turing machine in terms of specific states, tape symbols, and transition functions and explain in English how your Turing machine works. In particular:

- Clearly specify what variant of Turing machine you are using: Number of tapes, number of heads, allowed head motions, halting conditions, and so on.
- Include the type signature of your machine's transition function. The standard model uses a transition function whose signature is $\delta : Q \times \Gamma \to Q \times \Gamma \times \{-1, +1\}$.
- If necessary, break your Turing machine into smaller functional pieces, and describe those pieces separately (both formally and in English).
- Use state names that convey their meaning/purpose.

1. Describe a Turing machine that computes the function $\lceil \log_2 n \rceil$. Given the string $1^n$ as input, for any positive integer $n$, your machine should return the string $1^{\lceil \log_2 n \rceil}$ as output. For example, given the input string $1111111111111$ (thirteen 1s), your machine should output the string $1111$, because $2^3 < 13 \leq 2^4$.

2. A binary-tree Turing machine uses an infinite binary tree as its tape; that is, every cell in the tape has a left child and a right child. At each step, the head moves from its current cell to its Parent, its Left child, or to its Right child. Thus, the transition function of such a machine has the form $\delta : Q \times \Gamma \to Q \times \Gamma \times \{P, L, R\}$. The input string is initially given along the left spine of the tape.

Prove that any binary-tree Turing machine can be simulated by a standard Turing machine. That is, given any binary-tree Turing machine $M = (\Gamma, \square, \Sigma, Q, \text{start}, \text{accept}, \text{reject}, \delta)$, describe a standard Turing machine $M' = (\Gamma', \square', \Sigma, Q', \text{start}', \text{accept}', \text{reject}', \delta')$ that accepts and rejects exactly the same strings as $M$. Be sure to describe how a single transition of $M$ is simulated by $M'$.

In addition to submitting paper solutions, please also electronically submit your solution to this problem on CrowdGrader.

3. [Extra credit]

A tag-Turing machine has two heads: one can only read, the other can only write. Initially, the read head is located at the left end of the tape, and the write head is located at the first blank after the input string. At each transition, the read head can either move one cell to the right or stay put, but the write head must write a symbol to its current cell and move one cell to the right. Neither head can ever move to the left.

Prove that any standard Turing machine can be simulated by a tag-Turing machine. That is, given any standard Turing machine $M$, formally describe a tag-Turing machine $M'$ that accepts and rejects exactly the same strings as $M$. Be sure to describe how a single transition of $M$ is simulated by $M'$.
1. Consider the following problem, called BOXDEPTH: Given a set of \( n \) axis-aligned rectangles in the plane, how big is the largest subset of these rectangles that contain a common point?

(a) Describe a polynomial-time reduction from BOXDEPTH to MAXCLIQUE.

(b) Describe and analyze a polynomial-time algorithm for BOXDEPTH. [Hint: Don’t try to optimize the running time; \( O(n^3) \) is good enough.]

(c) Why don’t these two results imply that \( P=NP \)?

2. Consider the following solitaire game. The puzzle consists of an \( n \times m \) grid of squares, where each square may be empty, occupied by a red stone, or occupied by a blue stone. The goal of the puzzle is to remove some of the given stones so that the remaining stones satisfy two conditions: (1) every row contains at least one stone, and (2) no column contains stones of both colors. For some initial configurations of stones, reaching this goal is impossible.

![A solvable puzzle and one of its many solutions.](image1.png)

An unsolvable puzzle.

Prove that it is NP-hard to determine, given an initial configuration of red and blue stones, whether this puzzle can be solved.

3. A subset \( S \) of vertices in an undirected graph \( G \) is called **triangle-free** if, for every triple of vertices \( u, v, w \in S \), at least one of the three edges \( uv, uw, vw \) is absent from \( G \). Prove that finding the size of the largest triangle-free subset of vertices in a given undirected graph is NP-hard.

![A triangle-free subset of 7 vertices.](image2.png)

This is **not** the largest triangle-free subset in this graph.

In addition to submitting paper solutions, please also electronically submit your solution to this problem on CrowdGrader.

4. **[Extra credit]** Describe a direct polynomial-time reduction from 4COLOR to 3COLOR. (This is significantly harder than the opposite direction, which you’ll see in lab on Wednesday. Don’t go through the Cook-Levin Theorem.)
1. Recall that $w^R$ denotes the reversal of string $w$; for example, $\text{TURING}^R = \text{GNIRUT}$. Prove that the following language is undecidable.

$$\text{RevAccept} := \{ \langle M \rangle \mid M \text{ accepts } \langle M \rangle^R \}$$

2. Let $M$ be a Turing machine, let $w$ be an arbitrary input string, and let $s$ be an integer. We say that $M$ accepts $w$ in space $s$ if, given $w$ as input, $M$ accesses only the first $s$ cells on the tape and eventually accepts.

   (a) Prove that the following language is decidable:

$$\{ \langle M, w \rangle \mid M \text{ accepts } w \text{ in space } |w|^2 \}$$

   (b) Prove that the following language is undecidable:

$$\{ \langle M \rangle \mid M \text{ accepts at least one string } w \text{ in space } |w|^2 \}$$

3. [Extra credit] For each of the following languages, either prove that the language is decidable, or prove that the language is undecidable.

   (a) $L_0 = \{ \langle M \rangle \mid \text{ given any input string, } M \text{ eventually leaves its start state} \}$

   (b) $L_1 = \{ \langle M \rangle \mid M \text{ decides } L_0 \}$

   (c) $L_2 = \{ \langle M \rangle \mid M \text{ decides } L_1 \}$

   (d) $L_3 = \{ \langle M \rangle \mid M \text{ decides } L_2 \}$

   (e) $L_4 = \{ \langle M \rangle \mid M \text{ decides } L_3 \}$
1. Prove that every non-negative integer can be represented as the sum of distinct powers of 2. (“Write it in binary” is not a proof; it’s just a restatement of what you have to prove.)

2. Suppose you and your 8-year-old cousin Elmo decide to play a game with a rectangular bar of chocolate, which has been scored into an \( n \times m \) grid of squares. You and Elmo alternate turns. On each turn, you or Elmo choose one of the available pieces of chocolate and break it along one of the grid lines into two smaller rectangles. Thus, at all times, each piece of chocolate is an \( a \times b \) rectangle for some positive integers \( a \) and \( b \); in particular, a \( 1 \times 1 \) piece cannot be broken into smaller pieces. The game ends when all the pieces are individual squares. The winner is the player who breaks the last piece.

Describe a strategy for winning this game. When should you take the first move, and when should you offer it to Elmo? On each turn, how do you decide which piece to break and where? Prove your answers are correct. [Hint: Let’s play a \( 3 \times 3 \) game. You go first. Oh, and I’m kinda busy right now, so could you just play for me whenever it’s my turn? Thanks.]

3. [To think about later] Now consider a variant of the previous chocolate-bar game, where on each turn you can either break a piece into two smaller pieces or eat a \( 1 \times 1 \) piece. This game ends when all the chocolate is gone. The winner is the player who eats the last bite of chocolate (not the player who eats the most chocolate). Describe a strategy for winning this game, and prove that your strategy works.
These lab problems ask you to prove some simple claims about recursively-defined string functions and concatenation. In each case, we want a self-contained proof by induction that relies on the formal recursive definitions, not on intuition. In particular, your proofs must refer to the formal recursive definition of string concatenation:

\[
w \cdot z := \begin{cases} 
  z & \text{if } w = \epsilon \\
  a \cdot (x \cdot z) & \text{if } w = ax \text{ for some symbol } a \text{ and some string } x
\end{cases}
\]

You may also use any of the following facts, which we proved in class:

**Lemma 1:** Concatenating nothing does nothing: For every string \( w \), we have \( w \cdot \epsilon = w \).

**Lemma 2:** Concatenation adds length: \( |w \cdot x| = |w| + |x| \) for all strings \( w \) and \( x \).

**Lemma 3:** Concatenation is associative: \((w \cdot x) \cdot y = w \cdot (x \cdot y)\) for all strings \( w, x, \) and \( y \).

---

1. Let \( \#(a, w) \) denote the number of times symbol \( a \) appears in string \( w \); for example,

\[
\#(0, 0000101010001000) = 12 \quad \text{and} \quad \#(1, 0000101010001000) = 6.
\]

   (a) Give a formal recursive definition of \( \#(a, w) \).

   (b) Prove by induction that \( \#(a, w \cdot z) = \#(a, w) + \#(a, z) \) for any symbol \( a \) and any strings \( w \) and \( z \).

2. The **reversal** \( w^R \) of a string \( w \) is defined recursively as follows:

\[
w^R := \begin{cases} 
  \epsilon & \text{if } w = \epsilon \\
  x^R \cdot a & \text{if } w = ax
\end{cases}
\]

   (a) Prove that \((w \cdot x)^R = x^R \cdot w^R\) for all strings \( w \) and \( x \).

   (b) Prove that \((w^R)^R = w\) for every string \( w \).
Give regular expressions that describe each of the following languages over the alphabet \{0, 1\}. We won’t get to all of these in section.

1. All strings containing at least three 0s.

2. All strings containing at least two 0s and at least one 1.

3. All strings containing the substring 000.

4. All strings not containing the substring 000.

5. All strings in which every run of 0s has length at least 3.

6. All strings such that every substring 000 appears after every 1.

7. Every string except 000. [Hint: Don’t try to be clever.]

8. All strings w such that in every prefix of w, the number of 0s and 1s differ by at most 1.

*9. All strings w such that in every prefix of w, the number of 0s and 1s differ by at most 2.

*10. All strings in which the substring 000 appears an even number of times. (For example, 0001000 and 0000 are in this language, but 00000 is not.)
Jeff showed the context-free grammars in class on Tuesday; in each example, the grammar itself is on the left; the explanation for each non-terminal is on the right.

- Properly nested strings of parentheses.

\[
S \rightarrow \varepsilon \mid S(S)
\]

properly nested parentheses

Here is a different grammar for the same language:

\[
S \rightarrow \varepsilon \mid (S) \mid SS
\]

properly nested parentheses

- \(\{0^m1^n \mid m \neq n\}\). This is the set of all binary strings composed of some number of 0s followed by a different number of 1s.

\[
S \rightarrow A \mid B
\]

all strings \(0^m1^n\) where \(m \neq n\)

\[
A \rightarrow 0A \mid 0C
\]

all strings \(0^m1^n\) where \(m > n\)

\[
B \rightarrow B1 \mid C1
\]

all strings \(0^m1^n\) where \(m < n\)

\[
C \rightarrow \varepsilon \mid 0C1
\]

all strings \(0^n1^n\) for some integer \(n\)

Give context-free grammars for each of the following languages. For each grammar, describe in English the language for each non-terminal, and in the examples above. As usual, we won't get to all of these in section.

1. Binary palindromes: Strings over \(\{0, 1\}\) that are equal to their reversals. For example: \textbf{00111000} and \textbf{0100010}, but not \textbf{01100}.

2. \(\{0^{2n}1^n \mid n \geq 0\}\)

3. \(\{0^m1^n \mid m \neq 2n\}\)

4. \(\{0, 1\}^* \setminus \{0^{2n}1^n \mid n \geq 0\}\)

5. Strings of properly nested parentheses (\(\)\), brackets [\(\]\), and braces \{\(\}\). For example, the string \(([[1]])\) is in this language, but the string \([[]]\) is not, because the left and right delimiters don't match.

6. Strings over \(\{0, 1\}\) where the number of 0s is equal to the number of 1s.

7. Strings over \(\{0, 1\}\) where the number of 0s is \textit{not} equal to the number of 1s.
Construct DFA that accept each of the following languages over the alphabet \{0, 1\}. We won’t get to all of these in section.

1. (a) \((0 + 1)^*\)
   (b) \(\emptyset\)
   (c) \(\{e\}\)

2. Every string except \(000\).

3. All strings containing the substring \(000\).

4. All strings not containing the substring \(000\).

5. All strings in which the reverse of the string is the binary representation of an integer divisible by 3.

6. All strings \(w\) such that in every prefix of \(w\), the number of 0s and 1s differ by at most 2.
Prove that each of the following languages is not regular.

1. Binary palindromes: Strings over \( \{0, 1\} \) that are equal to their reversals. For example: \( 00111100 \) and \( 0100010 \), but not \( 01100 \). [Hint: We did this in class.]

2. \( \{0^{2n}1^n \mid n \geq 0\} \)

3. \( \{0^m1^n \mid m \neq 2n\} \)

4. Strings over \( \{0, 1\} \) where the number of zeros is exactly twice the number of ones.

5. Strings of properly nested parentheses (()), brackets [], and braces {}. For example, the string \( ([]){} \) is in this language, but the string \( ([]) \) is not, because the left and right delimiters don’t match.

6. \( \{0^{2^n} \mid n \geq 0\} \) — Strings of zeros whose length is a power of 2.

7. Strings of the form \( w_1\#w_2\#\cdots\#w_n \) for some \( n \geq 2 \), where each substring \( w_i \) is a string in \( \{0, 1\}^* \), and some pair of substrings \( w_i \) and \( w_j \) are equal.
For each of the following languages over the alphabet $\Sigma = \{0, 1\}$, either prove the language is regular (by giving an equivalent regular expression, DFA, or NFA) or prove that the language is not regular (using a fooling set argument). Exactly half of these languages are regular.

1. $\{0^n1^n \mid n \geq 0\}$

2. $\{0^n1^n w \mid n \geq 0 \text{ and } w \in \Sigma^*\}$

3. $\{w0^n1^n x \mid w \in \Sigma^* \text{ and } n \geq 0 \text{ and } x \in \Sigma^*\}$

4. Strings in which the number of 0s and the number of 1s differ by at most 2.

5. Strings such that in every prefix, the number of 0s and the number of 1s differ by at most 2.

6. Strings such that in every substring, the number of 0s and the number of 1s differ by at most 2.
Here are several problems that are easy to solve in $O(n)$ time, essentially by brute force. Your task is to design algorithms for these problems that are significantly faster.


(b) Now suppose $A[1..n]$ is a sorted array of $n$ distinct positive integers. Describe an even faster algorithm that either computes an index $i$ such that $A[i] = i$ or correctly reports that no such index exists. [Hint: This is really easy.]

2. Suppose we are given an array $A[1..n]$ such that $A[1] \geq A[2]$ and $A[n-1] \leq A[n]$. We say that an element $A[x]$ is a local minimum if both $A[x-1] \geq A[x]$ and $A[x] \leq A[x+1]$. For example, there are exactly six local minima in the following array:

\[
\begin{array}{cccccccccc}
9 & 7 & 7 & 2 & 1 & 3 & 7 & 5 & 4 & 7 & 3 & 3 & 4 & 8 & 6 & 9
\end{array}
\]

Describe and analyze a fast algorithm that returns the index of one local minimum. For example, given the array above, your algorithm could return the integer 5, because $A[5]$ is a local minimum. [Hint: With the given boundary conditions, any array must contain at least one local minimum. Why?]

3. (a) Suppose you are given two sorted arrays $A[1..n]$ and $B[1..n]$ containing distinct integers. Describe a fast algorithm to find the median (meaning the $n$th smallest element) of the union $A \cup B$. For example, given the input

$A[1..8] = [0, 1, 6, 9, 12, 13, 18, 20]$ \hspace{1cm} $B[1..8] = [2, 4, 5, 8, 17, 19, 21, 23]$)

your algorithm should return the integer 9. [Hint: What can you learn by comparing one element of $A$ with one element of $B$?]

(b) To think about on your own: Now suppose you are given two sorted arrays $A[1..m]$ and $B[1..n]$ and an integer $k$. Describe a fast algorithm to find the $k$th smallest element in the union $A \cup B$. For example, given the input

$A[1..8] = [0, 1, 6, 9, 12, 13, 18, 20]$ \hspace{1cm} $B[1..5] = [2, 5, 7, 17, 19]$ \hspace{1cm} $k = 6$

your algorithm should return the integer 7.
Here are several problems that are easy to solve in $O(n)$ time, essentially by brute force. Your task is to design algorithms for these problems that are significantly faster, and prove that your algorithm is correct.


(b) Now suppose $A[1..n]$ is a sorted array of $n$ distinct positive integers. Describe an even faster algorithm that either computes an index $i$ such that $A[i] = i$ or correctly reports that no such index exists. [Hint: This is really easy.]

2. Suppose we are given an array $A[1..n]$ such that $A[1] \geq A[2]$ and $A[n-1] \leq A[n]$. We say that an element $A[x]$ is a **local minimum** if both $A[x-1] \geq A[x]$ and $A[x] \leq A[x+1]$. For example, there are exactly six local minima in the following array:

   $$9 \uparrow 7 \uparrow 7 \uparrow 2 \uparrow 1 \uparrow 3 \uparrow 7 \uparrow 5 \uparrow 4 \uparrow 7 \uparrow 3 \uparrow 3 \uparrow 4 \uparrow 8 \uparrow 6 \uparrow 9$$

Describe and analyze a fast algorithm that returns the index of one local minimum. For example, given the array above, your algorithm could return the integer 5, because $A[5]$ is a local minimum. [Hint: With the given boundary conditions, any array must contain at least one local minimum. Why?]

3. (a) Suppose you are given two sorted arrays $A[1..n]$ and $B[1..n]$ containing distinct integers. Describe a fast algorithm to find the median (meaning the $n$th smallest element) of the union $A \cup B$. For example, given the input

   $$A[1..8] = [0, 1, 6, 9, 12, 13, 18, 20] \quad B[1..8] = [2, 4, 5, 8, 17, 19, 21, 23]$$

your algorithm should return the integer 9. [Hint: What can you learn by comparing one element of $A$ with one element of $B$?]

(b) To think about on your own: Now suppose you are given two sorted arrays $A[1..m]$ and $B[1..n]$ and an integer $k$. Describe a fast algorithm to find the $k$th smallest element in the union $A \cup B$. For example, given the input

   $$A[1..8] = [0, 1, 6, 9, 12, 13, 18, 20] \quad B[1..5] = [2, 5, 7, 17, 19] \quad k = 6$$

your algorithm should return the integer 7.
A subsequence of a sequence (for example, an array, linked list, or string), obtained by removing zero or more elements and keeping the rest in the same sequence order. A subsequence is called a substring if its elements are contiguous in the original sequence. For example:

- SUBSEQUENCE, USEQU, and the empty string ε are all substrings of the string SUBSEQUENCE;
- SBSQNC, UEQUE, and EEE are all subsequences of SUBSEQUENCE but not substrings;
- QUEUE, SSS, and FOOBAR are not subsequences of SUBSEQUENCE.

Describe recursive backtracking algorithms for the following problems. Don’t worry about running times.

1. Given an array $A[1..n]$ of integers, compute the length of a longest increasing subsequence. A sequence $B[1..\ell]$ is increasing if $B[i] > B[i-1]$ for every index $i \geq 2$. For example, given the array

$$\langle 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7 \rangle$$

your algorithm should return the integer 6, because $\langle 1, 4, 5, 6, 8, 9 \rangle$ is a longest increasing subsequence (one of many).

2. Given an array $A[1..n]$ of integers, compute the length of a longest decreasing subsequence. A sequence $B[1..\ell]$ is decreasing if $B[i] < B[i-1]$ for every index $i \geq 2$. For example, given the array

$$\langle 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7 \rangle$$

your algorithm should return the integer 5, because $\langle 9, 6, 5, 4, 2 \rangle$ is a longest decreasing subsequence (one of many).

3. Given an array $A[1..n]$ of integers, compute the length of a longest alternating subsequence. A sequence $B[1..\ell]$ is alternating if $B[i] < B[i-1]$ for every even index $i \geq 2$, and $B[i] > B[i-1]$ for every odd index $i \geq 3$. For example, given the array

$$\langle 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7 \rangle$$

your algorithm should return the integer 17, because $\langle 3, 1, 4, 1, 5, 2, 6, 5, 8, 7, 9, 3, 8, 4, 6, 2, 7 \rangle$ is a longest alternating subsequence (one of many).
A subsequence of a sequence (for example, an array, a linked list, or a string), obtained by removing zero or more elements and keeping the rest in the same sequence order. A subsequence is called a substring if its elements are contiguous in the original sequence. For example:

- SUBSEQUENCE, UBSEQU, and the empty string \( \epsilon \) are all substrings of the string SUBSEQUENCE;
- SBSQNC, UEQUE, and EEE are all subsequences of SUBSEQUENCE but not substrings;
- QUEUE, SSS, and FOOBAR are not subsequences of SUBSEQUENCE.

Describe and analyze dynamic programming algorithms for the following problems. For the first three, use the backtracking algorithms you developed on Wednesday.

1. Given an array \( A[1..n] \) of integers, compute the length of a longest increasing subsequence of \( A \). A sequence \( B[1..\ell] \) is increasing if \( B[i] > B[i-1] \) for every index \( i \geq 2 \).

2. Given an array \( A[1..n] \) of integers, compute the length of a longest decreasing subsequence of \( A \). A sequence \( B[1..\ell] \) is decreasing if \( B[i] < B[i-1] \) for every index \( i \geq 2 \).

3. Given an array \( A[1..n] \) of integers, compute the length of a longest alternating subsequence of \( A \). A sequence \( B[1..\ell] \) is alternating if \( B[i] < B[i-1] \) for every even index \( i \geq 2 \), and \( B[i] > B[i-1] \) for every odd index \( i \geq 3 \).


5. Given an array \( A[1..n] \), compute the length of a longest palindrome subsequence of \( A \). Recall that a sequence \( B[1..\ell] \) is a palindrome if \( B[i] = B[\ell - i + 1] \) for every index \( i \).
Basic steps in developing a dynamic programming algorithm

1. **Formulate the problem recursively.** This is the hard part. There are two distinct but equally important things to include in your formulation.

   (a) **Specification.** First, give a clear and precise English description of the problem you are claiming to solve. Don't describe how to solve the problem at this stage; just describe what the problem actually is. Otherwise, the reader has no way to know what your recursive algorithm is supposed to compute.

   (b) **Solution.** Second, give a clear recursive formula or algorithm for the whole problem in terms of the answers to smaller instances of exactly the same problem. It generally helps to think in terms of a recursive definition of your inputs and outputs. If you discover that you need a solution to a similar problem, or a slightly related problem, you're attacking the wrong problem; go back to step 1.

2. **Build solutions to your recurrence from the bottom up.** Write an algorithm that starts with the base cases of your recurrence and works its way up to the final solution, by considering intermediate subproblems in the correct order. This stage can be broken down into several smaller, relatively mechanical steps:

   (a) **Identify the subproblems.** What are all the different ways can your recursive algorithm call itself, starting with some initial input? For example, the argument to RecFibonacci is always an integer between 0 and n.

   (b) **Analyze space and running time.** The number of possible distinct subproblems determines the space complexity of your memoized algorithm. To compute the time complexity, add up the running times of all possible subproblems, ignoring the recursive calls. For example, if we already know $F_{i-1}$ and $F_{i-2}$, we can compute $F_i$ in $O(1)$ time, so computing the first $n$ Fibonacci numbers takes $O(n)$ time.

   (c) **Choose a data structure to memoize intermediate results.** For most problems, each recursive subproblem can be identified by a few integers, so you can use a multidimensional array. For some problems, however, a more complicated data structure is required.

   (d) **Identify dependencies between subproblems.** Except for the base cases, every recursive subproblem depends on other subproblems—which ones? Draw a picture of your data structure, pick a generic element, and draw arrows from each of the other elements it depends on. Then formalize your picture.

   (e) **Find a good evaluation order.** Order the subproblems so that each subproblem comes after the subproblems it depends on. Typically, this means you should consider the base cases first, then the subproblems that depends only on base cases, and so on. More formally, the dependencies you identified in the previous step define a partial order over the subproblems; in this step, you need to find a linear extension of that partial order. Be careful!

   (f) **Write down the algorithm.** You know what order to consider the subproblems, and you know how to solve each subproblem. So do that! If your data structure is an array, this usually means writing a few nested for-loops around your original recurrence.
1. It’s almost time to show off your flippin’ sweet dancing skills! Tomorrow is the big dance contest you’ve been training for your entire life, except for that summer you spent with your uncle in Alaska hunting wolverines. You’ve obtained an advance copy of the the list of \( n \) songs that the judges will play during the contest, in chronological order.

   You know all the songs, all the judges, and your own dancing ability extremely well. For each integer \( k \), you know that if you dance to the \( k \)th song on the schedule, you will be awarded exactly \( \text{Score}[k] \) points, but then you will be physically unable to dance for the next \( \text{Wait}[k] \) songs (that is, you cannot dance to songs \( k + 1 \) through \( k + \text{Wait}[k] \)). The dancer with the highest total score at the end of the night wins the contest, so you want your total score to be as high as possible.

   Describe and analyze an efficient algorithm to compute the maximum total score you can achieve. The input to your sweet algorithm is the pair of arrays \( \text{Score}[1..n] \) and \( \text{Wait}[1..n] \).

2. A shuffle of two strings \( X \) and \( Y \) is formed by interspersing the characters into a new string, keeping the characters of \( X \) and \( Y \) in the same order. For example, the string \( \text{BANANAANANAS} \) is a shuffle of the strings \( \text{BANANA} \) and \( \text{ANANAS} \) in several different ways.

   \[
   \text{BANANAANANAS} \quad \text{BANANAANANAS} \quad \text{BANANAANANAS}
   \]

   Similarly, the strings \( \text{PRODGYRNAMMIIINC} \) and \( \text{DYPRONGARMMICING} \) are both shuffles of \( \text{DYNAMIC} \) and \( \text{PROGRAMMING} \):

   \[
   \text{PRODGYRNAMMIIINC} \quad \text{DYPRONGARMMICING}
   \]

   Describe and analyze an efficient algorithm to determine, given three strings \( A[1..m] \), \( B[1..n] \), and \( C[1..m+n] \), whether \( C \) is a shuffle of \( A \) and \( B \).
Basic steps in developing a dynamic programming algorithm

1. Formulate the problem recursively. This is the hard part. There are two distinct but equally important things to include in your formulation.

   (a) **Specification.** First, give a clear and precise English description of the problem you are claiming to solve. Don't describe how to solve the problem at this stage; just describe what the problem actually is. Otherwise, the reader has no way to know what your recursive algorithm is supposed to compute.

   (b) **Solution.** Second, give a clear recursive formula or algorithm for the whole problem in terms of the answers to smaller instances of exactly the same problem. It generally helps to think in terms of a recursive definition of your inputs and outputs. If you discover that you need a solution to a similar problem, or a slightly related problem, you're attacking the wrong problem; go back to step 1.

2. Build solutions to your recurrence from the bottom up. Write an algorithm that starts with the base cases of your recurrence and works its way up to the final solution, by considering intermediate subproblems in the correct order. This stage can be broken down into several smaller, relatively mechanical steps:

   (a) **Identify the subproblems.** What are all the different ways can your recursive algorithm call itself, starting with some initial input? For example, the argument to RRecFIBO is always an integer between 0 and n.

   (b) **Analyze space and running time.** The number of possible distinct subproblems determines the space complexity of your memoized algorithm. To compute the time complexity, add up the running times of all possible subproblems, ignoring the recursive calls. For example, if we already know \( F_{i-1} \) and \( F_{i-2} \), we can compute \( F_i \) in \( O(1) \) time, so computing the first \( n \) Fibonacci numbers takes \( O(n) \) time.

   (c) **Choose a data structure to memoize intermediate results.** For most problems, each recursive subproblem can be identified by a few integers, so you can use a multidimensional array. For some problems, however, a more complicated data structure is required.

   (d) **Identify dependencies between subproblems.** Except for the base cases, every recursive subproblem depends on other subproblems—which ones? Draw a picture of your data structure, pick a generic element, and draw arrows from each of the other elements it depends on. Then formalize your picture.

   (e) **Find a good evaluation order.** Order the subproblems so that each subproblem comes after the subproblems it depends on. Typically, this means you should consider the base cases first, then the subproblems that depends only on base cases, and so on. More formally, the dependencies you identified in the previous step define a partial order over the subproblems; in this step, you need to find a linear extension of that partial order. **Be careful!**

   (f) **Write down the algorithm.** You know what order to consider the subproblems, and you know how to solve each subproblem. So do that! If your data structure is an array, this usually means writing a few nested for-loops around your original recurrence.
1. Suppose you are given a sequence of non-negative integers separated by $+$ and $\times$ signs; for example:

$$2 \times 3 + 0 \times 6 \times 1 + 4 \times 2$$

You can change the value of this expression by adding parentheses in different places. For example:

$$2 \times ((3 + (0 \times (6 \times (1 + (4 \times 2))))) = 6$$

$$(((2 \times 3) + 0) \times 6) \times 1 + 4) \times 2 = 80$$

$$((2 \times 3) + (0 \times 6)) \times (1 + (4 \times 2)) = 108$$

$$(((2 \times 3) + 0) \times 6) \times ((1 + 4) \times 2) = 360$$

Describe and analyze an algorithm to compute, given a list of integers separated by $+$ and $\times$ signs, the largest possible value we can obtain by inserting parentheses.

Your input is an array $A[0..2n]$ where each $A[i]$ is an integer if $i$ is even and $+$ or $\times$ if $i$ is odd. Assume any arithmetic operation in your algorithm takes $O(1)$ time.
Basic steps in developing a dynamic programming algorithm

1. **Formulate the problem recursively.** This is the hard part. There are two distinct but equally important things to include in your formulation.

   (a) **Specification.** First, give a clear and precise English description of the problem you are claiming to solve. Don't describe how to solve the problem at this stage; just describe what the problem actually is. Otherwise, the reader has no way to know what your recursive algorithm is supposed to compute.

   (b) **Solution.** Second, give a clear recursive formula or algorithm for the whole problem in terms of the answers to smaller instances of exactly the same problem. It generally helps to think in terms of a recursive definition of your inputs and outputs. If you discover that you need a solution to a similar problem, or a slightly related problem, you're attacking the wrong problem; go back to step 1.

2. **Build solutions to your recurrence from the bottom up.** Write an algorithm that starts with the base cases of your recurrence and works its way up to the final solution, by considering intermediate subproblems in the correct order. This stage can be broken down into several smaller, relatively mechanical steps:

   (a) **Identify the subproblems.** What are all the different ways can your recursive algorithm call itself, starting with some initial input? For example, the argument to `RECIBO` is always an integer between 0 and n.

   (b) **Analyze space and running time.** The number of possible distinct subproblems determines the space complexity of your memoized algorithm. To compute the time complexity, add up the running times of all possible subproblems, ignoring the recursive calls. For example, if we already know $F_{i-1}$ and $F_{i-2}$, we can compute $F_i$ in $O(1)$ time, so computing the first n Fibonacci numbers takes $O(n)$ time.

   (c) **Choose a data structure to memoize intermediate results.** For most problems, each recursive subproblem can be identified by a few integers, so you can use a multidimensional array. For some problems, however, a more complicated data structure is required.

   (d) **Identify dependencies between subproblems.** Except for the base cases, every recursive subproblem depends on other subproblems—which ones? Draw a picture of your data structure, pick a generic element, and draw arrows from each of the other elements it depends on. Then formalize your picture.

   (e) **Find a good evaluation order.** Order the subproblems so that each subproblem comes after the subproblems it depends on. Typically, this means you should consider the base cases first, then the subproblems that depends only on base cases, and so on. More formally, the dependencies you identified in the previous step define a partial order over the subproblems; in this step, you need to find a linear extension of that partial order. Be careful!

   (f) **Write down the algorithm.** You know what order to consider the subproblems, and you know how to solve each subproblem. So do that! If your data structure is an array, this usually means writing a few nested for-loops around your original recurrence.
Recall the class scheduling problem described in lecture on Tuesday. We are given two arrays $S[1..n]$ and $F[1..n]$, where $S[i] < F[i]$ for each $i$, representing the start and finish times of $n$ classes. Your goal is to find the largest number of classes you can take without ever taking two classes simultaneously. We showed in class that the following greedy algorithm constructs an optimal schedule:

Choose the course that ends first, discard all conflicting classes, and recurse.

But this is not the only greedy strategy we could have tried. For each of the following alternative greedy algorithms, either prove that the algorithm always constructs an optimal schedule, or describe a small input example for which the algorithm does not produce an optimal schedule. Assume that all algorithms break ties arbitrarily (that is, in a manner that is completely out of your control).

[Hint: Exactly three of these greedy strategies actually work.]

1. Choose the course $x$ that ends last, discard classes that conflict with $x$, and recurse.
2. Choose the course $x$ that starts first, discard all classes that conflict with $x$, and recurse.
3. Choose the course $x$ that starts last, discard all classes that conflict with $x$, and recurse.
4. Choose the course $x$ with shortest duration, discard all classes that conflict with $x$, and recurse.
5. Choose a course $x$ that conflicts with the fewest other courses, discard all classes that conflict with $x$, and recurse.
6. If no classes conflict, choose them all. Otherwise, discard the course with longest duration and recurse.
7. If no classes conflict, choose them all. Otherwise, discard a course that conflicts with the most other courses and recurse.
8. Let $x$ be the class with the earliest start time, and let $y$ be the class with the second earliest start time.
   - If $x$ and $y$ are disjoint, choose $x$ and recurse on everything but $x$.
   - If $x$ completely contains $y$, discard $x$ and recurse.
   - Otherwise, discard $y$ and recurse.
9. If any course $x$ completely contains another course, discard $x$ and recurse. Otherwise, choose the course $y$ that ends last, discard all classes that conflict with $y$, and recurse.
For each of the problems below, transform the input into a graph and apply a standard graph algorithm that you’ve seen in class. Whenever you use a standard graph algorithm, you must provide the following information. (I recommend actually using a bulleted list.)

- What are the vertices?
- What are the edges? Are they directed or undirected?
- If the vertices and/or edges have associated values, what are they?
- What problem do you need to solve on this graph?
- What standard algorithm are you using to solve that problem?
- What is the running time of your entire algorithm, including the time to build the graph, as a function of the original input parameters?

1. **Snakes and Ladders** is a classic board game, originating in India no later than the 16th century. The board consists of an \( n \times n \) grid of squares, numbered consecutively from 1 to \( n^2 \), starting in the bottom left corner and proceeding row by row from bottom to top, with rows alternating to the left and right. Certain pairs of squares, always in different rows, are connected by either “snakes” (leading down) or “ladders” (leading up). Each square can be an endpoint of at most one snake or ladder.

\[
\begin{array}{cccccccccccc}
\end{array}
\]

A typical Snakes and Ladders board. Upward straight arrows are ladders; downward wavy arrows are snakes.

You start with a token in cell 1, in the bottom left corner. In each move, you advance your token up to \( k \) positions, for some fixed constant \( k \) (typically 6). If the token ends the move at the top end of a snake, you must slide the token down to the bottom of that snake. If the token ends the move at the bottom end of a ladder, you may move the token up to the top of that ladder.

Describe and analyze an algorithm to compute the smallest number of moves required for the token to reach the last square of the grid.

2. Let \( G \) be a connected undirected graph. Suppose we start with two coins on two arbitrarily chosen vertices of \( G \). At every step, each coin must move to an adjacent vertex. Describe and analyze an algorithm to compute the minimum number of steps to reach a configuration where both coins are on the same vertex, or to report correctly that no such configuration is reachable. The input to your algorithm consists of a graph \( G = (V, E) \) and two vertices \( u, v \in V \) (which may or may not be distinct).
For each of the problems below, transform the input into a graph and apply a standard graph algorithm that you’ve seen in class. Whenever you use a standard graph algorithm, you **must** provide the following information. (I recommend actually using a bulleted list.)

- What are the vertices?
- What are the edges? Are they directed or undirected?
- If the vertices and/or edges have associated values, what are they?
- What problem do you need to solve on this graph?
- What standard algorithm are you using to solve that problem?
- What is the running time of your entire algorithm, including the time to build the graph, *as a function of the original input parameters*?

1. Inspired by the previous lab, you decided to organize a Snakes and Ladders competition with \( n \) participants. In this competition, each game of Snakes and Ladders involves three players. After the game is finished, they are ranked first, second and third. Each player may be involved in any (non-negative) number of games, and the number needs not be equal among players.

   At the end of the competition, \( m \) games have been played. You realized that you had forgotten to implement a proper rating system, and therefore decided to produce the overall ranking of all \( n \) players as you see fit. However, to avoid being too suspicious, if player \( A \) ranked better than player \( B \) in any game, then \( A \) must rank better than \( B \) in the overall ranking.

   You are given the list of players involved and the ranking in each of the \( m \) games. Describe and analyze an algorithm to produce an overall ranking of the \( n \) players that satisfies the condition, or correctly reports that it is impossible.

2. There are \( n \) galaxies connected by \( m \) intergalactic teleport-ways. Each teleport-way joins two galaxies and can be traversed in both directions. Also, each teleport-way \( e \) has an associated toll of \( c_e \) dollars, where \( c_e \) is a positive integer. A teleport-way can be used multiple times, but the toll must be paid every time it is used.

   Judy wants to travel from galaxy \( u \) to galaxy \( v \), but teleportation is not very pleasant and she would like to minimize the number of times she needs to teleport. However, she wants the total cost to be a multiple of five dollars, because carrying small bills is not pleasant either.

   (a) Describe and analyze an algorithm to compute the smallest number of times Judy needs to teleport to travel from galaxy \( u \) to galaxy \( v \) while the total cost is a multiple of five dollars.

   (b) Solve (a), but now assume that Judy has a coupon that allows her to waive the toll once.
Suppose we are given both an undirected graph \( G \) with weighted edges and a minimum spanning tree \( T \) of \( G \).

1. Describe an efficient algorithm to update the minimum spanning tree when the weight of one edge \( e \in T \) is decreased.

2. Describe an efficient algorithm to update the minimum spanning tree when the weight of one edge \( e \notin T \) is increased.

3. Describe an efficient algorithm to update the minimum spanning tree when the weight of one edge \( e \in T \) is increased.

4. Describe an efficient algorithm to update the minimum spanning tree when the weight of one edge \( e \notin T \) is decreased.

In all cases, the input to your algorithm is the edge \( e \) and its new weight; your algorithms should modify \( T \) so that it is still a minimum spanning tree. Of course, we could just recompute the minimum spanning tree from scratch in \( O(E \log V) \) time, but you can do better.
1. A looped tree is a weighted, directed graph built from a binary tree by adding an edge from every leaf back to the root. Every edge has non-negative weight.

(a) How much time would Dijkstra's algorithm require to compute the shortest path between two vertices \( u \) and \( v \) in a looped tree with \( n \) nodes?

(b) Describe and analyze a faster algorithm.

2. After graduating you accept a job with Aerophobes-R-Us, the leading traveling agency for people who hate to fly. Your job is to build a system to help customers plan airplane trips from one city to another. All of your customers are afraid of flying (and by extension, airports), so any trip you plan needs to be as short as possible. You know all the departure and arrival times of all the flights on the planet.

Suppose one of your customers wants to fly from city \( X \) to city \( Y \). Describe an algorithm to find a sequence of flights that minimizes the total time in transit—the length of time from the initial departure to the final arrival, including time at intermediate airports waiting for connecting flights.  

[Hint: Build an appropriate graph from the input data and apply Dijkstra’s algorithm.]
Describe Turing machines that compute the following functions.

In particular, specify the transition functions \( \delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{-1, +1\} \) for each machine either by writing out a table or by drawing a graph. Recall that \( \delta(p, \$) = (q, @, +1) \) means that if the Turing machine is in state \( p \) and reads the symbol \( \$ \) from the tape, then it will change to state \( q \), write the symbol \( @ \) to the tape, and move one step to the right. In a drawing of a Turing machine, this transition is indicated by an edge from \( p \) to \( q \) with the label “\( \$/@, +1 \)”.

**Give your states short mnemonic names that suggest their purpose.** Naming your states well won’t just make it easier to understand; it will also make it easier to design.

1. **DOUBLE**: Given a string \( w \in \{0, 1\}^* \) as input, return the string \( ww \) as output.

2. **POWER**: Given a string of the form \( 1^n \) as input, return the string \( 1^{2n} \) as output.
Describe how to simulate an arbitrary Turing machine to make it *error-tolerant*. Specifically, given an arbitrary Turing machine $M$, describe a new Turing machine $M'$ that accepts and rejects exactly the same strings as $M$, even though an evil pixie named Lenny will move the head of $M'$ to an *arbitrary* location on the tape some finite number of *unknown* times during the execution of $M'$.

You do not have to describe $M'$ in complete detail, but do give enough details that a seasoned Turing machine programmer could work out the remaining mechanical details.

---

**As stated, this problem has no solution!** If $M$ halts on all inputs after a finite number of steps, then Lenny can make any substring of the input string completely invisible to $M$. For example, if the true input string is *INPUT-STRING*, Lenny can make $M$ believe the input string is actually *IMPING*, by moving the head to the second *I* whenever it tries to move to *R*, and by moving the head to *P* when it tries to move to *U*. Because $M$ halts after a finite number of steps, Lenny only has a finite number of opportunities to move the head.

In fact, with more care, Lenny can make $M$ think the input string is *any* string that uses only symbols from the actual input string; if the true input string is *INPUT-STRING*, Lenny can make $M$ believe the input string is actually *GRINNING-PUTIN-IS-GRINNING*.

However, there are several different ways to rescue the problem. For each of the following restrictions on Lenny’s behavior, and for any Turing machine $M$, one can design a Turing machine $M'$ that simulates $M$ despite Lenny’s interference.

- Lenny can move the head only a *bounded* number of times. For example: Lenny can move the head at most 374 times.

- Whenever Lenny moves the head, he changes the state of the machine to a special error state *lenny*.

- Whenever Lenny moves the head, he moves it to the left end of the tape.

- Whenever Lenny moves the head, he moves it to a blank cell to the right of all non-blank cells.

- Whenever Lenny moves the head, he moves it to a cell containing a particular symbol in the input alphabet, say *0*. 
Describe algorithms for the following problems. The input for each problem is string \( \langle M, w \rangle \) that encodes a standard (one-tape, one-track, one-head) Turing machine \( M \) whose tape alphabet is \( \{0, 1, \square\} \) and a string \( w \in \{0, 1\}^* \).

1. Does \( M \) accept \( w \) after at most \(|w|^2\) steps?

2. If we run \( M \) with input \( w \), does \( M \) ever move its head to the right?

2½. If we run \( M \) with input \( w \), does \( M \) ever move its head to the right twice in a row?

2¾. If we run \( M \) with input \( w \), does \( M \) move its head to the right more than \( 2^{|w|} \) times?

3. If we run \( M \) with input \( w \), does \( M \) ever change a symbol on the tape?

3½. If we run \( M \) with input \( w \), does \( M \) ever change a \( \square \) on the tape to either \( 0 \) or \( 1 \)?

4. If we run \( M \) with input \( w \), does \( M \) ever leave its \textit{start} state?

In contrast, as we will see later, the following problems are all undecidable!

1. Does \( M \) accept \( w \)?

1½. If we run \( M \) with input \( w \), does \( M \) ever halt?

2. If we run \( M \) with input \( w \), does \( M \) ever move its head to the right three times in a row?

3. If we run \( M \) with input \( w \), does \( M \) ever change a \( \square \) on the tape to \( 1 \)?

3½. If we run \( M \) with input \( w \), does \( M \) ever change either \( 0 \) or \( 1 \) on the tape to \( \square \)?

4. If we run \( M \) with input \( w \), does \( M \) ever reenter its \textit{start} state?
1. Suppose you are given a magic black box that somehow answers the following decision problem in \textit{polynomial time}:
   - \textbf{INPUT:} A boolean circuit $K$ with $n$ inputs and one output.
   - \textbf{OUTPUT:} TRUE if there are input values $x_1, x_2, \ldots, x_n \in \{\text{TRUE}, \text{FALSE}\}$ that make $K$ output TRUE, and FALSE otherwise.

Using this black box as a subroutine, describe an algorithm that solves the following related search problem \textit{in polynomial time}:
   - \textbf{INPUT:} A boolean circuit $K$ with $n$ inputs and one output.
   - \textbf{OUTPUT:} Input values $x_1, x_2, \ldots, x_n \in \{\text{TRUE}, \text{FALSE}\}$ that make $K$ output TRUE, or \textsc{None} if there are no such inputs.

   \textit{[Hint: You can use the magic box more than once.]}

2. Formally, \textbf{valid 3-coloring} of a graph $G = (V, E)$ is a function $c : V \to \{1, 2, 3\}$ such that $c(u) \neq c(v)$ for all $uv \in E$. Less formally, a valid 3-coloring assigns each vertex a color, which is either red, green, or blue, such that the endpoints of every edge have different colors.

Suppose you are given a magic black box that somehow answers the following problem \textit{in polynomial time}:
   - \textbf{INPUT:} An undirected graph $G$.
   - \textbf{OUTPUT:} TRUE if $G$ has a valid 3-coloring, and FALSE otherwise.

Using this black box as a subroutine, describe an algorithm that solves the \textbf{3-coloring problem} \textit{in polynomial time}:
   - \textbf{INPUT:} An undirected graph $G$.
   - \textbf{OUTPUT:} A valid 3-coloring of $G$, or \textsc{None} if there is no such coloring.

   \textit{[Hint: You can use the magic box more than once. The input to the magic box is a graph and \textbf{only} a graph, meaning \textbf{only} vertices and edges.]}

Proving that a problem $X$ is NP-hard requires several steps:

- Choose a problem $Y$ that you already know is NP-hard.

- Describe an algorithm to solve $Y$, using an algorithm for $X$ as a subroutine. Typically this algorithm has the following form: Given an instance of $Y$, transform it into an instance of $X$, and then call the magic black-box algorithm for $X$.

- Prove that your algorithm is correct. This almost always requires two separate steps:
  - Prove that your algorithm transforms “good” instances of $Y$ into “good” instances of $X$.
  - Prove that your algorithm transforms “bad” instances of $Y$ into “bad” instances of $X$. Equivalently: Prove that if your transformation produces a “good” instance of $X$, then it was given a “good” instance of $Y$.

- Argue that your algorithm for $Y$ runs in polynomial time.

1. Recall the following $k$COLOR problem: Given an undirected graph $G$, can its vertices be colored with $k$ colors, so that every edge touches vertices with two different colors?
   
   (a) Describe a direct polynomial-time reduction from $3$COLOR to $4$COLOR.
   
   (b) Prove that $k$COLOR problem is NP-hard for any $k \geq 3$.

2. Recall that a Hamiltonian cycle in a graph $G$ is a cycle that goes through every vertex of $G$ exactly once. Now, a tonian cycle in a graph $G$ is a cycle that goes through at least half of the vertices of $G$, and a Hamiltonian circuit in a graph $G$ is a closed walk that goes through every vertex in $G$ exactly twice.

   (a) Prove that it is NP-hard to determine whether a given graph contains a tonian cycle.
   
   (b) Prove that it is NP-hard to determine whether a given graph contains a Hamiltonian circuit.
Proving that a problem $X$ is NP-hard requires several steps:

- Choose a problem $Y$ that you already know is NP-hard.

- Describe an algorithm to solve $Y$, using an algorithm for $X$ as a subroutine. Typically this algorithm has the following form: Given an instance of $Y$, transform it into an instance of $X$, and then call the magic black-box algorithm for $X$.

- Prove that your algorithm is correct. This almost always requires two separate steps:
  - Prove that your algorithm transforms “good” instances of $Y$ into “good” instances of $X$.
  - Prove that your algorithm transforms “bad” instances of $Y$ into “bad” instances of $X$. Equivalently: Prove that if your transformation produces a “good” instance of $X$, then it was given a “good” instance of $Y$.

- Argue that your algorithm for $Y$ runs in polynomial time.

Recall that a Hamiltonian cycle in a graph $G$ is a cycle that visits every vertex of $G$ exactly once.

1. In class on Thursday, Jeff proved that it is NP-hard to determine whether a given directed graph contains a Hamiltonian cycle. Prove that it is NP-hard to determine whether a given undirected graph contains a Hamiltonian cycle.

2. A double Hamiltonian circuit in a graph $G$ is a closed walk that goes through every vertex in $G$ exactly twice. Prove that it is NP-hard to determine whether a given undirected graph contains a double Hamiltonian circuit.
Proving that a language $L$ is undecidable by reduction requires several steps:

- Choose a language $L'$ that you already know is undecidable. Typical choices for $L'$ include:

  \[
  \text{ACCEPT} := \{ (M, w) \mid M \text{ accepts } w \} \\
  \text{REJECT} := \{ (M, w) \mid M \text{ rejects } w \} \\
  \text{HALT} := \{ (M, w) \mid M \text{ halts on } w \} \\
  \text{DIVERGE} := \{ (M, w) \mid M \text{ diverges on } w \} \\
  \text{NEVERACCEPT} := \{ (M) \mid \text{ACCEPT}(M) = \emptyset \} \\
  \text{NEVERREJECT} := \{ (M) \mid \text{REJECT}(M) = \emptyset \} \\
  \text{NEVERHALT} := \{ (M) \mid \text{HALT}(M) = \emptyset \} \\
  \text{NEVERDIVERGE} := \{ (M) \mid \text{DIVERGE}(M) = \emptyset \} \\
  \]

- Describe an algorithm (really a Turing machine) $M'$ that decides $L'$, using a Turing machine $M$ that decides $L$ as a black box. Typically this algorithm has the following form:

  Given a string $w$, transform it into another string $x$, such that $M$ accepts $x$ if and only if $w \in L'$.

- Prove that your Turing machine is correct. This almost always requires two separate steps:
  - Prove that if $M$ accepts $w$ then $w \in L'$.
  - Prove that if $M$ rejects $w$ then $w \notin L'$.

Prove that the following languages are undecidable:

1. $\text{ACCEPT\text{ILLINI}} := \{ (M) \mid M \text{ accepts the string } \text{ILLINI} \}$
2. $\text{ACCEPT\text{THREE}} := \{ (M) \mid M \text{ accepts exactly three strings} \}$
3. $\text{ACCEPT\text{PALINDROME}} := \{ (M) \mid M \text{ accepts at least one palindrome} \}$
Prove that the following languages are undecidable using Rice’s Theorem:

**Rice’s Theorem.** Let $\mathcal{X}$ be any nonempty proper subset of the set of acceptable languages. The language

$$\text{ACCEPTIN}\!:\!\mathcal{X} := \{\langle M \rangle \mid \text{ACCEPT}(M) \in \mathcal{X}\}$$

is undecidable.

1. **ACCEPTRegular** := \{\langle M \rangle \mid \text{ACCEPT}(M) \text{ is regular}\}
2. **ACCEPTIllini** := \{\langle M \rangle \mid M \text{ accepts the string } \text{ILLINI}\}
3. **ACCEPTPalindrome** := \{\langle M \rangle \mid M \text{ accepts at least one palindrome}\}
4. **ACCEPTThree** := \{\langle M \rangle \mid M \text{ accepts exactly three strings}\}
5. **ACCEPTUndecidable** := \{\langle M \rangle \mid \text{ACCEPT}(M) \text{ is undecidable}\}

---

**To think about later.** Which of the following languages are undecidable? How do you prove it?

1. **ACCEPT\{\epsilon\** := \{\langle M \rangle \mid M \text{ only accepts the string } \epsilon, \text{ i.e. } \text{ACCEPT}(M) = \{\epsilon\}\}
2. **ACCEPT\{\emptyset\** := \{\langle M \rangle \mid M \text{ does not accept any strings, i.e. } \text{ACCEPT}(M) = \emptyset\}
3. **ACCEPT\emptyset** := \{\langle M \rangle \mid \text{ACCEPT}(M) \text{ is not an acceptable language}\}
4. **ACCEPT=reject** := \{\langle M \rangle \mid \text{ACCEPT}(M) = \text{REJECT}(M)\}
5. **ACCEPT\neq reject** := \{\langle M \rangle \mid \text{ACCEPT}(M) \neq \text{REJECT}(M)\}
6. **ACCEPT\cup\text{reject}** := \{\langle M \rangle \mid \text{ACCEPT}(M) \cup \text{REJECT}(M) = \Sigma^*\}
1. For each statement below, check “True” if the statement is always true and “False” otherwise. Each correct answer is worth +1 point; each incorrect answer is worth −½ point; checking “I don’t know” is worth +¼ point; and flipping a coin is (on average) worth +¼ point. You do not need to prove your answer is correct.

Read each statement very carefully. Some of these are deliberately subtle.

(a) If 2 + 2 = 5, then Jeff is the Queen of England.
(b) For all languages \( L_1 \) and \( L_2 \), the language \( L_1 \cup L_2 \) is regular.
(c) For all languages \( L \subseteq \Sigma^* \), if \( L \) is not regular, then \( \Sigma^* \setminus L \) cannot be represented by a regular expression.
(d) For all languages \( L_1 \) and \( L_2 \), if \( L_1 \subseteq L_2 \) and \( L_1 \) is regular, then \( L_2 \) is regular.
(e) For all languages \( L_1 \) and \( L_2 \), if \( L_1 \subseteq L_2 \) and \( L_1 \) is not regular, then \( L_2 \) is not regular.
(f) For all languages \( L \), if \( L \) is regular, then \( L \) has no infinite fooling set.
(g) The language \( \{ 0^m 1^n \mid 0 \leq m + n \leq 374 \} \) is regular.
(h) The language \( \{ 0^m 1^n \mid 0 \leq m - n \leq 374 \} \) is regular.
(i) For every language \( L \), if the language \( L^R = \{ w^R \mid w \in L \} \) is regular, then \( L \) is also regular. (Here \( w^R \) denotes the reversal of string \( w \); for example, \( \text{BACKWARD}^R = \text{DRAWKCAB} \).)
(j) Every context-free language is regular.

2. Let \( L \) be the set of strings in \( \{0, 1\}^* \) in which every run of consecutive \( 0 \)'s has even length and every run of consecutive \( 1 \)'s has odd length.

(a) Give a regular expression that represents \( L \).
(b) Construct a DFA that recognizes \( L \).

You do not need to prove that your answers are correct.

3. For each of the following languages over the alphabet \( \{0, 1\} \), either prove that the language is regular or prove that the language is not regular. Exactly one of these two languages is regular.

(a) The set of all strings in which the substrings \( 00 \) and \( 11 \) appear the same number of times.
(b) The set of all strings in which the substrings \( 01 \) and \( 10 \) appear the same number of times.

For example, both of these languages contain the string \( 1100001101101 \).
4. Consider the following recursive function:

\[
stutter(w) := \begin{cases} 
    \epsilon & \text{if } w = \epsilon \\
    aa \cdot stutter(x) & \text{if } w = ax \text{ for some } a \in \Sigma \text{ and } x \in \Sigma^* 
\end{cases}
\]

For example, \(stutter(00101) = 0000110011\).

**Prove** that for any regular language \(L\), the following languages are also regular.

(a) \(STUTTER(L) := \{stutter(w) \mid w \in L\}\).

(b) \(STUTTER^{-1}(L) := \{w \mid stutter(w) \in L\}\).

5. Recall that string concatenation and string reversal are formally defined as follows:

\[
w \cdot y := \begin{cases} 
    y & \text{if } w = \epsilon \\
    a \cdot (x \cdot y) & \text{if } w = ax \text{ for some } a \in \Sigma \text{ and } x \in \Sigma^* 
\end{cases}
\]

\[
w^R := \begin{cases} 
    \epsilon & \text{if } w = \epsilon \\
    x^R \cdot a & \text{if } w = ax \text{ for some } a \in \Sigma \text{ and } x \in \Sigma^* 
\end{cases}
\]

**Prove** that \((w \cdot x)^R = x^R \cdot w^R\), for all strings \(w\) and \(x\). Your proof should be complete, concise, formal, and self-contained.
1. For each statement below, check “True” if the statement is always true and “False” otherwise. Each correct answer is worth +1 point; each incorrect answer is worth −½ point; checking “I don’t know” is worth +¼ point; and flipping a coin is (on average) worth +¼ point. You do not need to prove your answer is correct.

Read each statement very carefully. Some of these are deliberately subtle.

(a) If 2 + 2 = 5, then Jeff is not the Queen of England.
(b) For all languages \( L \), the language \( L^* \) is regular.
(c) For all languages \( L \subseteq \Sigma^* \), if \( L \) is can be represented by a regular expression, then \( \Sigma^* \setminus L \) can also be represented by a regular expression.
(d) For all languages \( L_1 \) and \( L_2 \), if \( L_2 \) is regular and \( L_1 \subseteq L_2 \), then \( L_1 \) is regular.
(e) For all languages \( L_1 \) and \( L_2 \), if \( L_2 \) is not regular and \( L_1 \subseteq L_2 \), then \( L_1 \) is not regular.
(f) For all languages \( L \), if \( L \) is not regular, then every fooling set for \( L \) is infinite.
(g) The language \( \left\{ 0^m1^n \mid 0 \leq n-m \leq 374 \right\} \) is regular.
(h) The language \( \left\{ 0^m1^n \mid 0 \leq n+m \leq 374 \right\} \) is regular.
(i) For every language \( L \), if \( L \) is not regular, then the language \( L^R = \{ w^R \mid w \in L \} \) is also not regular. (Here \( w^R \) denotes the reversal of string \( w \); for example, \( (\text{BACKWARD})^R = \text{DRAWKCAB} \).)
(j) Every context-free language is regular.

2. Let \( L \) be the set of strings in \( \{0,1\}^* \) in which every run of consecutive 0s has odd length and the total number of 1s is even.

For example, the string 1111000010111000 is in \( L \), because it has eight 1s and three runs of consecutive 0s, with lengths 5, 1, and 3.

(a) Give a regular expression that represents \( L \).
(b) Construct a DFA that recognizes \( L \).

You do not need to prove that your answers are correct.

3. For each of the following languages over the alphabet \( \{0,1\} \), either prove that the language is regular or prove that the language is not regular. Exactly one of these two languages is regular.

(a) The set of all strings in which the substrings 10 and 01 appear the same number of times.
(b) The set of all strings in which the substrings 00 and 01 appear the same number of times.

For example, both of these languages contain the string 1100001101101.
4. Consider the following recursive function:

\[
\text{odds}(w) := \begin{cases} 
  w & \text{if } |w| \leq 1 \\
  a \cdot \text{odds}(x) & \text{if } w = abx \text{ for some } a, b \in \Sigma \text{ and } x \in \Sigma^*
\end{cases}
\]

Intuitively, odds removes every other symbol from the input string, starting with the second symbol. For example, \(\text{odds}(0101110) = 0010\).

Prove that for any regular language \(L\), the following languages are also regular.

(a) \(\text{ODDS}(L) := \{ \text{odds}(w) \mid w \in L \}\).
(b) \(\text{ODDS}^{-1}(L) := \{ w \mid \text{odds}(w) \in L \}\).

5. Recall that string concatenation and string reversal are formally defined as follows:

\[
w \cdot y := \begin{cases} 
  y & \text{if } w = \epsilon \\
  a \cdot (x \cdot y) & \text{if } w = ax \text{ for some } a \in \Sigma \text{ and } x \in \Sigma^*
\end{cases}
\]

\[
w^R := \begin{cases} 
  \epsilon & \text{if } w = \epsilon \\
  x^R \cdot a & \text{if } w = ax \text{ for some } a \in \Sigma \text{ and } x \in \Sigma^*
\end{cases}
\]

Prove that \((w \cdot x)^R = x^R \cdot w^R\), for all strings \(w\) and \(x\). Your proof should be complete, concise, formal, and self-contained. You may assume the following identities, which we proved in class:

- \(w \cdot (x \cdot y) = (w \cdot x) \cdot y\) for all strings \(w, x,\) and \(y\).
- \(|w \cdot x| = |w| + |x|\) for all strings \(w\) and \(x\).
1. **Clearly** indicate the edges of the following spanning trees of the weighted graph pictured below. (Pretend that the person grading your exam has bad eyesight.) Some of these subproblems have more than one correct answer. Yes, that edge on the right has negative weight.

   (a) A depth-first spanning tree rooted at $s$
   (b) A breadth-first spanning tree rooted at $s$
   (c) A shortest-path tree rooted at $s$
   (d) A minimum spanning tree

![Graph Image]

2. An array $A[0..n-1]$ of $n$ distinct numbers is **bitonic** if there are unique indices $i$ and $j$ such that $A[(i-1) \mod n] < A[i] > A[(i+1) \mod n]$ and $A[(j-1) \mod n] > A[j] < A[(j+1) \mod n]$. In other words, a bitonic sequence either consists of an increasing sequence followed by a decreasing sequence, or can be circularly shifted to become so. For example,

   \[
   4 \, 6 \, 9 \, 8 \, 7 \, 5 \, 1 \, 2 \, 3
   \]

   is bitonic, but

   \[
   3 \, 6 \, 9 \, 8 \, 7 \, 5 \, 1 \, 2 \, 4
   \]

   is not bitonic.

Describe and analyze an algorithm to find the index of the **smallest** element in a given bitonic array $A[0..n-1]$ in $O(\log n)$ time. You may assume that the numbers in the input array are distinct. For example, given the first array above, your algorithm should return 6, because $A[6] = 1$ is the smallest element in that array.

3. Suppose you are given a directed graph $G = (V, E)$ and two vertices $s$ and $t$. Describe and analyze an algorithm to determine if there is a walk in $G$ from $s$ to $t$ (possibly repeating vertices and/or edges) whose length is divisible by 3.

   For example, given the graph below, with the indicated vertices $s$ and $t$, your algorithm should return **TRUE**, because the walk $s \rightarrow w \rightarrow y \rightarrow x \rightarrow s \rightarrow w \rightarrow t$ has length 6.

   ![Graph Image]

   [Hint: Build a (different) graph.]
4. The new swap-puzzle game Candy Swap Saga XIII involves $n$ cute animals numbered 1 through $n$. Each animal holds one of three types of candy: circus peanuts, Heath bars, and Cioccolateria Gardini chocolate truffles. You also have a candy in your hand; at the start of the game, you have a circus peanut.

To earn points, you visit each of the animals in order from 1 to $n$. For each animal, you can either keep the candy in your hand or exchange it with the candy the animal is holding.

- If you swap your candy for another candy of the same type, you earn one point.
- If you swap your candy for a candy of a different type, you lose one point. (Yes, your score can be negative.)
- If you visit an animal and decide not to swap candy, your score does not change.

You must visit the animals in order, and once you visit an animal, you can never visit it again.

Describe and analyze an efficient algorithm to compute your maximum possible score. Your input is an array $C[1..n]$, where $C[i]$ is the type of candy that the $i$th animal is holding.

5. Let $G$ be a directed graph with weighted edges, and let $s$ be a vertex of $G$. Suppose every vertex $v \neq s$ stores a pointer $\text{pred}(v)$ to another vertex in $G$. Describe and analyze an algorithm to determine whether these predecessor pointers correctly define a single-source shortest path tree rooted at $s$. Do not assume that $G$ has no negative cycles.
1. Clearly indicate the edges of the following spanning trees of the weighted graph pictured below. (Pretend that the person grading your exam has bad eyesight.) Some of these subproblems have more than one correct answer. Yes, that edge on the right has negative weight.

(a) A depth-first spanning tree rooted at $s$
(b) A breadth-first spanning tree rooted at $s$
(c) A shortest-path tree rooted at $s$
(d) A minimum spanning tree

2. Farmers Boggis, Bunce, and Bean have set up an obstacle course for Mr. Fox. The course consists of a row of $n$ booths, each with an integer painted on the front with bright red paint, which could be positive, negative, or zero. Let $A[i]$ denote the number painted on the front of the $i$th booth. Everyone has agreed to the following rules:

- At each booth, Mr. Fox must say either “Ring!” or “Ding!”.
- If Mr. Fox says “Ring!” at the $i$th booth, he earns a reward of $A[i]$ chickens. (If $A[i] < 0$, Mr. Fox pays a penalty of $-A[i]$ chickens.)
- If Mr. Fox says “Ding!” at the $i$th booth, he pays a penalty of $A[i]$ chickens. (If $A[i] < 0$, Mr. Fox earns a reward of $-A[i]$ chickens.)
- Mr. Fox is forbidden to say the same word more than three times in a row. For example, if he says “Ring!” at booths 6, 7, and 8, then he must say “Ding!” at booth 9.
- All accounts will be settled at the end; Mr. Fox does not actually have to carry chickens through the obstacle course.
- If Mr. Fox violates any of the rules, or if he ends the obstacle course owing the farmers chickens, the farmers will shoot him.

Describe and analyze an algorithm to compute the largest number of chickens that Mr. Fox can earn by running the obstacle course, given the array $A[1..n]$ of booth numbers as input.

3. Let $G$ be a directed graph with weighted edges, and let $s$ be a vertex of $G$. Suppose every vertex $v \neq s$ stores a pointer $\text{pred}(v)$ to another vertex in $G$. Describe and analyze an algorithm to determine whether these predecessor pointers correctly define a single-source shortest path tree rooted at $s$. Do not assume that $G$ has no negative cycles.
4. An array $A[0..n-1]$ of $n$ distinct numbers is **bitonic** if there are unique indices $i$ and $j$ such that $A[(i-1) \mod n] < A[i] > A[(i+1) \mod n]$ and $A[(j-1) \mod n] > A[j] < A[(j+1) \mod n]$. In other words, a bitonic sequence either consists of an increasing sequence followed by a decreasing sequence, or can be circularly shifted to become so. For example,

$$
\begin{array}{cccccccc}
4 & 6 & 9 & 8 & 7 & 5 & 1 & 2 \\
\end{array}
$$

is bitonic, but

$$
\begin{array}{cccccccc}
3 & 6 & 9 & 8 & 7 & 5 & 1 & 2 & 4 \\
\end{array}
$$

is not bitonic.

Describe and analyze an algorithm to find the index of the **smallest** element in a given bitonic array $A[0..n-1]$ in $O(\log n)$ time. You may assume that the numbers in the input array are distinct. For example, given the first array above, your algorithm should return 6, because $A[6] = 1$ is the smallest element in that array.

5. Suppose we are given an undirected graph $G$ in which every vertex has a positive weight.

   (a) Describe and analyze an algorithm to find a **spanning tree** of $G$ with minimum total weight. (The total weight of a spanning tree is the sum of the weights of its vertices.)

   (b) Describe and analyze an algorithm to find a **path** in $G$ from one given vertex $s$ to another given vertex $t$ with minimum total weight. (The total weight of a path is the sum of the weights of its vertices.)
Final Exam — Version A — December 16, 2014

Name: ____________________________
NetID: ____________________________
Section: 1 2 3

<table>
<thead>
<tr>
<th>#</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>70</td>
</tr>
<tr>
<td>Grader</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• **Don’t panic!**

• Please print your name and your NetID and circle your discussion section in the boxes above.

• This is a closed-book, closed-notes, closed-elecronics exam. If you brought anything except your writing implements and your two double-sided 8½" × 11" cheat sheets, please put it away for the duration of the exam. In particular, you may not use any electronic devices.

• **Please read the entire exam before writing anything.** Please ask for clarification if any question is unclear.

• **You have 180 minutes.**

• If you run out of space for an answer, continue on the back of the page, or on the blank pages at the end of this booklet, **but please tell us where to look.** Alternatively, feel free to tear out the blank pages and use them as scratch paper.

• **Please return your cheat sheets and all scratch paper with your answer booklet.**

• If you use a greedy algorithm, you must prove that it is correct to receive credit. **Otherwise, proofs are required only if we specifically ask for them.**

• As usual, answering any (sub)problem with “I don’t know” (and nothing else) is worth 25% partial credit. **Yes, even for problem 1.** Correct, complete, but suboptimal solutions are always worth more than 25%. A blank answer is not the same as “I don’t know”.

• **Good luck!** And have a great winter break!
1. For each of the following questions, indicate *every* correct answer by marking the “Yes” box, and indicate *every* incorrect answer by marking the “No” box. *Assume \( P \neq NP. \) If there is any other ambiguity or uncertainty, mark the “No” box. For example:

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 + 2 = 4</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>( x + y = 5 )</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>3SAT can be solved in polynomial time.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Jeff is not the Queen of England.</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

There are 40 yes/no choices altogether, each worth \( \frac{1}{2} \) point.

---

(a) Which of the following statements is true for *every* language \( L \subseteq \{0, 1\}^* \)?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>( L ) is non-empty.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>( L ) is decidable or ( L ) is infinite (or both).</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>( L ) is accepted by some DFA with 42 states if and only if ( L ) is accepted by some NFA with 42 states.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>If ( L ) is regular, then ( L \in NP. )</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>( L ) is decidable if and only if its complement ( \overline{L} ) is undecidable.</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

(b) Which of the following computational models can be simulated by a deterministic Turing machine with three read/write heads, with at most polynomial slow-down in time, assuming \( P \neq NP. \)?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Java program</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>A deterministic Turing machine with one head</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>A deterministic Turing machine with 3 tapes, each with 5 heads</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>A nondeterministic Turing machine with one head</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>A nondeterministic finite-state automaton (NFA)</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
(c) Which of the following languages are decidable?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>∅</td>
<td></td>
<td></td>
</tr>
<tr>
<td>${0^n1^n1^n \mid n \geq 0}$</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>$\langle M \rangle \mid M$ is a Turing machine</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>$\langle M \rangle \mid M$ accepts $\langle M \rangle \cdot \langle M \rangle$</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>$\langle M \rangle \mid M$ accepts a finite number of non-palindromes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>$\langle M \rangle \mid M$ accepts $\emptyset$</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>$\langle M, w \rangle \mid M$ accepts $w^R$</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>$\langle M, w \rangle \mid M$ accepts $w$ after at most $</td>
<td>w</td>
<td>^2$ transitions</td>
</tr>
<tr>
<td>$\langle M, w \rangle \mid M$ changes a blank on the tape to a non-blank, given input $w$</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>$\langle M, w \rangle \mid M$ changes a non-blank on the tape to a blank, given input $w$</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

(d) Let $M$ be a standard Turing machine (with a single one-track tape and a single head) that decides the regular language $0^*1^*$. Which of the following must be true?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given an empty initial tape, $M$ eventually halts.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$M$ accepts the string 1111.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$M$ rejects the string 0110.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$M$ moves its head to the right at least once, given input 1100.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$M$ moves its head to the right at least once, given input 0101.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$M$ never accepts before reading a blank.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For some input string, $M$ moves its head to the left at least once.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For some input string, $M$ changes at least one symbol on the tape.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$M$ always halts.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If $M$ accepts a string $w$, it does so after at most $O(</td>
<td>w</td>
<td>^2)$ steps.</td>
</tr>
</tbody>
</table>
(e) Consider the following pair of languages:
- \textsc{HamiltonianPath} := \{ G \mid G \text{ contains a Hamiltonian path} \}
- \textsc{Connected} := \{ G \mid G \text{ is connected} \}

Which of the following \textbf{must} be true, assuming P\neq NP?

- Yes No \textsc{Connected} \in \text{NP}
- Yes No \textsc{HamiltonianPath} \in \text{NP}
- Yes No \textsc{HamiltonianPath} \text{ is decidable.}
- Yes No There is no polynomial-time reduction from \textsc{HamiltonianPath} to \textsc{Connected}.
- Yes No There is no polynomial-time reduction from \textsc{Connected} to \textsc{HamiltonianPath}.

(f) Suppose we want to prove that the following language is undecidable.

\textsc{AlwaysHalts} := \{ \langle M \rangle \mid M \text{ halts on every input string} \}

Rocket J. Squirrel suggests a reduction from the standard halting language
\textsc{Halt} := \{ \langle M, w \rangle \mid M \text{ halts on inputs } w \}.

Specifically, suppose there is a Turing machine \textsc{Ah} that decides \textsc{AlwaysHalts}. Rocky claims that the following Turing machine \textsc{H} decides \textsc{Halt}. Given an arbitrary encoding \langle M, w \rangle as input, machine \textsc{H} writes the encoding \langle M' \rangle of a new Turing machine \textsc{M'} to the tape and passes it to \textsc{Ah}, where \textsc{M'} implements the following algorithm:

\begin{verbatim}
M'(x):
if M accepts w reject
if M rejects w accept
\end{verbatim}

Which of the following statements is true for all inputs \langle M, w \rangle?

- Yes No If \text{M} accepts \text{w}, then \text{M'} halts on every input string.
- Yes No If \text{M} diverges on \text{w}, then \text{M'} halts on every input string.
- Yes No If \text{M} accepts \text{w}, then \text{Ah} accepts \langle M' \rangle.
- Yes No If \text{M} rejects \text{w}, then \text{H} rejects \langle M, w \rangle.
- Yes No \text{H} decides the language \text{Halt}. (That is, Rocky’s reduction is correct.)
2. A relaxed 3-coloring of a graph $G$ assigns each vertex of $G$ one of three colors (for example, red, green, and blue), such that at most one edge in $G$ has both endpoints the same color.

(a) Give an example of a graph that has a relaxed 3-coloring, but does not have a proper 3-coloring (where every edge has endpoints of different colors).

(b) Prove that it is NP-hard to determine whether a given graph has a relaxed 3-coloring.
3. Give a complete, formal, self-contained description of a DFA that accepts all strings in \( \{0, 1\}^* \) containing at least ten 0s and at most ten 1s. Specifically:

(a) What are the states of your DFA?
(b) What is the start state of your DFA?
(c) What are the accepting states of your DFA?
(d) What is your DFA’s transition function?
4. Suppose you are given three strings $A[1..n]$, $B[1..n]$, and $C[1..n]$. Describe and analyze an algorithm to find the maximum length of a common subsequence of all three strings. For example, given the input strings

$$A = AxxBxxCDxEF, \quad B = yyABCDyEyFy, \quad C = zAzzBCDzEFz,$$

your algorithm should output the number 6, which is the length of the longest common subsequence $ABCDEF$. 


5. For each of the following languages over the alphabet \( \Sigma = \{0, 1\} \), either prove that the language is regular, or prove that the language is not regular.

(a) \( \{www \mid w \in \Sigma^*\} \)

(b) \( \{wxw \mid w, x \in \Sigma^*\} \)
6. A **number maze** is an $n \times n$ grid of positive integers. A token starts in the upper left corner; your goal is to move the token to the lower-right corner. On each turn, you are allowed to move the token up, down, left, or right; the distance you may move the token is determined by the number on its current square. For example, if the token is on a square labeled 3, then you may move the token three steps up, three steps down, three steps left, or three steps right. However, you are never allowed to move the token off the edge of the board.

Describe and analyze an efficient algorithm that either returns the minimum number of moves required to solve a given number maze, or correctly reports that the maze has no solution. For example, given the maze shown below, your algorithm would return the number 8.

A $5 \times 5$ number maze that can be solved in eight moves.
(scratch paper)
(scratch paper)
You may assume the following problems are NP-hard:

**CircuitSat**: Given a boolean circuit, are there any input values that make the circuit output True?

**3Sat**: Given a boolean formula in conjunctive normal form, with exactly three literals per clause, does the formula have a satisfying assignment?

**MaxIndependentSet**: Given an undirected graph $G$, what is the size of the largest subset of vertices in $G$ that have no edges among them?

**MaxClique**: Given an undirected graph $G$, what is the size of the largest complete subgraph of $G$?

**MinVertexCover**: Given an undirected graph $G$, what is the size of the smallest subset of vertices that touch every edge in $G$?

**3Color**: Given an undirected graph $G$, can its vertices be colored with three colors, so that every edge touches vertices with two different colors?

**HamiltonianPath**: Given an undirected graph $G$, is there a path in $G$ that visits every vertex exactly once?

**HamiltonianCycle**: Given an undirected graph $G$, is there a cycle in $G$ that visits every vertex exactly once?

**DirectedHamiltonianCycle**: Given an directed graph $G$, is there a directed cycle in $G$ that visits every vertex exactly once?

**TravelingSalesman**: Given a graph $G$ (either directed or undirected) with weighted edges, what is the minimum total weight of any Hamiltonian path/cycle in $G$?

**Draughts**: Given an $n \times n$ international draughts configuration, what is the largest number of pieces that can (and therefore must) be captured in a single move?

**Super Mario**: Given an $n \times n$ level for Super Mario Brothers, can Mario reach the castle?

You may assume the following languages are undecidable:

**SelfReject** := \{ $(M)$ | $M$ rejects $(M)$ \}

**SelfAccept** := \{ $(M)$ | $M$ accepts $(M)$ \}

**SelfHalt** := \{ $(M)$ | $M$ halts on $(M)$ \}

**SelfDiverge** := \{ $(M)$ | $M$ does not halt on $(M)$ \}

**Reject** := \{ $(M, w)$ | $M$ rejects $w$ \}

**Accept** := \{ $(M, w)$ | $M$ accepts $w$ \}

**Halt** := \{ $(M, w)$ | $M$ halts on $w$ \}

**Diverge** := \{ $(M, w)$ | $M$ does not halt on $w$ \}

**NeverReject** := \{ $(M)$ | Reject$(M) = \emptyset$ \}

**NeverAccept** := \{ $(M)$ | Accept$(M) = \emptyset$ \}

**NeverHalt** := \{ $(M)$ | Halt$(M) = \emptyset$ \}

**NeverDiverge** := \{ $(M)$ | Diverge$(M) = \emptyset$ \}
“CS 374”: Algorithms and Models of Computation, Fall 2014
Final Exam (Version B) — December 16, 2014

Name: ____________________________________________
NetID: __________________________________________
Section: 1 2 3

<table>
<thead>
<tr>
<th>#</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>70</td>
</tr>
<tr>
<td>Grader</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Don’t panic!

• Please print your name and your NetID and circle your discussion section in the boxes above.

• This is a closed-book, closed-notes, closed-electronics exam. If you brought anything except your writing implements and your two double-sided 8½" × 11" cheat sheets, please put it away for the duration of the exam. In particular, you may not use any electronic devices.

• Please read the entire exam before writing anything. Please ask for clarification if any question is unclear.

• You have 180 minutes.

• If you run out of space for an answer, continue on the back of the page, or on the blank pages at the end of this booklet, but please tell us where to look. Alternatively, feel free to tear out the blank pages and use them as scratch paper.

• Please return your cheat sheets and all scratch paper with your answer booklet.

• If you use a greedy algorithm, you must prove that it is correct to receive credit. Otherwise, proofs are required only if we specifically ask for them.

• As usual, answering any (sub)problem with “I don’t know” (and nothing else) is worth 25% partial credit. Yes, even for problem 1. Correct, complete, but suboptimal solutions are always worth more than 25%. A blank answer is not the same as “I don’t know”.

• Good luck! And have a great winter break!
1. For each of the following questions, indicate every correct answer by marking the “Yes” box, and indicate every incorrect answer by marking the “No” box. Assume \( P \neq NP \). If there is any other ambiguity or uncertainty, mark the “No” box. For example:

- \( 2 + 2 = 4 \)
- \( x + y = 5 \)
- 3SAT can be solved in polynomial time.
- Jeff is not the Queen of England.

There are 40 yes/no choices altogether, each worth \( \frac{1}{2} \) point.

(a) Which of the following statements is true for every language \( L \subseteq \{0,1\}^* \)?

- \( L \) is non-empty.
- \( L \) is decidable or \( L \) is infinite (or both).
- \( L \) is accepted by some DFA with 42 states if and only if \( L \) is accepted by some NFA with 42 states.
- If \( L \) is regular, then \( L \in NP \).
- \( L \) is decidable if and only if its complement \( \overline{L} \) is undecidable.

(b) Which of the following computational models can simulate a deterministic Turing machine with three read/write heads, with at most polynomial slow-down in time, assuming \( P \neq NP \)?

- A C++ program
- A deterministic Turing machine with one head
- A deterministic Turing machine with 3 tapes, each with 5 heads
- A nondeterministic Turing machine with one head
- A nondeterministic finite-state automaton (NFA)
(c) Which of the following languages are decidable?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ø</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>{ww</td>
<td>w is a palindrome}</td>
</tr>
<tr>
<td>Yes</td>
<td>{⟨M⟩</td>
<td>M is a Turing machine}</td>
</tr>
<tr>
<td>Yes</td>
<td>{⟨M⟩</td>
<td>M accepts ⟨M⟩ • ⟨M⟩}</td>
</tr>
<tr>
<td>Yes</td>
<td>{⟨M⟩</td>
<td>M accepts an infinite number of palindromes}</td>
</tr>
<tr>
<td>Yes</td>
<td>{⟨M⟩</td>
<td>M accepts 0}</td>
</tr>
<tr>
<td>Yes</td>
<td>{⟨M, w⟩</td>
<td>M accepts www}</td>
</tr>
<tr>
<td>Yes</td>
<td>{⟨M, w⟩</td>
<td>M accepts w after at least</td>
</tr>
<tr>
<td>Yes</td>
<td>{⟨M, w⟩</td>
<td>M changes a non-blank on the tape to a blank, given input w}</td>
</tr>
<tr>
<td>Yes</td>
<td>{⟨M, w⟩</td>
<td>M changes a blank on the tape to a non-blank, given input w}</td>
</tr>
</tbody>
</table>

(d) Let M be a standard Turing machine (with a single one-track tape and a single head) such that \( \text{ACCEPT}(M) \) is the regular language \( 0^*1^* \). Which of the following must be true?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given an empty initial tape, M eventually halts.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>M accepts the string 1111.</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>M rejects the string 0110.</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>M moves its head to the right at least once, given input 1100.</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>M moves its head to the right at least once, given input 0101.</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>M must read a blank before it accepts.</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>For some input string, M moves its head to the left at least once.</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>For some input string, M changes at least one symbol on the tape.</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>M always halts.</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>If M accepts a string w, it does so after at most ( O(</td>
<td>w</td>
</tr>
</tbody>
</table>
(e) Consider the following pair of languages:

- \textsc{HamiltonianPath} := \{ G \mid G \text{ contains a Hamiltonian path} \}
- \textsc{Connected} := \{ G \mid G \text{ is connected} \}

Which of the following \textbf{must} be true, assuming \( P \neq NP \)?

<table>
<thead>
<tr>
<th></th>
<th>Connected ( \in \text{NP} )</th>
<th></th>
<th>HamiltonianPath ( \in \text{NP} )</th>
<th></th>
<th>HamiltonianPath is undecidable.</th>
<th></th>
<th>There is a polynomial-time reduction from HamiltonianPath to Connected.</th>
<th></th>
<th>There is a polynomial-time reduction from Connected to HamiltonianPath.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

(f) Suppose we want to prove that the following language is undecidable.

\[ \textsc{AlwaysHalts} := \{ \langle M \rangle \mid M \text{ halts on every input string} \} \]

Bullwinkle J. Moose suggests a reduction from the standard halting language

\[ \textsc{Halt} := \{ \langle M, w \rangle \mid M \text{ halts on inputs } w \} . \]

Specifically, suppose there is a Turing machine \( AH \) that decides \textsc{AlwaysHalts}. Bullwinkle claims that the following Turing machine \( H \) decides \textsc{Halt}. Given an arbitrary encoding \( \langle M, w \rangle \) as input, machine \( H \) writes the encoding \( \langle M' \rangle \) of a new Turing machine \( M' \) to the tape and passes it to \( AH \), where \( M' \) implements the following algorithm:

\[
M'(x):
\begin{align*}
&\text{if } M \text{ accepts } w \\
&\quad \text{reject} \\
&\text{if } M \text{ rejects } w \\
&\quad \text{accept}
\end{align*}
\]

Which of the following statements is true for all inputs \( \langle M, w \rangle \)?

<table>
<thead>
<tr>
<th></th>
<th>If ( M ) accepts ( w ), then ( M' ) halts on every input string.</th>
<th></th>
<th>If ( M ) rejects ( w ), then ( M' ) halts on every input string.</th>
<th></th>
<th>If ( M ) rejects ( w ), then ( H ) rejects ( \langle M, w \rangle ).</th>
<th></th>
<th>If ( M ) diverges on ( w ), then ( H ) diverges on ( \langle M, w \rangle ).</th>
<th></th>
<th>( H ) does not correctly decide the language \textsc{Halt}. (That is, Bullwinkle’s reduction is incorrect.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
2. A **near-Hamiltonian cycle** in a graph $G$ is a closed walk in $G$ that visits one vertex exactly twice and every other vertex exactly once.

(a) Give an example of a graph that contains a near-Hamiltonian cycle, but does not contain a Hamiltonian cycle (which visits every vertex exactly once).

(b) **Prove** that it is NP-hard to determine whether a given graph contains a near-Hamiltonian cycle.
3. Give a complete, formal, self-contained description of a DFA that accepts all strings in \( \{0, 1\}^* \) such that every fifth bit is 0 and the length is not divisible by 12. For example, your DFA should accept the strings 1110111101 and 11. Specifically:

(a) What are the states of your DFA?
(b) What is the start state of your DFA?
(c) What are the accepting states of your DFA?
(d) What is your DFA’s transition function?
4. Suppose you are given three strings $A[1..n]$, $B[1..n]$, and $C[1..n]$. Describe and analyze an algorithm to find the maximum length of a common subsequence of all three strings. For example, given the input strings

$A = AxxBxxCDxEF,$ \quad $B = yyABCDyEyFy,$ \quad $C = zAzxCDzEFz$,

your algorithm should output the number 6, which is the length of the longest common subsequence $ABCDEF$. 

5. For each of the following languages over the alphabet $\Sigma = \{0, 1\}$, either prove that the language is regular, or prove that the language is not regular.

(a) $\{www \mid w \in \Sigma^*\}$
(b) $\{wxw \mid w, x \in \Sigma^*\}$
6. A **number maze** is an \( n \times n \) grid of positive integers. A token starts in the upper left corner; your goal is to move the token to the lower-right corner.

   - On each turn, you are allowed to move the token up, down, left, or right.
   - The distance you may move the token is determined by the number on its current square. For example, if the token is on a square labeled 3, then you may move the token three steps up, three steps down, three steps left, or three steps right.
   - However, you are never allowed to move the token off the edge of the board. In particular, if the current number is too large, you may not be able to move at all.

Describe and analyze an efficient algorithm that either returns the minimum number of moves required to solve a given number maze, or correctly reports that the maze has no solution. For example, given the maze shown below, your algorithm would return the number 8.

![A 5 × 5 number maze that can be solved in eight moves.](image)
(scratch paper)
(scratch paper)
You may assume the following problems are NP-hard:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>CircuitSat</strong></td>
<td>Given a boolean circuit, are there any input values that make the circuit output True?</td>
</tr>
<tr>
<td><strong>3Sat</strong></td>
<td>Given a boolean formula in conjunctive normal form, with exactly three literals per clause, does the formula have a satisfying assignment?</td>
</tr>
<tr>
<td><strong>MaxIndependentSet</strong></td>
<td>Given an undirected graph $G$, what is the size of the largest subset of vertices in $G$ that have no edges among them?</td>
</tr>
<tr>
<td><strong>MaxClique</strong></td>
<td>Given an undirected graph $G$, what is the size of the largest complete subgraph of $G$?</td>
</tr>
<tr>
<td><strong>MinVertexCover</strong></td>
<td>Given an undirected graph $G$, what is the size of the smallest subset of vertices that touch every edge in $G$?</td>
</tr>
<tr>
<td><strong>3Color</strong></td>
<td>Given an undirected graph $G$, can its vertices be colored with three colors, so that every edge touches vertices with two different colors?</td>
</tr>
<tr>
<td><strong>HamiltonianPath</strong></td>
<td>Given an undirected graph $G$, is there a path in $G$ that visits every vertex exactly once?</td>
</tr>
<tr>
<td><strong>HamiltonianCycle</strong></td>
<td>Given an undirected graph $G$, is there a cycle in $G$ that visits every vertex exactly once?</td>
</tr>
<tr>
<td><strong>DirectedHamiltonianCycle</strong></td>
<td>Given an directed graph $G$, is there a directed cycle in $G$ that visits every vertex exactly once?</td>
</tr>
<tr>
<td><strong>TravelingSalesman</strong></td>
<td>Given a graph $G$ (either directed or undirected) with weighted edges, what is the minimum total weight of any Hamiltonian path/cycle in $G$?</td>
</tr>
<tr>
<td><strong>Draughts</strong></td>
<td>Given an $n \times n$ international draughts configuration, what is the largest number of pieces that can (and therefore must) be captured in a single move?</td>
</tr>
<tr>
<td><strong>Super Mario</strong></td>
<td>Given an $n \times n$ level for Super Mario Brothers, can Mario reach the castle?</td>
</tr>
</tbody>
</table>

You may assume the following languages are undecidable:

<table>
<thead>
<tr>
<th>Language</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>SelfReject</strong></td>
<td>${ \langle M \rangle \mid M \text{ rejects } \langle M \rangle }$</td>
</tr>
<tr>
<td><strong>SelfAccept</strong></td>
<td>${ \langle M \rangle \mid M \text{ accepts } \langle M \rangle }$</td>
</tr>
<tr>
<td><strong>SelfHalt</strong></td>
<td>${ \langle M \rangle \mid M \text{ halts on } \langle M \rangle }$</td>
</tr>
<tr>
<td><strong>SelfDiverge</strong></td>
<td>${ \langle M \rangle \mid M \text{ does not halt on } \langle M \rangle }$</td>
</tr>
<tr>
<td><strong>Reject</strong></td>
<td>${ \langle M, w \rangle \mid M \text{ rejects } w }$</td>
</tr>
<tr>
<td><strong>Accept</strong></td>
<td>${ \langle M, w \rangle \mid M \text{ accepts } w }$</td>
</tr>
<tr>
<td><strong>Halt</strong></td>
<td>${ \langle M, w \rangle \mid M \text{ halts on } w }$</td>
</tr>
<tr>
<td><strong>Diverge</strong></td>
<td>${ \langle M, w \rangle \mid M \text{ does not halt on } w }$</td>
</tr>
<tr>
<td><strong>NeverReject</strong></td>
<td>${ \langle M \rangle \mid \text{reject}(M) = \emptyset }$</td>
</tr>
<tr>
<td><strong>NeverAccept</strong></td>
<td>${ \langle M \rangle \mid \text{accept}(M) = \emptyset }$</td>
</tr>
<tr>
<td><strong>NeverHalt</strong></td>
<td>${ \langle M \rangle \mid \text{halt}(M) = \emptyset }$</td>
</tr>
<tr>
<td><strong>NeverDiverge</strong></td>
<td>${ \langle M \rangle \mid \text{diverge}(M) = \emptyset }$</td>
</tr>
</tbody>
</table>
New CS 473: Algorithms, Spring 2015  ❯
Homework 0
Due Tuesday, January 27, 2015 at 5pm

• This homework tests your familiarity with prerequisite material: designing, describing, and analyzing elementary algorithms (at the level of CS 225); fundamental graph problems and algorithms (again, at the level of CS 225); and especially facility with recursion and induction. Notes on most of this prerequisite material are available on the course web page.

• Each student must submit individual solutions for this homework. For all future homeworks, groups of up to three students will be allowed to submit joint solutions.

Some important course policies

• You may use any source at your disposal—paper, electronic, or human—but you must cite every source that you use, and you must write everything yourself in your own words. See the academic integrity policies on the course web site for more details.

• Submit your solutions on standard printer/copier paper. Please use both sides of the paper. Please clearly print your name and NetID at the top of each page. If you plan to write your solutions by hand, please print the last four pages of this homework as templates. If you plan to typeset your homework, you can find a \LaTeX template on the course web site; well-typeset homework will get a small amount of extra credit.

• Start your solution to each numbered problem on a new sheet of paper. Do not staple your entire homework together.

• Submit your solutions in the drop boxes outside 1404 Siebel labeled “New CS 473”. There is a separate drop box for each numbered problem; if you put your solution in the wrong drop box, we won’t grade it. Don’t give your homework to Jeff in class; he is fond of losing important pieces of paper.

• Avoid the Three Deadly Sins! There are a few dangerous writing (and thinking) habits that will trigger an automatic zero on any homework or exam problem, unless your solution is nearly perfect otherwise. Yes, we are completely serious.

  – Always give complete solutions, not just examples.
  – Always declare all your variables.
  – Never use weak induction.

• Answering any homework or exam problem (or subproblem) in this course with “I don’t know” and nothing else is worth 25% partial credit. We will accept synonyms like “No idea” or “WTF”, but you must write something.

See the course web site for more information.

If you have any questions about these policies, please don’t hesitate to ask in class, in office hours, or on Piazza.
1. Suppose you are given a stack of \( n \) pancakes of different sizes. You want to sort the pancakes so that smaller pancakes are on top of larger pancakes. The only operation you can perform is a \textit{flip}—insert a spatula under the top \( k \) pancakes, for some integer \( k \) between 1 and \( n \), and flip them all over.

![Flipping the top four pancakes.](image)

(a) Describe an algorithm to sort an arbitrary stack of \( n \) pancakes, which uses as few flips as possible in the worst case. \textit{Exactly} how many flips does your algorithm perform in the worst case?

(b) Now suppose one side of each pancake is burned. Describe an algorithm to sort an arbitrary stack of \( n \) pancakes, so that the burned side of every pancake is facing down, using as few flips as possible in the worst case. \textit{Exactly} how many flips does your algorithm perform in the worst case?

2. \textit{[From last semester’s CS 374 final exam]} A \textit{number maze} is an \( n \times n \) grid of positive integers. A token starts in the upper left corner; your goal is to move the token to the lower-right corner.

- On each turn, you are allowed to move the token up, down, left, or right.
- The distance you may move the token is determined by the number on its current square. For example, if the token is on a square labeled 3, then you may move the token three steps up, three steps down, three steps left, or three steps right.
- However, you are never allowed to move the token off the edge of the board. In particular, if the current number is too large, you may not be able to move at all.

Describe and analyze an efficient algorithm that either returns the minimum number of moves required to solve a given number maze, or correctly reports that the maze has no solution. For example, given the maze shown below, your algorithm would return the number 8.

```
3 5 7 4 6
5 3 1 5 3
2 8 3 1 4
4 5 7 2 3
3 1 3 2 ★
```

```
3 5 7 4 6
5 3 1 5 3
2 8 3 1 4
4 5 7 2 3
3 1 3 2 ★
```

A \( 5 \times 5 \) number maze that can be solved in eight moves.
3. (a) The Fibonacci numbers $F_n$ are defined by the recurrence $F_n = F_{n-1} + F_{n-2}$, with base cases $F_0 = 0$ and $F_1 = 1$. Here are the first several Fibonacci numbers:

<table>
<thead>
<tr>
<th>$F_0$</th>
<th>$F_1$</th>
<th>$F_2$</th>
<th>$F_3$</th>
<th>$F_4$</th>
<th>$F_5$</th>
<th>$F_6$</th>
<th>$F_7$</th>
<th>$F_8$</th>
<th>$F_9$</th>
<th>$F_{10}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
</tr>
</tbody>
</table>

Prove that every non-negative integer can be written as the sum of distinct, non-consecutive Fibonacci numbers. That is, if the Fibonacci number $F_i$ appears in the sum, it appears exactly once, and its neighbors $F_{i-1}$ and $F_{i+1}$ do not appear at all. For example:

$$17 = F_7 + F_4 + F_2, \quad 42 = F_9 + F_6, \quad 54 = F_9 + F_7 + F_5 + F_3 + F_1.$$ 

(b) The Fibonacci sequence can be extended backward to negative indices by rearranging the defining recurrence: $F_n = F_{n+2} - F_{n+1}$. Here are the first several negative-index Fibonacci numbers:

<table>
<thead>
<tr>
<th>$F_{-10}$</th>
<th>$F_{-9}$</th>
<th>$F_{-8}$</th>
<th>$F_{-7}$</th>
<th>$F_{-6}$</th>
<th>$F_{-5}$</th>
<th>$F_{-4}$</th>
<th>$F_{-3}$</th>
<th>$F_{-2}$</th>
<th>$F_{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-55</td>
<td>34</td>
<td>-21</td>
<td>13</td>
<td>-8</td>
<td>5</td>
<td>-3</td>
<td>2</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>

Prove that $F_{-n} = -F_n$ if and only if $n$ is even.

(c) Prove that every integer—positive, negative, or zero—can be written as the sum of distinct, non-consecutive Fibonacci numbers with negative indices. For example:

$$17 = F_{-7} + F_{-5} + F_{-2}, \quad -42 = F_{-10} + F_{-7}, \quad 54 = F_{-9} + F_{-7} + F_{-5} + F_{-3} + F_{-1}.$$ 

[Hint: Zero is both non-negative and even. Don’t even think about using weak induction!]

4. [Extra credit] Let $T$ be a binary tree whose nodes store distinct numerical values. Recall that $T$ is a binary search tree if and only if either (1) $T$ is empty, or (2) $T$ satisfies the following recursive conditions:

- The left subtree of $T$ is a binary search tree.
- All values in the left subtree of $T$ are smaller than the value at the root of $T$.
- The right subtree of $T$ is a binary search tree.
- All values in the right subtree of $T$ are larger than the value at the root of $T$.

Describe and analyze an algorithm to transform an arbitrary binary tree $T$ with distinct node values into a binary search tree, using only the following operations:

- Rotate an arbitrary node. Rotation is a local operation that decreases the depth of a node by one and increases the depth of its parent by one.
• Swap the left and right subtrees of an arbitrary node.

For both of these operations, some, all, or none of the subtrees $A$, $B$, and $C$ may be empty.

The following example shows a five-node binary tree transforming into a binary search tree in eight operations:

“Sorting” a binary tree in eight steps: rotate 2, rotate 2, swap 3, rotate 3, rotate 4, swap 3, rotate 2, swap 4.

Your algorithm cannot directly modify parent or child pointers, and it cannot allocate new nodes or delete old nodes; the only way it can modify $T$ is using rotations and swaps. On the other hand, you may compute anything you like for free, as long as that computation does not modify $T$. In other words, the running time of your algorithm is defined to be the number of rotations and swaps that it performs.

For full credit, your algorithm should use as few rotations and swaps as possible in the worst case. [Hint: $O(n^2)$ operations is not too difficult, but we can do better.]
1. Two graphs are **isomorphic** if one can be transformed into the other just by relabeling the vertices. For example, the graphs shown below are isomorphic; the left graph can be transformed into the right graph by the relabeling \((1, 2, 3, 4, 5, 6, 7) \rightarrow (c, g, b, e, a, f, d)\).

![Two isomorphic graphs.](image)

Consider the following related decision problems:

- **GRAPHISOMORPHISM**: Given two graphs \(G\) and \(H\), determine whether \(G\) and \(H\) are isomorphic.
- **EVENGRAPHISOMORPHISM**: Given two graphs \(G\) and \(H\), such that every vertex in \(G\) and every vertex in \(H\) has even degree, determine whether \(G\) and \(H\) are isomorphic.
- **SUBGRAPHISOMORPHISM**: Given two graphs \(G\) and \(H\), determine whether \(G\) is isomorphic to a subgraph of \(H\).

(a) Describe a polynomial-time reduction from **EVENGRAPHISOMORPHISM** to **GRAPHISOMORPHISM**.
(b) Describe a polynomial-time reduction from **GRAPHISOMORPHISM** to **EVENGRAPHISOMORPHISM**.
(c) Describe a polynomial-time reduction from **GRAPHISOMORPHISM** to **SUBGRAPHISOMORPHISM**.
(d) Prove that **SUBGRAPHISOMORPHISM** is NP-complete.
(e) What can you conclude about the NP-hardness of **GRAPHISOMORPHISM**? Justify your answer.

*Hint: These are all easy!*
2. Prove that the following problems are NP-hard.
   
   (a) Given an undirected graph $G$, does $G$ have a spanning tree with at most 473 leaves?
   (b) Given an undirected graph $G = (V, E)$, what is the size of the largest subset of vertices $S \subseteq V$ such that at most 2015 edges in $E$ have both endpoints in $S$?

3. The Hamiltonian cycle problem has two closely related variants:
   
   - **UNDIRECTEDHAMCycle**: Given an undirected graph $G$, does $G$ contain an undirected Hamiltonian cycle?
   - **DIRECTEDHAMCycle**: Given an directed graph $G$, does $G$ contain a directed Hamiltonian cycle?

   This question asks you to prove that these two problems are essentially equivalent.

   (a) Describe a polynomial-time reduction from **UNDIRECTEDHAMCycle** to **DIRECTEDHAMCycle**.
   (b) Describe a polynomial-time reduction from **DIRECTEDHAMCycle** to **UNDIRECTEDHAMCycle**.

*4. [Extra Credit] Describe a direct polynomial-time reduction from **4COLOR** to **3COLOR**. (This is a lot harder than the opposite direction!)*
New CS 473: Algorithms, Spring 2015

Homework 2

Due Tuesday, February 10, 2015 at 5pm

1. The **maximum k-cut problem** asks, given a graph $G$ with edge weights and an integer $k$ as input, to compute a partition of the vertices of $G$ into $k$ disjoint subsets $S_1, S_2, \ldots, S_k$ such that the sum of the weights of the edges that cross the partition (that is, have endpoints in different subsets) is as large as possible.

   (a) Describe an efficient $(1 - 1/k)$-approximation algorithm for this problem.

   (b) Now suppose we wish to minimize the sum of the weights of edges that do not cross the partition. What approximation ratio does your algorithm from part (a) achieve for the new problem? Justify your answer.

2. In the **bin packing** problem, we are given a set of $n$ items, each with weight between 0 and 1, and we are asked to load the items into as few bins as possible, such that the total weight in each bin is at most 1. It's not hard to show that this problem is NP-Hard; this question asks you to analyze a few common approximation algorithms. In each case, the input is an array $W[1..n]$ of weights, and the output is the number of bins used.

   **NextFit($W[1..n]$):**
   
   ```
   bins ← 0
   Total[0] ← ∞
   for i ← 1 to n
     if Total[bins] + W[i] > 1
       bins ← bins + 1
       Total[bins] ← W[i]
     else
       Total[bins] ← Total[bins] + W[i]
   return bins
   ```

   **FirstFit($W[1..n]$):**
   
   ```
   bins ← 0
   for i ← 1 to n
     j ← 1; found ← FALSE
     while j ≤ bins and ¬found
       if Total[j] + W[i] ≤ 1
         Total[j] ← Total[j] + W[i]
         found ← TRUE
       j ← j + 1
     if ¬found
       bins ← bins + 1
     Total[bins] = W[i]
   return bins
   ```

   (a) Prove that NextFit uses at most twice the optimal number of bins.

   (b) Prove that FirstFit uses at most twice the optimal number of bins.

   *(c) [Extra Credit]* Prove that if the weight array $W$ is initially sorted in decreasing order, then FirstFit uses at most $(4 \cdot OPT + 1)/3$ bins, where $OPT$ is the optimal number of bins. The following facts may be useful (but you need to prove them if your proof uses them):
   
   - In the packing computed by FirstFit, every item with weight more than $1/3$ is placed in one of the first $OPT$ bins.
   - FirstFit places at most $OPT - 1$ items outside the first $OPT$ bins.
3. Consider the following greedy algorithm for the metric traveling salesman problem: Start at an arbitrary vertex, and then repeatedly travel to the closest unvisited vertex, until every vertex has been visited.

(a) Prove that the approximation ratio for this algorithm is $O(\log n)$, where $n$ is the number of vertices. [Hint: Argue that the $k$th least expensive edge in the tour output by the greedy algorithm has weight at most $\text{OPT}/(n - k + 1)$; try $k = 1$ and $k = 2$ first.]

* (b) [Extra Credit] Prove that the approximation ratio for this algorithm is $\Omega(\log n)$. That is, describe an infinite family of weighted graphs such that the greedy algorithm returns a Hamiltonian cycle whose weight is $\Omega(\log n)$ times the weight of the optimal TSP tour.
1. A string $w$ of parentheses ( and ) and brackets [ and ] is \textit{balanced} if it satisfies one of the following conditions:

- $w$ is the empty string.
- $w = (x)$ for some balanced string $x$
- $w = [x]$ for some balanced string $x$
- $w = xy$ for some balanced strings $x$ and $y$

For example, the string

$$w = ((([])[(()[])])(()))(())$$

is balanced, because $w = xy$, where

$$x = ((())) [() ()]$$  \quad \text{and}  \quad y = [() () ()].$$

Describe and analyze an algorithm to compute the length of a longest balanced subsequence of a given string of parentheses and brackets. Your input is an array $w[1..n]$, where $w[i] \in \{ (, ), [ , ] \}$ for every index $i$. (You may prefer to use different symbols instead of parentheses and brackets—for example, $L, R, l, r$ or $<, >, \ll, \gg$—but please tell us what symbols you’re using!)

2. Congratulations! You’ve just been hired at internet giant Yeehaw! as the new party czar. The president of the company has asked you to plan the annual holiday party. Your task is to find exactly $k$ employees to invite, including the president herself. Employees at Yeehaw! are organized into a strict hierarchy—a tree with the president at the root. The all-knowing oracles in Human Resources have determined two numerical values for each employee:

- $\text{With}[i]$ measures much fun employee $i$ would have at the party if their immediate supervisor is also invited.
- $\text{Without}[i]$ measures how much fun employee $i$ would have at the party if their immediate supervisor is not also invited.

These values could be positive, negative, or zero, and $\text{With}[i]$ could be greater than, less than, or equal to $\text{Without}[i]$.

Describe an algorithm that finds the set of $k$ employees to invite that maximizes the sum of the $k$ resulting “fun” values. The input to your algorithm is the tree $T$, the integer $k$, and the $\text{With}$ and $\text{Without}$ values for each employee. Assume that everyone invited to the party actually attends. Do not assume that $T$ is a binary tree.
3. Although we typically speak of “the” shortest path between two nodes, a single graph could contain several minimum-length paths with the same endpoints.

Describe and analyze an algorithm to determine the number of shortest paths from a source vertex \( s \) to a target vertex \( t \) in an arbitrary directed graph \( G \) with weighted edges. You may assume that all edge weights are positive and that all necessary arithmetic operations can be performed in \( O(1) \) time.

[Hint: Compute shortest path distances from \( s \) to every other vertex. Throw away all edges that cannot be part of a shortest path from \( s \) to another vertex. What’s left?]
1. Suppose we want to summarize a large set $S$ of values—for example, course averages for students in CS 105—using a variable-width histogram. To construct a histogram, we choose a sorted sequence of breakpoints $b_0 < b_1 < \cdots < b_k$, such that every element of $S$ lies between $b_0$ and $b_k$. Then for each interval $[b_{i-1}, b_i]$, the histogram includes a rectangle whose height is the number of elements of $S$ that lie inside that interval.

Unlike a standard histogram, which requires the intervals to have equal width, we are free to choose the breakpoints arbitrarily. For statistical purposes, it is useful for the areas of the rectangles to be as close to equal as possible. To that end, define the cost of a histogram to be the sum of the squares of the rectangle areas; we want to compute the histogram with minimum cost.

More formally, suppose we fix a sequence of breakpoints $b_0 < b_1 < \cdots < b_k$. For each index $i$, let $n_i$ denote the number of input values in the $i$th interval:

$$n_i := \#\{x \in S \mid b_{i-1} \leq x < b_i\}.$$  

Then the cost of the resulting histogram is $\sum_{i=1}^{k} (n_i(b_i - b_{i-1}))^2$.

Describe and analyze an algorithm to compute a variable-width histogram with minimum cost for a given set of data values. Your input is an unsorted array $S[1..n]$ of distinct real numbers, all strictly between 0 and 1, and an integer $k$. Your algorithm should return a sorted array $B[0..k]$ of breakpoints that minimizes the cost of the resulting histogram, where $B[0] = 0$ and $B[k] = 1$, and every other breakpoint $B[i]$ is equal to some input value $S[j]$.  

2. Suppose we are given a directed acyclic graph $G$ with labeled vertices. Every path in $G$ has a label, which is a string obtained by concatenating the labels of its vertices in order. Recall that a palindrome is a string that is equal to its reversal.

Describe and analyze an algorithm to find the length of the longest palindrome that is the label of a path in $G$. For example, given the graph on the left below, your algorithm should return the integer 7, which is the length of the palindrome HANDNAH; given the graph on the right, your algorithm should return the integer 6, which is the length of the palindrome HANNAH.
1. On their long journey from Denmark to England, Rosencrantz and Guildenstern amuse themselves by playing the following game with a fair coin. First Rosencrantz flips the coin over and over until it comes up tails. Then Guildenstern flips the coin over and over until he gets as many heads in a row as Rosencrantz got on his turn. Here are three typical games:

   Rosencrantz: \( HH \ T \)
   Guildenstern: \( H \ T \ H \ H \)

   Rosencrantz: \( T \)
   Guildenstern: (no flips)

   Rosencrantz: \( HH \ H \ T \)
   Guildenstern: \( T \ H \ H \ T \ H \ T \ T \ H \ H \ H \)

(a) What is the exact expected number of flips in one of Rosencrantz’s turns?
(b) Suppose Rosencrantz happens to flip \( k \) heads in a row on his turn. What is the exact expected number of flips in Guildenstern’s next turn?
(c) What is the exact expected total number of flips (by both Rosencrantz and Guildenstern) in a single game?

Include formal proofs that your answers are correct. If you have to appeal to “intuition” or “common sense”, your answer is almost certainly wrong!

2. Recall from class that a priority search tree is a binary tree in which every node has both a search key and a priority, arranged so that the tree is simultaneously a binary search tree for the keys and a min-heap for the priorities. A heater is a priority search tree in which the priorities are given by the user, and the search keys are distributed uniformly and independently at random in the real interval \([0, 1]\). Intuitively, a heater is an “anti-treap”.

   The following questions consider an \( n \)-node heater \( T \) whose priorities are the integers from 1 to \( n \). Here we identify each node in \( T \) by its priority rank, rather than by the rank of its search keys; for example, “node 5” means the node in \( T \) with the 5th smallest priority. In particular, the min-heap property implies that node 1 is the root of \( T \). Finally, let \( i \) and \( j \) be arbitrary integers such that \( 1 \leq i < j \leq n \).
(a) What is the exact expected depth of node $j$ in an $n$-node heater? Answering the following subproblems will help you:

i. Prove that in a uniformly random permutation of the $(i + 1)$-element set \{1, 2, \ldots, i, j\}, elements $i$ and $j$ are adjacent with probability $2/(i + 1)$.

ii. Prove that node $i$ is an ancestor of node $j$ with probability $2/(i + 1)$. [Hint: Use the previous question!]

iii. What is the probability that node $i$ is a descendant of node $j$? [Hint: Do not use the previous question!]

(b) Describe and analyze an algorithm to insert a new item into a heater. Express the expected running time of the algorithm in terms of the priority rank of the newly inserted item.

(c) Describe an algorithm to delete the minimum-priority item (the root) from an $n$-node heater. What is the expected running time of your algorithm?

3. Suppose we are given a two-dimensional array $M[1..n, 1..n]$ in which every row and every column is sorted in increasing order and no two elements are equal.

(a) Describe and analyze an algorithm to solve the following problem in $O(n)$ time: Given indices $i, j, i', j'$ as input, compute the number of elements of $M$ smaller than $M[i, j]$ and larger than $M[i', j']$.

(b) Describe and analyze an algorithm to solve the following problem in $O(n)$ time: Given indices $i, j, i', j'$ as input, return an element of $M$ chosen uniformly at random from the elements smaller than $M[i, j]$ and larger than $M[i', j']$. Assume the requested range is always non-empty.

(c) Describe and analyze a randomized algorithm to compute the median element of $M$ in $O(n \log n)$ expected time.

Assume you have access to a subroutine $\text{RANDOM}(k)$ that returns an integer chosen independently and uniformly at random from the set \{1, 2, \ldots, k\}, given an arbitrary positive integer $k$ as input.
1. Death knocks on your door one cold blustery morning and challenges you to a game. Death knows that you are an algorithms student, so instead of the traditional game of chess, Death presents you with a complete binary tree with \(4^n\) leaves, each colored either black or white. There is a token at the root of the tree. To play the game, you and Death will take turns moving the token from its current node to one of its children. The game will end after \(2n\) moves, when the token lands on a leaf. If the final leaf is black, you die; if it’s white, you will live forever. You move first, so Death gets the last turn.

You can decide whether it’s worth playing or not as follows. Imagine that the nodes at even levels (where it’s your turn) are \(\lor\) gates, the nodes at odd levels (where it’s Death’s turn) are \(\land\) gates. Each gate gets its input from its children and passes its output to its parent. White and black stand for \(T\) and \(F\). If the output at the top of the tree is \(T\), then you can win and live forever! If the output at the top of the tree is \(F\), you should challenge Death to a game of Twister instead.

(a) Describe and analyze a deterministic algorithm to determine whether or not you can win. [Hint: This is easy, but be specific!]

*(b) [Extra credit] Prove that any deterministic algorithm that correctly determines whether you can win must examine every leaf in the tree. It follows that any correct algorithm for part (a) must take \(\Omega(4^n)\) time. [Hint: Let Death cheat, but not in a way that the algorithm can detect.]

(c) Unfortunately, Death won’t give you enough time to look at every node in the tree. Describe a randomized algorithm that determines whether you can win in \(O(3^n)\) expected time. [Hint: Consider the case \(n = 1\).]

*(d) [Extra credit] Describe and analyze a randomized algorithm that determines whether you can win in \(O(c^n)\) expected time, for some explicit constant \(c < 3\). Your analysis should yield an exact value for the constant \(c\). [Hint: You may not need to change your algorithm from part (b) at all!]
2. A **meldable priority queue** stores a set of priorities from some totally-ordered universe (such as the integers) and supports the following operations:

- **MAKEQueue**: Return a new priority queue containing the empty set.
- **FINDMin(Q)**: Return the smallest element of Q (if any).
- **DELETEMin(Q)**: Remove the smallest element in Q (if any).
- **INSERT(Q, x)**: Insert element x into Q, if it is not already there.
- **DECREASEPriority(Q, x, y)**: Replace an element x ∈ Q with a new element y < x. (If y ≥ x, the operation fails.) The input includes a pointer directly to the node in Q containing x.
- **DELETE(Q, x)**: Delete the element x ∈ Q. The input is a pointer directly to the node in Q containing x.
- **MELD(Q1, Q2)**: Return a new priority queue containing all the elements of Q1 and Q2; this operation destroys Q1 and Q2. The elements of Q1 and Q2 could be arbitrarily intermixed; we do not assume, for example, that every element of Q1 is smaller than every element of Q2.

A simple way to implement such a data structure is to use a heap-ordered binary tree, where each node stores a priority, along with pointers to its parent and two children. **MELD** can be implemented using the following randomized algorithm. The input consists of pointers to the roots of the two trees.

```plaintext
MELD(Q1, Q2):
    if Q1 = NULL then return Q2
    if Q2 = NULL then return Q1
    if priority(Q1) > priority(Q2)
        swap Q1 ← Q2
    with probability 1/2
        left(Q1) ← MELD(left(Q1), Q2)
    else
        right(Q1) ← MELD(right(Q1), Q2)
    return Q1
```

(a) Prove that for *any* heap-ordered binary trees Q1 and Q2 (not just those constructed by the operations listed above), the expected running time of **MELD(Q1, Q2)** is O(log n), where n = |Q1| + |Q2|. [Hint: What is the expected length of a random root-to-leaf path in an n-node binary tree, where each left/right choice is made with equal probability?]

(b) Prove that **MELD(Q1, Q2)** runs in O(log n) time with high probability. [Hint: You can use Chernoff bounds, but the simpler identity \((\frac{e^k}{k}) \leq (ce)^k\) is actually sufficient.]

(c) Show that each of the other meldable priority queue operations can be implemented with at most one call to **MELD** and O(1) additional time. (It follows that every operation takes O(log n) time with high probability.)
Homework 7
Due Tuesday, March 31, 2015 at 5pm

All homework must be submitted electronically via Moodle as separate PDF files, one for each numbered problem. Please see the course website for more information.

1. **Reservoir sampling** is a method for choosing an item uniformly at random from an arbitrarily long stream of data; for example, the sequence of packets that pass through a router, or the sequence of IP addresses that access a given web page. Like all data stream algorithms, this algorithm must process each item in the stream quickly, using very little memory.

   ```
   \text{GETONESAMPLE}(\text{stream } S):
   \begin{align*}
   \ell &\leftarrow 0 \\
   \text{while } S \text{ is not done} &\quad \text{do} \\
   &\quad x \leftarrow \text{next item in } S \\
   &\quad \ell \leftarrow \ell + 1 \\
   &\quad \text{if RANDOM}(\ell) = 1 \\
   &\quad \text{sample } \leftarrow x \quad (\star) \\
   \text{return sample}
   \end{align*}
   ```

   At the end of the algorithm, the variable $\ell$ stores the length of the input stream $S$; this number is not known to the algorithm in advance. If $S$ is empty, the output of the algorithm is (correctly!) undefined.

   Consider an arbitrary non-empty input stream $S$, and let $n$ denote the (unknown) length of $S$.

   (a) Prove that the item returned by \text{GETONESAMPLE}(S) is chosen uniformly at random from $S$.

   (b) What is the exact expected number of times that \text{GETONESAMPLE}(S) executes line (\star)?

   (c) What is the exact expected value of $\ell$ when \text{GETONESAMPLE}(S) executes line (\star) for the last time?

   (d) What is the exact expected value of $\ell$ when either \text{GETONESAMPLE}(S) executes line (\star) for the second time (or the algorithm ends, whichever happens first)?

   (e) Describe and analyze an algorithm that returns a subset of $k$ distinct items chosen uniformly at random from a data stream of length at least $k$. The integer $k$ is given as part of the input to your algorithm. Prove that your algorithm is correct.

   For example, if $k = 2$ and the stream contains the sequence $\{\spadesuit, \heartsuit, \clubsuit, \diamondsuit\}$, the algorithm would return the subset $\{\diamondsuit, \spadesuit\}$ with probability $1/6$. 
New CS 473: Algorithms, Spring 2015
Homework 8
Due Tuesday, April 6, 2015 at 5pm

All homework must be submitted electronically via Moodle as separate PDF files, one for each numbered problem. Please see the course web site for more information.

1. Suppose you are given a directed graph $G = (V, E)$, two vertices $s$ and $t$, a capacity function $c : E \rightarrow \mathbb{R}^+$, and a second function $f : E \rightarrow \mathbb{R}$.

   (a) Describe and analyze an efficient algorithm to determine whether $f$ is a maximum $(s, t)$-flow in $G$.

   (b) Describe and analyze an efficient algorithm to determine whether $f$ is the unique maximum $(s, t)$-flow in $G$.

   Do not assume anything about the function $f$.

2. A new assistant professor, teaching maximum flows for the first time, suggested the following greedy modification to the generic Ford-Fulkerson augmenting path algorithm. Instead of maintaining a residual graph, the greedy algorithm just reduces the capacity of edges along the augmenting path. In particular, whenever the algorithm saturates an edge, that edge is simply removed from the graph.

   ```plaintext
   GREEDYFLOW(G, c, s, t):
   for every edge $e$ in $G$
     $f(e) \leftarrow 0$
   while there is a path from $s$ to $t$ in $G$
     $\pi \leftarrow$ arbitrary path from $s$ to $t$ in $G$
     $F \leftarrow$ minimum capacity of any edge in $\pi$
     for every edge $e$ in $\pi$
       $f(e) \leftarrow f(e) + F$
       if $c(e) = F$
         remove $e$ from $G$
     else
       $c(e) \leftarrow c(e) - F$
   return $f$
   ```

   (a) Prove that GREEDYFLOW does not always compute a maximum flow.

   (b) Prove that GREEDYFLOW is not even guaranteed to compute a good approximation to the maximum flow. That is, for any constant $\alpha > 1$, describe a flow network $G$ such that the value of the maximum flow is more than $\alpha$ times the value of the flow computed by GREEDYFLOW. [Hint: Assume that GREEDYFLOW chooses the worst possible path $\pi$ at each iteration.]
(c) Prove that for any flow network, if the Greedy Path Fairy tells you precisely which path $\pi$ to use at each iteration, then GreedyFlow does compute a maximum flow. (Sadly, the Greedy Path Fairy does not actually exist.)

3. Suppose we are given an $n \times n$ square grid, some of whose squares are colored black and the rest white. Describe and analyze an algorithm to determine whether tokens can be placed on the grid so that

- every token is on a white square;
- every row of the grid contains exactly one token; and
- every column of the grid contains exactly one token.

Your input is a two dimensional array $\text{IsWhite}[1..n, 1..n]$ of booleans, indicating which squares are white. Your output is a single boolean. For example, given the grid above as input, your algorithm should return $\text{True}$. 
1. Suppose we are given an array $A[1..m][1..n]$ of real numbers. We want to round $A$ to an integer array, by replacing each entry $x$ in $A$ with either $\lfloor x \rfloor$ or $\lceil x \rceil$, without changing the sum of entries in any row or column of $A$. For example:

\[
\begin{bmatrix}
1.2 & 3.4 & 2.4 \\
3.9 & 4.0 & 2.1 \\
7.9 & 1.6 & 0.5
\end{bmatrix}
\begin{array}{c}
\leftrightarrow \\
\rightarrow
\end{array}
\begin{bmatrix}
1 & 4 & 2 \\
4 & 4 & 2 \\
8 & 1 & 1
\end{bmatrix}
\]

Describe and analyze an efficient algorithm that either rounds $A$ in this fashion, or reports correctly that no such rounding is possible.

2. Suppose we are given a set of boxes, each specified by their height, width, and depth in centimeters. All three side lengths of every box lie strictly between $10\text{cm}$ and $20\text{cm}$. As you should expect, one box can be placed inside another if the smaller box can be rotated so that its height, width, and depth are respectively smaller than the height, width, and depth of the larger box. Boxes can be nested recursively. Call a box visible if it is not inside another box.

(a) Describe and analyze an algorithm to find the largest subset of the given boxes that can be nested so that only one box is visible.

(b) Describe and analyze an algorithm to nest all the given boxes so that the number of visible boxes is as small as possible. [Hint: Do not use part (a).]

3. Describe and analyze an algorithm for the following problem, first posed and solved by the German mathematician Carl Jacobi in the early 1800s.\footnote{Carl Gustav Jacob Jacobi. \textit{De investigando ordine systematis aequationum differentialum vulgarium cujuscunque.} \textit{J. Reine Angew. Math.} 64(4):297–320, 1865. Posthumously published by Carl Borchardt.}

\begin{quote}
\textit{Disponantur $nn$ quantitates $k^{(i)}$ quaecunque in schema Quadrati, ita ut $k$ habeantur $n$ series horizontales et $n$ series verticales, quarum quaecue est $n$ terminorum. Ex illis quantitatibus eligantur $n$ transversales, i.e. in series horizontalibus simul atque verticalibus diversis positae, quod fieri potest $1.2\ldots n$ modis; ex omnibus illis modis quaerendum est is, qui summam $n$ numerorum electorum suppediet maximam.}
\end{quote}
For the few students who are not fluent in mid-19th century academic Latin, here is a modern English translation of Jacobi's problem. Suppose we are given an $n \times n$ matrix $M$. Describe and analyze an algorithm that computes a permutation $\sigma$ that maximizes the sum $\sum_i M_{i,\sigma(i)}$, or equivalently, permutes the columns of $M$ so that the sum of the elements along the diagonal is as large as possible.

Please do not submit your solution in mid-19th century academic Latin.
1. Given points \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\) in the plane, the **linear regression problem** asks for real numbers \(a\) and \(b\) such that the line \(y = ax + b\) fits the points as closely as possible, according to some criterion. The most common fit criterion is the **\(L_2\) error**, defined as follows:

\[
\varepsilon_2(a, b) = \sum_{i=1}^{n} (y_i - ax_i - b)^2.
\]

(This is the error metric *(ordinary/linear) least squares*.)

But there are several other ways of measuring how well a line fits a set of points, some of which can be optimized via linear programming.

(a) The **\(L_1\) error** (or total absolute deviation) of the line \(y = ax + b\) is the sum of the vertical distances from the given points to the line:

\[
\varepsilon_1(a, b) = \sum_{i=1}^{n} |y_i - ax_i - b|.
\]

Describe a linear program whose solution \((a, b)\) describes the line with minimum \(L_1\) error.

(b) The **\(L_\infty\) error** (or maximum absolute deviation) of the line \(y = ax + b\) is the maximum vertical distance from any given point to the line:

\[
\varepsilon_\infty(a, b) = \max_{i=1}^{n} |y_i - ax_i - b|.
\]

Describe a linear program whose solution \((a, b)\) describes the line with minimum \(L_\infty\) error.

2. (a) Give a linear-programming formulation of the maximum-cardinality bipartite matching problem. The input is a bipartite graph \(G = (L \cup R, E)\), where every edge connects a vertex in \(L\) (“on the left”) with a vertex in \(R\) (“on the right”). The output is the largest matching in \(G\). Your linear program should have one variable for each edge.

(b) Now dualize the linear program from part (a). What do the dual variables represent? What does the objective function represent? What problem is this!?

3. An **integer program** is a linear program with the additional constraint that the variables must take only integer values. Prove that deciding whether a given integer program has a feasible solution is NP-hard. *[Hint: Any NP-complete decision problem can be formulated as an integer program. Choose your favorite!]*
1. In Homework 10, we considered several different problems that can be solved by reducing them to a linear programming problem:

- Finding a line that fits a given set of \( n \) points in the plane with minimum \( L_1 \) error.
- Finding a line that fits a given set of \( n \) points in the plane with minimum \( L_\infty \) error.
- Finding the largest matching in a bipartite graph.
- Finding the smallest vertex cover in a bipartite graph.

The specific linear programs are described in the homework solutions. For each of these linear programs, answer the following questions in the language of the original problem:

(a) What is a basis?
(b) (For the line-fitting problems only:) How many different bases are there?
(c) What is a feasible basis?
(d) What is a locally optimal basis?
(e) What is a pivot?

2. Let \( G = (V, E) \) be an arbitrary directed graph with weighted vertices; vertex weights may be positive, negative, or zero. A prefix of \( G \) is a subset \( P \subseteq V \), such that there is no edge \( u \rightarrow v \) where \( u \notin P \) but \( v \in P \). A suffix of \( G \) is the complement of a prefix. Finally, an interval of \( G \) is the intersection of a prefix of \( G \) and a suffix of \( G \). The weight of a prefix, suffix, or interval is the sum of the weights of its vertices.

(a) Describe a linear program that characterizes the maximum-weight prefix of \( G \). Your linear program should have one variable per vertex, indicating whether that vertex is or is not in the chosen prefix.
(b) Describe a linear program that characterizes the maximum-weight interval of \( G \).

[Hint: Don't worry about the solutions to your linear programs being integral; they will be. If all vertex weights are negative, the maximum-weight interval is empty; if all vertex weights are positive, the maximum-weight interval contains every vertex.]
1. Recall that a boolean formula is in \textit{conjunctive normal form} if it is the conjunction (AND) of a series of \textit{clauses}, each of which is a disjunction (OR) of a series of literals, each of which is either a variable or the negation of a variable. Consider the following variants of SAT:

- \textit{3SAT}: Given a boolean formula $\Phi$ in conjunctive normal form, such that every clause in $\Phi$ contains exactly three literals, is $\Phi$ satisfiable?
- \textit{4SAT}: Given a boolean formula $\Phi$ in conjunctive normal form, such that every clause in $\Phi$ contains exactly four literals, is $\Phi$ satisfiable?

(a) Describe a polynomial-time reduction from 3SAT to 4SAT.
(b) Describe a polynomial-time reduction from 4SAT to 3SAT.

Don’t forget to \textbf{prove} that your reductions are correct!

2. Suppose we need to distribute a message to all the nodes in a given binary tree. Initially, only the root node knows the message. In a single round, each node that knows the message is allowed (but not required) forward it to at most one of its children. Describe and analyze an algorithm to compute the minimum number of rounds required for the message to be delivered to all nodes in the tree.

![A message being distributed through a binary tree in five rounds.](image)

3. The \textbf{maximum acyclic subgraph} problem is defined as follows: The input is a directed graph $G = (V, E)$ with $n$ vertices. Our task is to label the vertices from 1 to $n$ so that the number of edges $u \to v$ with $\text{label}(u) < \text{label}(v)$ is as large as possible. Solving this problem exactly is NP-hard.

(a) Describe and analyze an efficient 2-approximation algorithm for this problem.
(b) \textbf{Prove} that the approximation ratio of your algorithm is at most 2.

[Hint: Find an ordering of the vertices such that at least half of the edges point forward. Why is that enough?]
4. Let $G$ be an undirected graph with weighted edges. A heavy Hamiltonian cycle is a cycle $C$ that passes through each vertex of $G$ exactly once, such that the total weight of the edges in $C$ is at least half of the total weight of all edges in $G$. Prove that deciding whether a graph has a heavy Hamiltonian cycle is NP-hard.

A heavy Hamiltonian cycle. The cycle has total weight 34; the graph has total weight 67.

5. Lenny Rutenbar, founding dean of the new Maximilian Q. Levchin College of Computer Science, has commissioned a series of snow ramps on the south slope of the Orchard Downs sledding hill and challenged William (Bill) Sanders, head of the Department of Electrical and Computer Engineering, to a sledding contest. Bill and Lenny will both sled down the hill, each trying to maximize their air time. The winner gets to expand their department/college into both Siebel Center and the new ECE Building; the loser has to move their entire department/college under the Boneyard bridge next to Everitt Lab.

Whenever Lenny or Bill reaches a ramp while on the ground, they can either use that ramp to jump through the air, possibly flying over one or more ramps, or sled past that ramp and stay on the ground. Obviously, if someone flies over a ramp, they cannot use that ramp to extend their jump.

Suppose you are given a pair of arrays \( \text{Ramp}[1..n] \) and \( \text{Length}[1..n] \), where \( \text{Ramp}[i] \) is the distance from the top of the hill to the \( i \)th ramp, and \( \text{Length}[i] \) is the distance that a sledder who takes the \( i \)th ramp will travel through the air. Describe and analyze an algorithm to determine the maximum total distance that Lenny or Bill can spend in the air.

\( \ddagger \)The north slope is faster, but too short for an interesting contest.
1. Clearly indicate the following structures in the directed graph on the right. Some of these subproblems may have more than one correct answer.
   
   (a) A maximum \((s, t)\)-flow \(f\).
   (b) The residual graph of \(f\).
   (c) A minimum \((s, t)\)-cut.

2. Recall that a family \(\mathcal{H}\) of hash functions is \textit{universal} if \(\Pr_{h \in \mathcal{H}}[h(x) = h(y)] \leq 1/m\) for all distinct items \(x \neq y\), where \(m\) is the size of the hash table. For any fixed hash function \(h\), a \textit{collision} is an unordered pair of distinct items \(x \neq y\) such that \(h(x) = h(y)\).

   Suppose we hash a set of \(n\) items into a table of size \(m = 2n\), using a hash function \(h\) chosen uniformly at random from some universal family. Assume \(\sqrt{n}\) is an integer.

   (a) \textbf{Prove} that the expected number of collisions is at most \(n/4\).
   
   (b) \textbf{Prove} that the probability that there are at least \(n/2\) collisions is at most \(1/2\).
   
   (c) \textbf{Prove} that the probability that any subset of more than \(\sqrt{n}\) items all hash to the same address is at most \(1/2\). \([\text{Hint: Use part (b).}]\)

   (d) \textbf{[The actual exam question assumed only pairwise independence of hash values; under this weaker assumption, the claimed result is actually false. Everybody got extra credit for this part.]} Now suppose we choose \(h\) at random from a \textit{strongly 4-universal} family of hash functions, which means for all distinct items \(w, x, y, z\) and all addresses \(i, j, k, l\), we have

   \[
   \Pr_{h \in \mathcal{H}}[h(w) = i \land h(x) = j \land h(y) = k \land h(z) = l] = \frac{1}{m^4}.
   \]

   \textbf{Prove} that the probability that any subset of more than \(\sqrt{n}\) items all hash to the same address is at most \(O(1/n)\). \([\text{Hint: Use Markov's and Chebyshev's inequalities. All four statements have short elementary proofs.}]\)
3. Suppose we have already computed a maximum flow $f^*$ in a flow network $G$ with integer capacities. Assume all flow values $f^*(e)$ are integers.

   (a) Describe and analyze an algorithm to update the maximum flow after the capacity of a single edge is increased by 1.
   (b) Describe and analyze an algorithm to update the maximum flow after the capacity of a single edge is decreased by 1.

   Your algorithms should be significantly faster than recomputing the maximum flow from scratch.

4. Let $T$ be a treap with $n$ vertices.

   (a) What is the exact expected number of leaves in $T$?
   (b) What is the exact expected number of nodes in $T$ that have two children?
   (c) What is the exact expected number of nodes in $T$ that have exactly one child?

   You do not need to prove that your answers are correct. [Hint: What is the probability that the node with the $k$th smallest search key has no children, one child, or two children?]

5. There is no problem 5.
1. Let $S$ be an arbitrary set of $n$ points in the plane. A point $p$ in $S$ is **Pareto-optimal** if no other point in $S$ is both above and to the right. The **staircase** of $S$ is the set of all points in the plane (not just in $S$) that have at least one point in $S$ both above and to the right. All Pareto-optimal points lie on the boundary of the staircase.

![A set of points in the plane and its staircase (shaded), with Pareto-optimal points in black.](image)

(a) Describe and analyze an algorithm that computes the staircase of $S$ in $O(n \log n)$ time.

(b) Suppose each point in $S$ is chosen independently and uniformly at random from the unit square $[0, 1] \times [0, 1]$. What is the exact expected number of Pareto-optimal points in $S$?

2. Let $G = (V, E)$ be a directed graph, in which every edge has capacity equal to 1 and some arbitrary cost. Edge costs could be positive, negative, or zero. Suppose you have just finished computing the minimum-cost circulation in this graph. Unfortunately, after all that work, now you realize that you recorded the direction of one of the edges incorrectly!

Describe and analyze an algorithm to update the minimum-cost circulation in $G$ when the direction of an arbitrary edge in $G$ is reversed. The input to your algorithm consists of the directed graph $G$, the costs of edges in $G$, the minimum-cost circulation in $G$, and the edge to be reversed. Your algorithm should be faster than recomputing the minimum-cost circulation from scratch.

3. The **chromatic number** $\chi(G)$ of an undirected graph $G$ is the minimum number of colors required to color the vertices, so that every edge has endpoints with different colors. Computing the chromatic number exactly is NP-hard, because 3COLOR is NP-hard.

Prove that the following problem is also NP-hard: Given an arbitrary undirected graph $G$, return any integer between $\chi(G)$ and $\chi(G) + 473$. 
4. Suppose you are given an $n \times n$ checkerboard with some of the squares deleted. You have a large set of dominos, just the right size to cover two squares of the checkerboard. Describe and analyze an algorithm to determine whether it is possible to tile the remaining squares with dominos—each domino must cover exactly two undeleted squares, and each undeleted square must be covered by exactly one domino.

Your input is a two-dimensional array $\text{Deleted}[1..n, 1..n]$ of bits, where $\text{Deleted}[i, j] = \text{TRUE}$ if and only if the square in row $i$ and column $j$ has been deleted. Your output is a single bit; you do not have to compute the actual placement of dominos. For example, for the board shown above, your algorithm should return TRUE.

5. Recall from Homework 11 that a prefix of a directed graph $G = (V, E)$ is a subset $P \subseteq V$ of the vertices such that no edge $u \rightarrow v \in E$ has $u \notin P$ and $v \in P$.

Suppose you are given a rooted tree $T$, with all edges directed away from the root; every vertex in $T$ has a weight, which could be positive, negative, or zero. Describe and analyze a self-contained algorithm to compute the prefix of $T$ with maximum total weight. [Hint: Don’t use linear programming.]

6. Suppose we are given a sequence of $n$ linear inequalities of the form $a_i x + b_i y \leq c_i$; the set of all points $(x, y)$ that satisfy these inequalities is a convex polygon $P$ in the $(x, y)$-plane. Describe a linear program whose solution describes the largest square with horizontal and vertical sides that lies inside $P$. (You can assume that $P$ is non-empty.)
• This homework tests your familiarity with prerequisite material: designing, describing, and analyzing elementary algorithms (at the level of CS 225); fundamental graph problems and algorithms (again, at the level of CS 225); and especially facility with recursion and induction. Notes on most of this prerequisite material are available on the course web page.

• Each student must submit individual solutions for this homework. For all future homeworks, groups of up to three students will be allowed to submit joint solutions.

• Submit your solutions electronically on the course Moodle site as PDF files.
  – Submit a separate file for each numbered problem.
  – You can find a LaTeX solution template on the course web site; please use it if you plan to typeset your homework.
  – If you must submit scanned handwritten solutions, use a black pen (not pencil) on blank white printer paper (not notebook or graph paper), use a high-quality scanner (not a phone camera), and print the resulting PDF file on a black-and-white printer to verify readability before you submit.

Some important course policies

• You may use any source at your disposal—paper, electronic, or human—but you must cite every source that you use, and you must write everything yourself in your own words. See the academic integrity policies on the course web site for more details.

• The answer “I don’t know” (and nothing else) is worth 25% partial credit on any problem or subproblem, on any homework or exam, except for extra-credit problems. We will accept synonyms like “No idea” or “WTF” or “¯\_(ツ)_/¯”, but you must write something.

• Avoid the Three Deadly Sins! There are a few dangerous writing (and thinking) habits that will trigger an automatic zero on any homework or exam problem, unless your solution is nearly perfect otherwise. Yes, we are completely serious.
  – Always give complete solutions, not just examples.
  – Always declare all your variables, in English.
  – Never use weak induction.

See the course web site for more information.

If you have any questions about these policies, please don’t hesitate to ask in class, in office hours, or on Piazza.
1. A rolling die maze is a puzzle involving a standard six-sided die (a cube with numbers on each side) and a grid of squares. You should imagine the grid lying on top of a table; the die always rests on and exactly covers one square. In a single step, you can roll the die 90 degrees around one of its bottom edges, moving it to an adjacent square one step north, south, east, or west.

Some squares in the grid may be blocked; the die must never be rolled onto a blocked square. Other squares may be labeled with a number; whenever the die rests on a labeled square, the number of pips on the top face of the die must equal the label. Squares that are neither labeled nor marked are free. You may not roll the die off the edges of the grid. A rolling die maze is solvable if it is possible to place a die on the lower left square and roll it to the upper right square under these constraints.

For example, here are two rolling die mazes. Black squares are blocked; empty white squares are free. The maze on the left can be solved by placing the die on the lower left square with 1 pip on the top face, and then rolling it north, then north, then east, then east. The maze on the right is not solvable.

Describe and analyze an efficient algorithm to determine whether a given rolling die maze is solvable. Your input is a two-dimensional array \( Label[1..n, 1..n] \), where each entry \( Label[i, j] \) stores the label of the square in the \( i \)th row and \( j \)th column, where the label 0 means the square is free, and the label \(-1\) means the square is blocked.

[Hint: Build a graph. What are the vertices? What are the edges? Is the graph directed or undirected? Do the vertices or edges have weights? If so, what are they? What textbook problem do you need to solve on this graph? What textbook algorithm should you use to solve that problem? What is the running time of that algorithm as a function of \( n \)? What does the number 24 have to do with anything?]
2. Describe and analyze fast algorithms for the following problems. The input for each problem is an unsorted array $A[1..n]$ of $n$ arbitrary numbers, which may be positive, negative, or zero, and which are not necessarily distinct.

(a) Are there two distinct indices $i < j$ such that $A[i] + A[j] = 0$?
(b) Are there three distinct indices $i < j < k$ such that $A[i] + A[j] + A[k] = 0$?

For example, if the input array is $[2, -1, 0, 4, 0, -1]$, both algorithms should return True, but if the input array is $[4, -1, 2, 0]$, both algorithms should return False. You do not need to prove that your algorithms are correct. [Hint: The devil is in the details.]

3. A **binomial tree of order $k$** is defined recursively as follows:

- A binomial tree of order 0 is a single node.
- For all $k > 0$, a binomial tree of order $k$ consists of two binomial trees of order $k - 1$, with the root of one tree connected as a new child of the root of the other. (See the figure below.)

Prove the following claims:

(a) For all non-negative integers $k$, a binomial tree of order $k$ has exactly $2^k$ nodes.
(b) For all positive integers $k$, attaching a new leaf to every node in a binomial tree of order $k - 1$ results in a binomial tree of order $k$.
(c) For all non-negative integers $k$ and $d$, a binomial tree of order $k$ has exactly $\binom{k}{d}$ nodes with depth $d$. (Hence the name!)
*4. [Extra credit] An arithmetic expression tree is a binary tree where every leaf is labeled with a variable, every internal node is labeled with an arithmetic operation, and every internal node has exactly two children. For this problem, assume that the only allowed operations are + and ×. Different leaves may or may not represent different variables.

Every arithmetic expression tree represents a function, transforming input values for the leaf variables into an output value for the root, by following two simple rules: (1) The value of any +-node is the sum of the values of its children. (2) The value of any ×-node is the product of the values of its children.

Two arithmetic expression trees are equivalent if they represent the same function; that is, the same input values for the leaf variables always leads to the same output value at both roots. An arithmetic expression tree is in normal form if the parent of every +-node (if any) is another +-node.

![Diagram of three equivalent expression trees. Only the third expression tree is in normal form.]

Prove that for any arithmetic expression tree, there is an equivalent arithmetic expression tree in normal form. [Hint: This is harder than it looks.]
• Starting with this homework, groups of up to three students may submit joint solutions. **Group solutions must represent an honest collaborative effort by all members of the group.** Please see the academic integrity policies for more information.

• You are responsible for forming your own groups. Groups can change from homework to homework, or even from (numbered) problem to problem.

• Please make sure the names and NetIDs of all group members appear prominently at the top of the first page of each submission.

• Please only upload one submission per group for each problem. In the Online Text box on the problem submission page, you must type in the NetIDs of all group members, including the person submitting. See the Homework Policies for examples. **Failure to enter all group NetIDs will delay (if not prevent) giving all group members the grades they deserve.**

• For dynamic programming problems, a full-credit solution must include the following:
  
  – A clear English specification of the underlying recursive function. (For example: “Let $Edit(i, j)$ denote the edit distance between $A[1..i]$ and $B[1..j]$.”) **Omitting the English description is a Deadly Sin, which will result in an automatic zero.**

  – **One** of the following:

    * A correct recursive function or algorithm that computes the specified function, a clear description of the memoization structure, and a clear description of the iterative evaluation order.

    * Pseudocode for the final iterative dynamic programming algorithm.

  – The running time.

• For problems that ask for an algorithm that computes an optimal structure—such as a subset, subsequence, partition, coloring, tree, or path—an algorithm that computes only the value or cost of the optimal structure is sufficient for full credit, unless the problem says otherwise.

• Official solutions will provide target time bounds for full credit. Correct algorithms that are faster than the official solution will receive extra credit points; correct algorithms that are slower than the official solution will get partial credit. We rarely include these target time bounds in the actual questions, because when we do, more students submit fast but incorrect algorithms (worth 0/10 on exams) instead of correct but slow algorithms (worth 8/10 on exams).
1. Let’s define a summary of two strings $A$ and $B$ to be a concatenation of substrings of the following form:

- ▲SNA indicates a substring SNA of only the first string $A$.
- ♦FOO indicates a common substring FOO of both strings.
- ▼BAR indicates a substring BAR of only the second string $B$.

A summary is valid if we can recover the original strings $A$ and $B$ by concatenating the appropriate substrings of the summary in order and discarding the delimiters ▲, ♦, and ▼. Each regular character has length 1, and each delimiter ▲, ♦, or ▼ has some fixed non-negative length $\Delta$. The length of a summary is the sum of the lengths of its symbols.

For example, each of the following strings is a valid summary of the strings KITTEN and KNITTING:

- ⇓K▼N▼ITT ▲E▼I▼N▼G has length $9 + 7\Delta$.
- ⇓K▼N▼ITT ▲E▼I▼N▼ING has length $10 + 5\Delta$.
- ⇓K▼ITTEN▼KNITTING has length $13 + 3\Delta$.
- ▲KITTEN▼KNITTING has length $14 + 2\Delta$.

Describe and analyze an algorithm that computes the length of the shortest summary of two given strings $A[1..m]$ and $B[1..n]$. The delimiter length $\Delta$ is also part of the input to your algorithm. For example:

- Given strings KITTEN and KNITTING and $\Delta = 0$, your algorithm should return 9.
- Given strings KITTEN and KNITTING and $\Delta = 1$, your algorithm should return 15.
- Given strings KITTEN and KNITTING and $\Delta = 2$, your algorithm should return 18.

2. Suppose you are given a sequence of positive integers separated by plus (+) and minus (−) signs; for example:

$$1 + 3 - 2 - 5 + 1 - 6 + 7$$

You can change the value of this expression by adding parentheses in different places. For example:

$$1 + 3 - 2 - 5 + 1 - 6 + 7 = -1$$
$$1 + (3 - (2 - 5)) + (1 - 6) + 7 = 9$$
$$(1 + (3 - 2)) - (5 + 1) - (6 + 7) = -17$$

Describe and analyze an algorithm to compute the maximum possible value the expression can take by adding parentheses.

You may only use parentheses to group additions and subtractions; in particular, you are not allowed to create implicit multiplication as in $1 + 3(−2)(−5) + 1 - 6 + 7 = 33$. 

2
3. The president of the Punxsutawney office of Giggle, Inc. has decided to give every employee a present to celebrate Groundhog Day! Each employee must receive one of three gifts: (1) an all-expenses-paid six-week vacation with Bill Murray,"^1" (2) an all-the-Punxsutawney-pancakes-you-can-eat breakfast for two at Punxy Phil’s Family Restaurant, or (3) a burning paper bag of groundhog poop. Corporate regulations prohibit any employee from receiving exactly the same gift as their direct supervisor. Unfortunately, any employee who receives a better gift than their direct supervisor will almost certainly be fired in a fit of jealousy.

As Giggle-Punxsutawney’s official gift czar, it’s your job to decide which gift each employee receives. Describe an algorithm to distribute gifts so that the minimum number of people are fired. Yes, you can give the president groundhog poop.

A tree labeling with cost 9. The nine bold nodes have smaller labels than their parents. The president got a vacation with Bill Murray. This is not the optimal labeling for this tree.

More formally, you are given a rooted tree $T$, representing the company hierarchy, and you want to label each node in $T$ with an integer 1, 2, or 3, so that every node has a different label from its parent. The cost of an labeling is the number of nodes that have smaller labels than their parents. Describe and analyze an algorithm to compute the minimum cost of any labeling of the given tree $T$.

---

"^1"The details of scheduling $n$ distinct six-week vacations with Bill Murray, all in a single year, are left as an exercise for the reader.
CS 473  Spring 2016

Homework 2

Due Tuesday, February 9, 2016, at 8pm

1. [Insert amusing story about distributing polling stations or cell towers or Starbucks or something on a long straight road in rural Iowa. Ha ha ha, how droll.]

More formally, you are given a sorted array $X[1..n]$ of distinct numbers and a positive integer $k$. A set of $k$ intervals covers $X$ if every element of $X$ lies inside one of the $k$ intervals. Your aim is to find $k$ intervals $[a_1, z_1], [a_2, z_2], \ldots, [a_k, z_k]$ that cover $X$ where the function $\sum_{i=1}^{k} (z_i - a_i)^2$ is as small as possible. Intuitively, you are trying to cover the points with $k$ intervals whose lengths are as close to equal as possible.

(a) Describe an algorithm that finds $k$ intervals with minimum total squared length that cover $X$. The running time of your algorithm should be a simple function of $n$ and $k$.

(b) Consider the two-dimensional matrix $M[1..n, 1..n]$ defined as follows:

$$M[i, j] = \begin{cases} 
(X[j] - X[i])^2 & \text{if } i \leq j \\
\infty & \text{otherwise}
\end{cases}$$

Prove that $M$ satisfies the Monge property: $M[i, j] + M[i', j'] \leq M[i, j'] + M[i', j]$ for all indices $i < i'$ and $j < j'$.

(c) [Extra credit] Describe an algorithm that finds $k$ intervals with minimum total squared length that cover $X$ in $O(nk)$ time. [Hint: Solve part (a) first, then use part (b).]

We strongly recommend submitting your solution to part (a) separately, and only describing your changes to that solution for part (c).

2. The Doctor and River Song decide to play a game on a directed acyclic graph $G$, which has one source $s$ and one sink $t$.\footnote{possibly short for the Untempered Schism and the Time Vortex, or the Shining World of the Seven Systems (otherwise known as Gallifrey) and Trenzalore, or Skaro and Telos, or something timey-wimey.}

Each player has a token on one of the vertices of $G$. At the start of the game, The Doctor’s token is on the source vertex $s$, and River’s token is on the sink vertex $t$. The players alternate turns, with The Doctor moving first. On each of his turns, the Doctor moves his token forward along a directed edge; on each of her turns, River moves her token backward along a directed edge.

If the two tokens ever meet on the same vertex, River wins the game. (“Hello, Sweetie!”) If the Doctor’s token reaches $t$ or River’s token reaches $s$ before the two tokens meet, then the Doctor wins the game.

Describe and analyze an algorithm to determine who wins this game, assuming both players play perfectly. That is, if the Doctor can win no matter how River moves, then your algorithm should output “Doctor”, and if River can win no matter how the Doctor moves, your algorithm should output “River”. (Why are these the only two possibilities?) The input to your algorithm is the graph $G$.\footnote{possibly short for the Untempered Schism and the Time Vortex, or the Shining World of the Seven Systems (otherwise known as Gallifrey) and Trenzalore, or Skaro and Telos, or something timey-wimey.}
Unless a problem specifically states otherwise, you may assume a function \textsc{Random} that takes a positive integer \(k\) as input and returns an integer chosen uniformly and independently at random from \(\{1, 2, \ldots, k\}\) in \(O(1)\) time. For example, to flip a fair coin, you could call \textsc{Random}(2).

1. Suppose we want to write an efficient function \textsc{RandomPermutation}(\(n\)) that returns a permutation of the set \(\{1, 2, \ldots, n\}\) chosen uniformly at random.

   (a) Prove that the following algorithm is not correct. \textit{[Hint: There is a one-line proof!]} \\
   \hline
   \textsc{RandomPermutation}(\(n\)):
   \begin{itemize}
   \item for \(i \leftarrow 1\) to \(n\) \n   \item \(\pi[i] \leftarrow i\)
   \item for \(i \leftarrow 1\) to \(n\) \n   \item swap \(\pi[i] \leftarrow \pi[\textsc{Random}(n)]\)
   \end{itemize}
   \hline

   (b) Consider the following implementation of \textsc{RandomPermutation}.

   \hline
   \textsc{RandomPermutation}(\(n\)):
   \begin{itemize}
   \item for \(i \leftarrow 1\) to \(n\) \n   \item \(\pi[i] \leftarrow \text{NULL}\)
   \item for \(i \leftarrow 1\) to \(n\) \n   \item \(j \leftarrow \text{Random}(n)\)
   \item while \((\pi[j] \neq \text{NULL})\) 
   \item \(j \leftarrow \text{Random}(n)\)
   \item \(\pi[j] \leftarrow i\)
   \end{itemize}
   return \(\pi\)
   \hline

   Prove that this algorithm is correct and analyze its expected running time.

   (c) Describe and analyze an implementation of \textsc{RandomPermutation} that runs in expected worst-case time \(O(n)\).

2. A \textit{majority tree} is a complete ternary tree in which every leaf is labeled either 0 or 1. The value of a leaf is its label; the value of any internal node is the majority of the values of its three children. For example, if the tree has depth 2 and its leaves are labeled 1, 0, 0, 1, 0, 1, 1, 1, 0, the root has value 0.

\begin{tikzpicture}
    \node (0) {0}
    child {node (a) {0}
      child {node (ba) {0}
        child {node (bba) {0}}
        child {node (bca) {1}}
        child {node (bda) {1}}
      }
      child {node (aca) {1}}
      child {node (aca) {1}}
    }
    child {node (1) {1}}
    child {node (0) {0}}
\end{tikzpicture}

A majority tree with depth 2.
It is easy to compute value of the root of a majority tree of depth $n$ in $O(3^n)$ time, given the sequence of $3^n$ leaf labels as input, using a simple post-order traversal of the tree. Prove that this simple algorithm is optimal, and then describe a better algorithm. More formally:

(a) Prove that any deterministic algorithm that computes the value of the root of a majority tree must examine every leaf. [Hint: Consider the special case $n = 1$. Recurse.]
(b) Describe and analyze a randomized algorithm that computes the value of the root in worst-case expected time $O(c^n)$ for some explicit constant $c < 3$. [Hint: Consider the special case $n = 1$. Recurse.]

3. A **meldable priority queue** stores a set of keys from some totally-ordered universe (such as the integers) and supports the following operations:

- **MAKEQUEUE**: Return a new priority queue containing the empty set.
- **FINDMIN(Q)**: Return the smallest element of $Q$ (if any).
- **DELETEMIN(Q)**: Remove the smallest element in $Q$ (if any).
- **INSERT(Q, x)**: Insert element $x$ into $Q$, if it is not already there.
- **DECREASEKEY(Q, x, y)**: Replace an element $x \in Q$ with a smaller key $y$. (If $y > x$, the operation fails.) The input is a pointer directly to the node in $Q$ containing $x$.
- **DELETE(Q, x)**: Delete the element $x \in Q$. The input is a pointer directly to the node in $Q$ containing $x$.
- **MELD(Q_1, Q_2)**: Return a new priority queue containing all the elements of $Q_1$ and $Q_2$; this operation destroys $Q_1$ and $Q_2$.

A simple way to implement such a data structure is to use a heap-ordered binary tree, where each node stores a key, along with pointers to its parent and two children. **MELD** can be implemented using the following randomized algorithm:

```
MELD(Q_1, Q_2):
    if Q_1 is empty return Q_2
    if Q_2 is empty return Q_1
    if key(Q_1) > key(Q_2)
        swap Q_1 <-> Q_2
        with probability 1/2
        left(Q_1) <- MELD(left(Q_1), Q_2)
        else
            right(Q_1) <- MELD(right(Q_1), Q_2)
    return Q_1
```

(a) Prove that for any heap-ordered binary trees $Q_1$ and $Q_2$ (not just those constructed by the operations listed above), the expected running time of **MELD(Q_1, Q_2)** is $O(\log n)$, where $n = |Q_1| + |Q_2|$. [Hint: What is the expected length of a random root-to-leaf path in an $n$-node binary tree, where each left/right choice is made with equal probability?]

(b) Prove that **MELD(Q_1, Q_2)** runs in $O(\log n)$ time with high probability.

(c) Show that each of the other meldable priority queue operations can be implemented with at most one call to **MELD** and $O(1)$ additional time. (It follows that each operation takes only $O(\log n)$ time with high probability.)
Unless a problem specifically states otherwise, you may assume a function \textsc{Random} that takes a positive integer \( k \) as input and returns an integer chosen uniformly and independently at random from \( \{1, 2, \ldots, k\} \) in \( O(1) \) time. For example, to flip a fair coin, you could call \textsc{Random}(2).

1. Suppose we are given a two-dimensional array \( M[1..n, 1..n] \) in which every row and every column is sorted in increasing order and no two elements are equal.

   (a) Describe and analyze an algorithm to solve the following problem in \( O(n) \) time: Given indices \( i, j, i', j' \) as input, compute the number of elements of \( M \) larger than \( M[i, j] \) and smaller than \( M[i', j'] \).

   (b) Describe and analyze an algorithm to solve the following problem in \( O(n) \) time: Given indices \( i, j, i', j' \) as input, return an element of \( M \) chosen uniformly at random from the elements larger than \( M[i, j] \) and smaller than \( M[i', j'] \). Assume the requested range is always non-empty.

   (c) Describe and analyze a randomized algorithm to compute the median element of \( M \) in \( O(n \log n) \) expected time.

2. \textbf{Tabulated hashing} uses tables of random numbers to compute hash values. Suppose \( |U| = 2^w \times 2^w \) and \( m = 2^\ell \), so the items being hashed are pairs of \( w \)-bit strings (or \( 2w \)-bit strings broken in half) and hash values are \( \ell \)-bit strings.

   Let \( A[0..2^w-1] \) and \( B[0..2^w-1] \) be arrays of independent random \( \ell \)-bit strings, and define the hash function \( h_{A,B} : U \to [m] \) by setting

   \[
   h_{A,B}(x, y) := A[x] \oplus B[y]
   \]

   where \( \oplus \) denotes bit-wise exclusive-or. Let \( \mathcal{H} \) denote the set of all possible functions \( h_{A,B} \). Filling the arrays \( A \) and \( B \) with independent random bits is equivalent to choosing a hash function \( h_{A,B} \in \mathcal{H} \) uniformly at random.

   (a) Prove that \( \mathcal{H} \) is 2-uniform.

   (b) Prove that \( \mathcal{H} \) is 3-uniform. \textit{[Hint: Solve part (a) first.]}

   (c) Prove that \( \mathcal{H} \) is not 4-uniform.

Yes, “see part (b)” is worth full credit for part (a), but only if your solution to part (b) is correct.
Unless a problem specifically states otherwise, you may assume a function \textsc{Random} that takes a positive integer \( k \) as input and returns an integer chosen uniformly and independently at random from \( \{1, 2, \ldots, k\} \) in \( O(1) \) time. For example, to flip a fair coin, you could call \textsc{Random}(2).

1. \textit{Reservoir sampling} is a method for choosing an item uniformly at random from an arbitrarily long stream of data.

```plaintext
\textsc{GetOneSample}(\textit{stream } S):
    \ell \leftarrow 0
    \text{while } S \text{ is not done}
        \text{x } \leftarrow \text{ next item in } S
        \ell \leftarrow \ell + 1
        \text{if } \textsc{Random}(\ell) = 1
            \text{sample } \leftarrow x \quad (*)
    \text{return } sample
```

At the end of the algorithm, the variable \( \ell \) stores the length of the input stream \( S \); this number is not known to the algorithm in advance. If \( S \) is empty, the output of the algorithm is (correctly!) undefined. In the following, consider an arbitrary non-empty input stream \( S \), and let \( n \) denote the (unknown) length of \( S \).

(a) Prove that the item returned by \textsc{GetOneSample}(\textit{S}) is chosen uniformly at random from \( S \).

(b) Describe and analyze an algorithm that returns a subset of \( k \) distinct items chosen uniformly at random from a data stream of length at least \( k \). The integer \( k \) is given as part of the input to your algorithm. Prove that your algorithm is correct.

For example, if \( k = 2 \) and the stream contains the sequence \( \langle \spadesuit, \heartsuit, \downarrow, \downarrow \rangle \), the algorithm should return the subset \( \{ \downarrow, \spadesuit \} \) with probability 1/6.
2. In this problem, we will derive a streaming algorithm that computes an accurate estimate $\tilde{n}$ of the number of distinct items in a data stream $S$. Suppose $S$ contains $n$ unique items (but possible several copies of each item); the algorithm does not know $n$ in advance. Given an accuracy parameter $0 < \epsilon < 1$ and a confidence parameter $0 < \delta < 1$ as part of the input, our final algorithm will guarantee that $\Pr[|\tilde{n} - n| > \epsilon n] < \delta$.

As a first step, fix a positive integer $m$ that is large enough that we don’t have to worry about round-off errors in the analysis. Our first algorithm chooses a hash function $h : \mathbb{U} \to [m]$ at random from a uniform family, computes the minimum hash value $\tilde{h} = \min\{h(x) | x \in S\}$, and finally returns the estimate $\tilde{n} = m / \tilde{h}$.

(a) Prove that $\Pr[\tilde{n} > (1 + \epsilon)n] \leq 1/(1 + \epsilon)$. [Hint: Markov’s inequality]

(b) Prove that $\Pr[\tilde{n} < (1 - \epsilon)n] \leq 1 - \epsilon$. [Hint: Chebyshev’s inequality]

(c) We can improve this estimator by maintaining the $k$ smallest hash values, for some integer $k > 1$. Let $\tilde{n}_k = k \cdot m / \tilde{h}_k$, where $\tilde{h}_k$ is the $k$th smallest element of $\{h(x) | x \in S\}$.

Estimate the smallest value of $k$ (as a function of the accuracy parameter $\epsilon$) such that $\Pr[|\tilde{n}_k - n| > \epsilon n] \leq 1/4$.

(d) Now suppose we run $d$ copies of the previous estimator in parallel to generate $d$ independent estimates $\tilde{n}_{k,1}, \tilde{n}_{k,2}, \ldots, \tilde{n}_{k,d}$, for some integer $d > 1$. Each copy uses its own independently chosen hash function, but they all use the same value of $k$ that you derived in part (c). Let $\tilde{N}$ be the median of these $d$ estimates.

Estimate the smallest value of $d$ (as a function of the confidence parameter $\delta$) such that $\Pr[|\tilde{N} - n| > \epsilon n] \leq \delta$. 

For problems that use maximum flows as a black box, a full-credit solution requires the following.

- A complete description of the relevant flow network, specifying the set of vertices, the set of edges (being careful about direction), the source and target vertices \( s \) and \( t \), and the capacity of every edge. (If the flow network is part of the original input, just say that.)

- A description of the algorithm to construct this flow network from the stated input. This could be as simple as “We can construct the flow network in \( O(n^3) \) time by brute force.”

- A description of the algorithm to extract the answer to the stated problem from the maximum flow. This could be as simple as “Return True if the maximum flow value is at least 42 and False otherwise.”

- A proof that your reduction is correct. This proof will almost always have two components. For example, if your algorithm returns a boolean, you should prove that its True answers are correct and that its False answers are correct. If your algorithm returns a number, you should prove that number is neither too large nor too small.

- The running time of the overall algorithm, expressed as a function of the original input parameters, not just the number of vertices and edges in your flow network.

- You may assume that maximum flows can be computed in \( O(VE) \) time. Do not regurgitate the maximum flow algorithm itself.

Reductions to other flow-based algorithms described in class or in the notes (for example: edge-disjoint paths, maximum bipartite matching, minimum-cost circulation) or to other standard graph problems (for example: reachability, minimum spanning tree, shortest paths) have similar requirements.

1. Suppose you are given a directed graph \( G = (V, E) \), two vertices \( s \) and \( t \) in \( V \), a capacity function \( c : E \rightarrow \mathbb{R}^+ \), and a second function \( f : E \rightarrow \mathbb{R} \). Describe an algorithm to determine whether \( f \) is a maximum \((s, t)\)-flow in \( G \). Do not assume anything about the function \( f \).

2. Suppose you have already computed a maximum flow \( f^* \) in a flow network \( G \) with integer edge capacities.

   (a) Describe and analyze an algorithm to update the maximum flow after the capacity of a single edge is increased by 1.

   (b) Describe and analyze an algorithm to update the maximum flow after the capacity of a single edge is decreased by 1.

Both algorithms should be significantly faster than recomputing the maximum flow from scratch.
3. Suppose you are given an $n \times n$ checkerboard with some of the squares deleted. You have a large set of dominos, just the right size to cover two squares of the checkerboard. Describe and analyze an algorithm to determine whether it is possible to tile the board with dominos—each domino must cover exactly two undeleted squares, and each undeleted square must be covered by exactly one domino.

Your input is a two-dimensional array $\text{Deleted}[1..n, 1..n]$ of bits, where $\text{Deleted}[i, j] = \text{TRUE}$ if and only if the square in row $i$ and column $j$ has been deleted. Your output is a single bit; you do not have to compute the actual placement of dominos. For example, for the board shown above, your algorithm should return $\text{TRUE}$. 
1. Suppose we are given a two-dimensional array $A[1..m, 1..n]$ of non-negative real numbers. We would like to round $A$ to an integer matrix, by replacing each entry $x$ in $A$ with either $\lfloor x \rfloor$ or $\lceil x \rceil$, without changing the sum of entries in any row or column of $A$. For example:

$$
\begin{pmatrix}
1.2 & 3.4 & 2.4 \\
3.9 & 4.0 & 2.1 \\
7.9 & 1.6 & 0.5
\end{pmatrix} \quad \mapsto \quad \begin{pmatrix}
1 & 4 & 2 \\
4 & 4 & 2 \\
8 & 1 & 1
\end{pmatrix}
$$

Describe and analyze an efficient algorithm that either rounds $A$ in this fashion, or reports correctly that no such rounding exists.

2. You’re organizing the Third Annual UIUC Computer Science 72-Hour Dance Exchange, to be held all day Friday, Saturday, and Sunday in Siebel Center. Several 30-minute sets of music will be played during the event, and a large number of DJs have applied to perform. You need to hire DJs according to the following constraints.

- Exactly $k$ sets of music must be played each day, and thus $3k$ sets altogether.
- Each set must be played by a single DJ in a consistent musical genre (ambient, bubblegum, dancehall, horrorcore, trip-hop, Nashville country, Chicago blues, axé, laïkó, skiffle, shape note, Nitzhonot, J-pop, K-pop, C-pop, T-pop, 8-bit, Tesla coil, ...).
- Each genre must be played at most once per day.
- Each DJ has given you a list of genres they are willing to play.
- No DJ can play more than five sets during the entire event.

Suppose there are $n$ candidate DJs and $g$ different musical genres available. Describe and analyze an efficient algorithm that either assigns a DJ and a genre to each of the $3k$ sets, or correctly reports that no such assignment is possible.

3. Describe and analyze an algorithm to determine, given an undirected graph $G = (V, E)$ and three vertices $u, v, w \in V$ as input, whether $G$ contains a simple path from $u$ to $w$ that passes through $v$.
You may assume the following results in your solutions:

- Maximum flows and minimum cuts can be computed in \(O(VE)\) time.
- Minimum-cost flows can be computed in \(O(E^2 \log^2 V)\) time.
- Linear programming problems with integer coefficients can be solved in polynomial time.

For problems that ask for a linear-programming formulation of some problem, a full credit solution requires the following components:

- A list of variables, along with a brief English description of each variable. (Omitting these English descriptions is a Deadly Sin.)
- A linear objective function (expressed either as minimization or maximization, whichever is more convenient), along with a brief English description of its meaning.
- A sequence of linear inequalities (expressed using \(\leq\), \(=\), or \(\geq\), whichever is more appropriate or convenient), along with a brief English description of each constraint.
- A proof that your linear programming formulation is correct, meaning that the optimal solution to the original problem can always be obtained from the optimal solution to the linear program. This may be very short.

It is **not** necessary to express the linear program in canonical form, or even in matrix form. Clarity is much more important than formality.

1. Suppose you are given a rooted tree \(T\), where every edge \(e\) has two associated values: a non-negative length \(\ell(e)\), and a cost \($e$\) (which could be positive, negative, or zero). Your goal is to add a non-negative stretch \(s(e) \geq 0\) to the length of every edge \(e\) in \(T\), subject to the following conditions:

   - Every root-to-leaf path \(\pi\) in \(T\) has the same total stretched length \(\sum_{e \in \pi} (\ell(e) + s(e))\)

   - The total weighted stretch \(\sum_e s(e) \cdot $e)$ is as small as possible.

(a) Describe an instance of this problem with no optimal solution.

(b) Give a concise linear programming formulation of this problem. (For the instance described in part (a), your linear program will be unbounded.)

(c) Suppose that for the given tree \(T\) and the given lengths and costs, the optimal solution to this problem is unique. Prove that in this optimal solution, we have \(s(e) = 0\) for every edge on some longest root-to-leaf path in \(T\). In other words, prove that the optimally stretched tree with the same depth as the input tree. [*Hint: What is a basis in your linear program? What is a feasible basis?]*
Problem 1(c) originally omitted the uniqueness assumption and asked for a proof that every optimal solution has an unstretched root-to-leaf path, but that more general claim is false. For example, if every edge has cost zero, there are optimal solutions in which every edge has positive stretch.

2. Describe and analyze an efficient algorithm for the following problem, first posed and solved by the German mathematician Carl Jacobi in the early 1800s.\footnote{Carl Gustav Jacob Jacobi. De investigando ordine systematis aequationum differentialum vulgarium cujuscunque. J. Reine Angew. Math. 64(4):297–320, 1865. Posthumously published by Carl Borchardt.}

\textit{Disponantur} \textit{nn} \textit{quantitates} \( h_k^{(i)} \) \textit{quaecunque in schema Quadrati}, \textit{ita ut k habeantur} \textit{n} \textit{series horizontalis} \textit{et n series verticalis}, \textit{quarum quaeca est n terminorum}. \textit{Ex illis quantitatis} \textit{eligantur n transversalibus}, \textit{i.e. in series horizontalibus simul atque verticalibus diversis positas, quod fieri potest 1.2...n modis}; \textit{ex omnibus illis modis quaerendum est is, qui summam n numerorum electorum suppeditet maximam.}

For those few students who are not fluent in mid-19th century academic Latin, here is a modern English translation of Jacobi’s problem. Suppose we are given an \( n \times n \) matrix \( M \). Describe and analyze an algorithm that computes a permutation \( \sigma \) that maximizes the sum \( \sum_{i=1}^{n} M_{i \sigma(i)} \), or equivalently, permutes the columns of \( M \) so that the sum of the elements along the diagonal is as large as possible.

Please do not submit your solution in mid-19th century academic Latin.

3. Suppose we are given a sequence of \( n \) linear inequalities of the form \( a_i x + b_i y \leq c_i \). Collectively, these \( n \) inequalities describe a convex polygon \( P \) in the plane.

\begin{itemize}
  \item [(a)] Describe a linear program whose solution describes the largest square with horizontal and vertical sides that lies entirely inside \( P \).
  \item [(b)] Describe a linear program whose solution describes the largest circle that lies entirely inside \( P \).
\end{itemize}
For problems that ask to prove that a given problem \( X \) is NP-hard, a full-credit solution requires the following components:

- Specify a known NP-hard problem \( Y \), taken from the problems listed in the notes.
- Describe a polynomial-time algorithm for \( Y \), using a black-box polynomial-time algorithm for \( X \) as a subroutine. Most NP-hardness reductions have the following form: Given an arbitrary instance of \( Y \), describe how to transform it into an instance of \( X \), pass this instance to a black-box algorithm for \( X \), and finally, describe how to transform the output of the black-box subroutine to the final output. A cartoon with boxes may be helpful.
- Prove that your reduction is correct. As usual, correctness proofs for NP-hardness reductions usually have two components (“one for each \( f \)”).

1. Consider the following solitaire game. The puzzle consists of an \( n \times m \) grid of squares, where each square may be empty, occupied by a red stone, or occupied by a blue stone. The goal of the puzzle is to remove some of the given stones so that the remaining stones satisfy two conditions: (1) every row contains at least one stone, and (2) no column contains stones of both colors. For some initial configurations of stones, reaching this goal is impossible.

   ![A solvable puzzle and one of its many solutions.](image)

   ![An unsolvable puzzle.](image)

   Prove that it is NP-hard to determine, given an initial configuration of red and blue stones, whether the puzzle can be solved.

2. Everyone’s having a wonderful time at the party you’re throwing, but now it’s time to line up for The Algorithm March (アルゴリズムこうしん)! This dance was originally developed by the Japanese comedy duo Itsumo Kokokara (いつもここから) for the children’s television show PythagoraSwitch (ピタゴラスイッチ). The Algorithm March is performed by a line of people; each person in line starts a specific sequence of movements one measure later than the person directly in front of them. Thus, the march is the dance equivalent of a musical round or canon, like “Row Row Row Your Boat”. Proper etiquette dictates that each marcher must know the person directly in front of them in line, lest a minor mistake during lead to horrible embarrassment between strangers.

   Suppose you are given a complete list of which people at your party know each other. Prove that it is NP-hard to determine the largest number of party-goers that can participate in the Algorithm March. You may assume without loss of generality that there are no ninjas at your party.
This is the last graded homework of the semester.

1. A double-Hamiltonian circuit in an undirected graph $G$ is a closed walk that visits every vertex in $G$ exactly twice. Prove that determining whether a given undirected graph contains a double-Hamiltonian circuit is NP-hard.

2. A subset $S$ of vertices in an undirected graph $G$ is called triangle-free if, for every triple of vertices $u, v, w \in S$, at least one of the three edges $uv, uw, vw$ is absent from $G$. Prove that finding the size of the largest triangle-free subset of vertices in a given undirected graph is NP-hard.

![A triangle-free subset of 7 vertices. This is not the largest triangle-free subset in this graph.]

3. Suppose you are given a magic black box that can determine in polynomial time, given an arbitrary graph $G$, whether $G$ is 3-colorable. Describe and analyze a polynomial-time algorithm that either computes a proper 3-coloring of a given graph or correctly reports that no such coloring exists, using the magic black box as a subroutine. [Hint: The input to the magic black box is a graph. Just a graph. Vertices and edges. Nothing else.]
1. The **linear arrangement** problem asks, given an \( n \)-vertex directed graph as input, for an ordering \( v_1, v_2, \ldots, v_n \) of the vertices that maximizes the number of forward edges: directed edges \( v_i \to v_j \) such that \( i < j \). Describe and analyze an efficient 2-approximation algorithm for this problem. (Solving this problem exactly is NP-hard.)

2. Let \( G = (V, E) \) be an undirected graph, each of whose vertices is colored either red, green, or blue. An edge in \( G \) is **boring** if its endpoints have the same color, and **interesting** if its endpoints have different colors. The most interesting 3-coloring is the 3-coloring with the maximum number of interesting edges, or equivalently, with the fewest boring edges. Computing the most interesting 3-coloring is NP-hard, because the standard 3-coloring problem is a special case.

   (a) Let \( \text{wow}(G) \) denote the number of interesting edges in the most interesting 3-coloring of \( G \). Suppose we independently assign each vertex in \( G \) a random color from the set \{red, green, blue\}. Prove that the expected number of interesting edges is at least \( \frac{2}{3} \text{wow}(G) \).

   (b) Prove that with high probability, the expected number of interesting edges is at least \( \frac{1}{2} \text{wow}(G) \). [Hint: Use Chebyshev’s inequality. But wait... How do we know that we can use Chebyshev’s inequality?]

   (c) Let \( \text{zzz}(G) \) denote the number of boring edges in the most interesting 3-coloring of a graph \( G \). Prove that it is NP-hard to approximate \( \text{zzz}(G) \) within a factor of \( 10^{1000} \).

3. Suppose we want to schedule a give set of \( n \) jobs on on a machine containing a row of \( p \) identical processors. Our input consists of two arrays \( \text{duration}[1..n] \) and \( \text{width}[1..n] \). A valid schedule consists of two arrays \( \text{start}[1..n] \) and \( \text{first}[1..n] \) that satisfy the following constraints:

   • \( \text{start}[j] \geq 0 \) for all \( j \).

   • The \( j \)th job runs on processors \( \text{first}[j] \) through \( \text{first}[j] + \text{width}[j] - 1 \), starting at time \( \text{start}[j] \) and ending at time \( \text{start}[j] + \text{duration}[j] \).

   • No processor can run more than one job simultaneously.

   The makespan of a schedule is the largest finishing time: \( \max_j(\text{start}[j] + \text{duration}[j]) \). Our goal is to compute a valid schedule with the smallest possible makespan.

   (a) Prove that this scheduling problem is NP-hard.
(b) Describe a polynomial-time algorithm that computes a 3-approximation of the minimum makespan of the given set of jobs. That is, if the minimum makespan is $M$, your algorithm should compute a schedule with makespan at most $3M$. You may assume that $p$ is a power of 2. [Hint: Assume that $p$ is a power of 2.]

(c) Describe an algorithm that computes a 3-approximation of the minimum makespan of the given set of jobs in $O(n \log n)$ time. Again, you may assume that $p$ is a power of 2.
These are the standard 10-point rubrics that we will use for certain types of exam questions. When these problems appear in the homework, a score of $x$ on this 10-point scale corresponds to a score of $\lceil x/3 \rceil$ on the 4-point homework scale.

---

**Proof by Induction**

- 2 points for stating a valid **strong** induction hypothesis.
  - The inductive hypothesis need not be stated explicitly if it is a mechanical translation of the theorem (that is, “Assume $P(k)$ for all $k < n$” when the theorem is “$P(n)$ for all $n$”) and it is applied correctly. However, if the proof requires a stronger inductive hypothesis (“Assume $P(k)$ and $Q(k)$ for all $k < n$”) then it must be stated explicitly.
  - By course policy, **stating a weak inductive hypothesis triggers an automatic zero**, unless the proof is otherwise **perfect**.
  - **Ambiguous** induction hypotheses like “Assume the statement is true for all $k < n$.” are not valid. What statement? The theorem you're trying to prove doesn't use the variable $k$, so that can't possibly be the statement you mean.
  - **Meaningless** induction hypotheses like “Assume that $k$ is true for all $k < n$” are not valid. Only propositions can be true or false; $k$ is an integer, not a proposition.
  - **False** induction hypotheses like “Assume that $k < n$ for all $k$” are not valid. The inequality $k < n$ does not hold for all $k$, because it does not hold when $k = n + 5$.
- 1 point for explicit and clearly exhaustive case analysis.
  - No penalty for overlapping or redundant cases. However, mistakes in redundant cases are still penalized.
- 2 points for the base case(s).
- 2 point for correctly applying the **stated** inductive hypothesis.
  - It is not possible to correctly apply an invalid inductive hypothesis.
  - No credit for correctly applying a different induction hypothesis than the one stated.
- 3 points for other details of the inductive case(s).
Dynamic Programming

- **6 points for a correct recurrence**, described either using functional notation or as pseudocode for a recursive algorithm.
  
  + 1 point for a clear **English** description of the function you are trying to evaluate. (Otherwise, we don't even know what you're trying to do.) **Automatic zero if the English description is missing.**
  
  + 1 point for stating how to call your recursive function to get the final answer.
  
  + 1 point for the base case(s). −½ for one **minor** bug, like a typo or an off-by-one error.
  
  + 3 points for the recursive case(s). −1 for each **minor** bug, like a typo or an off-by-one error. **No credit for the rest of the problem if the recursive case(s) are incorrect.**

- **4 points for iterative details**
  
  + 1 point for describing the memoization data structure; a clear picture may be sufficient.
  
  + 2 points for describing a correct evaluation order; a clear picture may be sufficient. If you use nested loops, be sure to specify the nesting order.
  
  + 1 point for running time

- Proofs of correctness are not required for full credit on exams, unless the problem specifically asks for one.

- Do not analyze (or optimize) space.

- For problems that ask for an algorithm that computes an optimal **structure**—such as a subset, partition, subsequence, or tree—an algorithm that computes only the **value** or **cost** of the optimal structure is sufficient for full credit, unless the problem says otherwise.

- Official solutions usually include pseudocode for the final iterative dynamic programming algorithm, **but iterative pseudo code is not required for full credit.** If your solution includes iterative pseudocode, you do not need to separately describe the recurrence, memoization structure, or evaluation order. However, you **must** give an English description of the underlying recursive function.

- Official solutions will provide target time bounds. Algorithms that are faster than this target are worth more points; slower algorithms are worth fewer points, typically by 2 or 3 points (out of 10) for each factor of \( n \). Partial credit is **scaled** to the new maximum score. All points above 10 are recorded as extra credit.

  We rarely include these target time bounds in the actual questions, because when we have included them, significantly more students turned in algorithms that meet the target time bound but didn't work (earning 0/10) instead of correct algorithms that are slower than the target time bound (earning 8/10).
Graph Reductions

For problems solved by reducing them to a standard graph algorithm covered either in class or in a prerequisite class (for example: shortest paths, topological sort, minimum spanning trees, maximum flows, bipartite maximum matching, vertex-disjoint paths, ...):

- **1 point for listing the vertices of the graph.** (If the original input is a graph, describing how to modify that graph is fine.)

- **1 point for listing the edges of the graph,** including whether the edges are directed or undirected. (If the original input is a graph, describing how to modify that graph is fine.)

- **1 point for describing appropriate weights and/or lengths and/or capacities and/or costs and/or demands and/or whatever for the vertices and edges.**

- **2 points for an explicit description of the problem being solved on that graph.** (For example: “We compute the maximum number of vertex-disjoint paths in $G$ from $v$ to $z$.”)

- **3 points for other algorithmic details,** assuming the rest of the reduction is correct.
  
  + 1 point for describing how to build the graph from the original input (for example: “by brute force”)
  
  + 1 point for describing the algorithm you use to solve the graph problem (for example: “Orlin’s algorithm” or “as described in class”)
  
  + 1 point for describing how to extract the output for the original problem from the output of the graph algorithm.

- **2 points for the running time,** expressed in terms of the original input parameters, not just $V$ and $E$.

- **If the problem explicitly asks for a proof of correctness,** divide all previous points in half and add **5 points for proof of correctness.** These proofs almost always have two parts; for example, for algorithms that return True or False:
  
  – $2\frac{1}{2}$ points for proving that if your algorithm returns True, then the correct answer is True.
  
  – $2\frac{1}{2}$ points for proving that if your algorithm returns False, then the correct answer is False.

  These proofs do not need to be as detailed as in the homeworks; we are really just looking for compelling evidence that you understand why your reduction is correct.

- **It is still possible to get partial credit for an incorrect algorithm.** For example, if you describe an algorithm that sometimes reports false positives, but you prove that all False answers are correct, you would still get $2\frac{1}{2}$ points for half of the correctness proof.
NP-Hardness Reductions

For problems that ask “Prove that X is NP-hard”:

• **4 points for the polynomial-time reduction:**
  
  – 1 point for explicitly naming the NP-hard problem Y to reduce from. You may use any of the problems listed in the lecture notes; a list of NP-hard problems will appear on the back page of the exam.
  
  – 2 points for describing the polynomial-time algorithm to transform arbitrary instances of Y into inputs to the black-box algorithm for X
  
  – 1 point for describing the polynomial-time algorithm to transform the output of the black-box algorithm for X into the output for Y.
  
  – Reductions that call the black-box algorithm for X more than once are perfectly acceptable. You do not need to explicitly analyze the running time of your resulting algorithm for Y, but it must be polynomial in the size of the input instance of Y.

• **6 points for the proof of correctness.** This is the entire point of the problem. These proofs always have two parts; for example, if X and Y are both decision problems:
  
  – 3 points for proving that your reduction transforms positive instances of Y into positive instances of X.
  
  – 3 points for proving that your reduction transforms negative instances of Y into negative instances of X.

These proofs do not need to be as detailed as in the homeworks; however, it must be clear that you have at least considered all possible cases. We are really just looking for compelling evidence that you understand why your reduction is correct.

• It is still possible to get partial credit for an incorrect reduction. For example, if you describe a reduction that sometimes reports false positives, but you prove that all FALSE answers are correct, you would still get 3 points for half of the correctness proof.

• Zero points for reducing X to some NP-hard problem Y.

• Zero points for attempting to solve X.
Approximation Algorithms

For problems that ask you to describe a polynomial-time approximation algorithm for some NP-hard problem X, analyze its approximation ratio, and prove that your approximation analysis is correct:

• **4 points for the actual approximation algorithm.** You do not need to analyze the running time of your algorithm (unless we explicitly ask for the running time), but it must clearly run in polynomial time. If we give you the algorithm, ignore this part and scale the rest of the rubric up to 10 points.

• **2 points for stating the correct approximation ratio.** If we give you the approximation ratio, ignore this part and scale the rest of the rubric up to 10 points.

• **4 points for proving that the stated approximation ratio is correct.** If we do not explicitly ask for a proof, ignore this part and scale the rest of the rubric up to 10 points.

For example, suppose we give you an algorithm and ask for its approximation ratio, but we do not explicitly ask for a proof. If the given algorithm is a $3$-approximation algorithm, then you would get full credit for writing “$3$”.

Write your answers in the separate answer booklet. 
Please return this question sheet and your cheat sheet with your answers.

1. For any positive integer \( n \), the \( n \)th **Fibonacci string** \( F_n \) is defined recursively as follows, where \( x \cdot y \) denotes the concatenation of strings \( x \) and \( y \):

\[
F_1 := 0 \\
F_2 := 1 \\
F_n := F_{n-1} \cdot F_{n-2} \quad \text{for all } n \geq 3
\]

For example, \( F_3 = 10 \) and \( F_4 = 101 \).

(a) What is \( F_8 \)?

(b) **Prove** that every Fibonacci string except \( F_1 \) starts with \( 1 \).

(c) **Prove** that no Fibonacci string contains the substring \( 00 \).

2. You have reached the inevitable point in the semester where it is no longer possible to finish all of your assigned work without pulling at least a few all-nighters. The problem is that pulling successive all-nighters will burn you out, so you need to pace yourself (or something).

Let’s model the situation as follows. There are \( n \) days left in the semester. For simplicity, let’s say you are taking one class, there are no weekends, there is an assignment due every single day until the end of the semester, and you will only work on an assignment the day before it is due. For each day \( i \), you know two positive integers:

- \( \text{Score}[i] \) is the score you will earn on the \( i \)th assignment if you do not pull an all-nighter the night before.
- \( \text{Bonus}[i] \) is the number of additional points you could potentially earn if you pull an all-nighter the night before.

However, pulling multiple all-nighters in a row has a price. If you turn in the \( i \)th assignment immediately after pulling \( k \) consecutive all-nighters, your actual score for that assignment will be \( (\text{Score}[i] + \text{Bonus}[i]) / 2^{k-1} \).

Design and analyze an algorithm that computes the maximum total score you can achieve, given the arrays \( \text{Score}[1..n] \) and \( \text{Bonus}[1..n] \) as input.
3. The following algorithm finds the smallest element in an unsorted array. The subroutine \textsc{Shuffle} randomly permutes the input array \( A \); every permutation of \( A \) is equally likely.

\begin{verbatim}
\textsc{RandomMin}(A[1..n]):
  \( \text{min} \leftarrow \infty \)
  \text{Shuffle}(A)
  \text{for } i \leftarrow 1 \text{ to } n
    \text{if } A[i] < \text{min}
      \text{min} \leftarrow A[i] \quad (\ast)
  \text{return } \text{min}
\end{verbatim}

In the following questions, assume all elements in the input array \( A[\ ] \) are distinct.

(a) In the worst case, how many times does \textsc{RandomMin} execute line (\ast)?

(b) For each index \( i \), let \( X_i = 1 \) if line (\ast) is executed in the \( i \)th iteration of the for loop, and let \( X_i = 0 \) otherwise. What is \( \Pr[X_i = 1] \)? [Hint: First consider \( i = 1 \) and \( i = n \).

(c) What is the exact expected number of executions of line (\ast)?

(d) Prove that line (\ast) is executed \( O(\log n) \) times with high probability, assuming the variables \( X_i \) are mutually independent.

(e) [Extra credit] Prove that the variables \( X_i \) are mutually independent.
   [Hint: Finish the rest of the exam first!]

4. Your eight-year-old cousin Elmo decides to teach his favorite new card game to his baby sister Daisy. At the beginning of the game, \( n \) cards are dealt face up in a long row. Each card is worth some number of points, which may be positive, negative, or zero. Then Elmo and Daisy take turns removing either the leftmost or rightmost card from the row, until all the cards are gone. At each turn, each player can decide which of the two cards to take. When the game ends, the player that has collected the most points wins.

Daisy isn’t old enough to get this whole “strategy” thing; she’s just happy to play with her big brother. When it’s her turn, she takes the either leftmost card or the rightmost card, each with probability \( 1/2 \).

Elmo, on the other hand, really wants to win. Having never taken an algorithms class, he follows the obvious greedy strategy—when it’s his turn, Elmo always takes the card with the higher point value.

Describe and analyze an algorithm to determine Elmo’s expected score, given the initial sequence of \( n \) cards as input. Assume Elmo moves first, and that no two cards have the same value.

For example, suppose the initial cards have values 1, 4, 8, 2. Elmo takes the 2, because it’s larger than 1. Then Daisy takes either 1 or 8 with equal probability. If Daisy takes the 1, then Elmo takes the 8; if Daisy takes the 8, then Elmo takes the 4. Thus, Elmo’s expected score is \( 2 + (8 + 4)/2 = 8 \).
Write your answers in the separate answer booklet.
Please return this question sheet and your cheat sheet with your answers.
Red text reflects corrections or clarifications given during the actual exam.

1. Suppose we insert \( n \) distinct items into an initially empty hash table of size \( m \gg n \), using an \textit{ideal random} hash function \( h \). Recall that a collision is a set of two distinct items \( \{x, y\} \) in the table such that \( h(x) = h(y) \).

   (a) What is the exact expected number of collisions?
   (b) Estimate the probability that there are no collisions. \textit{[Hint: Use Markov’s inequality.]} 
   (c) Estimate the largest value of \( n \) such that the probability of having no collisions is at least \( 1 - 1/n \). Your answer should have the form \( n = O(f(m)) \) for some simple function \( f \).
   (d) Fix an integer \( k > 1 \). A \textit{k-way collision} is a set of \( k \) distinct items \( \{x_1, \ldots, x_k\} \) that all have the same hash value: \( h(x_1) = h(x_2) = \cdots = h(x_k) \). Estimate the largest value of \( n \) such that the probability of having no \( k \)-way collisions is at least \( 1 - 1/n \). Your answer should have the form \( n = O(f(m, k)) \) for some simple function \( f \). \textit{[Hint: You may want to repeat parts (a) and (b).]}

2. Quentin, Alice, and the other Brakebills Physical Kids are planning an excursion through the Neitherlands to Fillory. The Neitherlands is a vast, deserted city composed of several plazas, each containing a single fountain that can magically transport people to a different world. Adjacent plazas are connected by gates, which have been cursed by the Beast. The gates open for only five minutes every hour, all at the same time. During those five minutes, if more than one person passes through any single gate, the Beast will detect their presence.\(^1\) However, people can safely pass through different gates at the same time. Moreover, anyone attempting to pass through more than one gate in the same five-minute period will turn into a niffin.\(^2\)

   You are given a map of the Neitherlands, which is a graph \( G \) with a vertex for each fountain and an edge for each gate, with the fountains to Earth and Fillory clearly marked; you are also given a positive integer \( h \). Describe and analyze an algorithm to compute the maximum number of people that can walk from the Earth fountain to the Fillory fountain in \( h \) hours, without anyone alerting the Beast or turning into a niffin.

\(^1\)This is very bad.
\(^2\)This is very bad.
3. Recall that a Bloom filter is an array $B[1..m]$ of bits, together with a collection of $k$ independent ideal random hash functions $h_1, h_2, \ldots, h_k$. To insert an item $x$ into a Bloom filter, we set $B[h_i(x)] ← 1$ for every index $i$. To test whether an item $x$ belongs to a set represented by a Bloom filter, we check whether $B[h_i(x)] = 1$ for every index $i$. This algorithm always returns $\text{TRUE}$ if $x$ is in the set, but may return either $\text{TRUE}$ or $\text{FALSE}$ when $x$ is not in the set. Thus, there may be false positives, but no false negatives.

If there are $n$ distinct items stored in the Bloom filter, then the probability of a false positive is $(1 - p)^k$, where $p \approx e^{-kn/m}$ is the probability that $B[j] = 0$ for any particular index $j$. In particular, if we set $k = (m/n)\ln 2$, then $p = 1/2$, and the probability of a false positive is $(1/2)^{(m/n)\ln 2} \approx (0.61850)^{m/n}$.

After months spent lovingly crafting a Bloom filter of size $m$ for a set $S$ of $n$ items, using exactly $k = (m/n)\ln 2$ hash functions (so $p = 1/2$), your boss tells you that you must reduce the size of your Bloom filter from $m$ bits down to $m/2$ bits. Unfortunately, you no longer have the original set $S$, and your company’s product ships tomorrow; you have to do something quick and dirty. Fortunately, your boss has a couple of ideas.

(a) First your boss suggests simply discarding half of the Bloom filter, keeping only the subarray $B[1..m/2]$. Describe an algorithm to check whether a given item $x$ is an element of the original set $S$, using only this smaller Bloom filter. As usual, if $x \in S$, your algorithm must return $\text{TRUE}$.

(b) What is the probability that your algorithm returns $\text{TRUE}$ when $x \not\in S$?

(c) Next your boss suggests merging the two halves of your old Bloom filter, defining a new array $B'[1..m/2]$ by setting $B'[i] ← B[i] \lor B[i + m/2]$ for all $i$. Describe an algorithm to check whether a given item $x$ is an element of the original set $S$, using only this smaller Bloom filter $B'$. As usual, if $x \in S$, your algorithm must return $\text{TRUE}$.

(d) What is the probability that your algorithm returns $\text{TRUE}$ when $x \not\in S$?

4. An $n \times n$ grid is an undirected graph with $n^2$ vertices organized into $n$ rows and $n$ columns. We denote the vertex in the $i$th row and the $j$th column by $(i, j)$. Every vertex $(i, j)$ has exactly four neighbors $(i - 1, j), (i + 1, j), (i, j - 1), \text{ and } (i, j + 1)$, except the boundary vertices, for which $i = 1, i = n, j = 1, \text{ or } j = n$.

Let $(x_1, y_1), (x_2, y_2), \ldots, (x_m, y_m)$ be distinct vertices, called terminals, in the $n \times n$ grid. The escape problem is to determine whether there are $m$ vertex-disjoint paths in the grid that connect these terminals to any $m$ distinct boundary vertices. Describe and analyze an efficient algorithm to solve the escape problem.
Write your answers in the separate answer booklet.
Please return this question handout and your cheat sheets with your answers.

1. Let $G = (V, E)$ be an arbitrary undirected graph. A **triple-Hamiltonian circuit** in $G$ is a closed walk in $G$ that visits every vertex of $G$ exactly three times. **Prove** that it is NP-hard to determine whether a given undirected graph has a triple-Hamiltonian circuit. [*Hint: Modify your reduction for double-Hamiltonian circuits from Homework 10.*]

2. Marie-Joseph Paul Yves Roch Gilbert du Motier, Marquis de Lafayette, colonial America’s favorite fighting Frenchman, needs to choose a subset of his ragtag volunteer army of $m$ soldiers to complete a set of $n$ important tasks, like “go to France for more funds” or “come back with more guns”. Each task requires a specific set of skills, such as “knows what to do in a trench” or “ingenuitive and fluent in French”. For each task, exactly $k$ soldiers are qualified to complete that task.

   Unfortunately, Lafayette’s soldiers are extremely lazy. For each task, if Lafayette chooses more than one soldier qualified for that task, each of them will assume that someone else will take on that task, and so the task will never be completed. A task will be completed if and only if exactly one of the chosen soldiers has the necessary skills for that task.

   So Lafayette needs to choose a subset $S$ of soldiers that maximizes the number of tasks for which exactly one soldier in $S$ is qualified. Not surprisingly, Lafayette’s problem is NP-hard.

   (a) Suppose Lafayette chooses each soldier independently with probability $p$. What is the exact expected number of tasks that will be completed, in terms of $p$ and $k$?
   (b) What value of $p$ maximizes this expected value?
   (c) Describe a randomized polynomial-time $O(1)$-approximation algorithm for Lafayette’s problem. What is the expected approximation ratio for your algorithm?

3. Suppose we are given a set of $n$ rectangular boxes, each specified by their height, width, and depth in centimeters. All three dimensions of each box lie strictly between 10cm and 20cm, and all $3n$ dimensions are distinct. As you might expect, one box can be nested inside another if the first box can be rotated so that is is smaller in every dimension than the second box. Boxes can be nested recursively, but two boxes cannot be nested side-by-side inside a third box. A box is visible if it is not nested inside another box.

   Describe and analyze an algorithm to nest the boxes, so that the number of visible boxes is as small as possible.
4. Hercules Mulligan, a tailor spyn’ on the British government, has determined a set of routes and towns that the British army plans to use to move their troops from Charleston, South Carolina to Yorktown, Virginia. (He took their measurements, information, and then he smuggled it.) The American revolutionary army wants to set up ambush points in some of these towns, so that every unit of the British army will face at least one ambush before reaching Yorktown. On the other hand, General Washington wants to leave as many troops available as possible to help defend Yorktown when the British army inevitably arrives.

Describe an efficient algorithm that computes the smallest number of towns where the revolutionary army should set up ambush points. The input to your algorithm is Mulligan’s graph of towns (vertices) and routes (edges), with Charleston and Yorktown clearly marked.

5. Consider the following randomized algorithm to approximate the smallest vertex cover in an undirected graph \( G = (V, E) \). For each vertex \( v \in V \), define the priority of \( v \) to be a real number between 0 and 1, chosen independently and uniformly at random. Finally, let \( S \) be the subset of vertices with higher priority than at least one of their neighbors:

\[
S := \left\{ v \in V \mid \text{priority}(v) > \min_{u \in E} \text{priority}(u) \right\}
\]

(a) What is the probability that the set \( S \) is a vertex cover of \( G \)? Prove your answer is correct. (Your proof should be short.)

(b) Suppose the input graph \( G \) is a cycle of length \( n \). What is the exact expected size of \( S \)?

(c) Suppose the input graph \( G \) is a star: a tree with one vertex of degree \( n - 1 \) and \( n - 1 \) vertices of degree 1. What is the exact probability that \( S \) is the smallest vertex cover of \( G \)?

(d) Again, suppose \( G \) is a star. Suppose we run the randomized algorithm \( N \) times, generating a sequence of subsets \( S_1, S_2, \ldots, S_N \). How large must \( N \) be to guarantee with high probability that some \( S_i \) is the minimum vertex cover of \( G \)?

6. After the Revolutionary War, Alexander Hamilton’s biggest rival as a lawyer was Aaron Burr. (Sir!) In fact, the two worked next door to each other. Unlike Hamilton, Burr cannot work non-stop; every case he tries exhausts him. The bigger the case, the longer he must rest before he is well enough to take the next case. (Of course, he is willing to wait for it.) If a case arrives while Burr is resting, Hamilton snatches it up instead.

Burr has been asked to consider a sequence of \( n \) upcoming cases. He quickly computes two arrays \( \text{profit}[1..n] \) and \( \text{skip}[1..n] \), where for each index \( i \),

- \( \text{profit}[i] \) is the amount of money Burr would make by taking the \( i \)th case, and
- \( \text{skip}[i] \) is the number of consecutive cases Burr must skip if he accepts the \( i \)th case.

That is, if Burr accepts the \( i \)th case, he cannot accept cases \( i + 1 \) through \( i + \text{skip}[i] \).

Design and analyze an algorithm that determines the maximum total profit Burr can secure from these \( n \) cases, using his two arrays as input.
• Each student must submit individual solutions for this homework. For all future homeworks, groups of up to three students can submit joint solutions.

• Submit your solutions electronically on the course Gradescope site as PDF files. Submit a separate PDF file for each numbered problem. If you plan to typeset your solutions, please use the \LaTeX solution template on the course web site. If you must submit scanned handwritten solutions, please use a black pen on blank white paper and a high-quality scanner app (or an actual scanner, not just a phone camera).

• You are not required to sign up on Gradescope (or Piazza) with your real name and your illinois.edu email address; you may use any email address and alias of your choice. However, to give you credit for the homework, we need to know who Gradescope thinks you are. Please fill out the web form linked from the course web page.

Some important course policies

• You may use any source at your disposal—paper, electronic, or human—but you must cite every source that you use, and you must write everything yourself in your own words. See the academic integrity policies on the course web site for more details.

• The answer “I don’t know” (and nothing else) is worth 25% partial credit on any required problem or subproblem, on any homework or exam. We will accept synonyms like “No idea” or “WTF” or “¯\(•_•)/¯”, but you must write something.

• Avoid the Three Deadly Sins! Any homework or exam solution that breaks any of the following rules will be given an automatic zero, unless the solution is otherwise perfect. Yes, we really mean it. We’re not trying to be scary or petty (Honest!), but we do want to break a few common bad habits that seriously impede mastery of the course material.

  – Always give complete solutions, not just examples.
  – Always declare all your variables, in English. In particular, always describe the specific problem your algorithm is supposed to solve.
  – Never use weak induction.

See the course web site for more information.

If you have any questions about these policies, please don’t hesitate to ask in class, in office hours, or on Piazza.
1. The famous Czech professor Jiřina Z. Džunglová has a favorite 23-node binary tree, in which each node is labeled with a unique letter of the alphabet. Preorder and inorder traversals of the tree visit the nodes in the following order:

- Inorder: P E U V B G X N I Y F O J L R H D C S A M Z T

(a) List the nodes in Professor Džunglová’s tree in post-order.
(b) Draw Professor Džunglová’s tree.

2. The complement $w^c$ of a string $w \in \{0,1\}^*$ is obtained from $w$ by replacing every 0 in $w$ with a 1 and vice versa; for example, $111011000100^c = 000100111011$. The complement function is formally defined as follows:

\[
w^c := \begin{cases}
\varepsilon & \text{if } w = \varepsilon \\
1 \cdot x^c & \text{if } w = 0x \\
0 \cdot x^c & \text{if } w = 1x
\end{cases}
\]

(a) Prove by induction that $|w| = |w^c|$ for every string $w$.
(b) Prove by induction that $(x \cdot y)^c = x^c \cdot y^c$ for all strings $x$ and $y$.

Your proofs must be formal and self-contained, and they must invoke the formal definitions of length $|w|$, concatenation $x \cdot y$, and complement $w^c$. Do not appeal to intuition!

3. Recursively define a set $L$ of strings over the alphabet $\{0,1\}$ as follows:

- The empty string $\varepsilon$ is in $L$.
- For all strings $x$ and $y$ in $L$, the string $0x1y$ is also in $L$.
- For all strings $x$ and $y$ in $L$, the string $1x0y$ is also in $L$.
- These are the only strings in $L$.

Let $(a, w)$ denote the number of times symbol $a$ appears in string $w$; for example,

\[(0, 01000110111001) = (1, 01000110111001) = 7.\]

(a) Prove that the string $01000110111001$ is in $L$.
(b) Prove by induction that every string in $L$ has exactly the same number of 0s and 1s. 
(You may assume without proof that $(a, x y) = (a, x) + (a, y)$ for any symbol $a$ and any strings $x$ and $y$.)
(c) Prove by induction that $L$ contains every string with the same number of 0s and 1s.
Solved Problems

4. Recall that the reversal $w^R$ of a string $w$ is defined recursively as follows:

$$w^R := \begin{cases} \epsilon & \text{if } w = \epsilon \\ x^R \cdot a & \text{if } w = a \cdot x \end{cases}$$

A palindrome is any string that is equal to its reversal, like AMANAPLANACANALPANAMA, RACECAR, POOP, I, and the empty string.

(a) Give a recursive definition of a palindrome over the alphabet $\Sigma$.
(b) Prove $w = w^R$ for every palindrome $w$ (according to your recursive definition).
(c) Prove that every string $w$ such that $w = w^R$ is a palindrome (according to your recursive definition).

In parts (b) and (c), you may assume without proof that $(x \cdot y)^R = y^R \cdot x^R$ and $(x^R)^R = x$ for all strings $x$ and $y$.

Solution:

(a) A string $w \in \Sigma^*$ is a palindrome if and only if either

- $w = \epsilon$, or
- $w = a$ for some symbol $a \in \Sigma$, or
- $w = axa$ for some symbol $a \in \Sigma$ and some palindrome $x \in \Sigma^*$.

Rubric: 2 points = ½ for each base case + 1 for the recursive case. No credit for the rest of the problem unless this is correct.

(b) Let $w$ be an arbitrary palindrome. Assume that $x = x^R$ for every palindrome $x$ such that $|x| < |w|$.

There are three cases to consider (mirroring the three cases in the definition):

- If $w = \epsilon$, then $w^R = \epsilon$ by definition, so $w = w^R$.
- If $w = a$ for some symbol $a \in \Sigma$, then $w^R = a$ by definition, so $w = w^R$.
- Suppose $w = axa$ for some symbol $a \in \Sigma$ and some palindrome $x \in P$. Then

$$w^R = (a \cdot x \cdot a)^R$$
$$= (x \cdot a)^R \cdot a \quad \text{by definition of reversal}$$
$$= a^R \cdot x^R \cdot a \quad \text{You said we could assume this.}$$
$$= a \cdot x^R \cdot a \quad \text{by definition of reversal}$$
$$= a \cdot x \cdot a \quad \text{by the inductive hypothesis}$$
$$= w \quad \text{by assumption}$$
In all three cases, we conclude that \( w = w^R \).

**Rubric:** 4 points: standard induction rubric (scaled)

(c) Let \( w \) be an arbitrary string such that \( w = w^R \).
Assume that every string \( x \) such that \( |x| < |w| \) and \( x = x^R \) is a palindrome.
There are three cases to consider (mirroring the definition of “palindrome”):

- If \( w = \epsilon \), then \( w \) is a palindrome by definition.
- If \( w = a \) for some symbol \( a \in \Sigma \), then \( w \) is a palindrome by definition.
- Otherwise, we have \( w = ax \) for some symbol \( a \) and some non-empty string \( x \).
  The definition of reversal implies that \( w^R = (ax)^R = x^Ra \).
  Because \( x \) is non-empty, its reversal \( x^R \) is also non-empty.
  Thus, \( x^R = by \) for some symbol \( b \) and some string \( y \).
  It follows that \( w^R = bya \), and therefore \( w = (w^R)^R = (bya)^R = ay^Rb \).

  [At this point, we need to prove that \( a = b \) and that \( y \) is a palindrome.]

Our assumption that \( w = w^R \) implies that \( bya = ay^Rb \).
The recursive definition of string equality immediately implies \( a = b \).
Because \( a = b \), we have \( w = ay^Ra \) and \( w^R = ay \).
The recursive definition of string equality implies \( y^Ra = ya \).
It immediately follows that \( (y^Ra)^R = (ya)^R \).
Known properties of reversal imply \( (y^Ra)^R = a(y^R)^R = ay \) and \( (ya)^R = ay^R \).
It follows that \( ay^R = ay \), and therefore \( y = y^R \).
The inductive hypothesis now implies that \( y \) is a palindrome.

We conclude that \( w \) is a palindrome by definition.
In all three cases, we conclude that \( w \) is a palindrome.

**Rubric:** 4 points: standard induction rubric (scaled).

- No penalty for jumping from \( ay^R = ay \) directly to \( y = y^R \).
Rubric (induction): For problems worth 10 points:

+ 1 for explicitly considering an arbitrary object
+ 2 for a valid strong induction hypothesis
  - **Deadly Sin!** Automatic zero for stating a weak induction hypothesis, unless the rest of the proof is perfect.

+ 2 for explicit exhaustive case analysis
  - No credit here if the case analysis omits an infinite number of objects. (For example: all odd-length palindromes.)
  - −1 if the case analysis omits a finite number of objects. (For example: the empty string.)
  - −1 for making the reader infer the case conditions. Spell them out!
  - No penalty if cases overlap (for example:

+ 1 for cases that do not invoke the inductive hypothesis ("base cases")
  - No credit here if one or more "base cases" are missing.

+ 2 for correctly applying the stated inductive hypothesis
  - No credit here for applying a different inductive hypothesis, even if that different inductive hypothesis would be valid.

+ 2 for other details in cases that invoke the inductive hypothesis ("inductive cases")
  - No credit here if one or more "inductive cases" are missing.
CS/ECE 374  Fall 2016
🔒 Homework 1  Locke
Due Tuesday, September 6, 2016 at 8pm

Starting with this homework, groups of up to three people can submit joint solutions. Each problem should be submitted by exactly one person, and the beginning of the homework should clearly state the Gradescope names and email addresses of each group member. In addition, whoever submits the homework must tell Gradescope who their other group members are.

1. For each of the following languages over the alphabet \{0, 1\}, give a regular expression that describes that language, and briefly argue why your expression is correct.

   (a) All strings that end with the suffix 01010101.
   (b) All strings except 111.
   (c) All strings that contain the substring 010.
   (d) All strings that contain the subsequence 010.
   (e) All strings that do not contain the substring 010.
   (f) All strings that do not contain the subsequence 010.

2. This problem considers two special classes of regular expressions.
   - A regular expression \( R \) is **plus-free** if and only if it never uses the + operator.
   - A regular expression \( R \) is **top-plus** if and only if either
     - \( R \) is plus-free, or
     - \( R = S + T \), where \( S \) and \( T \) are top-plus.

   For example, \( 1((0^*10)^*1)^*0 \) is plus-free and (therefore) top-plus; \( 01^*0 + 10^*1 + \varepsilon \) is top-plus but not plus-free, and \( 0(0 + 1)^*(1 + \varepsilon) \) is neither top-plus nor plus-free.

   Recall that two regular expressions \( R \) and \( S \) are **equivalent** if they describe exactly the same language: \( L(R) = L(S) \).

   (a) Prove that for any top-plus regular expressions \( R \) and \( S \), there is a top-plus regular expression that is equivalent to \( RS \). [Hint: Use the fact that \((A + B)(C + D)\) and \(AC + AD + BC + BD\) are equivalent, for all regular expressions \( A, B, C, \) and \( D \).]
   (b) Prove that for any top-plus regular expression \( R \), there is a **plus-free** regular expression \( S \) such that \( R^* \) and \( S^* \) are equivalent. [Hint: Use the fact that \((A+B)^*\) is equivalent to \((A^*B^*)^*\), for all regular expressions \( A \) and \( B \).]
   (c) Prove that for any regular expression, there is an equivalent top-plus regular expression.
3. Let $L$ be the set of all strings in $\{0, 1\}^*$ that contain exactly two occurrences of the substring $001$.

(a) Describe a DFA that over the alphabet $\Sigma = \{0, 1\}$ that accepts the language $L$. Argue that your machine accepts every string in $L$ and nothing else, by explaining what each state in your DFA means.

You may either draw the DFA or describe it formally, but the states $Q$, the start state $s$, the accepting states $A$, and the transition function $\delta$ must be clearly specified.

(b) Give a regular expression for $L$, and briefly argue that why expression is correct.
Solved problem

4. C comments are the set of strings over alphabet $\Sigma = \{*, /, A, \circ, \downarrow\}$ that form a proper comment in the C program language and its descendants, like C++, and Java. Here $\downarrow$ represents the newline character, $\circ$ represents any other whitespace character (like the space and tab characters), and $A$ represents any non-whitespace character other than $*$ or $/$. There are two types of C comments:

- Line comments: Strings of the form $// \cdots \downarrow$.
- Block comments: Strings of the form $*/ \cdots */$.

Following the C99 standard, we explicitly disallow nesting comments of the same type. A line comment starts with $//$ and ends at the first $\downarrow$ after the opening $//$. A block comment starts with $/*$ and ends at the the first $*/$ completely after the opening $/*$; in particular, every block comment has at least two $*$s. For example, each of the following strings is a valid C comment:

- $*/**$/
- $//\circ//\circ\downarrow$
- $/*///\circ\circ\circ\downarrow**$
- $/\circ//\circ\circ\circ*$

On the other hand, none of the following strings is a valid C comments:

- $/*$
- $//\circ//\circ\downarrow$
- $/\circ//\circ\circ\circ$/

(a) Describe a DFA that accepts the set of all C comments.

(b) Describe a DFA that accepts the set of all strings composed entirely of blanks ($\circ$), newlines ($\downarrow$), and C comments.

You must explain in English how your DFAs work. Drawings or formal descriptions without English explanations will receive no credit, even if they are correct.

---

The actual C commenting syntax is considerably more complex than described here, because of character and string literals.

- The opening $/*$ or $//$ of a comment must not be inside a string literal (“...”) or a (multi-)character literal (’...’).
- The opening double-quote of a string literal must not be inside a character literal (“’”) or a comment.
- The closing double-quote of a string literal must not be escaped (\)
- The opening single-quote of a character literal must not be inside a string literal (“"”) or a comment.
- The closing single-quote of a character literal must not be escaped (’)
- A backslash escapes the next symbol if and only if it is not itself escaped (\) or inside a comment.

For example, the string "/*\"/*"/\"/*"/\"/*" is a valid string literal (representing the 5-character string /*\"/*, which is itself a valid block comment!) followed immediately by a valid block comment. For this homework question, just pretend that the characters ’, " and \ don’t exist.

Commenting in C++ is even more complicated, thanks to the addition of raw string literals. Don’t ask.

Some C and C++ compilers do support nested block comments, in violation of the language specification. A few other languages, like OCaml, explicitly allow nesting block comments.
Solution:

(a) The following eight-state DFA recognizes the language of C comments. All missing transitions lead to a hidden reject state.

The states are labeled mnemonically as follows:

• $s$ — We have not read anything.
• $/$ — We just read the initial /.
• /// — We are reading a line comment.
• $L$ — We have read a complete line comment.
• /* — We are reading a block comment, and we did not just read a * after the opening /*.
• /** — We are reading a block comment, and we just read a * after the opening /*.
• $B$ — We have read a complete block comment.

(b) By merging the accepting states of the previous DFA with the start state and adding white-space transitions at the start state, we obtain the following six-state DFA. Again, all missing transitions lead to a hidden reject state.

The states are labeled mnemonically as follows:

• $s$ — We are between comments.
• $/$ — We just read the initial / of a comment.
• /// — We are reading a line comment.
Rubric: 10 points = 5 for each part, using the standard DFA design rubric (scaled)

Rubric (DFA design): For problems worth 10 points:

• 2 points for an unambiguous description of a DFA, including the states set $Q$, the start state $s$, the accepting states $A$, and the transition function $\delta$.
  
  – **For drawings:** Use an arrow from nowhere to indicate $s$, and doubled circles to indicate accepting states $A$. If $A = \emptyset$, say so explicitly. If your drawing omits a reject state, say so explicitly. **Draw neatly!** If we can’t read your solution, we can’t give you credit for it.
  
  – **For text descriptions:** You can describe the transition function either using a 2d array, using mathematical notation, or using an algorithm.
  
  – **For product constructions:** You must give a complete description of the states and transition functions of the DFAs you are combining (as either drawings or text), together with the accepting states of the product DFA.

• **Homework only:** 4 points for briefly and correctly explaining the purpose of each state in English. This is how you justify that your DFA is correct.
  
  – For product constructions, explaining the states in the factor DFAs is enough.
  
  – **Deadly Sin:** (“Declare your variables.”) No credit for the problem if the English description is missing, even if the DFA is correct.

• 4 points for correctness. (8 points on exams, with all penalties doubled)
  
  – $-1$ for a single mistake: a single misdirected transition, a single missing or extra accept state, rejecting exactly one string that should be accepted, or accepting exactly one string that should be accepted.
  
  – $-2$ for incorrectly accepting/rejecting more than one but a finite number of strings.
  
  – $-4$ for incorrectly accepting/rejecting an infinite number of strings.

• DFA drawings with too many states may be penalized. DFA drawings with **significantly** too many states may get no credit at all.

• Half credit for describing an NFA when the problem asks for a DFA.
1. A **Moore machine** is a variant of a finite-state automaton that produces output; Moore machines are sometimes called finite-state **transducers**. For purposes of this problem, a Moore machine formally consists of six components:

- A finite set $\Sigma$ called the input alphabet
- A finite set $\Gamma$ called the output alphabet
- A finite set $Q$ whose elements are called states
- A start state $s \in Q$
- A transition function $\delta : Q \times \Sigma \rightarrow Q$
- An output function $\omega : Q \rightarrow \Gamma$

More intuitively, a Moore machine is a graph with a special start vertex, where every node (state) has one outgoing edge labeled with each symbol from the input alphabet, and each node (state) is additionally labeled with a symbol from the output alphabet.

The Moore machine reads an input string $w \in \Sigma^*$ one symbol at a time. For each symbol, the machine changes its state according to the transition function $\delta$, and then outputs the symbol $\omega(q)$, where $q$ is the new state. Formally, we recursively define a *transducer* function $\omega^* : Q \times \Sigma^* \rightarrow \Gamma^*$ as follows:

$$\omega^*(q, w) = \begin{cases} 
\epsilon & \text{if } w = \epsilon \\
\omega(\delta(q, a)) \cdot \omega^*(\delta(q, a), x) & \text{if } w = ax
\end{cases}$$

Given input string $w \in \Sigma^*$, the machine outputs the string $\omega^*(s, w) \in \Gamma^*$. The **output language** $L^\omega(M)$ of a Moore machine $M$ is the set of all strings that the machine can output:

$$L^\omega(M) := \{ \omega^*(s, w) \mid w \in \Sigma^* \}$$

(a) Let $M$ be an arbitrary Moore machine. Prove that $L^\omega(M)$ is a regular language.

(b) Let $M$ be an arbitrary Moore machine whose input alphabet $\Sigma$ and output alphabet $\Gamma$ are identical. Prove that the language

$$L^=\omega(M) = \{ w \in \Sigma^* \mid w = \omega^*(s, w) \}$$

is regular. $L^=\omega(M)$ consists of all strings $w$ such that $M$ outputs $w$ when given input $w$; these are also called **fixed points** for the transducer function $\omega^*$.

*Hint: These problems are easier than they look!*
2. Prove that the following languages are not regular.
   
   (a) \( \{ w \in \{0 + 1\}^* \mid |\#(0, w) - \#(1, w)| < 5 \} \)
   
   (b) Strings in \( \{0 + 1\}^* \) in which the substrings 00 and 11 appear the same number of times.
   
   (c) \( \{ 0^m 1^m \mid n/m \text{ is an integer} \} \)

3. Let \( L \) be an arbitrary regular language.

   (a) Prove that the language \( \text{palin}(L) := \{ w \mid ww^R \in L \} \) is also regular.
   
   (b) Prove that the language \( \text{drome}(L) := \{ w \mid w^R w \in L \} \) is also regular.
Solved problem

4. Let $L$ be an arbitrary regular language. Prove that the language $\text{half}(L) := \{ w \mid ww \in L \}$ is also regular.

Solution: Let $M = (\Sigma, Q, s, A, \delta)$ be an arbitrary DFA that accepts $L$. We define a new NFA $M' = (\Sigma, Q', s', A', \delta')$ with $\epsilon$-transitions that accepts $\text{half}(L)$, as follows:

$$Q' = (Q \times Q \times Q) \cup \{s'\}$$
$$s' \text{ is an explicit state in } Q'$$
$$A' = \{(h, h, q) \mid h \in Q \text{ and } q \in A\}$$
$$\delta'(s', \epsilon) = \{(s, h, h) \mid h \in Q\}$$
$$\delta'((p, h, q), a) = \{\delta(p, a), h, \delta(q, a)\}$$

$M'$ reads its input string $w$ and simulates $M$ reading the input string $ww$. Specifically, $M'$ simultaneously simulates two copies of $M$, one reading the left half of $ww$ starting at the usual start state $s$, and the other reading the right half of $ww$ starting at some intermediate state $h$.

- The new start state $s'$ non-deterministically guesses the “halfway” state $h = \delta^*(s, w)$ without reading any input; this is the only non-determinism in $M'$.
- State $(p, h, q)$ means the following:
  - The left copy of $M$ (which started at state $s$) is now in state $p$.
  - The initial guess for the halfway state is $h$.
  - The right copy of $M$ (which started at state $h$) is now in state $q$.
- $M'$ accepts if and only if the left copy of $M$ ends at state $h$ (so the initial non-deterministic guess $h = \delta^*(s, w)$ was correct) and the right copy of $M$ ends in an accepting state.

Rubric: 5 points =
+ 1 for a formal, complete, and unambiguous description of a DFA or NFA  
  – No points for the rest of the problem if this is missing.
+ 3 for a correct NFA  
  – −1 for a single mistake in the description (for example a typo)
+ 1 for a brief English justification. We explicitly do not want a formal proof of correctness, but we do want one or two sentences explaining how the NFA works.
Groups of up to three people can submit joint solutions. Each problem should be submitted by exactly one person, and the beginning of the homework should clearly state the Gradescope names and email addresses of each group member. In addition, whoever submits the homework must tell Gradescope who their other group members are.

1. For each of the following regular expressions, describe or draw two finite-state machines:
   - An NFA that accepts the same language, obtained using Thompson’s recursive algorithm
   - An equivalent DFA, obtained using the incremental subset construction. For each state in your DFA, identify the corresponding subset of states in your NFA. Your DFA should have no unreachable states.
     
     (a) \((00 + 11)^*(0 + 1 + \varepsilon)\)
     (b) \(1^* + (01)^* + (001)^*\)

2. Give context-free grammars for the following languages, and clearly explain how they work and the role of each nonterminal. Grammars can be very difficult to understand; if the grader does not understand how your construction is intended to generate the language, then you will receive no credit.

   (a) In any string, a block (also called a run) is a maximal non-empty substring of identical symbols. For example, the string \(011000011001\) has six blocks: three blocks of \(0\)s of lengths 1, 4, and 2, and three blocks of \(1\)s of lengths 3, 2, and 1.

   Let \(L\) be the set of all strings in \(\{0, 1\}^*\) that contain two blocks of \(0\)s of equal length. For example, \(L\) contains the strings \(0110111\) and \(01001011100010\) but does not contain the strings \(000110011011\) and \(00000000111\).

   (b) \(L = \{w \in \{0, 1\}^* \mid w \text{ is not a palindrome}\}\).

3. Let \(L = \{0^i1^j2^k \mid k = i + j\}\).

   (a) Show that \(L\) is context-free by describing a grammar for \(L\).

   (b) Prove that your grammar \(G\) is correct. As usual, you need to prove both \(L \subseteq L(G)\) and \(L(G) \subseteq L\).
Solved problem

4. Let \( L \) be the set of all strings over \( \{0, 1\}^* \) with exactly twice as many \( 0 \)s as \( 1 \)s.

(a) Describe a CFG for the language \( L \).

[Hint: For any string \( u \) define \( \Delta(u) = #(0, u) - 2#(1, u) \). Introduce intermediate variables that derive strings with \( \Delta(u) = 1 \) and \( \Delta(u) = -1 \) and use them to define a non-terminal that generates \( L \).]

Solution: \( S \to \varepsilon \mid SS \mid 00S1 \mid 0S1S0 \mid 1S00 \)

(b) Prove that your grammar \( G \) is correct. As usual, you need to prove both \( L \subseteq L(G) \) and \( L(G) \subseteq L \).

[Hint: Let \( u_{\leq i} \) denote the prefix of \( u \) of length \( i \). If \( \Delta(u) = 1 \), what can you say about the smallest \( i \) for which \( \Delta(u_{\leq i}) = 1 \)? How does \( u \) split up at that position? If \( \Delta(u) = -1 \), what can you say about the smallest \( i \) such that \( \Delta(u_{\leq i}) = -1 \)?]

Solution: (Hopefully you recognized this as a more advanced version of HW\( n \) problem 3.) We separately prove \( L \subseteq L(G) \) and \( L(G) \subseteq L \) as follows:

Claim 1. \( L(G) \subseteq L \), that is, every string in \( L(G) \) has exactly twice as many \( 0 \)s as \( 1 \)s.

Proof: As suggested by the hint, for any string \( u \), let \( \Delta(u) = #(0, u) - 2#(1, u) \). We need to prove that \( \Delta(w) = 0 \) for every string \( w \in L(G) \).

Let \( w \) be an arbitrary string in \( L(G) \), and consider an arbitrary derivation of \( w \) of length \( k \). Assume that \( \Delta(x) = 0 \) for every string \( x \in L(G) \) that can be derived with fewer than \( k \) productions. \( \triangleright \) There are five cases to consider, depending on the first production in the derivation of \( w \).

- If \( w = \varepsilon \), then \( #(0, w) = #(1, w) = 0 \) by definition, so \( \Delta(w) = 0 \).
- Suppose the derivation begins \( S \to SS \to^* w \). Then \( w = xy \) for some strings \( x, y \in L(G) \), each of which can be derived with fewer than \( k \) productions. The inductive hypothesis implies \( \Delta(x) = \Delta(y) = 0 \). It immediately follows that \( \Delta(w) = 0 \). \( \triangleright \)
- Suppose the derivation begins \( S \to 00S1 \to^* w \). Then \( w = 00x1 \) for some string \( x \in L(G) \). The inductive hypothesis implies \( \Delta(x) = 0 \). It immediately follows that \( \Delta(w) = 0 \).
- Suppose the derivation begins \( S \to 1S00 \to^* w \). Then \( w = 1x00 \) for some string \( x \in L(G) \). The inductive hypothesis implies \( \Delta(x) = 0 \). It immediately follows that \( \Delta(w) = 0 \).
- Suppose the derivation begins \( S \to 0S1S1 \to^* w \). Then \( w = 0x1y0 \) for some strings \( x, y \in L(G) \). The inductive hypothesis implies \( \Delta(x) = \Delta(y) = 0 \). It immediately follows that \( \Delta(w) = 0 \).

In all cases, we conclude that \( \Delta(w) = 0 \), as required. \( \triangleright \)
Claim 2. \( L \subseteq L(G) \); that is, \( G \) generates every binary string with exactly twice as many \( \emptyset \)s as 1s.

Proof: As suggested by the hint, for any string \( u \), let \( \Delta(u) = \#(\emptyset,u) - 2\#(1,u) \). For any string \( u \) and any integer \( 0 \leq i \leq |u| \), let \( u_i \) denote the \( i \)th symbol in \( u \), and let \( u_{\leq i} \) denote the prefix of \( u \) of length \( i \).

Let \( w \) be an arbitrary binary string with twice as many \( \emptyset \)s as 1s. Assume that \( G \) generates every binary string \( x \) that is shorter than \( w \) and has twice as many \( \emptyset \)s as 1s. There are two cases to consider:

- If \( w = \varepsilon \), then \( \varepsilon \in L(G) \) because of the production \( S \rightarrow \varepsilon \).
- Suppose \( w \) is non-empty. To simplify notation, let \( \Delta_i = \Delta(w_{\leq i}) \) for every index \( i \), and observe that \( \Delta_0 = \Delta_{|w|} = 0 \). There are several subcases to consider:
  - Suppose \( \Delta_i = 0 \) for some index \( 0 < i < |w| \). Then we can write \( w = xy \), where \( x \) and \( y \) are non-empty strings with \( \Delta(x) = \Delta(y) = 0 \). The induction hypothesis implies that \( x, y \in L(G) \), and thus the production rule \( S \rightarrow SS \) implies that \( w \in L(G) \).
  - Suppose \( \Delta_i > 0 \) for all \( 0 < i < |w| \). Then \( w \) must begin with \( 00 \), since otherwise \( \Delta_1 = -2 \) or \( \Delta_2 = -1 \), and the last symbol in \( w \) must be 1, since otherwise \( \Delta_{|w|-1} = -1 \). Thus, we can write \( w = 00x1 \) for some binary string \( x \). We easily observe that \( \Delta(x) = 0 \), so the induction hypothesis implies \( x \in L(G) \), and thus the production rule \( S \rightarrow 00S1 \) implies \( w \in L(G) \).
  - Suppose \( \Delta_i < 0 \) for all \( 0 < i < |w| \). A symmetric argument to the previous case implies \( w = 1x00 \) for some binary string \( x \) with \( \Delta(x) = 0 \). The induction hypothesis implies \( x \in L(G) \), and thus the production rule \( S \rightarrow 1500 \) implies \( w \in L(G) \).
  - Finally, suppose none of the previous cases applies: \( \Delta_i < 0 \) and \( \Delta_j > 0 \) for some indices \( i \) and \( j \), but \( \Delta_i \neq 0 \) for all \( 0 < i < |w| \).
    Let \( i \) be the smallest index such that \( \Delta_i < 0 \). Because \( \Delta_j \) either increases by 1 or decreases by 2 when we increment \( j \), for all indices \( 0 < j < |w| \), we must have \( \Delta_j > 0 \) if \( j < i \) and \( \Delta_j < 0 \) if \( j \geq i \).
    In other words, there is a unique index \( i \) such that \( \Delta_{i-1} > 0 \) and \( \Delta_i < 0 \). In particular, we have \( \Delta_1 > 0 \) and \( \Delta_{|w|-1} < 0 \). Thus, we can write \( w = 0x1y0 \) for some binary strings \( x \) and \( y \), where \( |0x1| = i \).
    We easily observe that \( \Delta(x) = \Delta(y) = 0 \), so the inductive hypothesis implies \( x, y \in L(G) \), and thus the production rule \( S \rightarrow 0S1S0 \) implies \( w \in L(G) \).

In all cases, we conclude that \( G \) generates \( w \).

Together, Claim 1 and Claim 2 imply \( L = L(G) \).

\[
\text{Rubric: 10 points:} \quad \\
\begin{itemize}
  \item part (a) = 4 points. As usual, this is not the only correct grammar.
  \item part (b) = 6 points = 3 points for \( \subseteq + 3 \) points for \( \supseteq \), each using the standard induction template (scaled).
\end{itemize}
\]
1. Consider the following restricted variant of the Tower of Hanoi puzzle. The pegs are numbered 0, 1, and 2, and your task is to move a stack of \( n \) disks from peg 1 to peg 2. However, you are forbidden to move any disk directly between peg 1 and peg 2; every move must involve peg 0.

Describe an algorithm to solve this version of the puzzle in as few moves as possible. Exactly how many moves does your algorithm make?

2. Consider the following cruel and unusual sorting algorithm.

\[
\begin{align*}
\text{Cruel}(A[1..n]) & : \\
\text{if } n > 1 & : \\
\text{Cruel}(A[1..n/2]) & : \\
\text{Cruel}(A[n/2+1..n]) & : \\
\text{Unusual}(A[1..n]) & : \\
\end{align*}
\]

\[
\begin{align*}
\text{Unusual}(A[1..n]) & : \\
\text{if } n = 2 & : \\
\text{if } A[1] > A[2] & : \langle \text{the only comparison!} \rangle \\
\text{else} & : \\
\text{for } i \leftarrow 1 \text{ to } n/4 & : \langle \text{swap 2nd and 3rd quarters} \rangle \\
\text{swap } A[i] + n/4 \leftrightarrow A[i + n/2] & : \\
\text{Unusual}(A[1..n/2]) & : \langle \text{recurse on left half} \rangle \\
\text{Unusual}(A[n/2+1..n]) & : \langle \text{recurse on right half} \rangle \\
\text{Unusual}(A[n/4+1..3n/4]) & : \langle \text{recurse on middle half} \rangle \\
\end{align*}
\]

Notice that the comparisons performed by the algorithm do not depend at all on the values in the input array; such a sorting algorithm is called \textit{oblivious}. Assume for this problem that the input size \( n \) is always a power of 2.

(a) Prove by induction that \textit{Cruel} correctly sorts any input array. \textit{[Hint: Consider an array that contains } n/4 1s, n/4 2s, n/4 3s, \text{and } n/4 4s. Why is this special case enough? What does \textit{Unusual} actually do?]

(b) Prove that \textit{Cruel} would \textit{not} correctly sort if we removed the for-loop from \textit{Unusual}.

(c) Prove that \textit{Cruel} would \textit{not} correctly sort if we swapped the last two lines of \textit{Unusual}.

(d) What is the running time of \textit{Unusual}? Justify your answer.

(e) What is the running time of \textit{Cruel}? Justify your answer.
3. You are a visitor at a political convention (or perhaps a faculty meeting) with \( n \) delegates. Each delegate is a member of exactly one political party. It is impossible to tell which political party any delegate belongs to. In particular, you will be summarily ejected from the convention if you ask. However, you can determine whether any pair of delegates belong to the same party or not simply by introducing them to each other. Members of the same party always greet each other with smiles and friendly handshakes; members of different parties always greet each other with angry stares and insults.

(a) Suppose more than half of the delegates belong to the same political party. Describe and analyze an efficient algorithm that identifies every member of this majority party.

(b) Now suppose precisely \( p \) political parties are present and one party has a plurality: more delegates belong to that party than to any other party. Please present a procedure to pick out the people from the plurality party as parsimoniously as possible.\(^\ddagger\) Do not assume that \( p = O(1) \).

\[^\ddagger\text{Describe and analyze an efficient algorithm that identifies every member of the plurality party.}\]
Solved Problem

4. Suppose we are given two sets of \( n \) points, one set \( \{ p_1, p_2, \ldots, p_n \} \) on the line \( y = 0 \) and the other set \( \{ q_1, q_2, \ldots, q_n \} \) on the line \( y = 1 \). Consider the \( n \) line segments connecting each point \( p_i \) to the corresponding point \( q_i \). Describe and analyze a divide-and-conquer algorithm to determine how many pairs of these line segments intersect, in \( O(n \log n) \) time.

See the example below.

Seven segments with endpoints on parallel lines, with 11 intersecting pairs.

Your input consists of two arrays \( P[1..n] \) and \( Q[1..n] \) of \( x \)-coordinates; you may assume that all \( 2n \) of these numbers are distinct. No proof of correctness is necessary, but you should justify the running time.

Solution: We begin by sorting the array \( P[1..n] \) and permuting the array \( Q[1..n] \) to maintain correspondence between endpoints, in \( O(n \log n) \) time. Then for any indices \( i < j \), segments \( i \) and \( j \) intersect if and only if \( Q[i] > Q[j] \). Thus, our goal is to compute the number of pairs of indices \( i < j \) such that \( Q[i] > Q[j] \). Such a pair is called an inversion.

We count the number of inversions in \( Q \) using the following extension of mergesort; as a side effect, this algorithm also sorts \( Q \). If \( n < 100 \), we use brute force in \( O(1) \) time. Otherwise:

- Recursively count inversions in (and sort) \( Q[1..n/2] \).
- Recursively count inversions in (and sort) \( Q[n/2+1..n] \).
- Count inversions \( Q[i] > Q[j] \) where \( i \leq [n/2] \) and \( j > [n/2] \) as follows:
  - Color the elements in the Left half \( Q[1..n/2] \) blue.
  - Color the elements in the Right half \( Q[n/2+1..n] \) red.
  - Merge \( Q[1..n/2] \) and \( Q[n/2+1..n] \), maintaining their colors.
  - For each blue element \( Q[i] \), count the number of smaller red elements \( Q[j] \).

The last substep can be performed in \( O(n) \) time using a simple for-loop:

\[
\text{CountRedBlue}(A[1..n]):
\begin{align*}
\text{count} & \leftarrow 0 \\
\text{total} & \leftarrow 0 \\
\text{for } i & \leftarrow 1 \text{ to } n \\
\text{if } A[i] & \text{ is red} \\
\text{count} & \leftarrow \text{count} + 1 \\
\text{else} \\
\text{total} & \leftarrow \text{total} + \text{count}
\end{align*}
\text{return } \text{total}
\]
In fact, we can execute the third merge-and-count step directly by modifying the Merge algorithm, without any need for “colors”. Here changes to the standard Merge algorithm are indicated in red.

```plaintext
MERGEANDCOUNT(A[1..n], m):
  i ← 1; j ← m + 1; count ← 0; total ← 0
  for k ← 1 to n
    if j > n
      B[k] ← A[i]; i ← i + 1; total ← total + count
    else if i > m
      B[k] ← A[j]; j ← j + 1; count ← count + 1
    else if A[i] < A[j]
      B[k] ← A[i]; i ← i + 1; total ← total + count
    else
      B[k] ← A[j]; j ← j + 1; count ← count + 1
  for k ← 1 to n
    A[k] ← B[k]
  return total
```

We can further optimize this algorithm by observing that `count` is always equal to `j − m − 1`. (Proof: Initially, `j = m + 1` and `count = 0`, and we always increment `j` and `count` together.)

```plaintext
MERGEANDCOUNT2(A[1..n], m):
  i ← 1; j ← m + 1; total ← 0
  for k ← 1 to n
    if j > n
      B[k] ← A[i]; i ← i + 1; total ← total + j − m − 1
    else if i > m
      B[k] ← A[j]; j ← j + 1
    else if A[i] < A[j]
      B[k] ← A[i]; i ← i + 1; total ← total + j − m − 1
    else
      B[k] ← A[j]; j ← j + 1
  for k ← 1 to n
    A[k] ← B[k]
  return total
```

The modified Merge algorithm still runs in $O(n)$ time, so the running time of the resulting modified mergesort still obeys the recurrence $T(n) = 2T(n/2) + O(n)$. We conclude that the overall running time is $O(n \log n)$, as required.

**Rubric:** 10 points = 2 for base case + 3 for divide (split and recurse) + 3 for conquer (merge and count) + 2 for time analysis. Max 3 points for a correct $O(n^2)$-time algorithm. This is neither the only way to correctly describe this algorithm nor the only correct $O(n \log n)$-time algorithm. No proof of correctness is required.
1. For each of the following problems, the input consists of two arrays \(X[1..k]\) and \(Y[1..n]\) where \(k \leq n\).

   (a) Describe and analyze an algorithm to determine whether \(X\) occurs as two disjoint subsequences of \(Y\), where “disjoint” means the two subsequences have no indices in common. For example, the string \texttt{PPAP}\) appears as two disjoint subsequences in the string \texttt{PENPINAPPLEAPPLEPEN}, but the string \texttt{PEEPELE}\) does not.

   (b) Describe and analyze an algorithm to compute the number of occurrences of \(X\) as a subsequence of \(Y\). For example, the string \texttt{PPAP}\) appears exactly 3 times as a subsequence of the string \texttt{PENPINAPPLEAPPLEPEN}. If all characters in \(X\) and \(Y\) are equal, your algorithm should return \(\binom{n}{k}\). For purposes of analysis, assume that each arithmetic operation takes \(O(1)\) time.

2. You are driving a bus along a long straight highway, full of rowdy, hyper, thirsty students and an endless supply of soda. Each minute that each student is on your bus, that student drinks one ounce of soda. Your goal is to drive all students home, so that the total volume of soda consumed by the students is as small as possible.

   Your bus begins at an exit (probably not at either end) with all students on board and moves at a constant speed of 37.4 miles per hour. Each student needs to be dropped off at a highway exit. You may reverse directions as often as you like; for example, you are allowed to drive forward to the next exit, let some students off, then turn around and drive back to the previous exit, drop more students off, then turn around again and drive to further exits. (Assume that at each exit, you can stop the bus, drop off students, and if necessary turn around, all instantaneously.)

   Describe an efficient algorithm to take the students home so that they drink as little soda as possible. Your algorithm will be given the following input:

   - A sorted array \(L[1..n]\), where \(L[i]\) is the Location of the \(i\)th exit, measured in miles from the first exit; in particular, \(L[1] = 0\).
   - An array \(N[1..n]\), where \(N[i]\) is the Number of students you need to drop off at the \(i\)th exit
   - An integer \(\text{start}\) equal to the index of the starting exit.

   Your algorithm should return the total volume of soda consumed by the students when you drive the optimal route.\(\square\)

¹Non-US students are welcome to assume kilometers and liters instead of miles and ounces. Late 18th-century French students are welcome to use decimal minutes.
3. *Vankin’s Mile* is an American solitaire game played on an \( n \times n \) square grid. The player starts by placing a token on any square of the grid. Then on each turn, the player moves the token either one square to the right or one square down. The game ends when player moves the token off the edge of the board. Each square of the grid has a numerical value, which could be positive, negative, or zero. The player starts with a score of zero; whenever the token lands on a square, the player adds its value to his score. The object of the game is to score as many points as possible.

For example, given the grid below, the player can score \( 8 - 6 + 7 - 3 + 4 = 10 \) points by placing the initial token on the 8 in the second row, and then moving down, down, right, down, down. (This is *not* the best possible score for these values.)

\[
\begin{array}{cccccc}
-1 & 7 & -8 & 10 & -5 \\
-4 & -9 & 8 & -6 & 0 \\
5 & -2 & -6 & -6 & 7 \\
-7 & 4 & 7 & -3 & -3 \\
7 & 1 & -6 & 4 & -9 \\
\end{array}
\]

(a) Describe and analyze an efficient algorithm to compute the maximum possible score for a game of Vankin’s Mile, given the \( n \times n \) array of values as input.

(b) In the Canadian version of this game, appropriately called *Vankin’s Kilometer*, the player can move the token either one square down, one square right, or one square left in each turn. However, to prevent infinite scores, the token cannot land on the same square more than once. Describe and analyze an efficient algorithm to compute the maximum possible score for a game of Vankin’s Kilometer, given the \( n \times n \) array of values as input.  

\[\text{□}\]

\[\text{\textsuperscript{□}}\text{If we also allowed upward movement, the resulting game (Vankin’s Fathom?) would be NP-hard.}\]
Solved Problem

4. A shuffle of two strings X and Y is formed by interspersing the characters into a new string, keeping the characters of X and Y in the same order. For example, the string BANANAANANAS is a shuffle of the strings BANANA and ANANAS in several different ways.

\[
\begin{align*}
\text{BANANA} & \quad \text{ANANAS} \\
\text{BANANA} & \quad \text{ANANAS} \\
\text{BANANA} & \quad \text{ANANAS}
\end{align*}
\]

Similarly, the strings PRODGYRNAMAMMIINCG and DYPRONGARMAMMICING are both shuffles of DYNAMIC and PROGRAMMING:

\[
\begin{align*}
\text{PRODGYRNAMAMMIINCG} \\
\text{DYPRONGARMAMMICING}
\end{align*}
\]

Given three strings \(A[1..m]\), \(B[1..n]\), and \(C[1..m+n]\), describe and analyze an algorithm to determine whether \(C\) is a shuffle of \(A\) and \(B\).

Solution: We define a boolean function \(\text{Shuf}(i, j)\), which is \(\text{TRUE}\) if and only if the prefix \(C[1..i+j]\) is a shuffle of the prefixes \(A[1..i]\) and \(B[1..j]\). This function satisfies the following recurrence:

\[
\text{Shuf}(i, j) = \begin{cases} 
\text{TRUE} & \text{if } i = j = 0 \\
\text{Shuf}(0, j-1) \land (B[j] = C[j]) & \text{if } i = 0 \text{ and } j > 0 \\
\text{Shuf}(i-1, 0) \land (A[i] = C[i]) & \text{if } i > 0 \text{ and } j = 0 \\
\left(\text{Shuf}(i-1, j) \land (A[i] = C[i+j])\right) & \left(\text{Shuf}(i, j-1) \land (B[j] = C[i+j])\right) & \text{if } i > 0 \text{ and } j > 0 
\end{cases}
\]

We need to compute \(\text{Shuf}(m, n)\).

We can memoize all function values into a two-dimensional array \(\text{Shuf}[0..m][0..n]\). Each array entry \(\text{Shuf}(i, j)\) depends only on the entries immediately below and immediately to the right: \(\text{Shuf}(i-1, j)\) and \(\text{Shuf}(i, j-1)\). Thus, we can fill the array in standard row-major order. The original recurrence gives us the following pseudocode:

\[
\begin{align*}
\text{SHUFFLE?}(A[1..m], B[1..n], C[1..m+n]): \\
& \text{Shuf}[0,0] \leftarrow \text{TRUE} \\
& \text{for } j \leftarrow 1 \text{ to } n \\
& \quad \text{Shuf}[0,j] \leftarrow \text{Shuf}[0,j-1] \land (B[j] = C[j]) \\
& \text{for } i \leftarrow 1 \text{ to } n \\
& \quad \text{Shuf}[i,0] \leftarrow \text{Shuf}[i-1,0] \land (A[i] = B[i]) \\
& \quad \text{for } j \leftarrow 1 \text{ to } n \\
& \quad \quad \text{Shuf}[i,j] \leftarrow \text{FALSE} \\
& \quad \quad \text{if } A[i] = C[i+j] \\
& \quad \quad \quad \text{Shuf}[i,j] \leftarrow \text{Shuf}[i,j] \lor \text{Shuf}[i-1,j] \\
& \quad \quad \text{if } B[i] = C[i+j] \\
& \quad \quad \quad \text{Shuf}[i,j] \leftarrow \text{Shuf}[i,j] \lor \text{Shuf}[i,j-1] \\
& \text{return } \text{Shuf}[m,n]
\end{align*}
\]

The algorithm runs in \(O(mn)\) time. ■
Rubric: Max 10 points: Standard dynamic programming rubric. No proofs required. Max 7 points for a slower polynomial-time algorithm; scale partial credit accordingly.

**Standard dynamic programming rubric.** For problems worth 10 points:

- 6 points for a correct recurrence, described either using mathematical notation or as pseudocode for a recursive algorithm.
  - 1 point for a clear English description of the function you are trying to evaluate. (Otherwise, we don’t even know what you’re trying to do.)
    - **Automatic zero if the English description is missing.**
  - 1 point for base case(s). $-\frac{1}{2}$ for one minor bug, like a typo or an off-by-one error.
  - 3 points for recursive case(s). $-1$ for each minor bug, like a typo or an off-by-one error. **No credit for the rest of the problem if the recursive case(s) are incorrect.**

- 4 points for details of the dynamic programming algorithm
  - 1 point for describing the memoization data structure
  - 2 points for describing a correct evaluation order; a clear picture is usually sufficient. If you use nested loops, be sure to specify the nesting order.
  - 1 point for time analysis

- It is not necessary to state a space bound.

- For problems that ask for an algorithm that computes an optimal structure—such as a subset, partition, subsequence, or tree—an algorithm that computes only the value or cost of the optimal structure is sufficient for full credit, unless the problem says otherwise.

- Official solutions usually include pseudocode for the final iterative dynamic programming algorithm, **but iterative pseudocode is not required for full credit.** If your solution includes iterative pseudocode, you do not need to separately describe the recurrence, memoization structure, or evaluation order. (But you still need to describe the underlying recursive function in English.)

- Official solutions will provide target time bounds. Algorithms that are faster than this target are worth more points; slower algorithms are worth fewer points, typically by 2 or 3 points (out of 10) for each factor of $n$. Partial credit is scaled to the new maximum score, and all points above 10 are recorded as extra credit.

  We rarely include these target time bounds in the actual questions, because when we have included them, significantly more students turned in algorithms that meet the target time bound but didn’t work (earning $0/10$) instead of correct algorithms that are slower than the target time bound (earning $8/10$).
Every year, as part of its annual meeting, the Antarctic Snail Lovers of Upper Glacierville hold a Round Table Mating Race. Several high-quality breeding snails are placed at the edge of a round table. The snails are numbered in order around the table from 1 to \( n \). During the race, each snail wanders around the table, leaving a trail of slime behind it. The snails have been specially trained never to fall off the edge of the table or to cross a slime trail, even their own. If two snails meet, they are declared a breeding pair, removed from the table, and whisked away to a romantic hole in the ground to make little baby snails. Note that some snails may never find a mate, even if the race goes on forever.

For every pair of snails, the Antarctic SLUG race organizers have posted a monetary reward, to be paid to the owners if that pair of snails meets during the Mating Race. Specifically, there is a two-dimensional array \( M[1..n, 1..n] \) posted on the wall behind the Round Table, where \( M[i, j] = M[j, i] \) is the reward to be paid if snails \( i \) and \( j \) meet. Rewards may be positive, negative, or zero.

Describe and analyze an algorithm to compute the maximum total reward that the organizers could be forced to pay, given the array \( M \) as input.
2. You and your eight-year-old nephew Elmo decide to play a simple card game. At the beginning of the game, the cards are dealt face up in a long row. Each card is worth a different number of points. After all the cards are dealt, you and Elmo take turns removing either the leftmost or rightmost card from the row, until all the cards are gone. At each turn, you can decide which of the two cards to take. The winner of the game is the player that has collected the most points when the game ends.

Having never taken an algorithms class, Elmo follows the obvious greedy strategy—when it's his turn, Elmo always takes the card with the higher point value. Your task is to find a strategy that will beat Elmo whenever possible. (It might seem mean to beat up on a little kid like this, but Elmo absolutely hates it when grown-ups let him win.)

(a) Prove that you should not also use the greedy strategy. That is, show that there is a game that you can win, but only if you do not follow the same greedy strategy as Elmo.

(b) Describe and analyze an algorithm to determine, given the initial sequence of cards, the maximum number of points that you can collect playing against Elmo.

(c) Five years later, Elmo has become a significantly stronger player. Describe and analyze an algorithm to determine, given the initial sequence of cards, the maximum number of points that you can collect playing against a perfect opponent. [Hint: What is a perfect opponent?]
3. One day, Alex got tired of climbing in a gym and decided to take a very large group of climber friends outside to climb. The climbing area where they went, had a huge wide boulder, not very tall, with various marked hand and foot holds. Alex quickly determined an “allowed” set of moves that her group of friends can perform to get from one hold to another.

The overall system of holds can be described by a rooted tree $T$ with $n$ vertices, where each vertex corresponds to a hold and each edge corresponds to an allowed move between holds. The climbing paths converge as they go up the boulder, leading to a unique hold at the summit, represented by the root of $T$.\[1\]

Alex and her friends (who are all excellent climbers) decided to play a game, where as many climbers as possible are simultaneously on the boulder and each climber needs to perform a sequence of exactly $k$ moves. Each climber can choose an arbitrary hold to start from, and all moves must move away from the ground. Thus, each climber traces out a path of $k$ edges in the tree $T$, all directed toward the root. However, no two climbers are allowed to touch the same hold; the paths followed by different climbers cannot intersect at all.

Describe and analyze an efficient algorithm to compute the maximum number of climbers that can play this game. More formally, you are given a rooted tree $T$ and an integer $k$, and you want to find the largest possible number of disjoint paths in $T$, where each path has length $k$. For full credit, do not assume that $T$ is a binary tree. For example, given the tree $T$ below and $k = 3$ as input, your algorithm should return the integer 8.

![Diagram of a rooted tree with seven disjoint paths of length 3 highlighted in red.](image)

This is not the largest such set of paths in this tree.

---

Q: Why do computer science professors think trees have their roots at the top?
A: Because they've never been outside!
Solved Problems

4. A string \( w \) of parentheses ( and ) and brackets [ and ] is balanced if it is generated by the following context-free grammar:

\[
S \rightarrow \varepsilon \mid (S) \mid [S] \mid SS
\]

For example, the string \( w = ([()[]()][])()()()() \) is balanced, because \( w = xy \), where \( x = ([()[]()][]) \) and \( y = [()()()()] \).

Describe and analyze an algorithm to compute the length of a longest balanced subsequence of a given string of parentheses and brackets. Your input is an array \( A[1..n] \), where \( A[i] \in \{.,[.]\} \) for every index \( i \).

Solution: Suppose \( A[1..n] \) is the input string. For all indices \( i \) and \( j \), we write \( A[i] \sim A[j] \) to indicate that \( A[i] \) and \( A[j] \) are matching delimiters: Either \( A[i] = ( \) and \( A[j] = ) \) or \( A[i] = [ \) and \( A[j] = ] \).

For all indices \( i \) and \( j \), let \( LBS(i, j) \) denote the length of the longest balanced subsequence of the substring \( A[i..j] \). We need to compute \( LBS(1,n) \). This function obeys the following recurrence:

\[
LBS(i,j) = \begin{cases} 
0 & \text{if } i \geq j \\
\max_{j \geq 1} \left\{ 2 + LBS(i + 1, j - 1), \max_{k=1}^{i-1} \left( \max \left\{ LBS(i,k) + LBS(k+1,j) \right\} \right) \right\} & \text{if } A[i] \sim A[j] \\
\max_{k=1}^{j-1} (LBS(i,k) + LBS(k+1,j)) & \text{otherwise}
\end{cases}
\]

We can memoize this function into a two-dimensional array \( LBS[1..n,1..n] \). Since every entry \( LBS[i,j] \) depends only on entries in later rows or earlier columns (or both), we can evaluate this array row-by-row from bottom up in the outer loop, scanning each row from left to right in the inner loop. The resulting algorithm runs in \( O(n^3) \) time.

```
// LONGEST_BALANCED_SUBSEQUENCE(A[1..n]):
for i ← n down to 1
    LBS[i, i] ← 0
for j ← i + 1 to n
    if A[i] ∼ A[j]
        LBS[i, j] ← LBS[i + 1, j - 1] + 2
    else
        LBS[i, j] ← 0
    for k ← i to j - 1
        LBS[i, j] ← max{LBS[i, j], LBS[i, k] + LBS[k + 1, j]}
return LBS[1,n]
```

Rubric: 10 points, standard dynamic programming rubric
5. Oh, no! You've just been appointed as the new organizer of Giggle, Inc.'s annual mandatory holiday party! The employees at Giggle are organized into a strict hierarchy, that is, a tree with the company president at the root. The all-knowing oracles in Human Resources have assigned a real number to each employee measuring how “fun” the employee is. In order to keep things social, there is one restriction on the guest list: An employee cannot attend the party if their immediate supervisor is also present. On the other hand, the president of the company must attend the party, even though she has a negative fun rating; it's her company, after all.

Describe an algorithm that makes a guest list for the party that maximizes the sum of the “fun” ratings of the guests. The input to your algorithm is a rooted tree $T$ describing the company hierarchy, where each node $v$ has a field $v.fun$ storing the “fun” rating of the corresponding employee.

**Solution (two functions):** We define two functions over the nodes of $T$.

- $MaxFunYes(v)$ is the maximum total “fun” of a legal party among the descendants of $v$, where $v$ is definitely invited.
- $MaxFunNo(v)$ is the maximum total “fun” of a legal party among the descendants of $v$, where $v$ is definitely not invited.

We need to compute $MaxFunYes(root)$. These two functions obey the following mutual recurrences:

$$
MaxFunYes(v) = v.fun + \sum_{\text{children } w \text{ of } v} MaxFunNo(w)
$$

$$
MaxFunNo(v) = \sum_{\text{children } w \text{ of } v} \max\{MaxFunYes(w), MaxFunNo(w)\}
$$

(These recurrences do not require separate base cases, because $\sum \emptyset = 0$.) We can memoize these functions by adding two additional fields $v.yes$ and $v.no$ to each node $v$ in the tree. The values at each node depend only on the values at its children, so we can compute all $2n$ values using a postorder traversal of $T$.

```plaintext
BestParty(T):
    ComputeMaxFun(T.root)
    return T.root.yes

ComputeMaxFun(v):
    v.yes ← v.fun
    v.no ← 0
    for all children w of v
        ComputeMaxFun(w)
        v.yes ← v.yes + w.no
    v.no ← v.no + max\{w.yes, w.no\}
```

(Yes, this is still dynamic programming; we’re only traversing the tree recursively because that’s the most natural way to traverse trees!\footnote{A naïve recursive implementation would run in $O(\phi^n)$ time in the worst case, where $\phi = (1 + \sqrt{5})/2 \approx 1.618$ is the golden ratio. The worst-case tree is a path—every non-leaf node has exactly one child.}) The algorithm spends $O(1)$ time at each node, and therefore runs in $O(n)$ time altogether. ■
**Solution (one function):** For each node \( v \) in the input tree \( T \), let \( \text{MaxFun}(v) \) denote the maximum total “fun” of a legal party among the descendants of \( v \), where \( v \) may or may not be invited.

The president of the company must be invited, so none of the president’s “children” in \( T \) can be invited. Thus, the value we need to compute is

\[
\text{root.fun} + \sum_{\text{grandchildren } w \text{ of root}} \text{MaxFun}(w).
\]

The function \( \text{MaxFun} \) obeys the following recurrence:

\[
\text{MaxFun}(v) = \max \left\{ v.\text{fun} + \sum_{\text{grandchildren } x \text{ of } v} \text{MaxFun}(x), \sum_{\text{children } w \text{ of } v} \text{MaxFun}(w) \right\}
\]

(This recurrence does not require a separate base case, because \( \sum \emptyset = 0 \).) We can memoize this function by adding an additional field \( v.\text{maxFun} \) to each node \( v \) in the tree. The value at each node depends only on the values at its children and grandchildren, so we can compute all values using a postorder traversal of \( T \).

---

### BestParty\((T)\):

\[
\begin{align*}
\text{ComputerMaxFun}(T.\text{root}) \\
\text{party} \leftarrow T.\text{root.fun} \\
\text{for all children } w \text{ of } T.\text{root} \\
\quad \text{for all children } x \text{ of } w \\
\quad \text{party} \leftarrow \text{party} + x.\text{maxFun} \\
\text{return party}
\end{align*}
\]

---

### ComputeMaxFun\((v)\):

\[
\begin{align*}
\text{yes} & \leftarrow v.\text{fun} \\
\text{no} & \leftarrow 0 \\
\text{for all children } w \text{ of } v \\
\quad \text{ComputerMaxFun}(w) \\
\quad \text{no} & \leftarrow \text{no} + w.\text{maxFun} \\
\quad \text{for all children } x \text{ of } w \\
\quad \text{yes} & \leftarrow \text{yes} + x.\text{maxFun} \\
\text{v.\text{maxFun}} & \leftarrow \max\{\text{yes}, \text{no}\}
\end{align*}
\]

(Yes, this is still dynamic programming; we’re only traversing the tree recursively because that’s the most natural way to traverse trees!)

The algorithm spends \( O(1) \) time at each node (because each node has exactly one parent and one grandparent) and therefore runs in \( O(n) \) time altogether. ■

---

**Rubric:** 10 points: standard dynamic programming rubric. These are not the only correct solutions.

---

[^1]: Like the previous solution, a direct recursive implementation would run in \( O(\phi^n) \) time in the worst case, where \( \phi = (1 + \sqrt{5})/2 \approx 1.618 \) is the golden ratio.
If you use a greedy algorithm, you must prove that it is correct, or you will get zero points even if your algorithm is correct.

1. You’ve been hired to store a sequence of \( n \) books on shelves in a library. The order of the books is fixed by the cataloging system and cannot be changed; each shelf must store a contiguous interval of the given sequence of books. You are given two arrays \( H[1..n] \) and \( T[1..n] \), where \( H[i] \) and \( T[i] \) are respectively the height and thickness of the \( i \)th book in the sequence. All shelves in this library have the same length \( L \); the total thickness of all books on any single shelf cannot exceed \( L \).

   (a) Suppose all the books have the same height \( h \) (that is, \( H[i] = h \) for all \( i \)) and the shelves have height larger than \( h \), so each book fits on every shelf. Describe and analyze a greedy algorithm to store the books in as few shelves as possible. [Hint: The algorithm is obvious, but why is it correct?]

   (b) That was a nice warmup, but now here’s the real problem. In fact the books have different heights, but you can adjust the height of each shelf to match the tallest book on that shelf. (In particular, you can change the height of any empty shelf to zero.) Now your task is to store the books so that the sum of the heights of the shelves is as small as possible. Show that your greedy algorithm from part (a) does not always give the best solution to this problem.

   (c) Describe and analyze an algorithm to find the best assignment of books to shelves as described in part (b).

2. Consider a directed graph \( G \), where each edge is colored either red, white, or blue. A walk in \( G \) is called a French flag walk if its sequence of edge colors is red, white, blue, red, white, blue, and so on. More formally, a walk \( v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_k \) is a French flag walk if, for every integer \( i \), the edge \( v_{i-1} \rightarrow v_i \) is red if \( i \mod 3 = 0 \), white if \( i \mod 3 = 1 \), and blue if \( i \mod 3 = 2 \).

   Describe an efficient algorithm to find all vertices in a given edge-colored directed graph \( G \) that can be reached from a given vertex \( v \) through a French flag walk.

---

\( ^\dagger \)Recall that a walk in a directed graph \( G \) is a sequence of vertices \( v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_k \), such that \( v_{i-1} \rightarrow v_i \) is an edge in \( G \) for every index \( i \). A path is a walk in which no vertex appears more than once.
3. **Racetrack** (also known as *Graph Racers* and *Vector Rally*) is a two-player paper-and-pencil racing game that Jeff played on the bus in 5th grade. The game is played with a track drawn on a sheet of graph paper. The players alternately choose a sequence of grid points that represent the motion of a car around the track, subject to certain constraints explained below.

Each car has a **position** and a **velocity**, both with integer $x$- and $y$-coordinates. A subset of grid squares is marked as the **starting area**, and another subset is marked as the **finishing area**. The initial position of each car is chosen by the player somewhere in the starting area; the initial velocity of each car is always $(0,0)$. At each step, the player optionally increments or decrements either or both coordinates of the car's velocity; in other words, each component of the velocity can change by at most 1 in a single step. The car's new position is then determined by adding the new velocity to the car's previous position. The new position must be inside the track; otherwise, the car crashes and that player loses the race.

The race ends when the first car reaches a position inside the finishing area.

Suppose the racetrack is represented by an $n \times n$ array of bits, where each 0 bit represents a grid point inside the track, each 1 bit represents a grid point outside the track, the “starting area” is the first column, and the “finishing area” is the last column.

Describe and analyze an algorithm to find the minimum number of steps required to move a car from the starting line to the finish line of a given racetrack. *[Hint: Build a graph. No, not that graph, a different one. What are the vertices? What are the edges? What problem is this?]*

---

²The actual game is a bit more complicated than the version described here. See [http://harmmade.com/vectorracer/](http://harmmade.com/vectorracer/) for an excellent online version.

³However, it is not necessary for the line between the old position and the new position to lie entirely within the track. Sometimes Speed Racer has to push the A button.
Solved Problem

4. Professor McClane takes you out to a lake and hands you three empty jars. Each jar holds a positive integer number of gallons; the capacities of the three jars may or may not be different. The professor then demands that you put exactly \( k \) gallons of water into one of the jars (which one doesn’t matter), for some integer \( k \), using only the following operations:

(a) Fill a jar with water from the lake until the jar is full.
(b) Empty a jar of water by pouring water into the lake.
(c) Pour water from one jar to another, until either the first jar is empty or the second jar is full, whichever happens first.

For example, suppose your jars hold 6, 10, and 15 gallons. Then you can put 13 gallons of water into the third jar in six steps:

- Fill the third jar from the lake.
- Fill the first jar from the third jar. (Now the third jar holds 9 gallons.)
- Empty the first jar into the lake.
- Fill the second jar from the lake.
- Fill the first jar from the second jar. (Now the second jar holds 4 gallons.)
- Empty the second jar into the third jar.

Describe and analyze an efficient algorithm that either finds the smallest number of operations that leave exactly \( k \) gallons in any jar, or reports correctly that obtaining exactly \( k \) gallons of water is impossible. Your input consists of the capacities of the three jars and the positive integer \( k \). For example, given the four numbers 6, 10, 15 and 13 as input, your algorithm should return the number 6 (for the sequence of operations listed above).

**Solution:** Let \( A, B, C \) denote the capacities of the three jars. We reduce the problem to breadth-first search in the following directed graph:

- \( V = \{(a, b, c) \mid 0 \leq a \leq p \text{ and } 0 \leq b \leq B \text{ and } 0 \leq c \leq C\} \). Each vertex corresponds to a possible configuration of water in the three jars. There are \((A+1)(B+1)(C+1) = O(ABC)\) vertices altogether.
- The graph has a directed edge \((a, b, c)\rightarrow(a', b', c')\) whenever it is possible to move from the first configuration to the second in one step. Specifically, there is an edge from \((a, b, c)\) to each of the following vertices (except those already equal to \((a, b, c)\)):
  - \((0, b, c)\) and \((a, 0, c)\) and \((a, b, 0)\) — dumping a jar into the lake
  - \((A, b, c)\) and \((a, B, c)\) and \((a, b, C)\) — filling a jar from the lake
  - \(\begin{cases} (0, a + b, c) & \text{if } a + b \leq B \\ (a + b - B, B, c) & \text{if } a + b \geq B \end{cases}\) — pouring from the first jar into the second
  - \(\begin{cases} (0, b, a + c) & \text{if } a + c \leq C \\ (a + c - C, b, C) & \text{if } a + c \geq C \end{cases}\) — pouring from the first jar into the third
  - \(\begin{cases} (a + b, 0, c) & \text{if } a + b \leq A \\ (A, a + b - A, c) & \text{if } a + b \geq A \end{cases}\) — pouring from the second jar into the first
\[
- \begin{cases}
(a, 0, b + c) & \text{if } b + c \leq C \\
(a, b + c - C, C) & \text{if } b + c \geq C
\end{cases}
\] — pouring from the second jar into the third

\[
- \begin{cases}
(a + c, b, 0) & \text{if } a + c \leq A \\
(A, a + c - A, b) & \text{if } a + c \geq A
\end{cases}
\] — pouring from the third jar into the first

\[
- \begin{cases}
(a, b + c, 0) & \text{if } b + c \leq B \\
(a, B, b + c - B) & \text{if } b + c \geq B
\end{cases}
\] — pouring from the third jar into the second

Since each vertex has at most one outgoing edges, there are at most \(12(A + 1) \times (B + 1)(C + 1) = O(ABC)\) edges altogether.

To solve the jars problem, we need to find the **shortest path** in \(G\) from the start vertex \((0, 0, 0)\) to any target vertex of the form \((k, \cdot, \cdot)\) or \((\cdot, k, \cdot)\) or \((\cdot, \cdot, k)\). We can compute this shortest path by calling **breadth-first search** starting at \((0, 0, 0)\), and then examining every target vertex by brute force. If BFS does not visit any target vertex, we report that no legal sequence of moves exists. Otherwise, we find the target vertex closest to \((0, 0, 0)\) and trace its parent pointers back to \((0, 0, 0)\) to determine the shortest sequence of moves. The resulting algorithm runs in \(O(V + E) = O(ABC)\) time.

We can make this algorithm faster by observing that every move either leaves at least one jar empty or leaves at least one jar full. Thus, we only need vertices \((a, b, c)\) where either \(a = 0\) or \(b = 0\) or \(c = 0\) or \(a = A\) or \(b = B\) or \(c = C\); no other vertices are reachable from \((0, 0, 0)\). The number of non-redundant vertices and edges is \(O(AB + BC + AC)\). Thus, if we only construct and search the relevant portion of \(G\), the algorithm runs in \(O(AB + BC + AC)\) time.

\[\boxed{\text{Rubric (for graph reduction problems): 10 points:}}\]
- 2 for correct vertices
- 2 for correct edges
  \[\frac{1}{2}\text{ for forgetting “directed”}\]
- 2 for stating the correct problem (shortest paths)
  \[\text{“Breadth-first search” is not a problem; it’s an algorithm.}\]
- 2 points for correctly applying the correct algorithm (breadth-first search)
  \[\text{1 for using Dijkstra instead of BFS}\]
- 2 points for time analysis in terms of the input parameters.
- Max 8 points for \(O(ABC)\) time; scale partial credit
This is the last homework before Midterm 2.

1. After a grueling algorithms midterm, you decide to take the bus home. Since you planned ahead, you have a schedule that lists the times and locations of every stop of every bus in Champaign-Urbana. Champaign-Urbana is currently suffering from a plague of zombies, so even though the bus stops have fences that supposedly keep the zombies out, you’d still like to spend as little time waiting at bus stops as possible. Unfortunately, there isn’t a single bus that visits both your exam building and your home; you must transfer between buses at least once.

Describe and analyze an algorithm to determine a sequence of bus rides from Siebel to your home, that minimizes the total time you spend waiting at bus stops. You can assume that there are \( b \) different bus lines, and each bus stops \( n \) times per day. Assume that the buses run exactly on schedule, that you have an accurate watch, and that walking between bus stops is too dangerous to even contemplate.

2. Kris is a professional rock climber (friends with Alex and the rest of the climbing crew from HW6) who is competing in the U.S. climbing nationals. The competition requires Kris to use as many holds on the climbing wall as possible, using only transitions that have been explicitly allowed by the route-setter.

The climbing wall has \( n \) holds. Kris is given a list of \( m \) pairs \((x, y)\) of holds, each indicating that moving directly from hold \( x \) to hold \( y \) is allowed; however, moving directly from \( y \) to \( x \) is not allowed unless the list also includes the pair \((y, x)\). Kris needs to figure out a sequence of allowed transitions that uses as many holds as possible, since each new hold increases his score by one point. The rules allow Kris to choose the first and last hold in his climbing route. The rules also allow him to use each hold as many times as he likes; however, only the first use of each hold increases Kris’s score.

(a) Define the natural graph representing the input. Describe and analyze an algorithm to solve Kris’s climbing problem if you are guaranteed that the input graph is a dag.

(b) Describe and analyze an algorithm to solve Kris’s climbing problem with no restrictions on the input graph.

Both of your algorithms should output the maximum possible score that Kris can earn.
3. Many years later, in a land far, far away, after winning all the U.S. national competitions for 10 years in a row, Kris retired from competitive climbing and became a route setter for competitions. However, as the years passed, the rules changed. Climbers are now required to climb along the shortest sequence of legal moves from one specific node to another, where the distance between two holds is specified by the route setter. In addition to the usual set of $n$ holds and $m$ valid moves between them (as in the previous problem), climbers are now told their start hold $s$, their finish hold $t$, and the distance from $x$ to $y$ for every allowed move $(x, y)$.

Rather than make up this year’s new route completely from scratch, Kris decides to make one small change to last year’s input. The previous route setter suggested a list of $k$ new allowed moves and their distances. Kris needs to choose the single edge from this list of suggestions that decreases the distance from $s$ to $t$ as much as possible.

Describe and analyze an algorithm to solve Kris’s problem. Your input consists of the following information:

- A directed graph $G = (V, E)$.
- Two vertices $s, t \in V$.
- A set of $k$ new edges $E'$, such that $E \cap E' = \emptyset$
- A length $\ell(e) \geq 0$ for every edge $e \in E \cup E'$.

Your algorithm should return the edge $e \in E'$ whose addition to the graph yields the smallest shortest path distance from $s$ to $t$.

For full credit, your algorithm should run in $O(m \log n + k)$ time, but as always, a slower correct algorithm is worth more than a faster incorrect algorithm.
Solved Problem

4. Although we typically speak of "the" shortest path between two nodes, a single graph could contain several minimum-length paths with the same endpoints.

Four (of many) equal-length shortest paths.

Describe and analyze an algorithm to determine the number of shortest paths from a source vertex \( s \) to a target vertex \( t \) in an arbitrary directed graph \( G \) with weighted edges. You may assume that all edge weights are positive and that all necessary arithmetic operations can be performed in \( O(1) \) time.

[Hint: Compute shortest path distances from \( s \) to every other vertex. Throw away all edges that cannot be part of a shortest path from \( s \) to another vertex. What's left?]

Solution: We start by computing shortest-path distances \( \text{dist}(v) \) from \( s \) to \( v \), for every vertex \( v \), using Dijkstra's algorithm. Call an edge \( u \to v \) tight if \( \text{dist}(u) + w(u \to v) = \text{dist}(v) \). Every edge in a shortest path from \( s \) to \( t \) must be tight. Conversely, every path from \( s \) to \( t \) that uses only tight edges has total length \( \text{dist}(t) \) and is therefore a shortest path!

Let \( H \) be the subgraph of all tight edges in \( G \). We can easily construct \( H \) in \( O(V + E) \) time. Because all edge weights are positive, \( H \) is a directed acyclic graph. It remains only to count the number of paths from \( s \) to \( t \) in \( H \).

For any vertex \( v \), let \( \text{PathsToT}(v) \) denote the number of paths in \( H \) from \( v \) to \( t \); we need to compute \( \text{PathsToT}(s) \). This function satisfies the following simple recurrence:

\[
\text{PathsToT}(v) = \begin{cases} 
1 & \text{if } v = t \\
\sum_{v \to w} \text{PathsToT}(w) & \text{otherwise}
\end{cases}
\]

In particular, if \( v \) is a sink but \( v \neq t \) (and thus there are no paths from \( v \) to \( t \)), this recurrence correctly gives us \( \text{PathsToT}(v) = \sum_{v \to w} \emptyset = 0 \).

We can memoize this function into the graph itself, storing each value \( \text{PathsToT}(v) \) at the corresponding vertex \( v \). Since each subproblem depends only on its successors in \( H \), we can compute \( \text{PathsToT}(v) \) for all vertices \( v \) by considering the vertices in reverse topological order, or equivalently, by performing a depth-first search of \( H \) starting at \( s \). The resulting algorithm runs in \( O(V + E) \) time.

The overall running time of the algorithm is dominated by Dijkstra's algorithm in the preprocessing phase, which runs in \( O(E \log V) \) time.

\[\square\]

Rubric: 10 points = 5 points for reduction to counting paths in a dag + 5 points for the path-counting algorithm (standard dynamic programming rubric)
1. Consider the following problem, called BoxDepth: Given a set of $n$ axis-aligned rectangles in the plane, how big is the largest subset of these rectangles that contain a common point?

   (a) Describe a polynomial-time reduction from BoxDepth to MaxClique, and prove that your reduction is correct.
   (b) Describe and analyze a polynomial-time algorithm for BoxDepth. [Hint: Don’t try to optimize the running time; $O(n^3)$ is good enough.]
   (c) Why don’t these two results imply that P=NP?

2. This problem asks you to describe polynomial-time reductions between two closely related problems:

   - **SubsetSum**: Given a set $S$ of positive integers and a target integer $T$, is there a subset of $S$ whose sum is $T$?
   - **Partition**: Given a set $S$ of positive integers, is there a way to partition $S$ into two subsets $S_1$ and $S_2$ that have the same sum?

   (a) Describe a polynomial-time reduction from SubsetSum to Partition.
   (b) Describe a polynomial-time reduction from Partition to SubsetSum.

   Don’t forget to prove that your reductions are correct.

3. Suppose you are given a graph $G = (V, E)$ where $V$ represents a collection of people and an edge between two people indicates that they are friends. You wish to partition $V$ into at most $k$ non-overlapping groups $V_1, V_2, \ldots, V_k$ such that each group is very cohesive. One way to model cohesiveness is to insist that each pair of people in the same group should be friends; in other words, they should form a clique.

   Prove that the following problem is NP-hard: Given an undirected graph $G$ and an integer $k$, decide whether the vertices of $G$ can be partitioned into $k$ cliques.
Solved Problem

4. Consider the following solitaire game. The puzzle consists of an \( n \times m \) grid of squares, where each square may be empty, occupied by a red stone, or occupied by a blue stone. The goal of the puzzle is to remove some of the given stones so that the remaining stones satisfy two conditions: (1) every row contains at least one stone, and (2) no column contains stones of both colors. For some initial configurations of stones, reaching this goal is impossible.

![A solvable puzzle and one of its many solutions.](image)

![An unsolvable puzzle.](image)

Prove that it is NP-hard to determine, given an initial configuration of red and blue stones, whether this puzzle can be solved.

**Solution:** We show that this puzzle is NP-hard by describing a reduction from 3SAT.

Let \( \Phi \) be a 3CNF boolean formula with \( m \) variables and \( n \) clauses. We transform this formula into a puzzle configuration in polynomial time as follows. The size of the board is \( n \times m \). The stones are placed as follows, for all indices \( i \) and \( j \):

- If the variable \( x_j \) appears in the \( i \)th clause of \( \Phi \), we place a blue stone at \((i, j)\).
- If the negated variable \( \overline{x_j} \) appears in the \( i \)th clause of \( \Phi \), we place a red stone at \((i, j)\).
- Otherwise, we leave cell \((i, j)\) blank.

We claim that this puzzle has a solution if and only if \( \Phi \) is satisfiable. This claim immediately implies that solving the puzzle is NP-hard. We prove our claim as follows:

\[ \implies \] First, suppose \( \Phi \) is satisfiable; consider an arbitrary satisfying assignment. For each index \( j \), remove stones from column \( j \) according to the value assigned to \( x_j \):

- If \( x_j = \text{True} \), remove all red stones from column \( j \).
- If \( x_j = \text{False} \), remove all blue stones from column \( j \).

In other words, remove precisely the stones that correspond to \( \text{False} \) literals. Because every variable appears in at least one clause, each column now contains stones of only one color (if any). On the other hand, each clause of \( \Phi \) must contain at least one \( \text{True} \) literal, and thus each row still contains at least one stone. We conclude that the puzzle is satisfiable.

\[ \iff \] On the other hand, suppose the puzzle is solvable; consider an arbitrary solution. For each index \( j \), assign a value to \( x_j \) depending on the colors of stones left in column \( j \):

- If column \( j \) contains blue stones, set \( x_j = \text{True} \).
- If column \( j \) contains red stones, set \( x_j = \text{False} \).
- If column \( j \) is empty, set \( x_j \) arbitrarily.
In other words, assign values to the variables so that the literals corresponding to the remaining stones are all \text{True}. Each row still has at least one stone, so each clause of \( \Phi \) contains at least one \text{True} literal, so this assignment makes \( \Phi = \text{True} \). We conclude that \( \Phi \) is satisfiable.

This reduction clearly requires only polynomial time. ■

\begin{center}
\textbf{Rubric (for all polynomial-time reductions):} 10 points =
\begin{itemize}
  \item 3 points for the reduction itself
  \begin{itemize}
    \item For an NP-hardness proof, the reduction must be from a known NP-hard problem. You can use any of the NP-hard problems listed in the lecture notes (except the one you are trying to prove NP-hard, of course).
  \end{itemize}
  \item 3 points for the “if” proof of correctness
  \item 3 points for the “only if” proof of correctness
  \item 1 point for writing “polynomial time”
\end{itemize}
\end{center}

\begin{itemize}
  \item An incorrect polynomial-time reduction that still satisfies half of the correctness proof is worth at most 4/10.
  \item A reduction in the wrong direction is worth 0/10.
\end{itemize}
1. A subset $S$ of vertices in an undirected graph $G$ is called *almost independent* if at most 374 edges in $G$ have both endpoints in $S$. Prove that finding the size of the largest almost-independent set of vertices in a given undirected graph is NP-hard.

2. A subset $S$ of vertices in an undirected graph $G$ is called *triangle-free* if, for every triple of vertices $u, v, w \in S$, at least one of the three edges $uv, uw, vw$ is absent from $G$. Prove that finding the size of the largest triangle-free subset of vertices in a given undirected graph is NP-hard.

3. Charon needs to ferry $n$ recently deceased people across the river Acheron into Hades. Certain pairs of these people are sworn enemies, who cannot be together on either side of the river unless Charon is also present. (If two enemies are left alone, one will steal the obol from the other’s mouth, leaving them to wander the banks of the Acheron as a ghost for all eternity. Let’s just say this is a Very Bad Thing.) The ferry can hold at most $k$ passengers at a time, including Charon, and only Charon can pilot the ferry.

Prove that it is NP-hard to decide whether Charon can ferry all $n$ people across the Acheron unharmed.\footnote{Aside from being, you know, dead.} The input for Charon’s problem consists of the integers $k$ and $n$ and an $n$-vertex graph $G$ describing the pairs of enemies. The output is either **TRUE** or **FALSE**.
Problem 3 is a generalization of the following extremely well-known puzzle, whose first known appearance is in the treatise *Propositiones ad Acuendos Juvenes* [Problems to Sharpen the Young] by the 8th-century English scholar Alcuin of York.²

XVIII. Propositio De Homine et Capra et Lupo.

Homo quidam debebat ultra fluuium transferre lupum, capram, et fasciculum cauli. Et non potuit aliam nauem inuenire, nisi quae duos tantum ex ipsis ferre ualebat. Praeceptum itaque ei fuerat, ut omnia haec ultra illaesam omnino transferret. Dicat, qui potest, quomodo eis illaesis transire potuit?

Solutio. Simili namque tenore ducerem prius capram et dimitterem foris lupum et caulum. Tum deinde uenirem, lupumque transferrem: lupoque foris misso capram naui receptam ultra reducerem; capramque foris missam caulum transueherem ultra; atque iterum remigassem, capramque assumptam ultra duxissem. Sicque faciendo facta erit remigatio salubris, absque uoragine lacerationis.

In case your classical Latin is rusty, here is an English translation:

XVIII. The Problem of the Man, the Goat, and the Wolf.

A man needed to transfer a wolf, a goat, and a bundle of cabbage across a river. However, he found that his boat could only bear the weight of two [objects at a time, including the man]. And he had to get everything across unharmed. Tell me if you can: How they were able to cross unharmed?

Solution. In a similar fashion [as an earlier problem], I would first take the goat across and leave the wolf and cabbage on the opposite bank. Then I would take the wolf across; leaving the wolf on shore, I would retrieve the goat and bring it back again. Then I would leave the goat and take the cabbage across. And then I would row across again and get the goat. In this way the crossing would go well, without any threat of slaughter.

Please do not write your solution to problem 3 in classical Latin.

² At least, we *think* that’s who wrote it; the evidence for his authorship is rather circumstantial, although we do know from his correspondence with Charlemagne that he sent the emperor some “simple arithmetical problems for fun”. Most scholars believe that even if Alcuin is the actual author of the *Propositiones*, he didn’t come up with the problems himself, but just collected his problems from other sources. Some things never change.
Solved Problem

4. A double-Hamiltonian tour in an undirected graph $G$ is a closed walk that visits every vertex in $G$ exactly twice. Prove that it is NP-hard to decide whether a given graph $G$ has a double-Hamiltonian tour.

This graph contains the double-Hamiltonian tour $a \rightarrow b \rightarrow d \rightarrow g \rightarrow e \rightarrow b \rightarrow d \rightarrow c \rightarrow f \rightarrow a \rightarrow c \rightarrow f \rightarrow g \rightarrow e \rightarrow a$.

Solution: We prove the problem is NP-hard with a reduction from the standard Hamiltonian cycle problem. Let $G$ be an arbitrary undirected graph. We construct a new graph $H$ by attaching a small gadget to every vertex of $G$. Specifically, for each vertex $v$, we add two vertices $v^\dagger$ and $v^\flat$, along with three edges $vv^\flat$, $vv^\dagger$, and $v^\flat v^\dagger$.

I claim that $G$ has a Hamiltonian cycle if and only if $H$ has a double-Hamiltonian tour.

$\Rightarrow$ Suppose $G$ has a Hamiltonian cycle $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n \rightarrow v_1$. We can construct a double-Hamiltonian tour of $H$ by replacing each vertex $v_i$ with the following walk:

$$\cdots \rightarrow v_i \rightarrow v_i^\dagger \rightarrow v_i^\flat \rightarrow v_{i+1}^\dagger \rightarrow v_{i+1}^\flat \rightarrow v_i \rightarrow \cdots$$

$\Leftarrow$ Conversely, suppose $H$ has a double-Hamiltonian tour $D$. Consider any vertex $v$ in the original graph $G$; the tour $D$ must visit $v$ exactly twice. Those two visits split $D$ into two closed walks, each of which visits $v$ exactly once. Any walk from $v^\dagger$ or $v^\flat$ to any other vertex in $H$ must pass through $v$. Thus, one of the two closed walks visits only the vertices $v$, $v^\dagger$, and $v^\flat$. Thus, if we simply remove the vertices in $H \setminus G$ from $D$, we obtain a closed walk in $G$ that visits every vertex in $G$ once.

Given any graph $G$, we can clearly construct the corresponding graph $H$ in polynomial time.

With more effort, we can construct a graph $H$ that contains a double-Hamiltonian tour that traverses each edge of $H$ at most once if and only if $G$ contains a Hamiltonian cycle. For each vertex $v$ in $G$ we attach a more complex gadget containing five vertices and eleven edges, as shown on the next page.
A vertex in $G$, and the corresponding modified vertex gadget in $H$.

Common incorrect solution (self-loops): We attempt to prove the problem is NP-hard with a reduction from the Hamiltonian cycle problem. Let $G$ be an arbitrary undirected graph. We construct a new graph $H$ by attaching a self-loop every vertex of $G$. Given any graph $G$, we can clearly construct the corresponding graph $H$ in polynomial time.

Suppose $G$ has a Hamiltonian cycle $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n \rightarrow v_1$. We can construct a double-Hamiltonian tour of $H$ by alternating between edges of the Hamiltonian cycle and self-loops:

$$v_1 \rightarrow v_1 \rightarrow v_2 \rightarrow v_2 \rightarrow v_3 \rightarrow \cdots \rightarrow v_n \rightarrow v_n \rightarrow v_1.$$

On the other hand, if $H$ has a double-Hamiltonian tour, we cannot conclude that $G$ has a Hamiltonian cycle, because we cannot guarantee that a double-Hamiltonian tour in $H$ uses any self-loops. The graph $G$ shown below is a counterexample; it has a double-Hamiltonian tour (even before adding self-loops) but no Hamiltonian cycle.

### Rubric (for all polynomial-time reductions):

- **10 points =**
  - 3 points for the reduction itself
    - For an NP-hardness proof, the reduction must be from a known NP-hard problem. You can use any of the NP-hard problems listed in the lecture notes (except the one you are trying to prove NP-hard, of course).
  - 3 points for the “if” proof of correctness
  - 3 points for the “only if” proof of correctness
  - 1 point for writing “polynomial time”
- An incorrect polynomial-time reduction that still satisfies half of the correctness proof is worth at most 4/10.
- A reduction in the wrong direction is worth 0/10.
1. Recall that $w^R$ denotes the reversal of string $w$; for example, $\text{TURING}^R = \text{GNIRUT}$. Prove that the following language is undecidable.

$$\text{REVACCEPT} := \{\langle M \rangle \mid M \text{ accepts } \langle M \rangle^R \}$$

Note that Rice’s theorem does not apply to this language.

2. Let $M$ be a Turing machine, let $w$ be an arbitrary input string, and let $s$ be an integer. We say that $M$ accepts $w$ in space $s$ if, given $w$ as input, $M$ accesses only the first $s$ (or fewer) cells on its tape and eventually accepts.

   (a) Sketch a Turing machine/algorithm that correctly decides the following language:

   $$\{\langle M, w \rangle \mid M \text{ accepts } w \text{ in space } |w|^2 \}$$

   (b) Prove that the following language is undecidable:

   $$\{\langle M \rangle \mid M \text{ accepts at least one string } w \text{ in space } |w|^2 \}$$

3. Consider the language $\text{SOMETIMESHALT} = \{\langle M \rangle \mid M \text{ halts on at least one input string} \}$. Note that $\langle M \rangle \in \text{SOMETIMESHALT}$ does not imply that $M$ accepts any strings; it is enough that $M$ halts on (and possibly rejects) some string.

   (a) Prove that $\text{SOMETIMESHALT}$ is undecidable.

   (b) Sketch a Turing machine/algorithm that accepts $\text{SOMETIMESHALT}$.
Solved Problem

4. For each of the following languages, either prove that the language is decidable, or prove that the language is undecidable.

(a) \( L_0 = \{ \langle M \rangle \mid \text{given any input string, } M \text{ eventually leaves its start state} \} \)

Solution: We can determine whether a given Turing machine \( M \) always leaves its start state by careful analysis of its transition function \( \delta \). As a technical point, I will assume that crashing on the first transition does not count as leaving the start state.
- If \( \delta(\text{start}, a) = (\cdot, \cdot, -1) \) for any input symbol \( a \in \Sigma \), then \( M \) crashes on input \( a \) without leaving the start state.
- If \( \delta(\text{start}, \Box) = (\cdot, \cdot, -1) \), then \( M \) crashes on the empty input without leaving the start state.
- Otherwise, \( M \) moves to the right until it leaves the start state. There are two subcases to consider:
  - If \( \delta(\text{start}, \Box) = (\text{start}, \cdot, +1) \), then \( M \) loops forever on the empty input without leaving the start state.
  - Otherwise, for any input string, \( M \) must eventually leave the start state, either when reading some input symbol or when reading the first blank.

It is straightforward (but tedious) to perform this case analysis with a Turing machine that receives the encoding \( \langle M \rangle \) as input. We conclude that \( L_0 \) is decidable. ■

(b) \( L_1 = \{ \langle M \rangle \mid M \text{ decides } L_0 \} \)

Solution:
- By part (a), there is a Turing machine that decides \( L_0 \).
- Let \( M_{\text{reject}} \) be a Turing machine that immediately rejects its input, by defining \( \delta(\text{start}, a) = \text{reject} \) for all \( a \in \Sigma \cup \{\Box\} \). Then \( M_{\text{reject}} \) decides the language \( \emptyset \neq L_0 \).

Thus, Rice’s Decision Theorem implies that \( L_1 \) is undecidable. ■

(c) \( L_2 = \{ \langle M \rangle \mid M \text{ decides } L_1 \} \)

Solution: By part (b), no Turing machine decides \( L_1 \), which implies that \( L_2 = \emptyset \). Thus, \( M_{\text{reject}} \) correctly decides \( L_2 \). We conclude that \( L_2 \) is decidable. ■

(d) \( L_3 = \{ \langle M \rangle \mid M \text{ decides } L_2 \} \)

Solution: Because \( L_2 = \emptyset \), we have
\[
L_3 = \{ \langle M \rangle \mid M \text{ decides } \emptyset \} = \{ \langle M \rangle \mid \text{reject}(M) = \Sigma^* \}
\]
- We have already seen a Turing machine \( M_{\text{reject}} \) such that \( \text{reject}(M_{\text{reject}}) = \Sigma^* \).
- Let \( M_{\text{accept}} \) be a Turing machine that immediately accepts its input, by defining \( \delta(\text{start}, a) = \text{accept} \) for all \( a \in \Sigma \cup \{\Box\} \). Then \( \text{reject}(M_{\text{accept}}) = \emptyset \neq \Sigma^* \).

Thus, Rice’s Rejection Theorem implies that \( L_1 \) is undecidable.
(e) \( L_4 = \{ (M) \mid M \text{ decides } L_3 \} \)

**Solution:** By part (b), no Turing machine decides \( L_3 \), which implies that \( L_4 = \emptyset \).
Thus, \( M_{\text{reject}} \) correctly decides \( L_4 \). We conclude that \( L_4 \) is **decidable**.

At this point, we have fallen into a loop. For any \( k > 4 \), define
\[
L_k = \{ (M) \mid M \text{ decides } L_{k-1} \}.
\]

Then \( L_k \) is decidable (because \( L_k = \emptyset \)) if and only if \( k \) is even.  

\[
\square
\]

**Rubric:** 10 points: 4 for part (a) + 1½ for each other part.

**Rubric (for all undecidability proofs, out of 10 points):**

- **Diagonalization:**
  + 4 for correct wrapper Turing machine
  + 6 for self-contradiction proof (= 3 for \(\leftarrow\) + 3 for \(\Rightarrow\))

- **Reduction:**
  + 4 for correct reduction
  + 3 for “if” proof
  + 3 for “only if” proof

- **Rice’s Theorem:**
  + 4 for positive Turing machine
  + 4 for negative Turing machine
  + 2 for other details (including using the correct variant of Rice’s Theorem)
The following problems ask you to prove some “obvious” claims about recursively-defined string functions. In each case, we want a self-contained, step-by-step induction proof that builds on formal definitions and prior results, not on intuition. In particular, your proofs must refer to the formal recursive definitions of string length and string concatenation:

\[ |w| := \begin{cases} 0 & \text{if } w = \epsilon \\ 1 + |x| & \text{if } w = ax \text{ for some symbol } a \text{ and some string } x \end{cases} \]

\[ w \cdot z := \begin{cases} z & \text{if } w = \epsilon \\ a \cdot (x \cdot z) & \text{if } w = ax \text{ for some symbol } a \text{ and some string } x \end{cases} \]

You may freely use the following results, which are proved in the lecture notes:

**Lemma 1:** \( w \cdot \epsilon = w \) for all strings \( w \).

**Lemma 2:** \(|w \cdot x| = |w| + |x|\) for all strings \( w \) and \( x \).

**Lemma 3:** \((w \cdot x) \cdot y = w \cdot (x \cdot y)\) for all strings \( w, x, \) and \( y \).

The *reversal* \( w^R \) of a string \( w \) is defined recursively as follows:

\[ w^R := \begin{cases} \epsilon & \text{if } w = \epsilon \\ x^R \cdot a & \text{if } w = ax \text{ for some symbol } a \text{ and some string } x \end{cases} \]

For example, \( \text{STRESSED}^R = \text{DESSERTS} \) and \( \text{WTF374}^R = 473FTW \).

1. Prove that \(|w| = |w^R|\) for every string \( w \).
2. Prove that \((w \cdot z)^R = z^R \cdot w^R\) for all strings \( w \) and \( z \).
3. Prove that \((w^R)^R = w\) for every string \( w \).

*[Hint: You need \#2 to prove \#3, but you may find it easier to solve \#3 first.]*

---

To think about later: Let \( \#(a, w) \) denote the number of times symbol \( a \) appears in string \( w \). For example, \( \#(X, \text{WTF374}) = 0 \) and \( \#(0, 0000101010100100100) = 12 \).

4. Give a formal recursive definition of \( \#(a, w) \).
5. Prove that \( \#(a, w \cdot z) = \#(a, w) + \#(a, z) \) for all symbols \( a \) and all strings \( w \) and \( z \).
6. Prove that \( \#(a, w^R) = \#(a, w) \) for all symbols \( a \) and all strings \( w \).
Give regular expressions for each of the following languages over the alphabet \{0, 1\}.

1. All strings containing the substring \texttt{000}.
2. All strings not containing the substring \texttt{000}.
3. All strings in which every run of \texttt{0}s has length at least 3.
4. All strings in which every substring \texttt{000} appears after every \texttt{1}.
5. All strings containing at least three \texttt{0}s.
6. Every string except \texttt{000}. \textit{[Hint: Don't try to be clever.]} 

\textbf{Work on these later:}

7. All strings \(w\) such that in every prefix of \(w\), the number of \texttt{0}s and \texttt{1}s differ by at most 1.
8. All strings containing at least two \texttt{0}s and at least one \texttt{1}.
9. All strings \(w\) such that in every prefix of \(w\), the number of \texttt{0}s and \texttt{1}s differ by at most 2.
10. All strings in which the substring \texttt{000} appears an even number of times.
   \textit{(For example, \texttt{0001000} and \texttt{0000} are in this language, but \texttt{000000} is not.)}
Describe deterministic finite-state automata that accept each of the following languages over the alphabet $\Sigma = \{0, 1\}$. Describe briefly what each state in your DFAs means.

Either drawings or formal descriptions are acceptable, as long as the states $Q$, the start state $s$, the accept states $A$, and the transition function $\delta$ are all be clear. Try to keep the number of states small.

1. All strings containing the substring $000$.
2. All strings not containing the substring $000$.
3. All strings in which every run of $0$s has length at least $3$.
4. All strings in which no substring $000$ appears before a $1$.
5. All strings containing at least three $0$s.
6. Every string except $000$. [Hint: Don’t try to be clever.]

**Work on these later:**

7. All strings $w$ such that in every prefix of $w$, the number of $0$s and $1$s differ by at most $1$.
8. All strings containing at least two $0$s and at least one $1$.
9. All strings $w$ such that in every prefix of $w$, the number of $0$s and $1$s differ by at most $2$.

*10. All strings in which the substring $000$ appears an even number of times. (For example, $0001000$ and $0000$ are in this language, but $000000$ is not.)
Describe deterministic finite-state automata that accept each of the following languages over the alphabet $\Sigma = \{0, 1\}$. You may find it easier to describe these DFAs formally than to draw pictures.

Either drawings or formal descriptions are acceptable, as long as the states $Q$, the start state $s$, the accept states $A$, and the transition function $\delta$ are all be clear. Try to keep the number of states small.

1. All strings in which the number of 0s is even and the number of 1s is not divisible by 3.

2. All strings that are both the binary representation of an integer divisible by 3 and the ternary (base-3) representation of an integer divisible by 4.

   For example, the string $1100$ is an element of this language, because it represents $2^3 + 2^2 = 12$ in binary and $3^3 + 3^2 = 36$ in ternary.

Work on these later:

3. All strings $w$ such that $\left(\frac{|w|}{2}\right) \mod 6 = 4$. [Hint: Maintain both $\left(\frac{|w|}{2}\right) \mod 6$ and $|w| \mod 6$.]

*4. All strings $w$ such that $F_{\#(10, w)} \mod 10 = 4$, where $\#(10, w)$ denotes the number of times $10$ appears as a substring of $w$, and $F_n$ is the $n$th Fibonacci number:

$$F_n = \begin{cases} 
0 & \text{if } n = 0 \\
1 & \text{if } n = 1 \\
F_{n-1} + F_{n-2} & \text{otherwise}
\end{cases}$$
Prove that each of the following languages is not regular.

1. \( \{ \theta^{2n} \mid n \geq 0 \} \)

2. \( \{ \theta^{2n} \, 1^n \mid n \geq 0 \} \)

3. \( \{ \theta^n \, 1^n \mid m \neq 2n \} \)

4. Strings over \( \{ \theta, 1 \} \) where the number of \( \theta \)s is exactly twice the number of \( 1 \)s.

5. Strings of properly nested parentheses \( ( ) \), brackets \( [ ] \), and braces \( \{ \} \). For example, the string \( ( [ ] ) \{ \} \) is in this language, but the string \( ( [ ) \) is not, because the left and right delimiters don't match.

6. Strings of the form \( w_1 \# w_2 \# \cdots \# w_n \) for some \( n \geq 2 \), where each substring \( w_i \) is a string in \( \{ \theta, 1 \}^* \), and some pair of substrings \( w_i \) and \( w_j \) are equal.

Work on these later:

7. \( \{ \theta^n^2 \mid n \geq 0 \} \)

8. \( \{ w \in ( \theta + 1)^* \mid w \text{ is the binary representation of a perfect square} \} \)
Let \( L \) be an arbitrary regular language.

1. Prove that the language \( \text{insert}_1(L) := \{x1y \mid xy \in L\} \) is regular.
   
   Intuitively, \( \text{insert}_1(L) \) is the set of all strings that can be obtained from strings in \( L \) by inserting exactly one \( 1 \). For example, if \( L = \{\varepsilon, \text{OOK!}\} \), then \( \text{insert}_1(L) = \{1, 100K!, 010K!, 001K!, 00K1!, 00K!1\} \).

2. Prove that the language \( \text{delete}_1(L) := \{xy \mid x1y \in L\} \) is regular.
   
   Intuitively, \( \text{delete}_1(L) \) is the set of all strings that can be obtained from strings in \( L \) by deleting exactly one \( 1 \). For example, if \( L = \{101101, 00, \varepsilon\} \), then \( \text{delete}_1(L) = \{01110, 10101, 10110\} \).

---

**Work on these later:** (In fact, these might be easier than problems 1 and 2.)

3. Consider the following recursively defined function on strings:

\[
\text{stutter}(w) := \begin{cases} 
\varepsilon & \text{if } w = \varepsilon \\
aa \cdot \text{stutter}(x) & \text{if } w = ax \text{ for some symbol } a \text{ and some string } x
\end{cases}
\]

Intuitively, \( \text{stutter}(w) \) doubles every symbol in \( w \). For example:

- \( \text{stutter}(\text{PRESTO}) = \text{PPRREESSTTOO} \)
- \( \text{stutter}(\text{HOCUS} \diamond \text{POCUS}) = \text{HHOOCUUSS} \diamond \diamond \text{PPOOCCUUSS} \)

Let \( L \) be an arbitrary regular language.

(a) Prove that the language \( \text{stutter}^{-1}(L) := \{w \mid \text{stutter}(w) \in L\} \) is regular.

(b) Prove that the language \( \text{stutter}(L) := \{\text{stutter}(w) \mid w \in L\} \) is regular.

4. Consider the following recursively defined function on strings:

\[
\text{evens}(w) := \begin{cases} 
\varepsilon & \text{if } w = \varepsilon \\
\varepsilon & \text{if } w = a \text{ for some symbol } a \\
b \cdot \text{evens}(x) & \text{if } w = abx \text{ for some symbols } a \text{ and } b \text{ and some string } x
\end{cases}
\]

Intuitively, \( \text{evens}(w) \) skips over every other symbol in \( w \). For example:

- \( \text{evens}(\text{EXPELLIARMUS}) = \text{XELAMS} \)
- \( \text{evens}(\text{AVADA} \diamond \text{KEDAVRA}) = \text{VD} \diamond \text{EAR} \).

Once again, let \( L \) be an arbitrary regular language.

(a) Prove that the language \( \text{evens}^{-1}(L) := \{w \mid \text{evens}(w) \in L\} \) is regular.

(b) Prove that the language \( \text{evens}(L) := \{\text{evens}(w) \mid w \in L\} \) is regular.
Alex showed the following context-free grammars in class on Tuesday; in each example, the grammar itself is on the left; the explanation for each non-terminal is on the right.

- Properly nested strings of parentheses.
  \[ S \rightarrow \varepsilon \mid S(S) \]  
  properly nested parentheses

Here is a different grammar for the same language:

\[ S \rightarrow \varepsilon \mid (S) \mid SS \]  
properly nested parentheses

- \( \{0^m1^n \mid m \neq n\} \). This is the set of all binary strings composed of some number of 0s followed by a different number of 1s.

\[
\begin{align*}
S & \rightarrow A \mid B \\
A & \rightarrow 0A \mid 0C \\
B & \rightarrow B1 \mid C1 \\
C & \rightarrow \varepsilon \mid 0C1
\end{align*}
\]

\( \{0^m1^n \mid m \neq n\} \)

Give context-free grammars for each of the following languages. For each grammar, describe in English the language for each non-terminal, and in the examples above. As usual, we won’t get to all of these in section.

1. \( \{0^{2n}1^n \mid n \geq 0\} \)

2. \( \{0^m1^n \mid m \neq 2n\} \)

   [Hint: If \( m \neq 2n\), then either \( m < 2n\) or \( m > 2n\). Extend the previous grammar, but pay attention to parity. This language contains the string \( 01 \).]

3. \( \{0,1\}^* \setminus \{0^{2n}1^n \mid n \geq 0\} \)

   [Hint: Extend the previous grammar. What’s missing?]

Work on these later:

4. \( \{w \in \{0,1\}^* \mid \#(0,w) = 2 \cdot \#(1,w)\} \) — Binary strings where the number of 0s is exactly twice the number of 1s.

5. \( \{0,1\}^* \setminus \{ww \mid w \in \{0,1\}^*\} \).

   [Anti-hint: The language \( \{ww \mid w \in \{0,1\}^*\} \) is not context-free. Thus, the complement of a context-free language is not necessarily context-free!]
For each of the following languages over the alphabet $\Sigma = \{0, 1\}$, either prove the language is regular (by giving an equivalent regular expression, DFA, or NFA) or prove that the language is not regular (using a fooling set argument). Exactly half of these languages are regular.

1. $\{0^n1^n \mid n \geq 0\}$

2. $\{0^n1^nw \mid n \geq 0 \text{ and } w \in \Sigma^*\}$

3. $\{w0^n1^n x \mid w \in \Sigma^* \text{ and } n \geq 0 \text{ and } x \in \Sigma^*\}$

4. Strings in which the number of $0$s and the number of $1$s differ by at most 2.

5. Strings such that in every prefix, the number of $0$s and the number of $1$s differ by at most 2.

6. Strings such that in every substring, the number of $0$s and the number of $1$s differ by at most 2.
Design Turing machines $M = (Q, \Sigma, \Gamma, \delta, \text{start}, \text{accept}, \text{reject})$ for each of the following tasks, either by listing the states $Q$, the tape alphabet $\Gamma$, and the transition function $\delta$ (in a table), or by drawing the corresponding labeled graph.

Each of these machines uses the input alphabet $\Sigma = \{1, \#\}$; the tape alphabet $\Gamma$ can be any superset of $\{1, #, \Box, \triangleright\}$ where $\Box$ is the blank symbol and $\triangleright$ is a special symbol marking the left end of the tape. Each machine should reject any input not in the form specified below.

1. On input $1^n$, for any non-negative integer $n$, write $1^n # 1^n$ on the tape and accept.

2. On input $#^n 1^m$, for any non-negative integers $m$ and $n$, write $1^m$ on the tape and accept. In other words, delete all the $#$s and shift the $1$s to the start of the tape.

3. On input $#1^n$, for any non-negative integer $n$, write $#1^{2n}$ on the tape and accept. [Hint: Modify the Turing machine from problem 1.]

4. On input $1^n$, for any non-negative integer $n$, write $1^{2^n}$ on the tape and accept. [Hint: Use the three previous Turing machines as subroutines.]
Here are several problems that are easy to solve in $O(n)$ time, essentially by brute force. Your task is to design algorithms for these problems that are significantly faster.


   (a) Describe a fast algorithm that either computes an index $i$ such that $A[i] = i$ or correctly reports that no such index exists.

   (b) Suppose we know in advance that $A[1] > 0$. Describe an even faster algorithm that either computes an index $i$ such that $A[i] = i$ or correctly reports that no such index exists. [Hint: This is really easy.] 

2. Suppose we are given an array $A[1..n]$ such that $A[1] \geq A[2]$ and $A[n-1] \leq A[n]$. We say that an element $A[x]$ is a local minimum if both $A[x-1] \geq A[x]$ and $A[x] \leq A[x+1]$. For example, there are exactly six local minima in the following array:

   9 7 7 2 1 3 7 5 4 7 3 4 8 6 9

   Describe and analyze a fast algorithm that returns the index of one local minimum. For example, given the array above, your algorithm could return the integer 9, because $A[9]$ is a local minimum. [Hint: With the given boundary conditions, any array must contain at least one local minimum. Why?]

3. Suppose you are given two sorted arrays $A[1..n]$ and $B[1..n]$ containing distinct integers. Describe a fast algorithm to find the median (meaning the $n$th smallest element) of the union $A \cup B$. For example, given the input

   $A[1..8] = [0, 1, 6, 9, 12, 13, 18, 20]$ \hspace{1cm} $B[1..8] = [2, 4, 5, 8, 17, 19, 21, 23]$

   your algorithm should return the integer 9. [Hint: What can you learn by comparing one element of $A$ with one element of $B$?]

   To think about later:

4. Now suppose you are given two sorted arrays $A[1..m]$ and $B[1..n]$ and an integer $k$. Describe a fast algorithm to find the $k$th smallest element in the union $A \cup B$. For example, given the input

   $A[1..8] = [0, 1, 6, 9, 12, 13, 18, 20]$ \hspace{1cm} $B[1..5] = [2, 5, 7, 17, 19]$ \hspace{1cm} $k = 6$

   your algorithm should return the integer 7.
In lecture, Alex described an algorithm of Karatsuba that multiplies two $n$-digit integers using $O(n^{\lg 3})$ single-digit additions, subtractions, and multiplications. In this lab we’ll look at some extensions and applications of this algorithm.

1. Describe an algorithm to compute the product of an $n$-digit number and an $m$-digit number, where $m < n$, in $O(m^{\lg 3-1}n)$ time.

2. Describe an algorithm to compute the decimal representation of $2^n$ in $O(n^{\lg 3})$ time. (The standard algorithm that computes one digit at a time requires $\Theta(n^2)$ time.)

3. Describe a divide-and-conquer algorithm to compute the decimal representation of an arbitrary $n$-bit binary number in $O(n^{\lg 3})$ time. [Hint: Let $x = a \cdot 2^{n/2} + b$. Watch out for an extra log factor in the running time.]

Think about later:

4. Suppose we can multiply two $n$-digit numbers in $O(M(n))$ time. Describe an algorithm to compute the decimal representation of an arbitrary $n$-bit binary number in $O(M(n) \log n)$ time.
A subsequence of a sequence (for example, an array, linked list, or string), obtained by removing zero or more elements and keeping the rest in the same sequence order. A subsequence is called a substring if its elements are contiguous in the original sequence. For example:

- SUBSEQUENCE, UBSEQU, and the empty string ε are all substrings (and therefore subsequences) of the string SUBSEQUENCE;
- SBSQNC, SQUEE, and EEE are all subsequences of SUBSEQUENCE but not substrings;
- QUEUE, EQUUS, and DIMAGGIO are not subsequences (and therefore not substrings) of SUBSEQUENCE.

Describe recursive backtracking algorithms for the following problems. Don't worry about running times.


   For example, given the array
   
   \[
   \langle 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7 \rangle
   \]
   
   your algorithm should return the integer 6, because $\langle 1, 4, 5, 6, 8, 9 \rangle$ is a longest increasing subsequence (one of many).


   For example, given the array
   
   \[
   \langle 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7 \rangle
   \]
   
   your algorithm should return the integer 5, because $\langle 9, 6, 5, 4, 2 \rangle$ is a longest decreasing subsequence (one of many).


   For example, given the array
   
   \[
   \langle 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7 \rangle
   \]
   
   your algorithm should return the integer 17, because $\langle 3, 1, 4, 1, 5, 2, 6, 5, 8, 7, 9, 3, 8, 4, 6, 2, 7 \rangle$ is a longest alternating subsequence (one of many).
To think about later:


   For example, given the array

   $$(3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7)$$

   your algorithm should return the integer 6, because $(3, 1, 1, 2, 5, 9)$ is a longest convex subsequence (one of many).

5. Given an array $A[1..n]$, compute the length of a longest palindrome subsequence of $A$. Recall that a sequence $B[1..\ell]$ is a palindrome if $B[i] = B[\ell - i + 1]$ for every index $i$.

   For example, given the array

   $$(3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7)$$

   your algorithm should return the integer 7, because $(4, 9, 5, 3, 5, 9, 4)$ is a longest palindrome subsequence (one of many).
A subsequence of a sequence (for example, an array, a linked list, or a string), obtained by removing zero or more elements and keeping the rest in the same sequence order. A subsequence is called a substring if its elements are contiguous in the original sequence. For example:

- SUBSEQUENCE, UBSEQU, and the empty string \( \epsilon \) are all substrings of the string SUBSEQUENCE;
- SBSQNC, UEQUE, and EEE are all subsequences of SUBSEQUENCE but not substrings;
- QUEUE, SSS, and FOOBAR are not subsequences of SUBSEQUENCE.

Describe and analyze dynamic programming algorithms for the following problems. For the first three, use the backtracking algorithms you developed on Wednesday.

1. Given an array \( A[1..n] \) of integers, compute the length of a longest increasing subsequence of \( A \). A sequence \( B[1..\ell] \) is increasing if \( B[i] > B[i-1] \) for every index \( i \geq 2 \).

2. Given an array \( A[1..n] \) of integers, compute the length of a longest decreasing subsequence of \( A \). A sequence \( B[1..\ell] \) is decreasing if \( B[i] < B[i-1] \) for every index \( i \geq 2 \).

3. Given an array \( A[1..n] \) of integers, compute the length of a longest alternating subsequence of \( A \). A sequence \( B[1..\ell] \) is alternating if \( B[i] < B[i-1] \) for every even index \( i \geq 2 \), and \( B[i] > B[i-1] \) for every odd index \( i \geq 3 \).


5. Given an array \( A[1..n] \), compute the length of a longest palindrome subsequence of \( A \). Recall that a sequence \( B[1..\ell] \) is a palindrome if \( B[i] = B[\ell - i + 1] \) for every index \( i \).
Basic steps in developing a dynamic programming algorithm

1. **Formulate the problem recursively.** This is the hard part. There are two distinct but equally important things to include in your formulation.

   (a) **Specification.** First, give a clear and precise English description of the problem you are claiming to solve. Not *how* to solve the problem, but *what* the problem actually is. Omitting this step in homeworks or exams is an automatic zero.

   (b) **Solution.** Second, give a clear recursive formula or algorithm for the whole problem in terms of the answers to smaller instances of *exactly* the same problem. It generally helps to think in terms of a recursive definition of your inputs and outputs. If you discover that you need a solution to a *similar* problem, or a slightly *related* problem, you’re attacking the wrong problem; go back to step 1.

2. **Build solutions to your recurrence from the bottom up.** Write an algorithm that starts with the base cases of your recurrence and works its way up to the final solution, by considering intermediate subproblems in the correct order. This stage can be broken down into several smaller, relatively mechanical steps:

   (a) **Identify the subproblems.** What are all the different ways your recursive algorithm call itself, starting with some initial input?

   (b) **Analyze running time.** Add up the running times of all possible subproblems, ignoring the recursive calls.

   (c) **Choose a memoization data structure.** For most problems, each recursive subproblem can be identified by a few integers, so you can use a multidimensional array. But some problems need a more complicated data structure.

   (d) **Identify dependencies.** Except for the base cases, every recursive subproblem depends on other subproblems—which ones? Draw a picture of your data structure, pick a generic element, and draw arrows from each of the other elements it depends on. Then formalize your picture.

   (e) **Find a good evaluation order.** Order the subproblems so that each subproblem comes after the subproblems it depends on. Typically, you should consider the base cases first, then the subproblems that depends only on base cases, and so on. **Be careful!**

   (f) **Write down the algorithm.** You know what order to consider the subproblems, and you know how to solve each subproblem. So do that! If your data structure is an array, this usually means writing a few nested for-loops around your original recurrence.
Lenny Rutenbar, the founding dean of the new Maximilian Q. Levchin College of Computer Science, has commissioned a series of snow ramps on the south slope of the Orchard Downs sledding hill and challenged Bill Kudeki, head of the Department of Electrical and Computer Engineering, to a sledding contest. Bill and Lenny will both sled down the hill, each trying to maximize their air time. The winner gets to expand their department/college into both Siebel Center and the new ECE Building; the loser has to move their entire department/college under the Boneyard bridge next to Everitt Lab.

Whenever Lenny or Bill reaches a ramp while on the ground, they can either use that ramp to jump through the air, possibly flying over one or more ramps, or sled past that ramp and stay on the ground. Obviously, if someone flies over a ramp, they cannot use that ramp to extend their jump.

1. Suppose you are given a pair of arrays \( \text{Ramp}[1..n] \) and \( \text{Length}[1..n] \), where \( \text{Ramp}[i] \) is the distance from the top of the hill to the \( i \)th ramp, and \( \text{Length}[i] \) is the distance that any sledder who takes the \( i \)th ramp will travel through the air.

   Describe and analyze an algorithm to determine the maximum total distance that Lenny or Bill can spend in the air.

2. Uh-oh. The university lawyers heard about Lenny and Bill’s little bet and immediately objected. To protect the university from either lawsuits or sky-rocketing insurance rates, they impose an upper bound on the number of jumps that either sledder can take.

   Describe and analyze an algorithm to determine the maximum total distance that Lenny or Bill can spend in the air with at most \( k \) jumps, given the original arrays \( \text{Ramp}[1..n] \) and \( \text{Length}[1..n] \) and the integer \( k \) as input.

3. **To think about later:** When the lawyers realized that imposing their restriction didn’t immediately shut down the contest, they added a new restriction: No ramp can be used more than once! Disgusted by the legal interference, Lenny and Bill give up on their bet and decide to cooperate to put on a good show for the spectators.

   Describe and analyze an algorithm to determine the maximum total distance that Lenny and Bill can spend in the air, each taking at most \( k \) jumps (so at most \( 2k \) jumps total), and with each ramp used at most once.

\( \text{The north slope is faster, but too short for an interesting contest.} \)
1. A **basic arithmetic expression** is composed of characters from the set \{1, +, \times\} and parentheses. Almost every integer can be represented by more than one basic arithmetic expression. For example, all of the following basic arithmetic expression represent the integer 14:

\begin{align*}
&1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 \\
&((1 + 1) \times (1 + 1 + 1 + 1 + 1)) + ((1 + 1) \times (1 + 1)) \\
&(1 + 1) \times (1 + 1 + 1 + 1 + 1 + 1 + 1) \\
&(1 + 1) \times (((1 + 1 + 1) \times (1 + 1))) + 1
\end{align*}

Describe and analyze an algorithm to compute, given an integer \(n\) as input, the minimum number of 1’s in a basic arithmetic expression whose value is equal to \(n\). The number of parentheses doesn’t matter, just the number of 1’s. For example, when \(n = 14\), your algorithm should return 8, for the final expression above. The running time of your algorithm should be bounded by a small polynomial function of \(n\).

2. **To think about later:** Suppose you are given a sequence of integers separated by + and − signs; for example:

\[1 + 3 - 2 - 5 + 1 - 6 + 7\]

You can change the value of this expression by adding parentheses in different places. For example:

\begin{align*}
&1 + 3 - 2 - 5 + 1 - 6 + 7 = -1 \\
&(1 + 3 - (2 - 5)) + (1 - 6) + 7 = 9 \\
&(1 + (3 - 2)) - (5 + 1) - (6 + 7) = -17
\end{align*}

Describe and analyze an algorithm to compute, given a list of integers separated by + and − signs, the maximum possible value the expression can take by adding parentheses. Parentheses must be used only to group additions and subtractions; in particular, do not use them to create implicit multiplication as in \(1 + 3(-2)(-5) + 1 - 6 + 7 = 33\).
Recall the class scheduling problem described in lecture on Tuesday. We are given two arrays $S[1..n]$ and $F[1..n]$, where $S[i] < F[i]$ for each $i$, representing the start and finish times of $n$ classes. Your goal is to find the largest number of classes you can take without ever taking two classes simultaneously. We showed in class that the following greedy algorithm constructs an optimal schedule:

Choose the course that ends first, discard all conflicting classes, and recurse.

But this is not the only greedy strategy we could have tried. For each of the following alternative greedy algorithms, either prove that the algorithm always constructs an optimal schedule, or describe a small input example for which the algorithm does not produce an optimal schedule. Assume that all algorithms break ties arbitrarily (that is, in a manner that is completely out of your control). Exactly three of these greedy strategies actually work.

1. Choose the course $x$ that ends last, discard classes that conflict with $x$, and recurse.
2. Choose the course $x$ that starts first, discard all classes that conflict with $x$, and recurse.
3. Choose the course $x$ that starts last, discard all classes that conflict with $x$, and recurse.
4. Choose the course $x$ with shortest duration, discard all classes that conflict with $x$, and recurse.
5. Choose a course $x$ that conflicts with the fewest other courses, discard all classes that conflict with $x$, and recurse.
6. If no classes conflict, choose them all. Otherwise, discard the course with longest duration and recurse.
7. If no classes conflict, choose them all. Otherwise, discard a course that conflicts with the most other courses and recurse.
8. Let $x$ be the class with the earliest start time, and let $y$ be the class with the second earliest start time.
   • If $x$ and $y$ are disjoint, choose $x$ and recurse on everything but $x$.
   • If $x$ completely contains $y$, discard $x$ and recurse.
   • Otherwise, discard $y$ and recurse.
9. If any course $x$ completely contains another course, discard $x$ and recurse. Otherwise, choose the course $y$ that ends last, discard all classes that conflict with $y$, and recurse.
For each of the problems below, transform the input into a graph and apply a standard graph algorithm that you’ve seen in class. Whenever you use a standard graph algorithm, you must provide the following information. (I recommend actually using a bulleted list.)

- What are the vertices?
- What are the edges? Are they directed or undirected?
- If the vertices and/or edges have associated values, what are they?
- What problem do you need to solve on this graph?
- What standard algorithm are you using to solve that problem?
- What is the running time of your entire algorithm, including the time to build the graph, as a function of the original input parameters?

1. **Snakes and Ladders** is a classic board game, originating in India no later than the 16th century. The board consists of an \( n \times n \) grid of squares, numbered consecutively from 1 to \( n^2 \), starting in the bottom left corner and proceeding row by row from bottom to top, with rows alternating to the left and right. Certain pairs of squares, always in different rows, are connected by either “snakes” (leading down) or “ladders” (leading up). Each square can be an endpoint of at most one snake or ladder.

   ![A typical Snakes and Ladders board. Upward straight arrows are ladders; downward wavy arrows are snakes.](image)

   You start with a token in cell 1, in the bottom left corner. In each move, you advance your token up to \( k \) positions, for some fixed constant \( k \) (typically 6). If the token ends the move at the top end of a snake, you must slide the token down to the bottom of that snake. If the token ends the move at the bottom end of a ladder, you may move the token up to the top of that ladder.

   Describe and analyze an algorithm to compute the smallest number of moves required for the token to reach the last square of the grid.

2. Let \( G \) be a connected undirected graph. Suppose we start with two coins on two arbitrarily chosen vertices of \( G \). At every step, each coin must move to an adjacent vertex. Describe and analyze an algorithm to compute the minimum number of steps to reach a configuration where both coins are on the same vertex, or to report correctly that no such configuration is reachable. The input to your algorithm consists of a graph \( G = (V, E) \) and two vertices \( u, v \in V \) (which may or may not be distinct).
For each of the problems below, transform the input into a graph and apply a standard graph algorithm that you've seen in class. Whenever you use a standard graph algorithm, you must provide the following information. (I recommend actually using a bulleted list.)

- What are the vertices?
- What are the edges? Are they directed or undirected?
- If the vertices and/or edges have associated values, what are they?
- What problem do you need to solve on this graph?
- What standard algorithm are you using to solve that problem?
- What is the running time of your entire algorithm, including the time to build the graph, as a function of the original input parameters?

1. Inspired by the previous lab, you decide to organize a Snakes and Ladders competition with \( n \) participants. In this competition, each game of Snakes and Ladders involves three players. After the game is finished, they are ranked first, second, and third. Each player may be involved in any (non-negative) number of games, and the number need not be equal among players.

   At the end of the competition, \( m \) games have been played. You realize that you forgot to implement a proper rating system, and therefore decide to produce the overall ranking of all \( n \) players as you see fit. However, to avoid being too suspicious, if player \( A \) ranked better than player \( B \) in any game, then \( A \) must rank better than \( B \) in the overall ranking.

   You are given the list of players and their ranking in each of the \( m \) games. Describe and analyze an algorithm that produces an overall ranking of the \( n \) players that is consistent with the individual game rankings, or correctly reports that no such ranking exists.

2. There are \( n \) galaxies connected by \( m \) intergalactic teleport-ways. Each teleport-way joins two galaxies and can be traversed in both directions. However, the company that runs the teleport-ways has established an extremely lucrative cost structure: Anyone can teleport further from their home galaxy at no cost whatsoever, but teleporting toward their home galaxy is prohibitively expensive.

   Judy has decided to take a sabbatical tour of the universe by visiting as many galaxies as possible, starting at her home galaxy. To save on travel expenses, she wants to teleport away from her home galaxy at every step, except for the very last teleport home.

   Describe and analyze an algorithm to compute the maximum number of galaxies that Judy can visit. Your input consists of an undirected graph \( G \) with \( n \) vertices and \( m \) edges describing the teleport-way network, an integer \( 1 \leq s \leq n \) identifying Judy's home galaxy, and an array \( D[1..n] \) containing the distances of each galaxy from \( s \).

To think about later:

3. Just before embarking on her universal tour, Judy wins the space lottery, giving her just enough money to afford two teleports toward her home galaxy. Describe a new algorithm to compute the maximum number of distinct galaxies Judy can visit. She can visit the same galaxy more than once, but only the first visit counts toward her total.
1. Describe and analyze an algorithm to compute the shortest path from vertex $s$ to vertex $t$ in a directed graph with weighted edges, where exactly one edge $u \rightarrow v$ has negative weight. Assume the graph has no negative cycles. [Hint: Modify the input graph and run Dijkstra’s algorithm. Alternatively, don’t modify the input graph, but run Dijkstra’s algorithm anyway.]

2. You just discovered your best friend from elementary school on Twitbook. You both want to meet as soon as possible, but you live in two different cites that are far apart. To minimize travel time, you agree to meet at an intermediate city, and then you simultaneously hop in your cars and start driving toward each other. But where exactly should you meet?

You are given a weighted graph $G = (V, E)$, where the vertices $V$ represent cities and the edges $E$ represent roads that directly connect cities. Each edge $e$ has a weight $w(e)$ equal to the time required to travel between the two cities. You are also given a vertex $p$, representing your starting location, and a vertex $q$, representing your friend’s starting location.

Describe and analyze an algorithm to find the target vertex $t$ that allows you and your friend to meet as soon as possible, assuming both of you leave home right now.

To think about later:

3. A looped tree is a weighted, directed graph built from a binary tree by adding an edge from every leaf back to the root. Every edge has a non-negative weight.

(a) How much time would Dijkstra’s algorithm require to compute the shortest path between two vertices $u$ and $v$ in a looped tree with $n$ nodes?  
(b) Describe and analyze a faster algorithm.
1. Suppose that you have just finished computing the array dist[1..V,1..V] of shortest-path distances between all pairs of vertices in an edge-weighted directed graph G. Unfortunately, you discover that you incorrectly entered the weight of a single edge u→v, so all that precious CPU time was wasted. Or was it? Maybe your distances are correct after all!

In each of the following problems, let \( w(u\rightarrow v) \) denote the weight that you used in your distance computation, and let \( w'(u\rightarrow v) \) denote the correct weight of \( u\rightarrow v \).

(a) Suppose \( w(u\rightarrow v) > w'(u\rightarrow v) \); that is, the weight you used for \( u\rightarrow v \) was larger than its true weight. Describe an algorithm that repairs the distance array in \( O(V^2) \) time under this assumption. [Hint: For every pair of vertices \( x \) and \( y \), either \( u\rightarrow v \) is on the shortest path from \( x \) to \( y \) or it isn't.]

(b) Maybe even that was too much work. Describe an algorithm that determines whether your original distance array is actually correct in \( O(1) \) time, again assuming that \( w(u\rightarrow v) > w'(u\rightarrow v) \). [Hint: Either \( u\rightarrow v \) is the shortest path from \( u \) to \( v \) or it isn't.]

(c) To think about later: Describe an algorithm that determines in \( O(VE) \) time whether your distance array is actually correct, even if \( w(u\rightarrow v) < w'(u\rightarrow v) \).

(d) To think about later: Argue that when \( w(u\rightarrow v) < w'(u\rightarrow v) \), repairing the distance array requires recomputing shortest paths from scratch, at least in the worst case.

2. You—you, yes, you—can cause a major economic collapse with the power of graph algorithms! The arbitrage business is a money-making scheme that takes advantage of differences in currency exchange. In particular, suppose that 1 US dollar buys 120 Japanese yen; 1 yen buys 0.01 euros; and 1 euro buys 1.2 US dollars. Then, a trader starting with $1 can convert their money from dollars to yen, then from yen to euros, and finally from euros back to dollars, ending with $1.44! The cycle of currencies $ \rightarrow ¥ \rightarrow € \rightarrow $ is called an arbitrage cycle. Of course, finding and exploiting arbitrage cycles before the prices are corrected requires extremely fast algorithms.

Suppose \( n \) different currencies are traded in your currency market. You are given the matrix \( R[1..n] \) of exchange rates between every pair of currencies; for each \( i \) and \( j \), one unit of currency \( i \) can be traded for \( R[i,j] \) units of currency \( j \). (Do not assume that \( R[i,j] \cdot R[j,i] = 1 \).)

(a) Describe an algorithm that returns an array \( V[1..n] \), where \( V[i] \) is the maximum amount of currency \( i \) that you can obtain by trading, starting with one unit of currency 1, assuming there are no arbitrage cycles.

(b) Describe an algorithm to determine whether the given matrix of currency exchange rates creates an arbitrage cycle.

(c) To think about later: Modify your algorithm from part (b) to actually return an arbitrage cycle, if such a cycle exists.

---

¹No, you can’t.
1. Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:

- **Input**: A boolean circuit $K$ with $n$ inputs and one output.
- **Output**: True if there are input values $x_1, x_2, \ldots, x_n \in \{\text{True}, \text{False}\}$ that make $K$ output True, and False otherwise.

Using this black box as a subroutine, describe an algorithm that solves the following related search problem in polynomial time:

- **Input**: A boolean circuit $K$ with $n$ inputs and one output.
- **Output**: Input values $x_1, x_2, \ldots, x_n \in \{\text{True}, \text{False}\}$ that make $K$ output True, or None if there are no such inputs.

[Hint: You can use the magic box more than once.]

2. An **independent set** in a graph $G$ is a subset $S$ of the vertices of $G$, such that no two vertices in $S$ are connected by an edge in $G$. Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:

- **Input**: An undirected graph $G$ and an integer $k$.
- **Output**: True if $G$ has an independent set of size $k$, and False otherwise.

(a) Using this black box as a subroutine, describe algorithms that solves the following optimization problem in polynomial time:

- **Input**: An undirected graph $G$.
- **Output**: The size of the largest independent set in $G$.

[Hint: You’ve seen this problem before.]

(b) Using this black box as a subroutine, describe algorithms that solves the following search problem in polynomial time:

- **Input**: An undirected graph $G$.
- **Output**: An independent set in $G$ of maximum size.
To think about later:

3. Formally, a **proper coloring** of a graph \( G = (V,E) \) is a function \( c : V \rightarrow \{1, 2, \ldots, k\} \), for some integer \( k \), such that \( c(u) \neq c(v) \) for all \( uv \in E \). Less formally, a valid coloring assigns each vertex of \( G \) a color, such that every edge in \( G \) has endpoints with different colors. The **chromatic number** of a graph is the minimum number of colors in a proper coloring of \( G \).

Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:

- **Input:** An undirected graph \( G \) and an integer \( k \).
- **Output:** True if \( G \) has a proper coloring with \( k \) colors, and False otherwise.

Using this black box as a subroutine, describe an algorithm that solves the following coloring problem in polynomial time:

- **Input:** An undirected graph \( G \).
- **Output:** A valid coloring of \( G \) using the minimum possible number of colors.

*Hint: You can use the magic box more than once. The input to the magic box is a graph and only a graph, meaning only vertices and edges.*
Proving that a problem \( X \) is NP-hard requires several steps:

- Choose a problem \( Y \) that you already know is NP-hard (because we told you so in class).
- Describe an algorithm to solve \( Y \), using an algorithm for \( X \) as a subroutine. Typically this algorithm has the following form: Given an instance of \( Y \), transform it into an instance of \( X \), and then call the magic black-box algorithm for \( X \).
- **Prove** that your algorithm is correct. This always requires two separate steps, which are usually of the following form:
  - **Prove** that your algorithm transforms “good” instances of \( Y \) into “good” instances of \( X \).
  - **Prove** that your algorithm transforms “bad” instances of \( Y \) into “bad” instances of \( X \). Equivalently: Prove that if your transformation produces a “good” instance of \( X \), then it was given a “good” instance of \( Y \).
- Argue that your algorithm for \( Y \) runs in polynomial time.

1. Recall the following \( k\text{COLOR} \) problem: Given an undirected graph \( G \), can its vertices be colored with \( k \) colors, so that every edge touches vertices with two different colors?
   
   (a) Describe a direct polynomial-time reduction from \( 3\text{COLOR} \) to \( 4\text{COLOR} \).
   (b) Prove that \( k\text{COLOR} \) problem is NP-hard for any \( k \geq 3 \).

2. A *Hamiltonian cycle* in a graph \( G \) is a cycle that goes through every vertex of \( G \) exactly once. Deciding whether an arbitrary graph contains a Hamiltonian cycle is NP-hard.

   A *tonian cycle* in a graph \( G \) is a cycle that goes through at least half of the vertices of \( G \). Prove that deciding whether a graph contains a tonian cycle is NP-hard.

**To think about later:**

3. Let \( G \) be an undirected graph with weighted edges. A Hamiltonian cycle in \( G \) is **heavy** if the total weight of edges in the cycle is at least half of the total weight of all edges in \( G \). Prove that deciding whether a graph contains a heavy Hamiltonian cycle is NP-hard.

A heavy Hamiltonian cycle. The cycle has total weight 34; the graph has total weight 67.
Prove that each of the following problems is NP-hard.

1. Given an undirected graph $G$, does $G$ contain a simple path that visits all but 374 vertices?

2. Given an undirected graph $G$, does $G$ have a spanning tree in which every node has degree at most 374?

3. Given an undirected graph $G$, does $G$ have a spanning tree with at most 374 leaves?
1. Recall that a 5-coloring of a graph $G$ is a function that assigns each vertex of $G$ a “color” from the set $\{0, 1, 2, 3, 4\}$, such that for any edge $uv$, vertices $u$ and $v$ are assigned different “colors”. A 5-coloring is careful if the colors assigned to adjacent vertices are not only distinct, but differ by more than 1 (mod 5). Prove that deciding whether a given graph has a careful 5-coloring is NP-hard. [Hint: Reduce from the standard 5Color problem.]

![A careful 5-coloring.](image)

2. Prove that the following problem is NP-hard: Given an undirected graph $G$, find any integer $k > 374$ such that $G$ has a proper coloring with $k$ colors but $G$ does not have a proper coloring with $k - 374$ colors.

3. A bicoloring of an undirected graph assigns each vertex a set of two colors. There are two types of bicoloring: In a weak bicoloring, the endpoints of each edge must use different sets of colors; however, these two sets may share one color. In a strong bicoloring, the endpoints of each edge must use distinct sets of colors; that is, they must use four colors altogether. Every strong bicoloring is also a weak bicoloring.

(a) Prove that finding the minimum number of colors in a weak bicoloring of a given graph is NP-hard.

(b) Prove that finding the minimum number of colors in a strong bicoloring of a given graph is NP-hard.

![Left: A weak bicoloring of a 5-clique with four colors. Right: A strong bicoloring of a 5-cycle with five colors.](image)
Proving that a language $L$ is undecidable by reduction requires several steps. (These are the essentially the same steps you already use to prove that a problem is NP-hard.)

- Choose a language $L'$ that you already know is undecidable (because we told you so in class). The simplest choice is usually the standard halting language

$$\text{HALT} := \{ (M, w) \mid M \text{ halts on } w \}$$

- Describe an algorithm that decides $L'$, using an algorithm that decides $L$ as a black box. Typically your reduction will have the following form:

Given an arbitrary string $x$, construct a special string $y$, such that $y \in L$ if and only if $x \in L'$.

In particular, if $L = \text{HALT}$, your reduction will have the following form:

Given the encoding $(M, w)$ of a Turing machine $M$ and a string $w$, construct a special string $y$, such that $y \in L$ if and only if $M$ halts on input $w$.

- Prove that your algorithm is correct. This proof almost always requires two separate steps:

  - Prove that if $x \in L'$ then $y \in L$.
  - Prove that if $x \notin L'$ then $y \notin L$.

**Very important:** Name every object in your proof, and always refer to objects by their names. Never refer to “the Turing machine” or “the algorithm” or “the input string” or (god forbid) “it” or “this”. Even in casual conversation, even if you're “just” explaining your intuition, even when you're just thinking about the reduction.

Prove that the following languages are undecidable.

1. $\text{ACCEPTILLINI} := \{ (M) \mid M \text{ accepts the string } \text{ILLINI} \}$
2. $\text{ACCEPTTHREE} := \{ (M) \mid M \text{ accepts exactly three strings} \}$
3. $\text{ACCEPTPALINDROME} := \{ (M) \mid M \text{ accepts at least one palindrome} \}$
Solution (for problem 1): For the sake of argument, suppose there is an algorithm Decide-AcceptIllini that correctly decides the language AcceptIllini. Then we can solve the halting problem as follows:

```
DecideHalt((M,w)):
    Encode the following Turing machine M':
        M'(x):
            run M on input w
            return True
        if DecideAcceptIllini((M'))
            return True
        else
            return False
```

We prove this reduction correct as follows:

\[\implies\] Suppose \( M \) halts on input \( w \).
  Then \( M' \) accepts every input string \( x \).
  In particular, \( M' \) accepts the string \textsc{ILLINI}.
  So DecideAcceptIllini accepts the encoding \( \langle M' \rangle \).
  So DecideHalt correctly accepts the encoding \( \langle M, w \rangle \).

\[\leftarrow\] Suppose \( M \) does not halt on input \( w \).
  Then \( M' \) diverges on every input string \( x \).
  In particular, \( M' \) does not accept the string \textsc{ILLINI}.
  So DecideAcceptIllini rejects the encoding \( \langle M' \rangle \).
  So DecideHalt correctly rejects the encoding \( \langle M, w \rangle \).

In both cases, DecideHalt is correct. But that’s impossible, because Halt is undecidable. We conclude that the algorithm DecideAcceptIllini does not exist. \(\blacksquare\)

As usual for undecidability proofs, this proof invokes four distinct Turing machines:

- The hypothetical algorithm DecideAcceptIllini.
- The new algorithm DecideHalt that we construct in the solution.
- The arbitrary machine \( M \) whose encoding is part of the input to DecideHalt.
- The special machine \( M' \) whose encoding DecideHalt constructs (from the encoding of \( M \) and \( w \)) and then passes to DecideAcceptIllini.
Rice’s Theorem. Let $\mathcal{L}$ be any set of languages that satisfies the following conditions:

- There is a Turing machine $Y$ such that $\text{Accept}(Y) \in \mathcal{L}$.
- There is a Turing machine $N$ such that $\text{Accept}(N) \notin \mathcal{L}$.

The language $\text{AcceptIn}(\mathcal{L}) := \{ \langle M \rangle \mid \text{Accept}(M) \in \mathcal{L} \}$ is undecidable.

Prove that the following languages are undecidable using Rice’s Theorem:

1. $\text{AcceptRegular} := \{ \langle M \rangle \mid \text{Accept}(M) \text{ is regular} \}$
2. $\text{AcceptILLINI} := \{ \langle M \rangle \mid M \text{ accepts the string } \text{ILLINI} \}$
3. $\text{AcceptPalindrome} := \{ \langle M \rangle \mid M \text{ accepts at least one palindrome} \}$
4. $\text{AcceptThree} := \{ \langle M \rangle \mid M \text{ accepts exactly three strings} \}$
5. $\text{AcceptUndecidable} := \{ \langle M \rangle \mid \text{Accept}(M) \text{ is undecidable} \}$

To think about later. Which of the following are undecidable? How would you prove that?

1. $\text{Accept}\{\varepsilon\} := \{ \langle M \rangle \mid M \text{ accepts only the string } \epsilon; \text{ that is, } \text{Accept}(M) = \{\epsilon\} \}$
2. $\text{Accept}\emptyset := \{ \langle M \rangle \mid M \text{ does not accept any strings; that is, } \text{Accept}(M) = \emptyset \}$
3. $\text{Accept}\emptyset := \{ \langle M \rangle \mid \text{Accept}(M) \text{ is not an acceptable language} \}$
4. $\text{Accept=Reject} := \{ \langle M \rangle \mid \text{Accept}(M) = \text{Reject}(M) \}$
5. $\text{Accept} \neq \text{Reject} := \{ \langle M \rangle \mid \text{Accept}(M) \neq \text{Reject}(M) \}$
6. $\text{Accept} \cup \text{Reject} := \{ \langle M \rangle \mid \text{Accept}(M) \cup \text{Reject}(M) = \Sigma^* \}$
Write your answers in the separate answer booklet.  
Please return this question sheet and your cheat sheet with your answers.

1. For each statement below, check “True” if the statement is always true and “False” otherwise. Each correct answer is worth +1 point; each incorrect answer is worth −1/2 point; checking “I don’t know” is worth +1/4 point; and flipping a coin is (on average) worth +1/4 point. You do not need to prove your answer is correct.

   Read each statement very carefully. Some of these are deliberately subtle.

(a) If the moon is made of cheese, then Jeff is the Queen of England.
(b) The language \( \{0^m1^n | m, n \geq 0\} \) is not regular.
(c) For all languages \( L \), the language \( L^* \) is regular.
(d) For all languages \( L \subset \Sigma^* \), if \( L \) is recognized by a DFA, then \( \Sigma^* \setminus L \) can be represented by a regular expression.
(e) For all languages \( L \) and \( L' \), if \( L \cap L' = \emptyset \) and \( L' \) is not regular, then \( L \) is regular.
(f) For all languages \( L \), if \( L \) is not regular, then \( L \) does not have a finite fooling set.
(g) Let \( M = (\Sigma, Q, s, A, \delta) \) and \( M' = (\Sigma, Q, s, Q \setminus A, \delta) \) be arbitrary DFAs with identical alphabets, states, starting states, and transition functions, but with complementary accepting states. Then \( L(M) \cap L(M') = \emptyset \).
(h) Let \( M = (\Sigma, Q, s, A, \delta) \) and \( M' = (\Sigma, Q, s, Q \setminus A, \delta) \) be arbitrary NFAs with identical alphabets, states, starting states, and transition functions, but with complementary accepting states. Then \( L(M) \cap L(M') = \emptyset \).
(i) For all context-free languages \( L \) and \( L' \), the language \( L \cdot L' \) is also context-free.
(j) Every non-context-free language is non-regular.

2. For each of the following languages over the alphabet \( \Sigma = \{0, 1\} \), either prove that the language is regular or prove that the language is not regular. Exactly one of these two languages is regular.

   (a) \( \{0^n w 0^n | w \in \Sigma^+ \text{ and } n > 0\} \)
   (b) \( \{w 0^n w | w \in \Sigma^+ \text{ and } n > 0\} \)

   For example, both of these languages contain the string 00110100000110100.
3. Let \( L = \{0^{2i}1^{i+2j}0^j \mid i, j \geq 0\} \) and let \( G \) be the following context free-grammar:

\[
\begin{align*}
S & \rightarrow AB \\
A & \rightarrow \varepsilon \mid 00A1 \\
B & \rightarrow \varepsilon \mid 11B0
\end{align*}
\]

(a) **Prove** that \( L(G) \subseteq L \).
(b) **Prove** that \( L \subseteq L(G) \).

[**Hint:** What are \( L(A) \) and \( L(B) \)? **Prove it!**]

4. For any language \( L \), let \( \text{Suffixes}(L) := \{x \mid yx \in L \text{ for some } y \in \Sigma^*\} \) be the language containing all suffixes of all strings in \( L \). For example, if \( L = \{010, 101, 110\} \), then \( \text{Suffixes}(L) = \{\varepsilon, 0, 1, 01, 10, 010, 101, 110\} \).

**Prove** that for any regular language \( L \), the language \( \text{Suffixes}(L) \) is also regular.

5. For each of the following languages \( L \), give a regular expression that represents \( L \) and describe a DFA that recognizes \( L \).

(a) The set of all strings in \( \{0, 1\}^* \) that do not contain the substring \( 0110 \).
(b) The set of all strings in \( \{0, 1\}^* \) that contain exactly one of the substrings \( 01 \) or \( 10 \).

You do **not** need to prove that your answers are correct.
1. For each statement below, check “True” if the statement is always true and “False” otherwise. Each correct answer is worth $+1$ point; each incorrect answer is worth $-\frac{1}{2}$ point; checking “I don’t know” is worth $+\frac{1}{4}$ point; and flipping a coin is (on average) worth $+\frac{1}{4}$ point. You do not need to prove your answer is correct. 

Read each statement very carefully. Some of these are deliberately subtle.

(a) If $2 + 2 = 5$, then Jeff is the Queen of England.
(b) The language $\{0^m \# 0^n \mid m, n \geq 0\}$ is regular.
(c) For all languages $L$, the language $L^*$ is regular.
(d) For all languages $L \subset \Sigma^*$, if $L$ cannot be recognized by a DFA, then $\Sigma^* \setminus L$ cannot be represented by a regular expression.
(e) For all languages $L$ and $L'$, if $L \cap L' = \emptyset$ and $L'$ is regular, then $L$ is regular.
(f) For all languages $L$, if $L$ has a finite fooling set, then $L$ is regular.
(g) Let $M = (\Sigma, Q, s, A, \delta)$ and $M' = (\Sigma, Q, s, Q \setminus A, \delta)$ be arbitrary NFAs with identical alphabets, states, starting states, and transition functions, but with complementary accepting states. Then $L(M) \cup L(M') = \Sigma^*$.
(h) Let $M = (\Sigma, Q, s, A, \delta)$ and $M' = (\Sigma, Q, s, Q \setminus A, \delta)$ be arbitrary NFAs with identical alphabets, states, starting states, and transition functions, but with complementary accepting states. Then $L(M) \cap L(M') = \emptyset$.
(i) For all context-free languages $L$ and $L'$, the language $L \cdot L'$ is also context-free.
(j) Every non-regular language is context-free.

2. For each of the following languages over the alphabet $\Sigma = \{0, 1\}$, either prove that the language is regular or prove that the language is not regular. Exactly one of these two languages is regular.

(a) $\{w0^n w \mid w \in \Sigma^+ \text{ and } n > 0\}$
(b) $\{0^n w0^n \mid w \in \Sigma^+ \text{ and } n > 0\}$

For example, both of these languages contain the string $0011010000110100$.
3. Let \( L = \{1^m0^n \mid m \leq n \leq 2m\} \) and let \( G \) be the following context free-grammar:

\[
S \rightarrow 1S0 \mid 1S00 \mid \epsilon
\]

(a) \textbf{Prove} that \( L(G) \subseteq L \).

(b) \textbf{Prove} that \( L \subseteq L(G) \).

4. For any language \( L \), let \( \text{Prefixes}(L) := \{ x \mid xy \in L \text{ for some } y \in \Sigma^* \} \) be the language containing all prefixes of all strings in \( L \). For example, if \( L = \{000, 100, 110, 111\} \), then \( \text{Prefixes}(L) = \{\epsilon, 0, 1, 00, 10, 11, 000, 100, 110, 111\} \).

\textbf{Prove} that for any regular language \( L \), the language \( \text{Prefixes}(L) \) is also regular.

5. For each of the following languages \( L \), give a regular expression that represents \( L \) \textit{and} describe a DFA that recognizes \( L \).

(a) The set of all strings in \( \{0, 1\}^* \) that contain either both or neither of the substrings \( 01 \) and \( 10 \).

(b) The set of all strings in \( \{0, 1\}^* \) that do not contain the substring \( 1001 \).

You do \textbf{not} need to prove that your answers are correct.
Write your answers in the separate answer booklet.
Please return this question sheet and your cheat sheet with your answers.

1. For each statement below, check “True” if the statement is always true and “False” otherwise. Each correct answer is worth +1 point; each incorrect answer is worth −1/2 point; checking “I don’t know” is worth +1/4 point; and flipping a coin is (on average) worth +1/4 point. You do not need to prove your answer is correct.

Read each statement very carefully. Some of these are deliberately subtle.

(a) If 100 is a prime number, then Jeff is the Queen of England.
(b) The language \( \{ 0^m 0^n + m 0^n \mid m, n \geq 0 \} \) is regular.
(c) For all languages \( L \), the language \( L^* \) is regular.
(d) For all languages \( L \subseteq \Sigma^* \), if \( L \) can be recognized by a DFA, then \( \Sigma^* \setminus L \) cannot be represented by a regular expression.
(e) For all languages \( L \) and \( L' \), if \( L \subseteq L' \) and \( L' \) is regular, then \( L \) is regular.
(f) For all languages \( L \), if \( L \) has a finite fooling set, then \( L \) is not regular.
(g) Let \( M = (\Sigma, Q, s, A, \delta) \) and \( M' = (\Sigma, Q, s, Q \setminus A, \delta) \) be arbitrary NFAs with identical alphabets, states, starting states, and transition functions, but with complementary accepting states. Then \( L(M) \cup L(M') = \Sigma^* \).
(h) Let \( M = (\Sigma, Q, s, A, \delta) \) and \( M' = (\Sigma, Q, s, Q \setminus A, \delta) \) be arbitrary NFAs with identical alphabets, states, starting states, and transition functions, but with complementary accepting states. Then \( L(M) \cap L(M') = \emptyset \).
(i) For all context-free languages \( L \) and \( L' \), the language \( L \cdot L' \) is also context-free.
(j) Every regular language is context-free.

2. For each of the following languages over the alphabet \( \Sigma = \{ 0, 1 \} \), either prove that the language is regular or prove that the language is not regular. Exactly one of these two languages is regular.

(a) \( \{ w0^n w \mid w \in \Sigma^+ \text{ and } n > 0 \} \)
(b) \( \{ 0^n w0^n \mid w \in \Sigma^+ \text{ and } n > 0 \} \)

For example, both of these languages contain the string 00110100000110100.
3. Let \( L = \{1^m0^n \mid n \leq m \leq 2n\} \) and let \( G \) be the following context free-grammar:

\[
S \rightarrow 1S0 \mid 11S0 \mid \epsilon
\]

(a) **Prove** that \( L(G) \subseteq L \).
(b) **Prove** that \( L \subseteq L(G) \).

4. For any language \( L \), let \( \text{Prefixes}(L) := \{x \mid xy \in L \text{ for some } y \in \Sigma^*\} \) be the language containing all prefixes of all strings in \( L \). For example, if \( L = \{000, 100, 110, 111\} \), then \( \text{Prefixes}(L) = \{\epsilon, 0, 1, 00, 10, 11, 000, 100, 110, 111\} \).

**Prove** that for any regular language \( L \), the language \( \text{Prefixes}(L) \) is also regular.

5. For each of the following languages \( L \), give a regular expression that represents \( L \) and describe a DFA that recognizes \( L \).

(a) The set of all strings in \( \{0, 1\}^* \) that contain either both or neither of the substrings 01 and 10.

(b) The set of all strings in \( \{0, 1\}^* \) that do not contain the substring 1010.

You do not need to prove that your answers are correct.
1. **Clearly** indicate the following structures in the directed graph below, or write NONE if the indicated structure does not exist. (There are several copies of the graph in the answer booklet.)

   ![Graph](image)

   (a) A depth-first spanning tree rooted at \( r \).
   (b) A breadth-first spanning tree rooted at \( r \).
   (c) A topological order.
   (d) The strongly connected components.

2. The following puzzles appear in my younger daughter's math workbook. (I've put the solutions on the right so you don't waste time solving them during the exam.)

   ![Mazes](image)

   Describe and analyze an algorithm to solve arbitrary acute-angle mazes.

   You are given a connected undirected graph \( G \), whose vertices are points in the plane and whose edges are line segments. Edges do not intersect, except at their endpoints. For example, a drawing of the letter \( X \) would have five vertices and four edges; the first maze above has 13 vertices and 15 edges. You are also given two vertices Start and Finish.

   Your algorithm should return TRUE if \( G \) contains a walk from Start to Finish that has only acute angles, and FALSE otherwise. Formally, a walk through \( G \) is valid if, for any two consecutive edges \( u \rightarrow v \rightarrow w \) in the walk, either \( \angle uvw = 180^\circ \) or \( 0 < \angle uvw < 90^\circ \). Assume you have a subroutine that can compute the angle between any two segments in \( O(1) \) time. Do not assume that angles are multiples of \( 1^\circ \).

---

3. Suppose you are given a sorted array $A[1..n]$ of distinct numbers that has been rotated $k$ steps, for some unknown integer $k$ between 1 and $n−1$. That is, the prefix $A[1..k]$ is sorted in increasing order, the suffix $A[k+1..n]$ is sorted in increasing order, and $A[n] < A[1]$. For example, you might be given the following 16-element array (where $k = 10$):

| 9 | 13 | 16 | 18 | 19 | 23 | 28 | 31 | 37 | 42 | -4 | 0 | 2 | 5 | 7 | 8 |

Describe and analyze an efficient algorithm to determine if the given array contains a given number $x$. The input to your algorithm is the array $A[1..n]$ and the number $x$; your algorithm is not given the integer $k$.

4. You have a collection of $n$ lockboxes and $m$ gold keys. Each key unlocks at most one box; however, each box might be unlocked by one key, by multiple keys, or by no keys at all. There are only two ways to open each box once it is locked: Unlock it properly (which requires having a matching key in your hand), or smash it to bits with a hammer.

Your baby brother, who loves playing with shiny objects, has somehow managed to lock all your keys inside the boxes! Luckily, your home security system recorded everything, so you know exactly which keys (if any) are inside each box. You need to get all the keys back out of the boxes, because they are made of gold. Clearly you have to smash at least one box.

(a) Your baby brother has found the hammer and is eagerly eyeing one of the boxes. Describe and analyze an algorithm to determine if it is possible to retrieve all the keys without smashing any box except the one your brother has chosen.

(b) Describe and analyze an algorithm to compute the minimum number of boxes that must be smashed to retrieve all the keys.

5. It’s almost time to show off your flippin’ sweet dancing skills! Tomorrow is the big dance contest you’ve been training for your entire life, except for that summer you spent with your uncle in Alaska hunting wolverines. You’ve obtained an advance copy of the the list of $n$ songs that the judges will play during the contest, in chronological order.

You know all the songs, all the judges, and your own dancing ability extremely well. For each integer $k$, you know that if you dance to the $k$th song on the schedule, you will be awarded exactly $\text{Score}[k]$ points, but then you will be physically unable to dance for the next $\text{Wait}[k]$ songs (that is, you cannot dance to songs $k+1$ through $k+\text{Wait}[k]$). The dancer with the highest total score at the end of the night wins the contest, so you want your total score to be as high as possible.

Describe and analyze an efficient algorithm to compute the maximum total score you can achieve. The input to your sweet algorithm is the pair of arrays $\text{Score}[1..n]$ and $\text{Wait}[1..n]$. 
Write your answers in the separate answer booklet.
Please return this question sheet and your cheat sheet with your answers.

1. **Clearly** indicate the following structures in the directed graph below, or write NONE if the indicated structure does not exist. (There are several copies of the graph in the answer booklet.)

   (a) A depth-first spanning tree rooted at $r$.
   (b) A breadth-first spanning tree rooted at $r$.
   (c) A topological order.
   (d) The strongly connected components.

2. The following puzzle appears in my younger daughter’s math workbook. (I’ve put the solution on the right so you don’t waste time solving it during the exam.)

   Describe and analyze an algorithm to solve arbitrary obtuse-angle mazes.

   You are given a connected undirected graph $G$, whose vertices are points in the plane and whose edges are line segments. Edges do not intersect, except at their endpoints. For example, a drawing of the letter $X$ would have five vertices and four edges; the maze above has 17 vertices and 26 edges. You are also given two vertices $Start$ and $Finish$.

   Your algorithm should return `True` if $G$ contains a walk from $Start$ to $Finish$ that has only obtuse angles, and `False` otherwise. Formally, a walk through $G$ is valid if $90^\circ < \angle uvw \leq 180^\circ$ for every pair of consecutive edges $u \rightarrow v \rightarrow w$ in the walk. Assume you have a subroutine that can compute the angle between any two segments in $O(1)$ time. Do not assume that angles are multiples of $1^\circ$.

---


4. You have a collection of $n$ lockboxes and $m$ gold keys. Each key unlocks at most one box; however, each box might be unlocked by one key, by multiple keys, or by no keys at all. There are only two ways to open each box once it is locked: Unlock it properly (which requires having a matching key in your hand), or smash it to bits with a hammer.

   Your baby brother, who loves playing with shiny objects, has somehow managed to lock all your keys inside the boxes! Luckily, your home security system recorded everything, so you know which keys (if any) are inside each box. You need to get all the keys back out of the boxes, because they are made of gold. Clearly you have to smash at least one box.

   (a) Your baby brother has found the hammer and is eagerly eyeing one of the boxes. Describe and analyze an algorithm to determine if it is possible to retrieve all the keys without smashing any box except the one your brother has chosen.

   (b) Describe and analyze an algorithm to compute the minimum number of boxes that must be smashed to retrieve all the keys.

5. A shuffle of two strings $X$ and $Y$ is formed by interspersing the characters into a new string, keeping the characters of $X$ and $Y$ in the same order. For example, the string $\text{BANANAANANAS}$ is a shuffle of the strings $\text{BANANA}$ and $\text{ANANAS}$ in several different ways.

   $$\text{BANANAANANAS} \quad \text{BANANAAANANAS} \quad \text{BANANAAANANAS}$$

   Given three strings $A[1..m]$, $B[1..n]$, and $C[1..m+n]$, describe and analyze an algorithm to determine whether $C$ is a shuffle of $A$ and $B$. 
Write your answers in the separate answer booklet.
Please return this question sheet and your cheat sheet with your answers.

1. **Clearly** indicate the following structures in the directed graph below, or write NONE if the indicated structure does not exist. (There are several copies of the graph in the answer booklet.)

   (a) A depth-first spanning tree rooted at \( r \).
   (b) A breadth-first spanning tree rooted at \( r \).
   (c) A topological order.
   (d) The strongly connected components.

2. The following puzzle appears in my younger daughter’s math workbook.\(^\text{1}\) (I've put the solution on the right so you don't waste time solving it during the exam.)

   For problem 12, trace a path from start to finish that has only **obtuse** angles.

   ![Diagram of a maze](https://example.com/maze.png)

   Describe and analyze an algorithm to solve arbitrary obtuse-angle mazes.

   You are given a connected undirected graph \( G \), whose vertices are points in the plane and whose edges are line segments. Edges do not intersect, except at their endpoints. For example, a drawing of the letter \( X \) would have five vertices and four edges; the maze above has 17 vertices and 26 edges. You are also given two vertices Start and Finish.

   Your algorithm should return TRUE if \( G \) contains a walk from Start to Finish that has only obtuse angles, and FALSE otherwise. Formally, a walk through \( G \) is valid if \( 90^\circ < \angle uvw \leq 180^\circ \) for every pair of consecutive edges \( u \to v \to w \) in the walk. Assume you have a subroutine that can compute the angle between any two segments in \( O(1) \) time. Do not assume that angles are multiples of 1°.


4. You have a collection of $n$ lockboxes and $m$ gold keys. Each key unlocks at most one box; however, each box might be unlocked by one key, by multiple keys, or by no keys at all. There are only two ways to open each box once it is locked: Unlock it properly (which requires having a matching key in your hand), or smash it to bits with a hammer.

Your baby brother, who loves playing with shiny objects, has somehow managed to lock all your keys inside the boxes! Luckily, your home security system recorded everything, so you know which keys (if any) are inside each box. You need to get all the keys back out of the boxes, because they are made of gold. Clearly you have to smash at least one box.

(a) Your baby brother has found the hammer and is eagerly eyeing one of the boxes. Describe and analyze an algorithm to determine if it is possible to retrieve all the keys without smashing any box except the one your brother has chosen.

(b) Describe and analyze an algorithm to compute the minimum number of boxes that must be smashed to retrieve all the keys.

5. A palindrome is any string that is exactly the same as its reversal, like I, or DEED, or RACECAR, or AMANAPLANACATACANALPANAMA.

Describe and analyze an algorithm to find the length of the longest subsequence of a given string that is also a palindrome. For example, the longest palindrome subsequence of MAHDYNAMICPROGRAMZLETMEHOWNETHEM is MHYMROMYHM, so given that string as input, your algorithm should output the number 11.
CS/ECE 374: Algorithms and Models of Computation, Fall 2016
Final Exam (Version X) — December 15, 2016

Name: 

NetID: 

Section: 

<table>
<thead>
<tr>
<th>#</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Grader

- Don’t panic!
- Please print your name and your NetID and circle your discussion section in the boxes above.
- This is a closed-book, closed-notes, closed-electronics exam. If you brought anything except your writing implements and your two double-sided 8½" × 11" cheat sheets, please put it away for the duration of the exam. In particular, you may not use any electronic devices.
- Please read the entire exam before writing anything. Please ask for clarification if any question is unclear.
- The exam lasts 180 minutes.
- If you run out of space for an answer, continue on the back of the page, or on the blank pages at the end of this booklet, but please tell us where to look. Alternatively, feel free to tear out the blank pages and use them as scratch paper.
- As usual, answering any (sub)problem with “I don’t know” (and nothing else) is worth 25% partial credit. Yes, even for problem 1. Correct, complete, but suboptimal solutions are always worth more than 25%. A blank answer is not the same as “I don’t know”.
- Beware the Three Deadly Sins. Give complete solutions, not examples. Don’t use weak induction. Declare all your variables.
- If you use a greedy algorithm, you must prove that it is correct to receive any credit. Otherwise, proofs are required only when we explicitly ask for them.
- Please return your cheat sheets and all scratch paper with your answer booklet.
- Good luck! And have a great winter break!
1. For each of the following questions, indicate every correct answer by marking the “Yes” box, and indicate every incorrect answer by marking the “No” box. Assume \( P \neq NP \). If there is any other ambiguity or uncertainty, mark the “No” box. For example:

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 + 2 = 4</td>
<td>✗</td>
</tr>
<tr>
<td>( x + y = 5 )</td>
<td>✗</td>
</tr>
<tr>
<td>3Sat can be solved in polynomial time.</td>
<td>✗</td>
</tr>
<tr>
<td>Jeff is not the Queen of England.</td>
<td>✗</td>
</tr>
</tbody>
</table>

There are 40 yes/no choices altogether.

- Each correct choice is worth \( +\frac{1}{2} \) point.
- Each incorrect choice is worth \( -\frac{1}{4} \) point.
- To indicate “I don’t know”, write IDK next to the boxes; each IDK is worth \( +\frac{1}{8} \) point.

(a) Which of the following statements is true for every language \( L \subseteq \{\emptyset, 1\}^* \)?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>( L ) contains the empty string ( \varepsilon ).</td>
<td>✗</td>
</tr>
<tr>
<td>( L^* ) is infinite.</td>
<td>✗</td>
</tr>
<tr>
<td>( L^* ) is regular.</td>
<td>✗</td>
</tr>
<tr>
<td>( L ) is infinite or ( L ) is decidable (or both).</td>
<td>✗</td>
</tr>
<tr>
<td>If ( L ) is the union of two regular languages, then ( L ) is regular.</td>
<td>✗</td>
</tr>
<tr>
<td>If ( L ) is the union of two decidable languages, then ( L ) is decidable.</td>
<td>✗</td>
</tr>
<tr>
<td>If ( L ) is the union of two undecidable languages, then ( L ) is undecidable.</td>
<td>✗</td>
</tr>
<tr>
<td>( L ) is accepted by some NFA with 374 states if and only if ( L ) is accepted by some DFA with 374 states.</td>
<td>✗</td>
</tr>
<tr>
<td>If ( L \not\in P ), then ( L ) is not regular.</td>
<td>✗</td>
</tr>
</tbody>
</table>
(b) Which of the following languages over the alphabet \( \{0, 1\} \) are regular?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>( {0^m 1^n \mid m \geq 0 \text{ and } n \geq 0 } )</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All strings with the same number of 0s and 1s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Binary representations of all prime numbers less than 10^{100}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>( {ww \mid w \text{ is a palindrome} } )</td>
<td></td>
</tr>
<tr>
<td></td>
<td>( {wxw \mid w \text{ is a palindrome and } x \in {0, 1}^* } )</td>
<td></td>
</tr>
<tr>
<td></td>
<td>( {\langle M \rangle \mid M \text{ accepts a finite number of non-palindromes} } )</td>
<td></td>
</tr>
</tbody>
</table>

(c) Which of the following languages over the alphabet \( \{0, 1\} \) are decidable?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>( \emptyset )</td>
<td></td>
</tr>
<tr>
<td></td>
<td>( {0^n 1^{2n} 0^n 1^{2n} \mid n \geq 0 } )</td>
<td></td>
</tr>
<tr>
<td></td>
<td>( {ww \mid w \text{ is a palindrome} } )</td>
<td></td>
</tr>
<tr>
<td></td>
<td>( {\langle M \rangle \mid M \text{ accepts a finite number of non-palindromes} } )</td>
<td></td>
</tr>
<tr>
<td></td>
<td>( {\langle M, w \rangle \mid M \text{ accepts } ww } )</td>
<td></td>
</tr>
<tr>
<td></td>
<td>( {\langle M, w \rangle \mid M \text{ accepts } ww \text{ after at most }</td>
<td>w</td>
</tr>
</tbody>
</table>

(d) Which of the following languages can be proved undecidable using Rice’s Theorem?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>( {\langle M \rangle \mid M \text{ accepts an infinite number of strings} } )</td>
<td></td>
</tr>
<tr>
<td></td>
<td>( {\langle M \rangle \mid M \text{ accepts either } \langle M \rangle \text{ or } \langle M \rangle^R } )</td>
<td></td>
</tr>
<tr>
<td></td>
<td>( {\langle M \rangle \mid M \text{ does not accept exactly 374 palindromes} } )</td>
<td></td>
</tr>
<tr>
<td></td>
<td>( {\langle M \rangle \mid M \text{ accepts some string } w \text{ after at most }</td>
<td>w</td>
</tr>
</tbody>
</table>
(e) Which of the following is a good English specification of a recursive function that can be used to compute the edit distance between two strings \(A[1..n]\) and \(B[1..n]\)?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

- \(Edit(i, j)\) is the answer for \(i\) and \(j\).
- \(Edit(i, j)\) is the edit distance between \(A[i]\) and \(B[j]\).
- \(Edit[1..n, 1..n]\) stores the edit distances for all prefixes.
- \(Edit(i, j)\) is the edit distance between \(A[i..n]\) and \(B[j..n]\).
- \(Edit[i, j]\) is the value stored at row \(i\) and column \(j\) of the table.

(f) Suppose we want to prove that the following language is undecidable.

\[
\text{Muggle} := \{\langle M \rangle \mid M \text{ accepts SCIENCE but rejects MAGIC}\}
\]

Professor Potter, your instructor in Defense Against Models of Computation and Other Dark Arts, suggests a reduction from the standard halting language

\[
\text{Halt} := \{\langle M, w \rangle \mid M \text{ halts on inputs } w\}.
\]

Specifically, suppose there is a Turing machine \(\text{DetectoMuggletum}\) that decides \(\text{Muggle}\). Professor Potter claims that the following algorithm decides \(\text{Halt}\).

\[
\text{DecideHalt}(\langle M, w \rangle): \\
\text{Encode the following Turing machine:} \\
\text{RubberDuck}(x): \\
\text{run } M \text{ on input } w \\
\text{if } x = \text{MAGIC} \\
\text{return } \text{FALSE} \\
\text{else} \\
\text{return } \text{TRUE} \\
\text{return } \text{DetectoMuggletum}(\langle \text{RubberDuck} \rangle)
\]

Which of the following statements is true for all inputs \(\langle M, w \rangle\)?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

- If \(M\) rejects \(w\), then \(\text{RubberDuck}\) rejects \(\text{MAGIC}\).
- If \(M\) accepts \(w\), then \(\text{DetectoMuggletum}\) accepts \(\langle \text{RubberDuck} \rangle\).
- If \(M\) rejects \(w\), then \(\text{DecideHalt}\) rejects \(\langle M, w \rangle\).
- \(\text{DecideHalt}\) decides the language \(\text{Halt}\). (That is, Professor Potter’s reduction is actually correct.)
- \(\text{DecideHalt}\) actually runs (or simulates) \(\text{RubberDuck}\).
Consider the following pair of languages:

- **HAMPATH** := \{G \mid G is a directed graph with a Hamiltonian path\}
- **ACYCLIC** := \{G \mid G is a directed acyclic graph\}

(For concreteness, assume that in both of these languages, graphs are represented by their adjacency matrices.) Which of the following **must** be true, assuming P≠NP?

- **Yes** \[\text{ACYCLIC} \in \text{NP}\]
- **Yes** \[\text{ACYCLIC} \cap \text{HAMPATH} \in \text{P}\]
- **Yes** \[\text{HAMPATH} \text{ is decidable.}\]
- **Yes** \[\text{There is no polynomial-time reduction from HAMPATH to ACYCLIC.}\]
- **Yes** \[\text{There is no polynomial-time reduction from ACYCLIC to HAMPATH.}\]
2. A quasi-satisfying assignment for a 3CNF boolean formula \( \Phi \) is an assignment of truth values to the variables such that at most one clause in \( \Phi \) does not contain a true literal. Prove that it is NP-hard to determine whether a given 3CNF boolean formula has a quasi-satisfying assignment.
3. Recall that a run in a string is a maximal non-empty substring in which all symbols are equal. For example, the string \texttt{0001111000} consists of three runs: a run of three \texttt{0}s, a run of four \texttt{1}s, and another run of three \texttt{0}s.

(a) Let \( L \) be the set of all strings in \( \{0, 1\}^* \) in which every run of \texttt{0}s has odd length and every run of \texttt{1}s has even length. For example, \( L \) contains \( \epsilon \) and \texttt{00000} and \texttt{0001111000}, but \( L \) does not contain \texttt{1} or \texttt{0000} or \texttt{110111000}.

Describe both a regular expression for \( L \) and a DFA that accepts \( L \).

(b) Let \( L' \) be the set of all non-empty strings in \( \{0, 1\}^* \) in which the number of runs is equal to the length of the first run. For example, \( L' \) contains \texttt{0} and \texttt{1100} and \texttt{0000101}, but \( L' \) does not contain \texttt{0000} or \texttt{110111000} or \( \epsilon \).

\textbf{Prove} that \( L' \) is not a regular language.
4. Your cousin Elmo is visiting you for Christmas, and he’s brought a different card game. Like your previous game with Elmo, this game is played with a row of \( n \) cards, each labeled with an integer (which could be positive, negative, or zero). Both players can see all \( n \) card values. Otherwise, the game is almost completely different.

On each turn, the current player must take the leftmost card. The player can either keep the card or give it to their opponent. If they keep the card, their turn ends and their opponent takes the next card; however, if they give the card to their opponent, the current player’s turn continues with the next card. In short, the player that does not get the \( i \)th card decides who gets the \((i + 1)\)th card. The game ends when all cards have been played. Each player adds up their card values, and whoever has the higher total wins.

For example, suppose the initial cards are \([3, -1, 4, 1, 5, 9]\), and Elmo plays first. Then the game might proceed as follows:

- Elmo keeps the 3, ending his turn.
- You give Elmo the \(-1\).
- You keep the 4, ending your turn.
- Elmo gives you the 1.
- Elmo gives you the 5.
- Elmo keeps the 9, ending his turn. All cards are gone, so the game is over.
- Your score is \(1 + 4 + 5 = 10\) and Elmo’s score is \(3 - 1 + 9 = 11\), so Elmo wins.

Describe an algorithm to compute the highest possible score you can earn from a given row of cards, assuming Elmo plays first and plays perfectly. Your input is the array \( C[1..n] \) of card values. For example, if the input is \([3, -1, 4, 1, 5, 9]\), your algorithm should return the integer 10.
5. **Prove** that each of the following languages is undecidable:

   (a) \( \{ (M) \mid M \text{ accepts } \text{RICE'S THEOREM} \} \)

   (b) \( \{ (M) \mid M \text{ rejects } \text{RICE'S THEOREM} \} \quad \text{[Hint: Use part (a), not Rice's theorem]} \)
6. There are $n$ galaxies connected by $m$ intergalactic teleport-ways. Each teleport-way joins two galaxies and can be traversed in both directions. Also, each teleport-way $uv$ has an associated cost of $c(uv)$ galactic credits, for some positive integer $c(uv)$. The same teleport-way can be used multiple times in either direction, but the same toll must be paid every time it is used.

Judy wants to travel from galaxy $s$ to galaxy $t$, but teleportation is rather unpleasant, so she wants to minimize the number of times she has to teleport. However, she also wants the total cost to be a multiple of $10$ galactic credits, because carrying small change is annoying.

Describe and analyze an algorithm to compute the minimum number of times Judy must teleport to travel from galaxy $s$ to galaxy $t$ so that the total cost of all teleports is an integer multiple of $10$ galactic credits. Your input is a graph $G = (V, E)$ whose vertices are galaxies and whose edges are teleport-ways; every edge $uv$ in $G$ stores the corresponding cost $c(uv)$.

[Hint: This is not the same Intergalactic Judy problem that you saw in lab.]
(scratch paper)
(scratch paper)
You may assume the following problems are NP-hard:

- **CircuitSat**: Given a boolean circuit, are there any input values that make the circuit output True?
- **3Sat**: Given a boolean formula in conjunctive normal form, with exactly three literals per clause, does the formula have a satisfying assignment?
- **MaxIndependentSet**: Given an undirected graph \( G \), what is the size of the largest subset of vertices in \( G \) that have no edges among them?
- **MaxClique**: Given an undirected graph \( G \), what is the size of the largest complete subgraph of \( G \)?
- **MinVertexCover**: Given an undirected graph \( G \), what is the size of the smallest subset of vertices that touch every edge in \( G \)?
- **3Color**: Given an undirected graph \( G \), can its vertices be colored with three colors, so that every edge touches vertices with two different colors?
- **HamiltonianPath**: Given an undirected graph \( G \), is there a path in \( G \) that visits every vertex exactly once?
- **HamiltonianCycle**: Given an undirected graph \( G \), is there a cycle in \( G \) that visits every vertex exactly once?
- **DirectedHamiltonianCycle**: Given an directed graph \( G \), is there a directed cycle in \( G \) that visits every vertex exactly once?
- **TravelingSalesman**: Given a graph \( G \) (either directed or undirected) with weighted edges, what is the minimum total weight of any Hamiltonian path/cycle in \( G \)?
- **Draughts**: Given an \( n \times n \) international draughts configuration, what is the largest number of pieces that can (and therefore must) be captured in a single move?
- **Super Mario**: Given an \( n \times n \) level for Super Mario Brothers, can Mario reach the castle?

You may assume the following languages are undecidable:

- **SelfReject** := \( \{ \langle M \rangle \mid M \text{ rejects } \langle M \rangle \} \)
- **SelfAccept** := \( \{ \langle M \rangle \mid M \text{ accepts } \langle M \rangle \} \)
- **SelfHalt** := \( \{ \langle M \rangle \mid M \text{ halts on } \langle M \rangle \} \)
- **SelfDiverge** := \( \{ \langle M \rangle \mid M \text{ does not halt on } \langle M \rangle \} \)
- **Reject** := \( \{ \langle M, w \rangle \mid M \text{ rejects } w \} \)
- **Accept** := \( \{ \langle M, w \rangle \mid M \text{ accepts } w \} \)
- **Halt** := \( \{ \langle M, w \rangle \mid M \text{ halts on } w \} \)
- **Diverge** := \( \{ \langle M, w \rangle \mid M \text{ does not halt on } w \} \)
- **NeverReject** := \( \{ \langle M \rangle \mid \text{Reject}(M) = \emptyset \} \)
- **NeverAccept** := \( \{ \langle M \rangle \mid \text{Accept}(M) = \emptyset \} \)
- **NeverHalt** := \( \{ \langle M \rangle \mid \text{Halt}(M) = \emptyset \} \)
- **NeverDiverge** := \( \{ \langle M \rangle \mid \text{Diverge}(M) = \emptyset \} \)
• **This homework tests your familiarity with prerequisite material:** designing, describing, and analyzing elementary algorithms; fundamental graph problems and algorithms; and especially facility with recursion and induction. Notes on most of this prerequisite material are available on the course web page.

• **Each student must submit individual solutions for this homework.** For all future homeworks, groups of up to three students will be allowed to submit joint solutions.

• **Submit your solutions electronically on Gradescope as PDF files.**
  
  – Submit a separate file for each numbered problem.
  – You can find a \LaTeX solution template on the course web site (soon); please use it if you plan to typeset your homework.
  – If you must submit scanned handwritten solutions, please use dark ink (not pencil) on blank white printer paper (not notebook or graph paper), use a high-quality scanner (not a phone camera), and print the resulting PDF file on a black-and-white printer to verify readability before you submit.

---

> **Some important course policies**

• **You may use any source at your disposal**—paper, electronic, or human—but you **must** cite *every* source that you use, and you **must** write everything yourself in your own words. See the academic integrity policies on the course web site for more details.

• The answer “**I don’t know**” (and **nothing** else) is worth 25% partial credit on any problem or subproblem, on any homework or exam, except for extra-credit problems. We will accept synonyms like “No idea” or “WTF” or “¯\_(ツ)_/¯”, but you must write *something*.

• **Avoid the Deadly Sins!** There are a few dangerous writing (and thinking) habits that will trigger an **automatic zero** on any homework or exam problem. Yes, really.
  
  – Always give complete solutions, not just examples.
  – Every algorithm requires an English specification.
  – Greedy algorithms require formal correctness proofs.
  – Never use weak induction.

---

See the course web site for more information.

If you have any questions about these policies, please don’t hesitate to ask in class, in office hours, or on Piazza.
1. Every cheesy romance movie has a scene where the romantic couple, after a long and frustrating separation, suddenly see each other across a long distance, and then slowly approach one another with unwavering eye contact as the music rolls in and the rain lifts and the sun shines through the clouds and the music swells and everyone starts dancing with rainbows and kittens and chocolate unicorns and... 1

Suppose a romantic couple—in grand computer science tradition, named Alice and Bob—enters their favorite park at the east and west entrances and immediately establish eye-contact. They can’t just run directly to each other; instead, they must stay on the path that zig-zags through the part between the east and west entrances. To maintain the proper dramatic tension, Alice and Bob must traverse the path so that they always lie on a direct east-west line.

We can describe the zigzag path as two arrays $X[0..n]$ and $Y[0..n]$, containing the $x$- and $y$-coordinates of the corners of the path, in order from the southwest endpoint to the southeast endpoint. The $X$ array is sorted in increasing order, and $Y[0] = Y[n]$. The path is a sequence of straight line segments connecting these corners.

(a) Suppose $Y[0] = Y[n] = 0$ and $Y[i] > 0$ for every other index $i$; that is, the endpoints of the path are strictly below every other point on the path. Prove that under these conditions, Alice and Bob can meet.

[Hint: Describe a graph that models all possible locations and transitions of the couple along the path. What are the vertices of this graph? What are the edges? What can you say about the degrees of the vertices?]

(b) If the endpoints of the path are not below every other vertex, Alice and Bob might still be able to meet, or they might not. Describe an algorithm to decide whether Alice and Bob can meet, without either breaking east-west eye contact or stepping off the path, given the arrays $X[0..n]$ and $Y[0..n]$ as input.

[Hint: Build the graph from part (a). (How?) What problem do you need to solve on this graph? Call a textbook algorithm to solve that problem. (Do not regurgitate the textbook algorithm.) What is your overall running time as a function of $n$?]

1Fun fact: Damien Chazelle, the director of Whiplash and La La Land, is the son of Princeton computer science professor Bernard Chazelle.
2. The Tower of Hanoi is a relatively recent descendant of a much older mechanical puzzle known as the Chinese rings, Baguenaudier (a French word meaning “to wander about aimlessly”), Meleda, Patience, Tiring Irons, Prisoner’s Lock, Spin-Out, and many other names. This puzzle was already well known in both China and Europe by the 16th century. The Italian mathematician Luca Pacioli described the 7-ring puzzle and its solution in his unpublished treatise De Viribus Quantitatis, written between 1498 and 1506; only a few years later, the Ming-dynasty poet Yang Shen described the 9-ring puzzle as “a toy for women and children”.

![A drawing of a 7-ring Baguenaudier, from Récurrences Mathématiques by Édouard Lucas (1891)](image)

The Baguenaudier puzzle has many physical forms, but it typically consists of a long metal loop and several rings, which are connected to a solid base by movable rods. The loop is initially threaded through the rings as shown in the figure above; the goal of the puzzle is to remove the loop.

More abstractly, we can model the puzzle as a sequence of bits, one for each ring, where the \(i\)th bit is 1 if the loop passes through the \(i\)th ring and 0 otherwise. (Here we index the rings from right to left, as shown in the figure.) The puzzle allows two legal moves:

- You can always flip the 1st (= rightmost) bit.
- If the bit string ends with exactly \(i\) 0s, you can flip the \((i + 2)\)th bit.

The goal of the puzzle is to transform a string of \(n\) 1s into a string of \(n\) 0s. For example, the following sequence of 21 moves solve the 5-ring puzzle:

\[
11111 \rightarrow 11110 \rightarrow 11010 \rightarrow 11011 \rightarrow 11001 \rightarrow 11000 \rightarrow 01000 \\
1 \rightarrow 01001 \rightarrow 01011 \rightarrow 01010 \rightarrow 01110 \rightarrow 01111 \rightarrow 01101 \rightarrow 01100 \rightarrow 00100 \\
1 \rightarrow 00101 \rightarrow 00111 \rightarrow 00110 \rightarrow 00010 \rightarrow 00011 \rightarrow 00001 \rightarrow 00000
\]

(a) Describe an algorithm to solve the Baguenaudier puzzle. Your input is the number of rings \(n\); your algorithm should print a sequence of moves that solves the \(n\)-ring puzzle. For example, given the integer 5 as input, your algorithm should print the sequence 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1.

(b) Exactly how many moves does your algorithm perform, as a function of \(n\)? Prove your answer is correct.

(c) [Extra credit] Call a sequence of moves reduced if no move is the inverse of the previous move. Prove that for any non-negative integer \(n\), there is exactly one reduced sequence of moves that solves the \(n\)-ring Baguenaudier puzzle. [Hint: See problem 11]
3. Suppose you are given a stack of $n$ pancakes of different sizes. You want to sort the pancakes so that smaller pancakes are on top of larger pancakes. The only operation you can perform is a flip—insert a spatula under the top $k$ pancakes, for some integer $k$ between 1 and $n$, and flip them all over.

![Flipping the top four pancakes.](image)

(a) Describe an algorithm to sort an arbitrary stack of $n$ pancakes using as few flips as possible. Exactly how many flips does your algorithm perform in the worst case?

(b) Now suppose one side of each pancake is burned. Describe an algorithm to sort an arbitrary stack of $n$ pancakes, so that the burned side of every pancake is facing down, using as few flips as possible. Exactly how many flips does your algorithm perform in the worst case?

[Hint: This problem has nothing to do with the Tower of Hanoi!]
Homework 1

Starting with this homework, groups of up to three people can submit joint solutions. Each problem should be submitted by exactly one person, and the beginning of the homework should clearly state the Gradescope names and email addresses of each group member. In addition, whoever submits the homework must tell Gradescope who their other group members are.

1. A palindrome is any string that is exactly the same as its reversal, like I, or DEED, or RACECAR, or AMANAPLANACATACANALPANAMA.

Any string can be decomposed into a sequence of palindromes. For example, the string BUBBASEESABANANA (“Bubba sees a banana.”) can be broken into palindromes in the following ways (and many others):

BUB • BASEESAB • ANANA
B • U • BB • A • SEES • ABA • NAN • A
B • U • BB • A • SEES • A • B • ANANA
B • U • B • B • A • S • E • E • S • A • B • A • N • ANA

Describe and analyze an efficient algorithm to find the smallest number of palindromes that make up a given input string. For example, given the input string BUBBASEESABANANA, your algorithm would return the integer 3.

2. Suppose we need to distribute a message to all the nodes in a rooted tree. Initially, only the root node knows the message. In a single round, any node that knows the message can forward it to at most one of its children.

(a) Describe an algorithm to compute the minimum number of rounds required for the message to be delivered to all nodes in a binary tree.

(b) Describe an algorithm to compute the minimum number of rounds required for the message to be delivered to all nodes in an arbitrary rooted tree.

[Hint: Don’t forget to justify your algorithm’s correctness; you may find the lecture notes on greedy algorithms helpful. Any algorithm for this part also solves part (a).]
3. Suppose you are given an $m \times n$ bitmap, represented by an array $M[1..m, 1..n]$ of 0s and 1s. A **solid block** in $M$ is a contiguous subarray $M[i .. i', j .. j']$ in which all bits are equal.

A **guillotine subdivision** is a compact data structure to represent bitmaps as a recursive decomposition into solid blocks. If the entire bitmap $M$ is a solid block, there is nothing to do. Otherwise, we cut $M$ into two smaller bitmaps along a horizontal or vertical line, and then decompose the two smaller bitmaps recursively.¹

Any guillotine subdivision can be represented as a binary tree, where each internal node stores the position and orientation of a cut, and each leaf stores a single bit 0 or 1 indicting the contents of the corresponding block. The **size** of a guillotine subdivision is the number of leaves in the corresponding binary tree (that is, the final number of solid blocks), and the **depth** of a guillotine subdivision is the depth of the corresponding binary tree.

(a) Describe and analyze an algorithm to compute a guillotine subdivision of $M$ of minimum size.

(b) Describe and analyze an algorithm to compute a guillotine subdivision of $M$ of minimum depth.

¹Guillotine subdivisions are similar to kd-trees, except that the cuts in a guillotine subdivision are not required to alternate between horizontal and vertical.
**Standard dynamic programming rubric.** For problems worth 10 points:

- 3 points for a clear **English** specification of the recursive function you are trying to evaluate. (Otherwise, we don’t even know what you’re trying to do.)
  + 2 points for describing the function itself. (For example: “OPT(i, j) is the edit distance between A[1..i] and B[1..j].”)
  + 1 point for stating how to call your recursive function to get the final answer. (For example: “We need to compute OPT(m, n).”)
  + An English description of the **algorithm** is not sufficient. We want an English description of the underlying recursive **problem**. In particular, the description should specify precisely the role of each input parameter.
  + No credit for the rest of the problem if the English description is is missing. (This is a Deadly Sin.)

- 4 points for a correct recurrence, described either using mathematical notation or as pseudocode for a recursive algorithm.
  + 1 point for base case(s). −½ for one **minor** bug, like a typo or an off-by-one error.
  + 3 points for recursive case(s). −1 for each **minor** bug, like a typo or an off-by-one error. **No credit for the rest of the problem if the recursive case(s) are incorrect.**

- 3 points for details of the iterative dynamic programming algorithm
  + 1 point for describing the memoization data structure
  + 1 point for describing a correct evaluation order; a clear picture is usually sufficient. If you use nested loops, be sure to specify the nesting order.
  + 1 point for time analysis

- It is **not** necessary to state a space bound.

- For problems that ask for an algorithm that computes an optimal structure—such as a subset, partition, subsequence, or tree—an algorithm that computes only the value or cost of the optimal structure is sufficient for full credit, unless the problem says otherwise.

- Official solutions usually include pseudocode for the final iterative dynamic programming algorithm, **but iterative pseudocode is not required for full credit**. If your solution includes iterative pseudocode, you do not need to separately describe the recurrence, memoization structure, or evaluation order. (But you still need to specify the underlying recursive function in English.)

- Official solutions will provide target time bounds. Algorithms that are faster than this target are worth more points; slower algorithms are worth fewer points, typically by 2 or 3 points (out of 10) for each factor of n. Partial credit is scaled to the new maximum score, and all points above 10 are recorded as extra credit.

  We rarely include these target time bounds in the actual questions, because when we have included them, significantly more students turned in algorithms that meet the target time bound but didn’t work (earning 0/10) instead of correct algorithms that are slower than the target time bound (earning 8/10).
There are only two problems, but the first one counts double.

1. Suppose you are given a two-dimensional array $M[1..n, 1..n]$ of numbers, which could be positive, negative, or zero, and which are not necessarily integers. The **maximum subarray problem** asks to find the largest sub of elements in any contiguous subarray of the form $M[i..i', j..j']$. In this problem we’ll develop an algorithm for the maximum subarray problem that runs in $O(n^3)$ time.

   The algorithm is a combination of divide and conquer and dynamic programming. Let $L$ be a horizontal line through $M$ that splits the rows (roughly) in half. After some preprocessing, the algorithm finds the maximum-sum subarray that crosses $L$, the maximum-sum subarray above $L$, and the maximum-sum subarray below $L$. The first subarray is found by dynamic programming; the last two subarrays are found recursively.

   (a) For any indices $i$ and $j$, let $\text{Sum}(i, j)$ denote the sum of all elements in the subarray $M[1..i, 1..j]$. Describe an algorithm to compute $\text{Sum}(i, j)$ for all indices $i$ and $j$ in $O(n^2)$ time.

   (b) Describe a simple(!) algorithm to solve the maximum subarray problem in $O(n^4)$ time, using the output of your algorithm for part (a).

   (c) Describe an algorithm to find the maximum-sum subarray that crosses $L$ in $O(n^3)$ time, using the output of your algorithm for part (a). [Hint: Consider the top half and the bottom half of $M$ separately.]

   (d) Describe a divide-and-conquer algorithm to find the maximum-sum subarray in $M$ in $O(n^3)$ time, using your algorithm for part (c) as a subroutine. [Hint: Why is the running time $O(n^3)$ and not $O(n^3 \log n)$?]

In fact, the subproblem in part (c) — and thus the entire maximum subarray problem — can be solved in $n^3 / 2^{\Omega(\sqrt{\log n})}$ time using a recent algorithm of Ryan Williams. Williams’ algorithm can also be used to compute all-pairs shortest paths in the same slightly subcubic running time. The divide-and-conquer strategy itself is due to Tadao Takaoka.

There is a simpler $O(n^3)$-time algorithm for the maximum subarray problem, based on Kadane’s $O(n)$-time algorithm for the one-dimensional problem. (For every pair of indices $i$ and $i'$, find the best subarray of the form $M[i..i', j..j']$ in $O(n)$ time.) It’s unclear whether this approach can be sped up using Williams’ algorithm (or its predecessors) without the divide-and-conquer layer.

An algorithm for the maximum subarray problem (or all-pairs shortest paths) that runs in $O(n^{2.99999999})$ time would be a major breakthrough.
2. The Doctor and River Song decide to play a game on a directed acyclic graph $G$, which has one source $s$ and one sink $t$.\footnote{The labels $s$ and $t$ may be abbreviations for the Untempered Schism and the Time Vortex, or the Shining World of the Seven Systems (otherwise known as Gallifrey) and Trenzalore, or Skaro and Telos, or Something else Timey-wimey.}

Each player has a token on one of the vertices of $G$. At the start of the game, The Doctor’s token is on the source vertex $s$, and River’s token is on the sink vertex $t$. The players alternate turns, with The Doctor moving first. On each of his turns, the Doctor moves his token forward along a directed edge; on each of her turns, River moves her token backward along a directed edge.

If the two tokens ever meet on the same vertex, River wins the game. (“Hello, Sweetie!”) If the Doctor’s token reaches $t$ or River’s token reaches $s$ before the two tokens meet, then the Doctor wins the game.

Describe and analyze an algorithm to determine who wins this game, assuming both players play perfectly. That is, if the Doctor can win no matter how River moves, then your algorithm should output “Doctor”, and if River can win no matter how the Doctor moves, your algorithm should output “River”. (Why are these the only two possibilities?) The input to your algorithm is the graph $G$. 

\footnote{The labels $s$ and $t$ may be abbreviations for the Untempered Schism and the Time Vortex, or the Shining World of the Seven Systems (otherwise known as Gallifrey) and Trenzalore, or Skaro and Telos, or Something else Timey-wimey.}
o. [Warmup only; do not submit solutions]

After sending his loyal friends Rosencrantz and Guildenstern off to Norway, Hamlet decides to amuse himself by repeatedly flipping a fair coin until the sequence of flips satisfies some condition. For each of the following conditions, compute the exact expected number of flips until that condition is met.

(a) Hamlet flips heads.
(b) Hamlet flips both heads and tails (in different flips, of course).
(c) Hamlet flips heads twice.
(d) Hamlet flips heads twice in a row.
(e) Hamlet flips heads followed immediately by tails.
(f) Hamlet flips more heads than tails.
(g) Hamlet flips the same positive number of heads and tails.

[Hint: Be careful! If you’re relying on intuition instead of a proof, you’re probably wrong.]

1. Consider the following non-standard algorithm for shuffling a deck of $n$ cards, initially numbered in order from 1 on the top to $n$ on the bottom. At each step, we remove the top card from the deck and insert it randomly back into in the deck, choosing one of the $n$ possible positions uniformly at random. The algorithm ends immediately after we pick up card $n-1$ and insert it randomly into the deck.

(a) Prove that this algorithm uniformly shuffles the deck, meaning each permutation of the deck has equal probability. [Hint: Prove that at all times, the cards below card $n-1$ are uniformly shuffled.]

(b) What is the exact expected number of steps executed by the algorithm? [Hint: Split the algorithm into phases that end when card $n-1$ changes position.]
2. Death knocks on your door one cold blustery morning and challenges you to a game. Death knows that you are an algorithms student, so instead of the traditional game of chess, Death presents you with a complete binary tree with $4^n$ leaves, each colored either black or white. There is a token at the root of the tree. To play the game, you and Death will take turns moving the token from its current node to one of its children. The game will end after $2n$ moves, when the token lands on a leaf. If the final leaf is black, you die; if it’s white, you will live forever. You move first, so Death gets the last turn.

![Binary Tree Diagram]

You can decide whether it's worth playing or not as follows. Imagine that the nodes at even levels (where it's your turn) are OR gates, the nodes at odd levels (where it's Death's turn) are AND gates. Each gate gets its input from its children and passes its output to its parent. White and black stand for TRUE and FALSE. If the output at the top of the tree is TRUE, then you can win and live forever! If the output at the top of the tree is FALSE, you should challenge Death to a game of Twister instead.

(a) Describe and analyze a deterministic algorithm to determine whether or not you can win. [Hint: This is easy!]

(b) Unfortunately, Death won’t give you enough time to look at every node in the tree. Describe a randomized algorithm that determines whether you can win in $O(3^n)$ expected time. [Hint: Consider the case $n = 1$.]

*(c) [Extra credit] Describe and analyze a randomized algorithm that determines whether you can win in $O(c^n)$ expected time, for some constant $c < 3$. [Hint: You may not need to change your algorithm from part (b) at all!]*
3. The following randomized variant of “one-armed quicksort” selects the $k$th smallest element in an unsorted array $A[1..n]$. As usual, $\text{Partition}(A[1..n], p)$ partitions the array $A$ into three parts by comparing the pivot element $A[p]$ to every other element, using $n-1$ comparisons, and returns the new index of the pivot element.

$$\text{QuickSelect}(A[1..n], k):$$

- $r \leftarrow \text{Partition}(A[1..n], \text{Random}(n))$
- if $k < r$
  - return $\text{QuickSelect}(A[1..r-1], k)$
- else if $k > r$
  - return $\text{QuickSelect}(A[r+1..n], k-r)$
- else
  - return $A[k]$

(a) State a recurrence for the expected running time of $\text{QuickSelect}$, as a function of $n$ and $k$.

(b) What is the exact probability that $\text{QuickSelect}$ compares the $i$th smallest and $j$th smallest elements in the input array? The correct answer is a simple function of $i$, $j$, and $k$. [Hint: Check your answer by trying a few small examples.]

(c) What is the exact probability that in one of the recursive calls to $\text{QuickSelect}$, the first argument is the subarray $A[i..j]$? The correct answer is a simple function of $i$, $j$, and $k$. [Hint: Check your answer by trying a few small examples.]

(d) Show that for any $n$ and $k$, the expected running time of $\text{QuickSelect}$ is $\Theta(n)$. You can use either the recurrence from part (a) or the probabilities from part (b) or (c).
1. Recall that a priority search tree is a binary tree in which every node has both a search key and a priority, arranged so that the tree is simultaneously a binary search tree for the keys and a min-heap for the priorities. A heater is a priority search tree in which the priorities are given by the user, and the search keys are distributed uniformly and independently at random in the real interval \([0, 1]\). Intuitively, a heater is a sort of anti-treap.

The following problems consider an \(n\)-node heater \(T\) whose priorities are the integers from 1 to \(n\). We identify nodes in \(T\) by their priorities; thus, “node 5” means the node in \(T\) with priority 5. For example, the min-heap property implies that node 1 is the root of \(T\). Finally, let \(i\) and \(j\) be integers with \(1 \leq i < j \leq n\).

(a) What is the exact expected depth of node \(j\) in an \(n\)-node heater? Answering the following subproblems will help you:

i. Prove that in a random permutation of the \((i + 1)\)-element set \(\{1, 2, \ldots, i, j\}\), elements \(i\) and \(j\) are adjacent with probability \(2/(i+1)\).

ii. Prove that node \(i\) is an ancestor of node \(j\) with probability \(2/(i+1)\). [Hint: Use the previous question!]

iii. What is the probability that node \(i\) is a descendant of node \(j\)? [Hint: Do not use the previous question!]

(b) Describe and analyze an algorithm to insert a new item into a heater. Analyze the expected running time as a function of the number of nodes.

(c) Describe an algorithm to delete the minimum-priority item (the root) from an \(n\)-node heater. What is the expected running time of your algorithm?

2. Suppose we are given a coin that may or may not be biased, and we would like to compute an accurate estimate of the probability of heads. Specifically, if the actual unknown probability of heads is \(p\), we would like to compute an estimate \(\hat{p}\) such that

\[
\Pr[|\hat{p} - p| > \epsilon] < \delta
\]

where \(\epsilon\) is a given accuracy or error parameter, and \(\delta\) is a given confidence parameter.

The following algorithm is a natural first attempt; here \(\text{FLIP}()\) returns the result of an independent flip of the unknown coin.

<table>
<thead>
<tr>
<th>\text{MEAN\textsc{ESTIMATE}((\epsilon))}:</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{count} \leftarrow 0</td>
</tr>
<tr>
<td>for (i \leftarrow 1) to (N)</td>
</tr>
<tr>
<td>\hspace{1em} if (\text{FLIP}() = \text{Heads})</td>
</tr>
<tr>
<td>\hspace{2em} \text{count} \leftarrow \text{count} + 1</td>
</tr>
<tr>
<td>return \text{count}/(N)</td>
</tr>
</tbody>
</table>

(a) Let \(\hat{p}\) denote the estimate returned by \(\text{MEAN\textsc{ESTIMATE}(\(\epsilon\))}\). Prove that \(\text{E}[\hat{p}] = p\).
(b) Prove that if we set \( N = \lceil \alpha/\epsilon^2 \rceil \) for some appropriate constant \( \alpha \), then we have \( \Pr[|\bar{p} - p| > \epsilon] < 1/4 \). [Hint: Use Chebyshev's inequality.]

(c) We can increase the previous estimator's confidence by running it multiple times, independently, and returning the median of the resulting estimates.

\[
\text{MedianOfMeansEstimate}(\delta, \epsilon) := \\
\begin{array}{l}
\text{for } j \leftarrow 1 \text{ to } K \\
\text{estimate}[j] \leftarrow \text{MeanEstimate}(\epsilon) \\
\text{return } \text{Median}(\text{estimate}[1..K])
\end{array}
\]

Let \( p^* \) denote the estimate returned by \( \text{MedianOfMeansEstimate}(\delta, \epsilon) \). Prove that if we set \( N = \lceil \alpha/\epsilon^2 \rceil \) (inside \text{MeanEstimate}) and \( K = \lceil \beta \ln(1/\delta) \rceil \), for some appropriate constants \( \alpha \) and \( \beta \), then \( \Pr[|p^* - p| > \epsilon] < \delta \). [Hint: Use Chernoff bounds.]
1. **Reservoir sampling** is a method for choosing an item uniformly at random from an arbitrarily long stream of data.

   \[
   \text{GetOneSample}(\text{stream } S):
   \begin{align*}
   \ell &\leftarrow 0 \\
   \text{while } S \text{ is not done} &\quad \\
   x &\leftarrow \text{next item in } S \\
   \ell &\leftarrow \ell + 1 \\
   \text{if Random}(\ell) = 1 &\quad \\
   \text{sample } &\leftarrow x \quad (\star) \\
   \text{return sample}
   \end{align*}
   \]

   At the end of the algorithm, the variable \( \ell \) stores the length of the input stream \( S \); this number is not known to the algorithm in advance. If \( S \) is empty, the output of the algorithm is (correctly!) undefined.

   In the following, consider an arbitrary non-empty input stream \( S \), and let \( n \) denote the (unknown) length of \( S \).

   (a) Prove that the item returned by \( \text{GetOneSample}(S) \) is chosen uniformly at random from \( S \).

   (b) What is the exact expected number of times that \( \text{GetOneSample}(S) \) executes line (\( \star \))?

   (c) What is the exact expected value of \( \ell \) when \( \text{GetOneSample}(S) \) executes line (\( \star \)) for the last time?

   (d) What is the exact expected value of \( \ell \) when either \( \text{GetOneSample}(S) \) executes line (\( \star \)) for the second time (or the algorithm ends, whichever happens first)?

   (e) Describe and analyze an algorithm that returns a subset of \( k \) distinct items chosen uniformly at random from a data stream of length at least \( k \). The integer \( k \) is given as part of the input to your algorithm. Prove that your algorithm is correct.

   For example, if \( k = 2 \) and the stream contains the sequence \( \langle \spadesuit, \heartsuit, \diamondsuit, \clubsuit \rangle \), the algorithm should return the subset \( \{ \diamondsuit, \spadesuit \} \) with probability \( 1/6 \).

2. **Tabulated hashing** uses tables of random numbers to compute hash values. Suppose \(|\mathcal{U}| = 2^w \times 2^w \) and \( m = 2^\ell \), so the items being hashed are pairs of \( w \)-bit strings (or \( 2w \)-bit strings broken in half) and hash values are \( \ell \)-bit strings.

   Let \( A[0..2^w - 1] \) and \( B[0..2^w - 1] \) be arrays of independent random \( \ell \)-bit strings, and define the hash function \( h_{A,B} : \mathcal{U} \rightarrow [m] \) by setting

   \[
   h_{A,B}(x, y) := A[x] \oplus B[y]
   \]

   where \( \oplus \) denotes bit-wise exclusive-or. Let \( \mathcal{H} \) denote the set of all possible functions \( h_{A,B} \). Filling the arrays \( A \) and \( B \) with independent random bits is equivalent to choosing a hash function \( h_{A,B} \in \mathcal{H} \) uniformly at random.
(a) Prove that $\mathcal{H}$ is 2-uniform.
(b) Prove that $\mathcal{H}$ is 3-uniform. [Hint: Solve part (a) first.]
(c) Prove that $\mathcal{H}$ is not 4-uniform.

Yes, “see part (b)” is worth full credit for part (a), but only if your solution to part (b) is correct.
1. Suppose you are given a directed graph $G = (V, E)$, two vertices $s$ and $t$, a capacity function $c : E \to \mathbb{R}^+$, and a second function $f : E \to \mathbb{R}$. Describe and analyze an algorithm to determine whether $f$ is a maximum $(s, t)$-flow in $G$. [Hint: Don’t make any “obvious” assumptions!]

2. Suppose you are given a flow network $G$ with integer edge capacities and an integer maximum flow $f^*$ in $G$. Describe algorithms for the following operations:
   
   (a) $\text{Increment}(e)$: Increase the capacity of edge $e$ by 1 and update the maximum flow.
   
   (b) $\text{Decrement}(e)$: Decrease the capacity of edge $e$ by 1 and update the maximum flow.

   Both algorithms should modify $f^*$ so that it is still a maximum flow, but more quickly than recomputing a maximum flow from scratch.

3. An $(s, t)$-series-parallel graph is a directed acyclic graph with two designated vertices $s$ (the source) and $t$ (the target or sink) and with one of the following structures:
   
   - **Base case**: A single directed edge from $s$ to $t$.
   - **Series**: The union of an $(s, u)$-series-parallel graph and a $(u, t)$-series-parallel graph that share a common vertex $u$ but no other vertices or edges.
   - **Parallel**: The union of two smaller $(s, t)$-series-parallel graphs with the same source $s$ and target $t$, but with no other vertices or edges in common.

   Every $(s, t)$-series-parallel graph $G$ can be represented by a decomposition tree, which is a binary tree with three types of nodes: leaves corresponding to single edges in $G$, series nodes (each labeled by some vertex), and parallel nodes (unlabeled).

   ![An series-parallel graph and its decomposition tree.](image_url)

   (a) Suppose you are given a directed graph $G$ with two special vertices $s$ and $t$. Describe and analyze an algorithm that either builds a decomposition tree for $G$ or correctly reports that $G$ is not $(s, t)$-series-parallel. [Hint: Build the tree from the bottom up.]

   (b) Describe and analyze an algorithm to compute a maximum $(s, t)$-flow in a given $(s, t)$-series-parallel flow network with arbitrary edge capacities. [Hint: In light of part (a), you can assume that you are actually given the decomposition tree.]
1. Suppose we are given an array $A[1..m][1..n]$ of non-negative real numbers. We want to **round** $A$ to an integer matrix, by replacing each entry $x$ in $A$ with either $\lfloor x \rfloor$ or $\lceil x \rceil$, without changing the sum of entries in any row or column of $A$. For example:

$$
\begin{bmatrix}
1.2 & 3.4 & 2.4 \\
3.9 & 4.0 & 2.1 \\
7.9 & 1.6 & 0.5
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 4 & 2 \\
4 & 4 & 2 \\
8 & 1 & 1
\end{bmatrix}
$$

(a) Describe and analyze an efficient algorithm that either rounds $A$ in this fashion, or correctly reports that no such rounding is possible.

(b) Prove that a legal rounding is possible if and only if the sum of entries in each row is an integer, and the sum of entries in each column is an integer. In other words, prove that either your algorithm from part (a) returns a legal rounding, or a legal rounding is **obviously** impossible.

2. Quentin, Alice, and the other Brakebills Physical Kids are planning an excursion through the Neitherlands to Fillory. The Neitherlands is a vast, deserted city composed of several plazas, each containing a single fountain that can magically transport people to a different world. Adjacent plazas are connected by gates, which have been cursed by the Beast. The gates between plazas are open only for five minutes every hour, all simultaneously—from 12:00 to 12:05, then from 1:00 to 1:05, and so on—and are otherwise locked. During those five minutes, if more than one person passes through any single gate, the Beast will detect their presence. Moreover, anyone attempting to open a locked gate, or attempting to pass through more than one gate within the same five-minute period will turn into a niffin. However, any number of people can safely pass through different gates at the same time and/or pass through the same gate at different times.

You are given a map of the Neitherlands, which is a graph $G$ with a vertex for each fountain and an edge for each gate, with the fountains to Earth and Fillory clearly marked. Suppose you are also given a positive integer $h$. Describe and analyze an algorithm to compute the maximum number of people that can walk from the Earth fountain to the Fillory fountain in at most $h$ hours—that is, after the gates have opened at most $h$ times—without anyone alerting the Beast or turning into a niffin. *[Hint: Build a different graph.]*
**Rubric (graph reductions):** For a problem worth 10 points, solved by reduction to maximum flow:

- 2 points for a complete description of the relevant flow network, specifying the set of vertices, the set of edges (being careful about direction), the source and target vertices \(s\) and \(t\), and the capacity of every edge. (If the flow network is part of the original input, just say that.)

- 1 point for a description of the algorithm to construct this flow network from the stated input. This could be as simple as “We can construct the flow network in \(O(n^3)\) time by brute force.”

- 1 point for precisely specifying the problem to be solved on the flow network (for example: “maximum flow from \(x\) to \(y\)”) and the algorithm (For example: “Ford-Fulkerson” or “Orlin”) to solve that problem. Do not regurgitate the details of the maximum-flow algorithm itself.

- 1 point for a description of the algorithm to extract the answer to the stated problem from the maximum flow. This could be as simple as “Return \texttt{True} if the maximum flow value is at least 42 and \texttt{False} otherwise.”

- **4 points for a proof that your reduction is correct.** This proof will almost always have two components (worth 2 points each). For example, if your algorithm returns a boolean, you should prove that its True answers are correct and that its False answers are correct. If your algorithm returns a number, you should prove that number is neither too large nor too small.

- 1 point for the running time of the overall algorithm, expressed as a function of the original input parameters, not just the number of vertices and edges in your flow network. You may assume that maximum flows can be computed in \(O(VE)\) time.

Reductions to other flow-based problems described in class or in the notes (for example: edge-disjoint paths, maximum bipartite matching, minimum-cost circulation) or to other standard graph problems (for example: reachability, topological sort, minimum spanning tree, all-pairs shortest paths) have similar requirements.
1. Recall that a path cover of a directed acyclic graph is a collection of directed paths, such that every vertex in \( G \) appears in at least one path. We previously saw how to compute disjoint path covers (where each vertex lies on exactly one path) by reduction to maximum bipartite matching. Your task in this problem is to compute path covers without the disjointness constraint.

(a) Suppose you are given a dag \( G \) with a unique source \( s \) and a unique sink \( t \). Describe an algorithm to find the smallest path cover of \( G \) in which every path starts at \( s \) and ends at \( t \).

(b) Describe an algorithm to find the smallest path cover of an arbitrary dag \( G \), with no additional restrictions on the paths. [Hint: Use part (a).]

2. Recall that an \((s, t)\)-series-parallel graph is an directed acyclic graph with two designated vertices \( s \) (the source) and \( t \) (the target or sink) and with one of the following structures:

- **Base case**: A single directed edge from \( s \) to \( t \).
- **Series**: The union of an \((s, u)\)-series-parallel graph and a \((u, t)\)-series-parallel graph that share a common vertex \( u \) but no other vertices or edges.
- **Parallel**: The union of two smaller \((s, t)\)-series-parallel graphs with the same source \( s \) and target \( t \), but with no other vertices or edges in common.

Any series-parallel graph can be represented by a binary decomposition tree, whose interior nodes correspond to series compositions and parallel compositions, and whose leaves correspond to individual edges. In a previous homework, we saw how to construct the decomposition tree for any series-parallel graph in \( O(V + E) \) time, and then how to compute a maximum \((s, t)\)-flow in \( O(V + E) \) time.

Describe an efficient algorithm to compute a minimum-cost maximum flow from \( s \) to \( t \) in an \((s, t)\)-series-parallel graph \( G \) in which every edge has capacity 1 and arbitrary cost. [Hint: First consider the special case where \( G \) has only two vertices but lots of edges.]

3. Every year, Professor Dumbledore assigns the instructors at Hogwarts to various faculty committees. There are \( n \) faculty members and \( c \) committees. Each committee member has submitted a list of their prices for serving on each committee; each price could be positive, negative, zero, or even infinite. For example, Professor Snape might declare that he would serve on the Student Recruiting Committee for 1000 Galleons, that he would pay 10000 Galleons to serve on the Defense Against the Dark Arts Course Revision Committee, and that he would not serve on the Muggle Relations committee for any price.

Conversely, Dumbledore knows how many instructors are needed for each committee, as well as a list of instructors who would be suitable members for each committee. (For example: “Dark Arts Revision: 5 members, anyone but Snape.”) If Dumbledore assigns an instructor to a committee, he must pay that instructor’s price from the Hogwarts treasury.
Dumbledore needs to assign instructors to committees so that (1) each committee is full, (3) no instructor is assigned to more than three committees, (2) only suitable and willing instructors are assigned to each committee, and (4) the total cost of the assignment is as small as possible. Describe and analyze an efficient algorithm that either solves Dumbledore's problem, or correctly reports that there is no valid assignment whose total cost is finite.
Suppose you are given an arbitrary directed graph $G = (V, E)$ with arbitrary edge weights $\ell : E \rightarrow \mathbb{R}$. Each edge in $G$ is colored either red, white, or blue to indicate how you are permitted to modify its weight:

- You may increase, but not decrease, the length of any red edge.
- You may decrease, but not increase, the length of any blue edge.
- You may not change the length of any black edge.

The cycle nullification problem asks whether it is possible to modify the edge weights—subject to these color constraints—so that every cycle in $G$ has length 0. Both the given weights and the new weights of the individual edges can be positive, negative, or zero. To keep the following problems simple, assume that $G$ is strongly connected.

(a) Describe a linear program that is feasible if and only if it is possible to make every cycle in $G$ have length 0. [Hint: Pick an arbitrary vertex $s$, and let $\text{dist}(v)$ denote the length of every walk from $s$ to $v$.]

(b) Construct the dual of the linear program from part (a). [Hint: Choose a convenient objective function for your primal LP.]

(c) Give a self-contained description of the combinatorial problem encoded by the dual linear program from part (b), and prove directly that it is equivalent to the original cycle nullification problem. Do not use the words “linear”, “program”, or “dual”. Yes, you have seen this problem before.

(d) Describe and analyze an algorithm to determine in $O(EV)$ time whether it is possible to make every cycle in $G$ have length 0, using your dual formulation from part (c). Do not use the words “linear”, “program”, or “dual”.

2. There is no problem 2.
1. An integer linear program is a linear program with the additional explicit constraint that the variables must take only integer values. The ILP-Feasibility problem asks whether there is an integer vector that satisfies a given system of linear inequalities—or more concisely, whether a given integer linear program is feasible.

Describe a polynomial-time reduction from 3Sat to ILP-Feasibility. Your reduction implies that ILP-Feasibility is NP-hard.

2. There are two different versions of the Hamiltonian cycle problem, one for directed graphs and one for undirected graphs. We saw a proof in class (and there are two proofs in the notes) that the directed Hamiltonian cycle problem is NP-hard.

(a) Describe a polynomial-time reduction from the undirected Hamiltonian cycle problem to the directed Hamiltonian cycle problem. Prove your reduction is correct.
(b) Describe a polynomial-time reduction from the directed Hamiltonian cycle problem to the undirected Hamiltonian cycle problem. Prove your reduction is correct.
(c) Which of these two reductions implies that the undirected Hamiltonian cycle problem is NP-hard?

3. Recall that a 3CNF formula is a conjunction (And) of several distinct clauses, each of which is a disjunction (Or) of exactly three distinct literals, where each literal is either a variable or its negation.

Suppose you are given a magic black box that can determine in polynomial time, whether an arbitrary given 3CNF formula is satisfiable. Describe and analyze a polynomial-time algorithm that either computes a satisfying assignment for a given 3CNF formula or correctly reports that no such assignment exists, using the magic black box as a subroutine. [Hint: Call the magic black box more than once. First imagine an even more magical black box that can decide Sat for arbitrary boolean formulas, not just 3CNF formulas.]

<table>
<thead>
<tr>
<th>Rubric (for all polynomial-time reductions): 10 points =</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 3 points for the reduction itself</td>
</tr>
<tr>
<td>- For an NP-hardness proof, the reduction must be from a known NP-hard problem. You can use any of the NP-hard problems listed in the lecture notes (except the one you are trying to prove NP-hard, of course).</td>
</tr>
<tr>
<td>+ 3 points for the “if” proof of correctness</td>
</tr>
<tr>
<td>+ 3 points for the “only if” proof of correctness</td>
</tr>
<tr>
<td>+ 1 point for writing “polynomial time”</td>
</tr>
<tr>
<td>• An incorrect polynomial-time reduction that still satisfies half of the correctness proof is worth at most 4/10.</td>
</tr>
<tr>
<td>• A reduction in the wrong direction is worth 0/10.</td>
</tr>
</tbody>
</table>
1. Let \( \Phi \) be a boolean formula in conjunctive normal form, with exactly three literals in each clause. Recall that an assignment of boolean values to the variables in \( \Phi \) satisfies a clause if at least one of its literals is \( \text{True} \). The maximum satisfiability problem for 3CNF formulas, usually called \( \text{MaxSat} \), asks for the maximum number of clauses that can be simultaneously satisfied by a single assignment.

Solving \( \text{MaxSat} \) exactly is clearly also NP-hard; this question asks about approximation algorithms. Let \( \text{MaxSat}(\Phi) \) denote the maximum number of clauses in \( \Phi \) that can be simultaneously satisfied by one variable assignment.

(a) Suppose we assign variables in \( \Phi \) to be \( \text{True} \) or \( \text{False} \) using independent fair coin flips. Prove that the expected number of satisfied clauses is at least \( \frac{7}{8} \text{MaxSat}(\Phi) \).

(b) Let \( k^+ \) denote the number of clauses satisfied by setting every variable in \( \Phi \) to \( \text{True} \), and let \( k^- \) denote the number of clauses satisfied by setting every variable in \( \Phi \) to \( \text{False} \). Prove that \( \max\{k^+, k^-,\} \geq \frac{\text{MaxSat}(\Phi)}{2} \).

(c) Let \( \text{MinUnsat}(\Phi) \) denote the minimum number of clauses that can be simultaneously left unsatisfied by a single assignment. Prove that it is NP-hard to approximate \( \text{MinUnsat}(\Phi) \) within a factor of \( 10^{10^{100}} \).

2. Consider the following algorithm for approximating the minimum vertex cover of a connected graph \( G \): Return the set of all non-leaf nodes of an arbitrary depth-first spanning tree. (Recall that a depth-first spanning tree is a rooted tree; the root is not considered a leaf, even if it has only one neighbor in the tree.)

(a) Prove that this algorithm returns a vertex cover of \( G \).

(b) Prove that this algorithm returns a 2-approximation to the smallest vertex cover of \( G \).

(c) Describe an infinite family of connected graphs for which this algorithm returns a vertex cover of size exactly \( 2 \cdot \text{Opt} \). This family implies that the analysis in part (b) is tight. [Hint: First find just one such graph, with few vertices.]
3. Consider the following modification of the “dumb” 2-approximation algorithm for minimum vertex cover that we saw in class. The only change is that we return a set of edges instead of a set of vertices.

\[
\text{ApproxMinMaxMatching}(G):
\]
\[
M \leftarrow \emptyset
\]
\[
\text{while } G \text{ has at least one edge}
\]
\[
uv \leftarrow \text{any edge in } G
\]
\[
G \leftarrow G \setminus \{u, v\}
\]
\[
M \leftarrow M \cup \{uv\}
\]
\[
\text{return } M
\]

(a) Prove that the output subgraph \( M \) is a matching—no pair of edges in \( M \) share a common vertex.

(b) Prove that \( M \) is a maximal matching—\( M \) is not a proper subgraph of another matching in \( G \).

(c) Prove that \( M \) contains at most twice as many edges as the smallest maximal matching in \( G \).

(d) Describe an infinite family of graphs \( G \) such that the matching returned by \text{ApproxMinMaxMatching}(G) contains exactly twice as many edges as the smallest maximum matching in \( G \). This family implies that the analysis in part (c) is tight. [Hint: First find just one such graph, with few vertices.]

The smallest maximal matching in a graph.
1. Recall that a walk in a directed graph $G$ is an arbitrary sequence of vertices $v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_k$, such that $v_{i-1} \rightarrow v_i$ is an edge in $G$ for every index $i$. A path is a walk in which no vertex appears more than once.

Suppose you are given a directed graph $G = (V, E)$ and two vertices $s$ and $t$. Describe and analyze an algorithm to determine if there is a walk in $G$ from $s$ to $t$ whose length is a multiple of 3.

For example, given the graph shown below, with the indicated vertices $s$ and $t$, your algorithm should return True, because the walk $s \rightarrow w \rightarrow y \rightarrow x \rightarrow s \rightarrow w \rightarrow t$ has length 6.

![Graph with vertices labeled s, w, t, x, y, z]

[Hint: Build a (different) graph.]

2. A shuffle of two strings $X$ and $Y$ is formed by interspersing the characters into a new string, keeping the characters of $X$ and $Y$ in the same order. A smooth shuffle of $X$ and $Y$ is a shuffle of $X$ and $Y$ that never uses more than two consecutive symbols of either string. For example,

- prDoyNArammmicng is a smooth shuffle of DYNAMIC and programming.
- DYprnogramsing is a shuffle of DYNAMIC and programming, but it is not a smooth shuffle (because of the substrings ogr and ing).

Describe and analyze an algorithm to decide, given three strings $X$, $Y$, and $Z$, whether $Z$ is a smooth shuffle of $X$ and $Y$.

3. (a) Describe an algorithm that simulates a fair coin, using independent rolls of a fair three-sided die as your only source of randomness. Your algorithm should return either Heads or Tails, each with probability $1/2$.

(b) What is the expected number of die rolls performed by your algorithm in part (a)?

(c) Describe an algorithm that simulates a fair three-sided die, using independent fair coin flips as your only source of randomness. Your algorithm should return either 1, 2, or 3, each with probability $1/3$.

(d) What is the expected number of coin flips performed by your algorithm in part (c)?
4. Death knocks on Dirk Gently’s door one cold blustery morning and challenges him to a game. Emboldened by his experience with algorithms students, Death presents Dirk with a complete binary tree with \(4^n\) leaves, each colored either black or white. There is a token at the root of the tree. To play the game, Dirk and Death will take turns moving the token from its current node to one of its children. The game will end after \(2n\) moves, when the token lands on a leaf. If the final leaf is black, Dirk dies; if it’s white, Dirk lives forever. Dirk moves first, so Death gets the last turn.

(Yes, this is precisely the same game from Homework 3.)

Unfortunately, Dirk slept through Death’s explanation of the rules, so he decides to just play randomly. Whenever it’s Dirk’s turn, he flips a fair coin and moves left on heads, or right on tails, confident that the Fundamental Interconnectedness of All Things will keep him alive, unless it doesn’t. Death plays much more purposefully, of course, always choosing the move that maximizes the probability that Dirk loses the game.

(a) Describe an algorithm that computes the probability that Dirk wins the game against Death.

(b) Realizing that Dirk is not taking the game seriously, Death gives up in desperation and decides to also play randomly! Describe an algorithm that computes the probability that Dirk wins the game again Death, assuming both players flip fair coins to decide their moves.

For both algorithms, the input consists of the integer \(n\) (specifying the depth of the tree) and an array of \(4^n\) bits specifying the colors of leaves in left-to-right order.
1. Let $G = (V,E)$ be an arbitrary undirected graph. Suppose we color each vertex of $G$ uniformly and independently at random from a set of three colors: red, green, or blue. An edge of $G$ is monochromatic if both of its endpoints have the same color.

(a) What is the exact expected number of monochromatic edges? (Your answer should be a simple function of $V$ and $E$.)

(b) For each edge $e \in E$, define an indicator variable $X_e$ that equals 1 if $e$ is monochromatic and 0 otherwise. Prove that

$$\Pr[(X_a = 1) \land (X_b = 1)] = \Pr[X_a = 1] \cdot \Pr[X_b = 1]$$

for every pair of edges $a \neq b$. This claim implies that the random variables $X_e$ are pairwise independent.

(c) Prove that there is a graph $G$ such that

$$\Pr[(X_a = 1) \land (X_b = 1) \land (X_c = 1)] \neq \Pr[X_a = 1] \cdot \Pr[X_b = 1] \cdot \Pr[X_c = 1]$$

for some triple of distinct edges $a, b, c$ in $G$. This claim implies that the random variables $X_e$ are not necessarily 3-wise independent.

2. The White Rabbit has a very poor memory, and so he is constantly forgetting his regularly scheduled appointments with the Queen of Hearts. In an effort to avoid further beheadings of court officials, The King of Hearts has installed an app on Rabbit’s pocket watch to automatically remind Rabbit of any upcoming appointments. For each reminder Rabbit receives, Rabbit has a 50% chance of actually remembering his appointment (decided by an independent fair coin flip).

First, suppose the King of Hearts sends Rabbit $k$ separate reminders for a single appointment.

(a) What is the exact probability that Rabbit will remember his appointment? Your answer should be a simple function of $k$.

(b) What value of $k$ should the King choose so that the probability that Rabbit will remember this appointment is at least $1 - 1/n^\alpha$? Your answer should be a simple function of $n$ and $\alpha$.

Now suppose the King of Hearts sends Rabbit $k$ separate reminders for each of $n$ different appointments. (That’s $nk$ reminders altogether.)

(c) What is the exact expected number of appointments that Rabbit will remember? Your answer should be a simple function of $n$ and $k$.

(d) What value of $k$ should the King choose so that the probability that Rabbit remembers every appointment is at least $1 - 1/n^\alpha$? Again, your answer should be a simple function of $n$ and $\alpha$.

[Hint: There is a simple solution that does not use tail inequalities.]
3. The Island of Sodor is home to an extensive rail network. Recently, several cases of a deadly contagious disease (either swine flu or zombies; reports are unclear) have been reported in the village of Ffarquhar. The controller of the Sodor railway plans to close certain railway stations to prevent the disease from spreading to Tidmouth, his home town. No trains can pass through a closed station. To minimize expense (and public notice), he wants to close as few stations as possible. However, he cannot close the Ffarquhar station, because that would expose him to the disease, and he cannot close the Tidmouth station, because then he couldn't visit his favorite pub.

Describe and analyze an algorithm to find the minimum number of stations that must be closed to block all rail travel from Ffarquhar to Tidmouth. The Sodor rail network is represented by an undirected graph, with a vertex for each station and an edge for each rail connection between two stations. Two special vertices $f$ and $t$ represent the stations in Ffarquhar and Tidmouth.

For example, given the following input graph, your algorithm should return the integer 2.

![Graph Example]

4. The Department of Commuter Silence at Shampoo-Banana University has a flexible curriculum with a complex set of graduation requirements. The department offers $n$ different courses, and there are $m$ different requirements. Each requirement specifies a subset of the $n$ courses and the number of courses that must be taken from that subset. The subsets for different requirements may overlap, but each course can only be used to satisfy at most one requirement.

For example, suppose there are $n = 5$ courses $A, B, C, D, E$ and $m = 2$ graduation requirements:

- You must take at least 2 courses from the subset $\{A, B, C\}$.
- You must take at least 2 courses from the subset $\{C, D, E\}$.

Then a student who has only taken courses $B, C, D$ cannot graduate, but a student who has taken either $A, B, C, D$ or $B, C, D, E$ can graduate.

Describe and analyze an algorithm to determine whether a given student can graduate. The input to your algorithm is the list of $m$ requirements (each specifying a subset of the $n$ courses and the number of courses that must be taken from that subset) and the list of courses the student has taken.
1. A **three-dimensional matching** in an undirected graph $G$ is a collection of vertex-disjoint triangles. A three-dimensional matching is **maximal** if it is not a proper subgraph of a larger three-dimensional matching in the same graph.

   (a) Let $M$ and $M'$ be two arbitrary maximal three-dimensional matchings in the same underlying graph $G$. **Prove** that $|M| \leq 3 \cdot |M'|$.

   (b) Finding the **largest** three-dimensional matching in a given graph is NP-hard. Describe and analyze a fast 3-approximation algorithm for this problem.

   (c) Finding the **smallest maximal** three-dimensional matching in a given graph is NP-hard. Describe and analyze a fast 3-approximation algorithm for this problem.

2. Let $G = (V, E)$ be an arbitrary dag with a unique source $s$ and a unique sink $t$. Suppose we compute a random walk from $s$ to $t$, where at each node $v$ (except $t$), we choose an outgoing edge $v \rightarrow w$ uniformly at random to determine the successor of $v$.

   (a) Describe and analyze an algorithm to compute, for every vertex $v$, the probability that the random walk visits $v$.

   (b) Describe and analyze an algorithm to compute the expected number of edges in the random walk.

   Assume all relevant arithmetic operations can be performed exactly in $O(1)$ time.

3. Consider the following solitaire game. The puzzle consists of an $n \times m$ grid of squares, where each square may be empty, occupied by a red stone, or occupied by a blue stone. The goal of the puzzle is to remove some of the given stones so that the remaining stones satisfy two conditions: (1) every row contains at least one stone, and (2) no column contains stones of both colors. For some initial configurations of stones, reaching this goal is impossible.

   ![A solvable puzzle and one of its many solutions. An unsolvable puzzle.](image)

   **Prove** that it is NP-hard to determine, given an initial configuration of red and blue stones, whether the puzzle can be solved.
4. Suppose you are given a bipartite graph $G = (L \cup R, E)$ and a maximum matching $M$ in $G$. Describe and analyze fast algorithms for the following problems:

(a) **INSERT($e$):** Insert a new edge $e$ into $G$ and update the maximum matching. (You can assume that $e$ is not already an edge in $G$, and that $G + e$ is still bipartite.)

(b) **DELETE($e$):** Delete the existing edge $e$ from $G$ and update the maximum matching. (You can assume that $e$ is in fact an edge in $G$.)

Your algorithms should modify $M$ so that it is still a maximum matching, faster than recomputing a maximum matching from scratch.

5. You are applying to participate in this year’s Trial of the Pyx, the annual ceremony where samples of all British coinage are tested, to ensure that they conform as strictly as possible to legal standards. As a test of your qualifications, your interviewer at the Worshipful Company of Goldsmiths has given you a bag of $n$ commemorative Alan Turing half-guinea coins, exactly two of which are counterfeit. One counterfeit coin is very slightly lighter than a genuine Turing; the other is very slightly heavier. Together, the two counterfeit coins have exactly the same weight as two genuine coins. Your task is to identify the two counterfeit coins.

The weight difference between the real and fake coins is too small to be detected by anything other than the Royal Pyx Coin Balance. You can place any two disjoint sets of coins in each of the Balance’s two pans; the Balance will then indicate which of the two subsets has larger total weight, or that the two subsets have the same total weight. Unfortunately, each use of the Balance requires completing a complicated authorization form (in triplicate), submitting a blood sample, and scheduling the Royal Bugle Corps, so you really want to use the Balance as few times as possible.

(a) Suppose you randomly choose $n/2$ of your $n$ coins to put on one pan of the Balance, and put the remaining $n/2$ coins on the other pan. What is the probability that the two subsets have equal weight?

(b) Describe and analyze a randomized algorithm to identify the two fake coins. What is the expected number of times your algorithm uses the Balance? To simplify the algorithm, you may assume that $n$ is a power of 2.

6. Suppose you are given a set $L$ of $n$ line segments in the plane, where each segment has one endpoint on the vertical line $x = 0$ and one endpoint on the vertical line $x = 1$, and all $2n$ endpoints are distinct. Describe and analyze an algorithm to compute the largest subset of $L$ in which no pair of segments intersects.
Some Useful Inequalities

Let $X = \sum_{i=1}^{n} X_i$, where each $X_i$ is a 0/1 random variable, and let $\mu = E[X]$.

- **Markov’s Inequality:** $\Pr[X \geq x] \leq \mu/x$ for all $x > 0$.
- **Chebyshev’s Inequality:** If $X_1, X_2, \ldots, X_n$ are pairwise independent, then for all $\delta > 0$:
  \[
  \Pr[X \geq (1 + \delta)\mu] \leq \frac{1}{\delta^2\mu} \quad \text{and} \quad \Pr[X \leq (1 - \delta)\mu] \leq \frac{1}{\delta^2\mu}
  \]
- **Chernoff Bounds:** If $X_1, X_2, \ldots, X_n$ are fully independent, then for all $0 < \delta \leq 1$:
  \[
  \Pr[X \geq (1 + \delta)\mu] \leq \exp\left(-\frac{\delta^2\mu}{3}\right) \quad \text{and} \quad \Pr[X \leq (1 - \delta)\mu] \leq \exp\left(-\frac{\delta^2\mu}{2}\right)
  \]

Some Useful Algorithms

- **Random(k):** Returns an element of $\{1, 2, \ldots, k\}$, chosen independently and uniformly at random, in $O(1)$ time. For example, $\text{Random}(2)$ can be used for a fair coin flip.
- **Ford and Fulkerson’s maximum flow algorithm:** Returns a maximum $(s, t)$-flow $f^*$ in a given flow network in $O(E \cdot |f^*|)$ time. If all input capacities are integers, then all output flow values are also integers.
- **Orlin’s maximum flow algorithm:** Returns a maximum $(s, t)$-flow in a given flow network in $O(VE)$ time. If all input capacities are integers, then all output flow values are also integers.
- **Orlin’s minimum-cost flow algorithm:** Returns a minimum-cost flow in a given flow network in $O(E^2 \log^2 V)$ time. If all input capacities, costs, and balances are integers, then all output flow values are also integers.

Some Useful NP-hard Problems:

**3Sat:** Given a boolean formula in conjunctive normal form, with exactly three distinct literals per clause, does the formula have a satisfying assignment?

**MaxIndependentSet:** Given an undirected graph $G$, what is the size of the largest subset of vertices in $G$ that have no edges among them?

**MaxClique:** Given an undirected graph $G$, what is the size of the largest complete subgraph of $G$?

**MinVertexCover:** Given an undirected graph $G$, what is the size of the smallest subset of vertices that touch every edge in $G$?

**MinSetCover:** Given a collection of subsets $S_1, S_2, \ldots, S_m$ of a set $S$, what is the size of the smallest subcollection whose union is $S$?

**MinHittingSet:** Given a collection of subsets $S_1, S_2, \ldots, S_m$ of a set $S$, what is the size of the smallest subset of $S$ that intersects every subset $S_i$?

**3Color:** Given an undirected graph $G$, can its vertices be colored with three colors, so that every edge touches vertices with two different colors?

**HamiltonianCycle:** Given a graph $G$ (either directed or undirected), is there a cycle in $G$ that visits every vertex exactly once?

**FeasibleILP:** Given a matrix $A \in \mathbb{Z}^{n \times d}$ and a vector $b \in \mathbb{Z}^n$, determine whether the set of feasible integer points $\max\{x \in \mathbb{Z}^d \mid Ax \leq b, x \geq 0\}$ is empty.

**HydraulicPress:** And here we go!
### Common Grading Rubrics

(For problems out of 10 points)

**General Principles:**

- Faster algorithms are worth more points, and slower algorithms are worth fewer points, typically by 2 or 3 points (out of 10) for each factor of $n$. Partial credit is scaled to the new maximum score, and all points above 10 are recorded as extra credit.
- A clear, correct, and correctly analyzed algorithm, no matter how slow, is always worth more than “I don’t know”. An incorrect algorithm, no matter how fast, may be worth nothing.
- Proofs of correctness are required on exams if and only if we explicitly ask for them.

**Dynamic Programming:**

- 3 points for a **clear English specification** of the underlying recursive function = 2 for describing the function itself + 1 for describing how to call the function to get your final answer. We want an English description of the underlying recursive **problem**, not just the algorithm/recurrence. In particular, your description should specify precisely the role of each input parameter. **No credit for the rest of the problem if the English description is is missing; this is a Deadly Sin.**
- 4 points for correct recurrence = 1 for base case(s) + 3 for recursive case(s). **No credit for iterative details if the recursive case(s) are incorrect.**
- 3 points for iterative details = 1 for memoization structure + 1 for evaluation order + 1 for time analysis. Complete iterative pseudocode is **not** required for full credit.

**Graph Reductions:**

- 4 points for a complete description of the relevant graph, including vertices, edges (including whether directed or undirected), numerical data (weights, lengths, capacities, costs, balances, and the like), source and target vertices, and so on. If the graph is part of the original input, just say that.
- 4 points for other details of the reduction, including how to build the graph from the original input, the precise problem to be solved on the graph, the precise algorithm used to solve that problem, and how to extract your final answer from the output of that algorithm.
- 2 points for running time of the overall algorithm, expressed as a function of the original input parameters, **not** just the number of vertices and edges in the graph.

**NP-hardness Proofs:**

- 3 points for a complete description of the reduction, including an appropriate NP-hard problem to reduce from, how to transform the input, and how to transform the output.
- 6 points for the proof of correctness = 3 for the “if” part + 3 for the “only if” part.
- 1 points for “polynomial time”.
Homework 0
Due Tuesday, January 23, 2018 at 8pm

• Each student must submit individual solutions for this homework. For all future homeworks, groups of up to three students can submit joint solutions.

• Submit your solutions electronically to Gradescope as PDF files. Submit a separate PDF file for each numbered problem. If you plan to typeset your solutions, please use the LaTeX solution template on the course web site. If you must submit scanned handwritten solutions, please use a black pen on blank white paper and a high-quality scanner app (or an actual scanner).

• You are not required to sign up on Gradescope or Piazza with your real name and your illinois.edu email address; you may use any email address and alias of your choice. However, to give you credit for the homework, we need to know who Gradescope thinks you are. Please fill out the web form linked from the course web page.

Some important course policies

• You may use any source at your disposal—paper, electronic, or human—but you must cite every source that you use, and you must write everything yourself in your own words. See the academic integrity policies on the course web site for more details.

• The answer “I don’t know” (and nothing else) is worth 25% partial credit on any required problem or subproblem on any homework or exam. We will accept synonyms like “No idea” or “WTF” or “(ᵒ_ᵒ)/”, but you must write something.

   On the other hand, only the homework problems you submit actually contribute to your overall course grade, so submitting “I don’t know” for an entire numbered homework problem will almost certainly hurt your grade more than submitting nothing at all.

• Avoid the Three Deadly Sins! Any homework or exam solution that breaks any of the following rules will be given an automatic zero, unless the solution is otherwise perfect. Yes, we really mean it. We’re not trying to be scary or petty (Honest!), but we do want to break a few common bad habits that seriously impede mastery of the course material.

   – Always give complete solutions, not just examples.
   – Always declare all your variables, in English. In particular, always describe the specific problem your algorithm is supposed to solve.
   – Never use weak induction.

See the course web site for more information.

If you have any questions about these policies, please don’t hesitate to ask in class, in office hours, or on Piazza.
1. The famous Basque computational arborist Gorka Oihanean has a favorite 26-node binary tree, in which each node is labeled with a letter of the alphabet. Inorder and postorder traversals of his tree visits the nodes in the following orders:


(a) List the nodes in Professor Oihanean’s tree according to a preorder traversal.
(b) Draw Professor Oihanean’s tree.

You do not need to prove that your answers are correct.

2. For any string \( w \in \{0, 1\}^* \), let \( \text{swap}(w) \) denote the string obtained from \( w \) by swapping the first and second symbols, the third and fourth symbols, and so on. For example:

\[
\text{swap}(10110001101) = 01110010011.
\]

The \( \text{swap} \) function can be formally defined as follows:

\[
\text{swap}(w) := \begin{cases} 
\epsilon & \text{if } w = \epsilon \\
w & \text{if } w = 0 \text{ or } w = 1 \\
b a \cdot \text{swap}(x) & \text{if } w = a b x \text{ for some } a, b \in \{0, 1\} \text{ and } x \in \{0, 1\}^*
\end{cases}
\]

(a) Prove by induction that \( |\text{swap}(w)| = |w| \) for every string \( w \).
(b) Prove by induction that \( \text{swap}(\text{swap}(w)) = w \) for every string \( w \).

You may assume without proof that \( |x \cdot y| = |x| + |y| \), or any other result proved in class, in lab, or in the lecture notes. Otherwise, your proofs must be formal and self-contained, and they must invoke the formal definitions of length \( |w| \), concatenation \( \cdot \), and the \( \text{swap} \) function. Do not appeal to intuition!

3. Consider the set of strings \( L \subseteq \{0, 1\}^* \) defined recursively as follows:

- The empty string \( \epsilon \) is in \( L \).
- For any string \( x \) in \( L \), the string \( 0x \) is also in \( L \).
- For any strings \( x \) and \( y \) in \( L \), the string \( 1x1y \) is also in \( L \).
- These are the only strings in \( L \).

(a) Prove that the string \( 101110101101011 \) is in \( L \).
(b) Prove that every string \( w \in L \) contains an even number of \( 1s \).
(c) Prove that every string \( w \in \{0, 1\}^* \) with an even number of \( 1s \) is a member of \( L \).

Let \( \#(a, w) \) denote the number of times symbol \( a \) appears in string \( w \); for example,

\[
\#(\epsilon, 101110101101011) = 5 \quad \text{and} \quad \#(1, 101110101101011) = 10.
\]

You may assume without proof that \( \#(a, uv) = \#(a, u) + \#(a, v) \) for any symbol \( a \) and any strings \( u \) and \( v \), or any other result proved in class, in lab, or in the lecture notes. Otherwise, your proofs must be formal and self-contained.

1
Each homework assignment will include at least one solved problem, similar to the problems assigned in that homework, together with the grading rubric we would apply if this problem appeared on a homework or exam. These model solutions illustrate our recommendations for structure, presentation, and level of detail in your homework solutions. Of course, the actual content of your solutions won’t match the model solutions, because your problems are different!

Solved Problems

4. The reversal $w^R$ of a string $w$ is defined recursively as follows:

$$w^R := \begin{cases} \varepsilon & \text{if } w = \varepsilon \\ x^R \cdot a & \text{if } w = a \cdot x \end{cases}$$

A palindrome is any string that is equal to its reversal, like AMANAPLANACANALPANAMA, RACECAR, POOP, I, and the empty string.

(a) Give a recursive definition of a palindrome over the alphabet $\Sigma$.

(b) Prove $w = w^R$ for every palindrome $w$ (according to your recursive definition).

(c) Prove that every string $w$ such that $w = w^R$ is a palindrome (according to your recursive definition).

You may assume without proof the following statements for all strings $x$, $y$, and $z$:

- Reversal reversal: $(x^R)^R = x$
- Concatenation reversal: $(x \cdot y)^R = y^R \cdot x^R$
- Right cancellation: If $x \cdot z = y \cdot z$, then $x = y$.

Solution:

(a) A string $w \in \Sigma^*$ is a palindrome if and only if either

- $w = \varepsilon$, or
- $w = a$ for some symbol $a \in \Sigma$, or
- $w = axa$ for some symbol $a \in \Sigma$ and some palindrome $x \in \Sigma^*$.

**Rubric:** 2 points $= \frac{1}{2}$ for each base case + 1 for the recursive case. No credit for the rest of the problem unless this part is correct.

(b) Let $w$ be an arbitrary palindrome.

Assume that $x = x^R$ for every palindrome $x$ such that $|x| < |w|$.

There are three cases to consider (mirroring the definition of “palindrome”):

- If $w = \varepsilon$, then $w^R = \varepsilon$ by definition, so $w = w^R$.
- If $w = a$ for some symbol $a \in \Sigma$, then $w^R = a$ by definition, so $w = w^R$.
- Finally, suppose $w = axa$ for some symbol $a \in \Sigma$ and some palindrome
In this case, we have
\[ w^R = (a \cdot x \cdot a)^R \]
\[ = (x \cdot a)^R \cdot a \quad \text{by definition of reversal} \]
\[ = a^R \cdot x^R \cdot a \quad \text{by concatenation reversal} \]
\[ = a \cdot x^R \cdot a \quad \text{by definition of reversal} \]
\[ = a \cdot x \cdot a \quad \text{by the inductive hypothesis} \]
\[ = w \quad \text{by assumption} \]

In all three cases, we conclude that \( w = w^R \). ■

**Rubric:** 4 points: standard induction rubric (scaled)

(c) Let \( w \) be an arbitrary string such that \( w = w^R \).

Assume that every string \( x \) such that \( |x| < |w| \) and \( x = x^R \) is a palindrome. There are three cases to consider (mirroring the definition of “palindrome”):

- If \( w = \varepsilon \), then \( w \) is a palindrome by definition.
- If \( w = a \) for some symbol \( a \in \Sigma \), then \( w \) is a palindrome by definition.
- Otherwise, we have \( w = ax \) for some symbol \( a \) and some non-empty string \( x \).

The definition of reversal implies that \( w^R = (ax)^R = x^Ra \).

Because \( x \) is non-empty, its reversal \( x^R \) is also non-empty.

Thus, \( x^R = by \) for some symbol \( b \) and some string \( y \).

It follows that \( w^R = bya \), and therefore \( w = (w^R)^R = (bya)^R = ay^Rb \).

*[At this point, we need to prove that \( a = b \) and that \( y \) is a palindrome.]*

Our assumption that \( w = w^R \) implies that \( bya = ay^Rb \).

The recursive definition of string equality immediately implies \( a = b \).

Because \( a = b \), we have \( w = ay^R a \) and \( w^R = aya \).

The recursive definition of string equality implies \( y^R a = ya \).

Right cancellation implies that \( y^R = y \).

The inductive hypothesis now implies that \( y \) is a palindrome.

We conclude that \( w \) is a palindrome by definition.

In all three cases, we conclude that \( w \) is a palindrome. ■

**Rubric:** 4 points: standard induction rubric (scaled).
Standard induction rubric.  For problems worth 10 points:

+ 1 for explicitly considering an arbitrary object.
+ 2 for a valid **strong** induction hypothesis
  
  – **Deadly Sin!** Automatic zero for stating a weak induction hypothesis, unless the rest of the proof is absolutely perfect.

+ 2 for explicit exhaustive case analysis
  
  – No credit here if the case analysis omits an infinite number of objects. (For example: all odd-length palindromes.)
  – −1 if the case analysis omits a finite number of objects. (For example: the empty string.)
  – −1 for making the reader infer the case conditions. Spell them out!
  – No penalty if the cases overlap (for example: even length at least 2, odd length at least 3, and length at most 5.)

+ 1 for cases that do not invoke the inductive hypothesis (“base cases”)
  
  – No credit here if one or more “base cases” are missing.

+ 2 for correctly applying the **stated** inductive hypothesis
  
  – No credit here for applying a **different** inductive hypothesis, even if that different inductive hypothesis would be valid.

+ 2 for other details in cases that invoke the inductive hypothesis (“inductive cases”)
  
  – No credit here if one or more “inductive cases” are missing.

For (sub)problems worth less than 10 points, scale and round to the nearest half-integer.
Starting with this homework, groups of up to three people can submit joint solutions. Each problem should be submitted by exactly one person, and the beginning of the homework should clearly state the Gradescope names and email addresses of each group member. In addition, whoever submits the homework must tell Gradescope who their other group members are.

1. For each of the following languages over the alphabet \( \{0, 1\} \), give a regular expression that describes that language, and briefly argue why your expression is correct.

   (a) All strings except 001.
   (b) All strings that end with the suffix 001001.
   (c) All strings that contain the substring 001.
   (d) All strings that contain the subsequence 001.
   (e) All strings that do not contain the substring 001.
   (f) All strings that do not contain the subsequence 001.

2. Let \( L \) denote the set of all strings in \( \{0, 1\}^* \) that contain all four strings 00, 01, 10, and 11 as substrings. For example, the strings 110011 and 01001011101001 are in \( L \), but the strings 00111 and 1010101 are not.

   **Formally** describe a DFA with input alphabet \( \Sigma = \{0, 1\} \) that accepts the language \( L \), by explicitly describing the states \( Q \), the start state \( s \), the accept states \( A \), and the transition function \( \delta \). Do not attempt to draw your DFA; the smallest DFA for this language has 20 states, which is too many for a drawing to be understandable.

   Argue that your machine accepts every string in \( L \) and nothing else, by explaining what each state in your DFA means. Formal descriptions without English explanations will receive no credit, even if they are correct. (See the standard DFA rubric for more details.)

   **This is an exercise in clear communication.** We are not only asking you to design a correct DFA. We are also asking you to clearly, precisely, and convincingly explain your DFA to another human being who understands DFAs but has not thought about this particular problem. Excessive formality and excessive brevity will hurt you just as much as imprecision and handwaving.
3. Let \( L \) be the set of all strings in \( \{0, 1\}^* \) that contain exactly one occurrence of the substring \( 010 \).

(a) Give a regular expression for \( L \), and briefly argue why your expression is correct.

[\textit{Hint: You may find the shorthand notation } \( A^+ = AA^* \) \textit{useful}.]

(b) Describe a DFA over the alphabet \( \Sigma = \{0, 1\} \) that accepts the language \( L \).

Argue that your machine accepts every string in \( L \) and nothing else, by explaining what each state in your DFA means. You may either draw the DFA or describe it formally, but the states \( Q \), the start state \( s \), the accepting states \( A \), and the transition function \( \delta \) must be clearly specified. Drawings or formal descriptions without English explanations will receive no credit, even if they are correct.
Solved problem

4. **C comments** are the set of strings over alphabet \( \Sigma = \{ *, /, A, \diamond, \downarrow \} \) that form a proper comment in the C program language and its descendants, like C++, and Java. Here \( \downarrow \) represents the newline character, \( \diamond \) represents any other whitespace character (like the space and tab characters), and \( A \) represents any non-whitespace character other than \( * \) or \( / \).

There are two types of C comments:

- **Line comments**: Strings of the form // \( \cdots \downarrow \)
- **Block comments**: Strings of the form /* \( \cdots \) */

Following the C99 standard, we explicitly disallow nesting comments of the same type. A line comment starts with // and ends at the first \( \downarrow \) after the opening //. A block comment starts with /* and ends at the first */ completely after the opening /*; in particular, every block comment has at least two *s. For example, each of the following strings is a valid C comment:

```plaintext
/***/ // \diamond // /* */ /* */
```

On the other hand, none of the following strings is a valid C comment:

```plaintext
/*/ // */ // // */
```

(a) Describe a regular expression for the set of all C comments.

**Solution:**

```plaintext
/(/+/+A+\diamond)*\downarrow + /* ( /+/+A+\diamond + ***(A+\diamond+\downarrow) )* */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ */ *"} or by the closing slash of the comment.

---

1. The actual C commenting syntax is considerably more complex than described here, because of character and string literals.
   - The opening /* or // of a comment must not be inside a string literal ("\cdots") or a (multi-)character literal (\'\cdots\').
   - The opening double-quote of a string literal must not be inside a character literal (\'\"\') or a comment.
   - The closing double-quote of a string literal must not be escaped (\")
   - The opening single-quote of a character literal must not be inside a string literal (\"\"\"\") or a comment.
   - The closing single-quote of a character literal must not be escaped (\")
   - A backslash escapes the next symbol if and only if it is not itself escaped (\"\") or inside a comment.

For example, the string "/*\"\"\"*/\"\"*/ is a valid string literal (representing the 5-character string /*\"\"\"/, which is itself a valid block comment) followed immediately by a valid block comment. For this homework question, just pretend that the characters \', " and \ don't exist.

Commenting in C++ is even more complicated, thanks to the addition of raw string literals. Don't ask.

Some C and C++ compilers do support nested block comments, in violation of the language specification. A few other languages, like OCaml, explicitly allow nesting block comments.
(b) Describe a regular expression for the set of all strings composed entirely of blanks ($\diamond$), newlines ($\uparrow$), and C comments.

**Solution:**

\[(\diamond + \uparrow + / (/ + * + A + \diamond)^{*} \uparrow + */ (/ + A + \diamond + \uparrow + **(A + \diamond + \uparrow))^{**} /)^{*}\]

This regular expression has the form \((\text{whitespace} + \text{(comment)})^{*}\), where \(\text{whitespace}\) is the regular expression \(\diamond + \uparrow\) and \(\text{(comment)}\) is the regular expression from part (a).

(c) Describe a DFA that accepts the set of all C comments.

**Solution:** The following eight-state DFA recognizes the language of C comments. All missing transitions lead to a hidden reject state.

![DFA Diagram]

The states are labeled mnemonically as follows:

- **s** — We have not read anything.
- **/** — We just read the initial /*.
- /** — We are reading a line comment.
- **L** — We have just read a complete line comment.
- /*** — We are reading a block comment, and we did not just read a * after the opening /*.
- /**** — We are reading a block comment, and we just read a * after the opening /*.
- **B** — We have just read a complete block comment.
(d) Describe a DFA that accepts the set of all strings composed entirely of blanks (\(\Diamond\)), newlines (\(\|^\)), and C comments.

**Solution:** By merging the accepting states of the previous DFA with the start state and adding white-space transitions at the start state, we obtain the following six-state DFA. Again, all missing transitions lead to a hidden reject state.

![Diagram of DFA](image)

The states are labeled mnemonically as follows:
- **s** — We are between comments.
- **/** — We just read the initial / of a comment.
- **//** — We are reading a line comment.
- **/*** — We are reading a block comment, and we did not just read a * after the opening /*.
- **/** — We are reading a block comment, and we just read a * after the opening /*.

**Rubric:** Standard DFA design rubric
Standard regular expression rubric. For problems worth 10 points:

- 2 points for a syntactically correct regular expression.
- **Homework only:** 4 points for a brief English explanation of your regular expression. This is how you argue that your regular expression is correct.
  - **Deadly Sin (“Declare your variables.”): No credit for the problem if the English explanation is missing, even if the regular expression is correct.**
  - For longer expressions, you should explain each of the major components of your expression, and separately explain how those components fit together.
  - We do not want a transcription; don’t just translate the regular-expression notation into English.
- 4 points for correctness. (8 points on exams, with all penalties doubled)
  - −1 for a single mistake: one typo, excluding exactly one string in the target language, or including exactly one string not in the target language.
  - −2 for incorrectly including/excluding more than one but a finite number of strings.
  - −4 for incorrectly including/excluding an infinite number of strings.
- Regular expressions that are longer than necessary may be penalized. Regular expressions that are significantly longer than necessary may get no credit at all.

Standard DFA design rubric. For problems worth 10 points:

- 2 points for an unambiguous description of a DFA, including the states set Q, the start state s, the accepting states A, and the transition function .
  - **For drawings:** Use an arrow from nowhere to indicate s, and doubled circles to indicate accepting states A. If A = , say so explicitly. If your drawing omits a reject state, say so explicitly. **Draw neatly!** If we can't read your solution, we can't give you credit for it.
  - **For text descriptions:** You can describe the transition function either using a 2d array, using mathematical notation, or using an algorithm.
  - **For product constructions:** You must give a complete description of the states and transition functions of the DFAs you are combining (as either drawings or text), together with the accepting states of the product DFA.
- **Homework only:** 4 points for briefly and correctly explaining the purpose of each state in English. This is how you justify that your DFA is correct.
  - **Deadly Sin (“Declare your variables.”): No credit for the problem if the English description is missing, even if the DFA is correct.**
- 4 points for correctness. (8 points on exams, with all penalties doubled)
  - −1 for a single mistake: a single misdirected transition, a single missing or extra accept state, rejecting exactly one string that should be accepted, or accepting exactly one string that should be accepted.
  - −2 for incorrectly accepting/rejecting more than one but a finite number of strings.
  - −4 for incorrectly accepting/rejecting an infinite number of strings.
- DFA drawings with too many states may be penalized. DFA drawings with significantly too many states may get no credit at all.
- Half credit for describing an NFA when the problem asks for a DFA.
1. Prove that the following languages are not regular.

(a) \(\{0^a 1 0^a 1 0^c \mid a + b = c\}\)
(b) \(\{w \in (0 + 1)^* \mid #(0, w) \leq 2 \cdot #(1, w)\}\)
(c) \(\{0^m 1^n \mid m + n > 0 \text{ and } \gcd(m, n) = 1\}\)

Here \(\gcd(m, n)\) denotes the greatest common divisor of \(m\) and \(n\): the largest integer \(d\) such that both \(m/d\) and \(n/d\) are integers. In particular, \(\gcd(1, n) = 1\) and \(\gcd(0, n) = n\) for every positive integer \(n\).

2. For each of the following regular expressions, describe or draw two finite-state machines:

- An NFA that accepts the same language, constructed from the given regular expression using Thompson’s algorithm (described in class and in the notes).
- An equivalent DFA, constructed from your NFA using the incremental subset algorithm (described in class and in the notes). For each state in your DFA, identify the corresponding subset of states in your NFA. Your DFA should have no unreachable states.

(a) \((0 + 1)^* \cdot 0001 \cdot (0 + 1)^*\)
(b) \((1 + 01 + 001)^* 0^*\)

3. For each of the following languages over the alphabet \(\Sigma = \{0, 1\}\), either prove that the language is regular (by constructing an appropriate DFA, NFA, or regular expression) or prove that the language is not regular (by constructing an infinite fooling set). Recall that \(\Sigma^+\) denotes the set of all nonempty strings over \(\Sigma\).

(a) Strings in which the substrings 00 and 11 do not appear the same number of times. For example, \(1100011 \notin L\) because both substrings appear twice, but \(0100011 \in L\).
(b) Strings in which the substrings 01 and 10 do not appear the same number of times. For example, \(1100011 \notin L\) because both substrings appear twice, but \(0100011 \in L\).
(c) \(\{wxw \mid w, x \in \Sigma^*\}\)
(d) \(\{wxw \mid w, x \in \Sigma^+\}\)

[Hint: Exactly two of these languages are regular. Strings can be empty.]
Solved problem

4. For each of the following languages, either prove that the language is regular (by constructing an appropriate DFA, NFA, or regular expression) or prove that the language is not regular (by constructing an infinite fooling set).

Recall that a palindrome is a string that equals its own reversal: $w = w^R$. Every string of length 0 or 1 is a palindrome.

(a) Strings in $(\{0, 1\}^+ in which no prefix of length at least 2 is a palindrome.

**Solution:** Regular: $\epsilon + 01^* + 10^*$. Call this language $L_a$.

Let $w$ be an arbitrary non-empty string in $(\{0, 1\}^*$. Without loss of generality, assume $w = 0x$ for some string $x$. There are two cases to consider.

- If $x$ contains a 0, then we can write $w = 01^n0y$ for some integer $n$ and some string $y$; but this is impossible, because the prefix $01^n0$ is a palindrome of length at least 2.
- Otherwise, $x = 1^n$ for some integer $n$. Every prefix of $w$ has the form $01^m$ for some integer $m \leq n$. Any palindrome that starts with 0 must end with 0, so the only palindrome prefixes of $w$ are $\epsilon$ and 0, both of which have length less than 2.

We conclude that $0x \in L_a$ if and only if $x \in 1^*$. A similar argument implies that $1x \in L_a$ if and only if $x \in 0^*$. Finally, trivially, $\epsilon \in L_a$.

**Rubric:** 2½ points = ½ for “regular” + 1 for regular expression + 1 for justification. This is more detail than necessary for full credit.

(b) Strings in $(\{0, 1, 2\}^*$ in which no prefix of length at least 2 is a palindrome.

**Solution:** Not regular. Call this language $L_b$.

I claim that the infinite language $F = (\{012\}^*$ is a fooling set for $L_b$.

Let $x$ and $y$ be arbitrary distinct strings in $F$.

Then $x = (\{012\}^i$ and $y = (\{012\}^j$ for some positive integers $i \neq j$.

Without loss of generality, assume $i < j$.

Let $z$ be the suffix $(210)^i$.

- $xz = (\{012\}^i(210)^i$ is a palindrome of length $6i \geq 2$, so $xz \notin L_b$.
- $yz = (\{012\}^j(210)^i$ has no palindrome prefixes except $\epsilon$ and 0, because $i < j$, so $yz \in L_b$.

We conclude that $F$ is a fooling set for $L_b$, as claimed.

Because $F$ is infinite, $L_b$ cannot be regular.

**Rubric:** 2½ points = ½ for “not regular” + 2 for fooling set proof (standard rubric, scaled).
(c) Strings in \((0 + 1)^*\) in which no prefix of length at least 3 is a palindrome.

**Solution: Not regular.** Call this language \(L_c\).

I claim that the infinite language \(F = (001101)^+\) is a fooling set for \(L_c\).

Let \(x\) and \(y\) be arbitrary distinct strings in \(F\).

Then \(x = (001101)^i\) and \(y = (001101)^j\) for some positive integers \(i \neq j\).

Without loss of generality, assume \(i < j\).

Let \(z\) be the suffix \((101100)^i\).

- \(xz = (001101)^i(101100)^i\) is a palindrome of length \(12i \geq 2\), so \(xz \notin L_b\).
- \(yz = (001101)^j(101100)^i\) has no palindrome prefixes except \(\epsilon\) and \(0\), because \(i < j\), so \(yz \in L_b\).

We conclude that \(F\) is a fooling set for \(L_c\), as claimed.

Because \(F\) is infinite, \(L_c\) cannot be regular.

**Rubric:** 2½ points = ½ for “not regular” + 2 for fooling set proof (standard rubric, scaled).

(d) Strings in \((0 + 1)^*\) in which no substring of length at least 3 is a palindrome.

**Solution: Regular.** Call this language \(L_d\).

Every palindrome of length at least 3 contains a palindrome substring of length 3 or 4. Thus, the complement language \(\overline{L_d}\) is described by the regular expression

\[
(0 + 1)^*(000 + 010 + 101 + 111 + 0110 + 1001)(0 + 1)^*
\]

Thus, \(\overline{L_d}\) is regular, so its complement \(L_d\) is also regular.

**Solution: Regular.** Call this language \(L_d\).

In fact, \(L_d\) is finite! Appending either \(0\) or \(1\) to any of the underlined strings creates a palindrome suffix of length 3 or 4.

\[
\epsilon + 0 + 1 + 00 + 01 + 10 + 11 + 001 + 011 + 100 + 110 + 0011 + 1100
\]

**Rubric:** 2½ points = ½ for “regular” + 2 for proof:

- 1 for expression for \(\overline{L_d}\) + 1 for applying closure
- 1 for regular expression + 1 for justification
Standard fooling set rubric. For problems worth 5 points:

- 2 points for the fooling set:
  + 1 for explicitly describing the proposed fooling set $F$.
  + 1 if the proposed set $F$ is actually a fooling set for the target language.
    - No credit for the proof if the proposed set is not a fooling set.
    - No credit for the problem if the proposed set is finite.

- 3 points for the proof:
  - The proof must correctly consider arbitrary strings $x, y \in F$.
    - No credit for the proof unless both $x$ and $y$ are always in $F$.
    - No credit for the proof unless $x$ and $y$ can be any strings in $F$.
  + 1 for correctly describing a suffix $z$ that distinguishes $x$ and $y$.
  + 1 for proving either $xz \in L$ or $yz \in L$.
  + 1 for proving either $yz \notin L$ or $xz \notin L$, respectively.

As usual, scale partial credit (rounded to nearest ½) for problems worth fewer points.
1. Describe context-free grammars for the following languages over the alphabet \( \Sigma = \{0, 1\} \).
For each non-terminal in your grammars, describe in English the language generated by that non-terminal.

(a) \( \{0^a10^b10^c \mid a + b = c\} \)
(b) \( \{w \in (0 + 1)^* \mid \#(0, w) \leq 2 \cdot \#(1, w)\} \)
(c) Strings in which the substrings \( 00 \) and \( 11 \) appear the same number of times. For example, \( 110011 \in L \) because both substrings appear twice, but \( 0100011 \notin L \).
   \( \text{Hint: This is the complement of the language you considered in HW2.} \)

2. Let \( \text{inc}: \{0, 1\}^* \rightarrow \{0, 1\}^* \) denote the increment function, which transforms the binary representation of an arbitrary integer \( n \) into the binary representation of \( n + 1 \), truncated to the same number of bits. For example:

\[
\begin{align*}
\text{inc}(0010) &= 0011 \\
\text{inc}(0111) &= 1000 \\
\text{inc}(1111) &= 0000 \\
\text{inc}(\varepsilon) &= \varepsilon
\end{align*}
\]

Let \( L \subseteq \{0, 1\}^* \) be an arbitrary regular language. Prove that \( \text{inc}(L) = \{\text{inc}(w) \mid w \in L\} \) is also regular.

3. A shuffle of two strings \( x \) and \( y \) is any string obtained by interleaving the symbols in \( x \) and \( y \), but keeping them in the same order. For example, the following strings are shuffles of \( \text{HOGWARTS} \) and \( \text{BRAKEBILLS} \):

\[
\text{HOGWARTSBRAKEBILLS} \quad \text{HOBRAKEWARTSILLS} \quad \text{BHROAGKWEABRITLSLS}
\]

More formally, a string \( z \) is a shuffle of strings \( x \) and \( y \) if and only if (at least) one of the following conditions holds:

- \( x = \varepsilon \) and \( z = y \)
- \( y = \varepsilon \) and \( z = x \)
- \( x = ax' \) and \( z = az' \) where \( z' \) is a shuffle of \( x' \) and \( y \)
- \( y = ay' \) and \( z = az' \) where \( z' \) is a shuffle of \( x \) and \( y' \)

For any two languages \( L \) and \( L' \) over the alphabet \( \{0, 1\} \), define

\[
\text{shuffles}(L, L') = \{z \in \{0, 1\}^* \mid z \text{ is a shuffle of some } x \in L \text{ and } y \in L'\}
\]

Prove that if \( L \) and \( L' \) are regular languages, then \( \text{shuffles}(L, L') \) is also a regular language.
Solved problem

4. (a) Fix an arbitrary regular language $L$. Prove that the language $\text{half}(L) := \{w \mid ww \in L\}$ is also regular.

Solution: Let $M = (\Sigma, Q, s, A, \delta)$ be an arbitrary DFA that accepts $L$. We define a new NFA $M' = (\Sigma, Q', s', A', \delta')$ with $\varepsilon$-transitions that accepts $\text{half}(L)$, as follows:

- $Q' = (Q \times Q \times Q) \cup \{s'\}$
- $s'$ is an explicit state in $Q'$
- $A' = \{(h, h, q) \mid h \in Q \text{ and } q \in A\}$
- $\delta'(s', \varepsilon) = \{(s, h, h) \mid h \in Q\}$
- $\delta'(s', a) = \emptyset$
- $\delta'((p, h, q), \varepsilon) = \emptyset$
- $\delta'((p, h, q), a) = \{(\delta(p, a), h, \delta(q, a))\}$

$M'$ reads its input string $w$ and simulates $M$ reading the input string $ww$. Specifically, $M'$ simultaneously simulates two copies of $M$, one reading the left half of $ww$ starting at the usual start state $s$, and the other reading the right half of $ww$ starting at some intermediate state $h$.

- The new start state $s'$ non-deterministically guesses the “halfway” state $h = \delta^*(s, w)$ without reading any input; this is the only non-determinism in $M'$.
- State $(p, h, q)$ means the following:
  - The left copy of $M$ (which started at state $s$) is now in state $p$.
  - The initial guess for the halfway state is $h$.
  - The right copy of $M$ (which started at state $h$) is now in state $q$.
- $M'$ accepts if and only if the left copy of $M$ ends at state $h$ (so the initial non-deterministic guess $h = \delta^*(s, w)$ was correct) and the right copy of $M$ ends in an accepting state.

Solution (smartass): A complete solution is given in the lecture notes.

Rubric: 5 points: standard language transformation rubric (scaled). Yes, the smartass solution would be worth full credit.
(b) Describe a regular language \( L \) such that the language \( \text{double}(L) := \{ww \mid w \in L\} \) is not regular. Prove your answer is correct.

**Solution:** Consider the regular language \( L = 0^* 1 \).

Expanding the regular expression lets us rewrite \( L = \{0^n 1^n \mid n \geq 0\} \). It follows that \( \text{double}(L) = \{0^n 1^0 1^1 \mid n \geq 0\} \). I claim that this language is not regular. Let \( x \) and \( y \) be arbitrary distinct strings in \( L \).

Then \( x = 0^i 1 \) and \( y = 0^j 1 \) for some integers \( i \neq j \).

Then \( x \) is a distinguishing suffix of these two strings, because

- \( xx \in \text{double}(L) \) by definition, but
- \( yx = 0^i 1^0 1^j \notin \text{double}(L) \) because \( i \neq j \).

We conclude that \( L \) is a fooling set for \( \text{double}(L) \).

Because \( L \) is infinite, \( \text{double}(L) \) cannot be regular. ■

**Solution:** Consider the regular language \( L = \Sigma^* = (0 + 1)^* \).

I claim that the language \( \text{double}(\Sigma^*) = \{ww \mid w \in \Sigma^*\} \) is not regular.

Let \( F \) be the infinite language \( 01^* 0 \).

Let \( x \) and \( y \) be arbitrary distinct strings in \( F \).

Then \( x = 01^i 0 \) and \( y = 01^j 0 \) for some integers \( i \neq j \).

The string \( z = 1^i \) is a distinguishing suffix of these two strings, because

- \( xz = 01^i 01^i = ww \) where \( w = 01^i \), so \( xz \in \text{double}(\Sigma^*) \), but
- \( yx = 01^j 01^i \notin \text{double}(\Sigma^*) \) because \( i \neq j \).

We conclude that \( F \) is a fooling set for \( \text{double}(\Sigma^*) \).

Because \( F \) is infinite, \( \text{double}(\Sigma^*) \) cannot be regular. ■

**Rubric:** 5 points:

- 2 points for describing a regular language \( L \) such that \( \text{double}(L) \) is not regular.
- 1 point for describing an infinite fooling set for \( \text{double}(L) \):
  - \( \frac{1}{2} \) for explicitly describing the proposed fooling set \( F \).
  - \( \frac{1}{2} \) if the proposed set \( F \) is actually a fooling set.
  - No credit for the proof if the proposed set is not a fooling set.
  - No credit for the problem if the proposed set is finite.
- 2 points for the proof:
  - \( \frac{1}{2} \) for correctly considering arbitrary strings \( x \) and \( y \)
  - No credit for the proof unless both \( x \) and \( y \) are always in \( F \).
  - No credit for the proof unless both \( x \) and \( y \) can be any string in \( F \).
  - \( \frac{1}{2} \) for correctly stating a suffix \( z \) that distinguishes \( x \) and \( y \).
  - \( \frac{1}{2} \) for proving either \( xz \in L \) or \( yz \in L \).
  - \( \frac{1}{2} \) for proving either \( yz \notin L \) or \( xz \notin L \), respectively.

These are not the only correct solutions. These are not the only fooling sets for these languages.
**Standard language transformation rubric.** For problems worth 10 points:

- + 2 for a formal, complete, and unambiguous description of the output automaton, including the states, the start state, the accepting states, and the transition function, as functions of an arbitrary input DFA. The description must state whether the output automaton is a DFA, an NFA without ε-transitions, or an NFA with ε-transitions.
  - No points for the rest of the problem if this is missing.
- + 2 for a brief English explanation of the output automaton. We explicitly do not want a formal proof of correctness, or an English transcription, but a few sentences explaining how your machine works and justifying its correctness. What is the overall idea? What do the states represent? What is the transition function doing? Why these accepting states?
  - **Deadly Sin:** No points for the rest of the problem if this is missing.
- + 6 for correctness
  - + 3 for accepting all strings in the target language
  - + 3 for accepting only strings in the target language
  - 1 for a single mistake in the formal description (for example a typo)
  - Double-check correctness when the input language is ∅, or {ε}, or 0*, or Σ*.
1. At the end of the second act of the action blockbuster *Fast and Impossible XIII½: Guardians of Expendable Justice Reloaded*, the villainous Dr. Metaphor hypnotizes the entire Hero League/Force/Squad, arranges them in a long line at the edge of a cliff, and instructs each hero to shoot the closest taller heroes to their left and right, at a prearranged signal.

Suppose we are given the heights of all \( n \) heroes, in clockwise order around the circle, in an array \( Ht[1..n] \). (To avoid salary arguments, the producers insisted that no two heroes have the same height.) Then we can compute the Left and Right targets of each hero in \( O(n^2) \) time using the following algorithm.

```plaintext
WHO_TARGETS_WHOM(Ht[1..n]):
for j ← 1 to n
   ((Find the left target \( L[j] \) for hero \( j \))
   \( L[j] \) ← None
for i ← 1 to \( j - 1 \)
   if \( Ht[i] > Ht[j] \)
      \( L[j] \) ← i
   ((Find the right target \( R[j] \) for hero \( j \))
   \( R[j] \) ← None
for k ← n down to \( j + 1 \)
   if \( Ht[k] > Ht[j] \)
      \( R[j] \) ← k
return \( L[1..n] \), \( R[1..n] \)
```

(a) Describe a divide-and-conquer algorithm that computes the output of `WHO_TARGETS_WHOM` in \( O(n \log n) \) time.

(b) Prove that at least \( \lfloor n/2 \rfloor \) of the \( n \) heroes are targets. That is, prove that the output arrays \( R[0..n-1] \) and \( L[0..n-1] \) contain at least \( \lfloor n/2 \rfloor \) distinct values (other than None).

(c) Alas, Dr. Metaphor’s diabolical plan is successful. At the prearranged signal, all the heroes simultaneously shoot their targets, and all targets fall over the cliff, apparently dead. Metaphor repeats his dastardly experiment over and over; after each massacre, he forces the remaining heroes to choose new targets, following the same algorithm, and then shoot their targets at the next signal. Eventually, only the shortest member of the Hero Crew/Alliance/Posse is left alive.\(^1\)

Describe an algorithm that computes the number of rounds before Dr. Metaphor’s deadly process finally ends. For full credit, your algorithm should run in \( O(n) \) time.

---

\(^1\)In the thrilling final act, Retcon the Squirrel, the last surviving member of the Hero Team/Group/Society, saves everyone by traveling back in time and retroactively replacing the other \( n - 1 \) heroes with lifelike balloon sculptures.
2. Describe and analyze a recursive algorithm to reconstruct an arbitrary binary tree, given its preorder and inorder node sequences as input.

The input to your algorithm is a pair of arrays \( \text{Pre}[1..n] \) and \( \text{In}[1..n] \), each containing a permutation of the same set of \( n \) distinct symbols. Your algorithm should return an \( n \)-node binary tree whose nodes are labeled with those \( n \) symbols (or an error code if no binary tree is consistent with the input arrays). You solved an instance of this problem in Homework 0.

3. Suppose we are given a set \( S \) of \( n \) items, each with a \textit{value} and a \textit{weight}. For any element \( x \in S \), we define two subsets:

- \( S_{<x} \) is the set of all elements of \( S \) whose value is smaller than the value of \( x \).
- \( S_{>x} \) is the set of all elements of \( S \) whose value is larger than the value of \( x \).

For any subset \( R \subseteq S \), let \( w(R) \) denote the sum of the weights of elements in \( R \). The \textit{weighted median} of \( R \) is any element \( x \) such that \( w(S_{<x}) \leq w(S)/2 \) and \( w(S_{>x}) \leq w(S)/2 \).

Describe and analyze an algorithm to compute the weighted median of a given weighted set in \( O(n) \) time. Your input consists of two unsorted arrays \( S[1..n] \) and \( W[1..n] \), where for each index \( i \), the \textit{i}th element has value \( S[i] \) and weight \( W[i] \). You may assume that all values are distinct and all weights are positive.

\[ \text{[Hint: Use or modify the linear-time selection algorithm described in class on Thursday.]} \]
Solved problem

4. Suppose we are given two sets of \( n \) points, one set \( \{p_1, p_2, \ldots, p_n\} \) on the line \( y = 0 \) and the other set \( \{q_1, q_2, \ldots, q_n\} \) on the line \( y = 1 \). Consider the \( n \) line segments connecting each point \( p_i \) to the corresponding point \( q_i \). Describe and analyze a divide-and-conquer algorithm to determine how many pairs of these line segments intersect, in \( O(n \log n) \) time. See the example below.

Seven segments with endpoints on parallel lines, with 11 intersecting pairs.

Your input consists of two arrays \( P[1..n] \) and \( Q[1..n] \) of \( x \)-coordinates; you may assume that all \( 2n \) of these numbers are distinct. No proof of correctness is necessary, but you should justify the running time.

Solution: We begin by sorting the array \( P[1..n] \) and permuting the array \( Q[1..n] \) to maintain correspondence between endpoints, in \( O(n \log n) \) time. Then for any indices \( i < j \), segments \( i \) and \( j \) intersect if and only if \( Q[i] > Q[j] \). Thus, our goal is to compute the number of pairs of indices \( i < j \) such that \( Q[i] > Q[j] \). Such a pair is called an inversion.

We count the number of inversions in \( Q \) using the following extension of mergesort; as a side effect, this algorithm also sorts \( Q \). If \( n < 100 \), we use brute force in \( O(1) \) time. Otherwise:

- Color the elements in the Left half \( Q[1..\lfloor n/2 \rfloor] \) blue.
- Color the elements in the Right half \( Q[\lfloor n/2 \rfloor + 1..n] \) red.
- Recursively count inversions in (and sort) the blue subarray \( Q[1..\lfloor n/2 \rfloor] \).
- Recursively count inversions in (and sort) the red subarray \( Q[\lfloor n/2 \rfloor + 1..n] \).
- Count red/blue inversions as follows:
  - MERGE the sorted subarrays \( Q[1..n/2] \) and \( Q[n/2 + 1..n] \), maintaining the element colors.
  - For each blue element \( Q[i] \) of the now-sorted array \( Q[1..n] \), count the number of smaller red elements \( Q[j] \).

The last substep can be performed in \( O(n) \) time using a simple for-loop:
Merge and CountRedBlue each run in $O(n)$ time. Thus, the running time of our inversion-counting algorithm obeys the mergesort recurrence $T(n) = 2T(n/2) + O(n)$. (We can safely ignore the floors and ceilings in the recursive arguments.) We conclude that the overall running time of our algorithm is $O(n \log n)$, as required.

**Rubric:** This is enough for full credit.

In fact, we can execute the third merge-and-count step directly by modifying the Merge algorithm, without any need for “colors”. Here changes to the standard Merge algorithm are indicated in red.

We can further optimize MergeAndCount by observing that count is always equal to $j - m - 1$, so we don’t need an additional variable. (Proof: Initially, $j = m + 1$ and count = 0, and we always increment $j$ and count together.)
**MERGEANDCOUNT2**(*A[1...n], m)*:

\[
i \leftarrow 1; \quad j \leftarrow m + 1; \quad \text{total} \leftarrow 0
\]

for \( k \leftarrow 1 \) to \( n \)

if \( j > n \)

\[B[k] \leftarrow A[i]; \quad i \leftarrow i + 1; \quad \text{total} \leftarrow \text{total} + j - m - 1\]

else if \( i > m \)

\[B[k] \leftarrow A[j]; \quad j \leftarrow j + 1\]


\[B[k] \leftarrow A[i]; \quad i \leftarrow i + 1; \quad \text{total} \leftarrow \text{total} + j - m - 1\]

else

\[B[k] \leftarrow A[j]; \quad j \leftarrow j + 1\]

for \( k \leftarrow 1 \) to \( n \)

\[A[k] \leftarrow B[k]\]

return \( \text{total} \)

**MERGEANDCOUNT2** still runs in \( O(n) \) time, so the overall running time is still \( O(n \log n) \), as required.

---

**Rubric**: 10 points = 2 for base case + 3 for divide (split and recurse) + 3 for conquer (merge and count) + 2 for time analysis. Max 3 points for a correct \( O(n^2) \)-time algorithm. This is neither the only way to correctly describe this algorithm nor the only correct \( O(n \log n) \)-time algorithm. No proof of correctness is required.

Notice that each boxed algorithm is preceded by an English description of the task that algorithm performs. **Omitting these descriptions is a Deadly Sin.**
1. It’s almost time to show off your flippin’ sweet dancing skills! Tomorrow is the big dance contest you’ve been training for your entire life, except for that summer you spent with your uncle in Alaska hunting wolverines. You’ve obtained an advance copy of the list of $n$ songs that the judges will play during the contest, in chronological order.

You know all the songs, all the judges, and your own dancing ability extremely well. For each integer $k$, you know that if you dance to the $k$th song on the schedule, you will be awarded exactly $\text{Score}[k]$ points, but then you will be physically unable to dance for the next $\text{Wait}[k]$ songs (that is, you cannot dance to songs $k+1$ through $k+\text{Wait}[k]$). The dancer with the highest total score at the end of the night wins the contest, so you want your total score to be as high as possible.

Describe and analyze an efficient algorithm to compute the maximum total score you can achieve. The input to your sweet algorithm is the pair of arrays $\text{Score}[1..n]$ and $\text{Wait}[1..n]$.

2. Suppose you are given a NFA $M = (\{0, 1\}, Q, s, A, \delta)$ and a binary string $w \in \{0, 1\}^*$. Describe and analyze an efficient algorithm to determine whether $M$ accepts $w$. Concretely, the input NFA $M$ is represented as follows:

- $Q = \{1, 2, \ldots, k\}$ for some integer $k$.
- The start state $s$ is state 1.
- Accepting states are indicated by a boolean array $A[1..k]$, where $A[q] = \text{True}$ if and only if $q \in A$.
- The transition function $\delta$ is represented by a boolean array $\text{inDelta}[1..k, \emptyset..1, 1..k]$, where $\text{inDelta}[p, a, q] = \text{True}$ if and only if $q \in \delta(p, a)$.

Finally, the input string is given as an array $w[1..n]$. Your algorithm should return $\text{True}$ if $M$ accepts $w$, and $\text{False}$ if $M$ does not accept $w$. Report the running time of your algorithm as a function of $k$ (the number of states in $M$) and $n$ (the length of $w$). [Hint: Do not convert $M$ to a DFA!!]
3. Recall that a **palindrome** is any string that is exactly the same as its reversal, like the empty string, or \( I \), or **DEED**, or **RACECAR**, or **AMANAPLANACATACANALPANAMA**.

Any string can be decomposed into a sequence of palindromes. For example, the string **BUBBASEESABANANA** ("Bubba sees a banana.") can be broken into non-empty palindromes in the following ways (and 65 others):

\[
\begin{align*}
&\text{BUB} \cdot \text{BASEESAB} \cdot \text{ANANA} \\
&\text{B} \cdot \text{U} \cdot \text{BB} \cdot \text{ASEESA} \cdot \text{B} \cdot \text{ANANA} \\
&\text{BUB} \cdot \text{B} \cdot \text{A} \cdot \text{SEES} \cdot \text{ABA} \cdot \text{N} \cdot \text{ANA} \\
&\text{B} \cdot \text{U} \cdot \text{BB} \cdot \text{A} \cdot \text{S} \cdot \text{EE} \cdot \text{S} \cdot \text{A} \cdot \text{B} \cdot \text{A} \cdot \text{NAN} \cdot \text{A} \\
&\text{B} \cdot \text{U} \cdot \text{B} \cdot \text{B} \cdot \text{A} \cdot \text{S} \cdot \text{EE} \cdot \text{S} \cdot \text{A} \cdot \text{B} \cdot \text{A} \cdot \text{N} \cdot \text{A} \cdot \text{N} \cdot \text{A}
\end{align*}
\]

(a) Describe and analyze an efficient algorithm to find the smallest number of palindromes that make up a given input string. For example:

- Given the string **PALINDROME**, your algorithm should return the integer 10.
- Given the string **BUBBASEESABANANA**, your algorithm should return the integer 3.
- Given the string **RACECAR**, your algorithm should return the integer 1.

(b) A **metapalindrome** is a decomposition of a string into a sequence of non-empty palindromes, such that the sequence of palindrome lengths is itself a palindrome. For example, the decomposition

\[
\begin{align*}
&\text{BUB} \cdot \text{B} \cdot \text{ALA} \cdot \text{SEES} \cdot \text{ABA} \cdot \text{N} \cdot \text{ANA}
\end{align*}
\]

is a metapalindrome for the string **BUBBALASEESABANANA**, with the palindromic length sequence \((3, 1, 3, 4, 3, 1, 3)\). Describe and analyze an efficient algorithm to find the length of the shortest metapalindrome for a given string. For example:

- Given the string **BUBBALASEESABANANA**, your algorithm should return the integer 7.
- Given the string **PALINDROME**, your algorithm should return the integer 10.
- Given the string **DEPOPED**, your algorithm should return the integer 1.
Solved Problem

4. A shuffle of two strings X and Y is formed by interspersing the characters into a new string, keeping the characters of X and Y in the same order. For example, the string BANANAANANAS is a shuffle of the strings BANANA and ANANAS in several different ways.

\[
\begin{align*}
\text{BANANA} & \quad \text{ANANAS} \\
\text{BAN}_{\text{AANANANA}} & \quad \text{S}
\end{align*}
\]

Similarly, the strings PRODGYRNAMMIINCG and DYPRONGARMAMMICING are both shuffles of DYNAMIC and PROGRAMMING:

\[
\begin{align*}
\text{PR}_\text{O}\text{DGYRNAMMIINCG} & \quad \text{DYPRONGARMAMMICING}
\end{align*}
\]

Given three strings \(A[1..m]\), \(B[1..n]\), and \(C[1..m+n]\), describe and analyze an algorithm to determine whether \(C\) is a shuffle of \(A\) and \(B\).

**Solution:** We define a boolean function \(Shuf(i, j)\), which is \(\text{True}\) if and only if the prefix \(C[1..i+j]\) is a shuffle of the prefixes \(A[1..i]\) and \(B[1..j]\). This function satisfies the following recurrence:

\[
Shuf(i, j) = \begin{cases} 
\text{True} & \text{if } i = j = 0 \\
Shuf(0, j - 1) \land (B[j] = C[j]) & \text{if } i = 0 \text{ and } j > 0 \\
Shuf(i - 1, 0) \land (A[i] = C[i]) & \text{if } i > 0 \text{ and } j = 0 \\
(Shuf(i - 1, j) \land (A[i] = C[i+j])) \lor (Shuf(i, j - 1) \land (B[j] = C[i+j])) & \text{if } i > 0 \text{ and } j > 0
\end{cases}
\]

We need to compute \(Shuf(m, n)\).

We can memoize all function values into a two-dimensional array \(Shuf[0..m][0..n]\). Each array entry \(Shuf[i, j]\) depends only on the entries immediately below and immediately to the right: \(Shuf[i - 1, j]\) and \(Shuf[i, j - 1]\). Thus, we can fill the array in standard row-major order. The original recurrence gives us the following pseudocode:

```plaintext
SHUFFLE?(A[1..m], B[1..n], C[1..m+n]):
    Shuf[0,0] ← True
    for j ← 1 to n
        Shuf[0,j] ← Shuf[0,j-1] ∧ (B[j] = C[j])
    for i ← 1 to m
        Shuf[i,0] ← Shuf[i-1,0] ∧ (A[i] = B[i])
        for j ← 1 to n
            Shuf[i,j] ← False
            if A[i] = C[i+j]
                Shuf[i,j] ← Shuf[i,j] ∨ Shuf[i-1,j]
            if B[i] = C[i+j]
                Shuf[i,j] ← Shuf[i,j] ∨ Shuf[i,j-1]
    return Shuf[m,n]
```

The algorithm runs in \(O(mn)\) time.
Rubric: Max 10 points: Standard dynamic programming rubric. No proofs required. Max 7 points for a slower polynomial-time algorithm; scale partial credit accordingly.

Standard dynamic programming rubric. For problems worth 10 points:

- 6 points for a correct recurrence, described either using mathematical notation or as pseudocode for a recursive algorithm.
  - 1 point for a clear English description of the function you are trying to evaluate. (Otherwise, we don’t even know what you’re trying to do.) **Deadly Sin: Automatic zero if the English description is missing.**
  - 1 point for stating how to call your function to get the final answer.
  - 1 point for base case(s). \(-\frac{1}{2}\) for one minor bug, like a typo or an off-by-one error.
  - 3 points for recursive case(s). \(-1\) for each minor bug, like a typo or an off-by-one error. **No credit for the rest of the problem if the recursive case(s) are incorrect.**

- 4 points for details of the dynamic programming algorithm
  - 1 point for describing the memoization data structure
  - 2 points for describing a correct evaluation order; a clear picture is usually sufficient. If you use nested loops, be sure to specify the nesting order.
  - 1 point for time analysis

- It is not necessary to state a space bound.

- For problems that ask for an algorithm that computes an optimal structure—such as a subset, partition, subsequence, or tree—an algorithm that computes only the value or cost of the optimal structure is sufficient for full credit, unless the problem says otherwise.

- Official solutions usually include pseudocode for the final iterative dynamic programming algorithm, **but iterative pseudocode is not required for full credit.** If your solution includes iterative pseudocode, you do not need to separately describe the recurrence, memoization structure, or evaluation order. (But you still need to describe the underlying recursive function in English.)

- Official solutions will provide target time bounds. Algorithms that are faster than this target are worth more points; slower algorithms are worth fewer points, typically by 2 or 3 points (out of 10) for each factor of \(n\). Partial credit is scaled to the new maximum score, and all points above 10 are recorded as extra credit.
  
  We rarely include these target time bounds in the actual questions, because when we have included them, significantly more students turned in algorithms that meet the target time bound but didn’t work (earning 0/10) instead of correct algorithms that are slower than the target time bound (earning 8/10).
1. Suppose you are given an array $A[1..n]$ of positive integers, each of which is colored either red or blue. An increasing back-and-forth subsequence is a sequence of indices $I[1..\ell]$ with the following properties:

- $1 \leq I[j] \leq n$ for all $j$.
- $A[I[j]] < A[I[j+1]]$ for all $j < \ell$.
- If $A[I[j]]$ is red, then $I[j+1] > I[j]$.
- If $A[I[j]]$ is blue, then $I[j+1] < I[j]$.

Less formally, suppose we start with a token on some integer $A[j]$, and then repeatedly move the token Left (if it’s on a blue square) or Right (if it’s on a red square), always moving from a smaller number to a larger number. Then the sequence of token positions is an increasing back-and-forth subsequence.

Describe and analyze an efficient algorithm to compute the length of the longest increasing back-and-forth subsequence of a given array of $n$ red and blue integers. For example, given the input array

```
1 1 0 2 5 9 6 6 4 5 8 9 7 7 3 2 3 8 4 0
```

your algorithm should return the integer 9, which is the length of the following increasing back-and-forth subsequence:

```
0 1 2 3 4 6 7 8 9
```

(The small numbers are indices into the input array.)

2. Describe and analyze an algorithm that finds the largest rectangular pattern that appears more than once in a given bitmap. Your input is a two-dimensional array $M[1..n, 1..n]$ of bits; your output is the area of the repeated pattern. (The two copies of the pattern might overlap, but must not actually coincide.)

For example, given the bitmap shown on the left in the figure below, your algorithm should return $15 \times 13 = 195$, because the same $15 \times 13$ doggo appears twice, as shown on the right, and this is the largest such pattern.
3. *AVL trees* were the earliest self-balancing balanced binary search trees, first described in 1962 by Georgy Adelson-Velsky and Evgenii Landis. An AVL tree is a binary search tree where for every node $v$, the height of the left subtree of $v$ and the height of the right subtree of $v$ differ by at most 1.

Describe and analyze an efficient algorithm to construct an optimal AVL tree for a given set of keys and frequencies. Your input consists of a sorted array $A[1..n]$ of search keys and an array $f[1..n]$ of frequency counts, where $f[i]$ is the number of searches for $A[i]$. Your task is to construct an AVL tree for the given keys such that the total cost of all searches is as small as possible. This is exactly the same cost function that we considered in Thursday’s class; the only difference is that the output tree must satisfy the AVL balance constraint.

*[Hint: You do not need to know or use the insertion and deletion algorithms that keep the AVL tree balanced.]*
Solved Problems

4. A string \( w \) of parentheses \( ( \) and \( ) \) and brackets \( [ \) and \( ] \) is \textit{balanced} if and only if \( w \) is generated by the following context-free grammar:

\[
S \to \varepsilon \mid (S) \mid [S] \mid SS
\]

For example, the string \( w = ([(()])([()])() \) is balanced, because \( w = xy \), where \( x = ([()])([())] \) and \( y = [()]() \).

Describe and analyze an algorithm to compute the length of a longest balanced subsequence of a given string of parentheses and brackets. Your input is an array \( A[1..n] \), where \( A[i] \in \{ (, ), [], \} \) for every index \( i \).

**Solution:** Suppose \( A[1..n] \) is the input string. For all indices \( i \) and \( k \), let \( LBS(i, k) \) denote the length of the longest balanced subsequence of the substring \( A[i..k] \). We need to compute \( LBS(1, n) \). This function obeys the following recurrence:

\[
LBS(i, j) = \begin{cases} 
0 & \text{if } i \geq k \\
\max \left\{ \begin{array}{l}
2 + LBS(i + 1, k - 1) \\
\max_{j=1}^{k-1} \left( LBS(i, j) + LBS(j + 1, k) \right) \\
\max_{j=1}^{k-1} \left( LBS(i, j) + LBS(j + 1, k) \right)
\end{array} \right\} & \text{if } A[i] \sim A[k] \\
\max_{j=1}^{k-1} \left( LBS(i, j) + LBS(j + 1, k) \right) & \text{otherwise}
\end{cases}
\]


We can memoize this function into a two-dimensional array \( LBS[1..n, 1..n] \). Since every entry \( LBS[i, j] \) depends only on entries in later rows or earlier columns (or both), we can evaluate this array row-by-row from bottom up in the outer loop, scanning each row from left to right in the inner loop. The resulting algorithm runs in \( O(n^2) \) \textit{time}.

**Rubric:** 10 points, standard dynamic programming rubric
5. Oh, no! You've just been appointed as the new organizer of Giggle, Inc.'s annual mandatory holiday party! The employees at Giggle are organized into a strict hierarchy, that is, a tree with the company president at the root. The all-knowing oracles in Human Resources have assigned a real number to each employee measuring how “fun” the employee is. In order to keep things social, there is one restriction on the guest list: An employee cannot attend the party if their immediate supervisor is also present. On the other hand, the president of the company must attend the party, even though she has a negative fun rating; it's her company, after all.

Describe an algorithm that makes a guest list for the party that maximizes the sum of the “fun” ratings of the guests. The input to your algorithm is a rooted tree $T$ describing the company hierarchy, where each node $v$ has a field $v.fun$ storing the “fun” rating of the corresponding employee.

Solution (two functions): We define two functions over the nodes of $T$.

- $MaxFunYes(v)$ is the maximum total “fun” of a legal party among the descendants of $v$, where $v$ is definitely invited.
- $MaxFunNo(v)$ is the maximum total “fun” of a legal party among the descendants of $v$, where $v$ is definitely not invited.

We need to compute $MaxFunYes(root)$. These two functions obey the following mutual recurrences:

$$MaxFunYes(v) = v.fun + \sum_{\text{children } w \text{ of } v} MaxFunNo(w)$$

$$MaxFunNo(v) = \sum_{\text{children } w \text{ of } v} \max\{MaxFunYes(w), MaxFunNo(w)\}$$

(These recurrences do not require separate base cases, because $\sum \emptyset = 0$.) We can memoize these functions by adding two additional fields $v.\text{yes}$ and $v.\text{no}$ to each node $v$ in the tree. The values at each node depend only on the values at its children, so we can compute all $2n$ values using a postorder traversal of $T$.

```
BEST PARTY(T):
COMPUTEMAXFUN(T.root)
return T.root.\text{yes}
```

(Yes, this is still dynamic programming; we're only traversing the tree recursively because that's the most natural way to traverse trees\textsuperscript{a}) The algorithm spends $O(1)$ time at each node, and therefore runs in $O(n)$ time altogether. \hfill ■

\textsuperscript{a}A naive recursive implementation would run in $O(\phi^n)$ time in the worst case, where $\phi = (1 + \sqrt{5})/2 \approx 1.618$ is the golden ratio. The worst-case tree is a path—every non-leaf node has exactly one child.
Solution (one function): For each node $v$ in the input tree $T$, let $MaxFun(v)$ denote the maximum total “fun” of a legal party among the descendants of $v$, where $v$ may or may not be invited.

The president of the company must be invited, so none of the president’s “children” in $T$ can be invited. Thus, the value we need to compute is

$$ root.fun + \sum_{\text{grandchildren } w \text{ of } \text{root}} MaxFun(w). $$

The function $MaxFun$ obeys the following recurrence:

$$ MaxFun(v) = \max \left\{ v.fun + \sum_{\text{grandchildren } x \text{ of } v} MaxFun(x) \right\} $$

$$ \sum_{\text{children } w \text{ of } v} MaxFun(w) $$

(This recurrence does not require a separate base case, because $\sum_\emptyset = 0$.) We can memoize this function by adding an additional field $v$.maxFun to each node $v$ in the tree. The value at each node depends only on the values at its children and grandchildren, so we can compute all values using a postorder traversal of $T$.

```
BESTParty(T):
    COMPUTEMaxFun(T.root)
    party ← T.root.fun
    for all children $w$ of $T$.root
        for all children $x$ of $w$
            party ← party + $x$.maxFun
    return party
```

```
COMPUTEMaxFun(v):
    yes ← v.fun
    no ← 0
    for all children $w$ of $v$
        COMPUTEMaxFun(w)
        no ← no + $w$.maxFun
    for all children $x$ of $w$
        yes ← yes + $x$.maxFun
    $v$.maxFun ← max{yes, no}
```

(Yes, this is still dynamic programming; we’re only traversing the tree recursively because that’s the most natural way to traverse trees!)

The algorithm spends $O(1)$ time at each node (because each node has exactly one parent and one grandparent) and therefore runs in $O(n)$ time altogether. ■

Rubric: 10 points: standard dynamic programming rubric. These are not the only correct solutions.
1. Consider the following solitaire game, played on a connected undirected graph $G$. Initially, tokens are placed on three start vertices $a, b, c$. In each turn, you must move all three tokens, by moving each token along an edge from its current vertex to an adjacent vertex. At the end of each turn, the three tokens must lie on three different vertices. Your goal is to move the tokens onto three goal vertices $x, y, z$; it does not matter which token ends up on which goal vertex.

Describe and analyze an algorithm to determine whether this puzzle is solvable. Your input consists of the graph $G$, the start vertices $a, b, c$, and the goal vertices $x, y, z$. Your output is a single bit: TRUE or FALSE. [Hint: You've seen this sort of thing before.]

2. The following puzzles appear in my daughter's elementary-school math workbook.\(^1\)

Describe and analyze an algorithm to solve arbitrary acute-angle mazes.

You are given a connected undirected graph $G$, whose vertices are points in the plane and whose edges are line segments. Edges do not intersect, except at their endpoints. For example, a drawing of the letter $X$ would have five vertices and four edges; the first maze above has 13 vertices and 15 edges. You are also given two vertices Start and Finish.

Your algorithm should return TRUE if $G$ contains a walk from Start to Finish that has only acute angles, and FALSE otherwise. Formally, a walk through $G$ is valid if, for any two consecutive edges $u \rightarrow v \rightarrow w$ in the walk, either $\angle uvw = \pi$ or $0 < \angle uvw < \pi/2$. Assume you have a subroutine that can determine in $O(1)$ time whether two segments with a common vertex define a straight, obtuse, right, or acute angle.

---


The game is played on an $n \times n$ grid of black and white squares. The player moves a rectangle through this grid, subject to the following conditions:

- The rectangle must be aligned with the grid; that is, the top, bottom, left, and right coordinates must be integers.
- The rectangle must fit within the $n \times n$ grid, and it must contain at least one grid cell.
- The rectangle must not contain a black square.
- In a single move, the player can replace the current rectangle $r$ with any rectangle $r'$ that either contains $r$ or is contained in $r$.

Initially, the player's rectangle is a $1 \times 1$ square in the upper right corner. The player's goal is to reach a $1 \times 1$ square in the bottom left corner using as few moves as possible.

Describe and analyze an algorithm to compute the length of the shortest Rectangle Walk in a given bitmap. Your input is an array $M[1..n, 1..n]$, where $M[i, j] = 1$ indicates a black square and $M[i, j] = 0$ indicates a white square. You can assume that a valid rectangle walk exists; in particular, $M[1, 1] = 0$ and $M[n, n] = 0$. For example, given the bitmap shown above, (I think) your algorithm should return the integer 18.
Solved Problem

4. Professor McClane takes you out to a lake and hands you three empty jars. Each jar holds a positive integer number of gallons; the capacities of the three jars may or may not be different. The professor then demands that you put exactly \( k \) gallons of water into one of the jars (which one doesn’t matter), for some integer \( k \), using only the following operations:

   (a) Fill a jar with water from the lake until the jar is full.
   (b) Empty a jar of water by pouring water into the lake.
   (c) Pour water from one jar to another, until either the first jar is empty or the second jar is full, whichever happens first.

For example, suppose your jars hold 6, 10, and 15 gallons. Then you can put 13 gallons of water into the third jar in six steps:

   • Fill the third jar from the lake.
   • Fill the first jar from the third jar. (Now the third jar holds 9 gallons.)
   • Empty the first jar into the lake.
   • Fill the second jar from the lake.
   • Fill the first jar from the second jar. (Now the second jar holds 4 gallons.)
   • Empty the second jar into the third jar.

Describe and analyze an efficient algorithm that either finds the smallest number of operations that leave exactly \( k \) gallons in any jar, or reports correctly that obtaining exactly \( k \) gallons of water is impossible. Your input consists of the capacities of the three jars and the positive integer \( k \). For example, given the four numbers 6, 10, 15 and 13 as input, your algorithm should return the number 6 (for the sequence of operations listed above).

Solution: Let \( A, B, C \) denote the capacities of the three jars. We reduce the problem to breadth-first search in the following directed graph:

- \( V = \{(a, b, c) \mid 0 \leq a \leq A \text{ and } 0 \leq b \leq B \text{ and } 0 \leq c \leq C\} \). Each vertex corresponds to a possible configuration of water in the three jars. There are \((A + 1)(B + 1)(C + 1) = O(ABC)\) vertices altogether.
- The graph has a directed edge \((a, b, c)\rightarrow(a', b', c')\) whenever it is possible to move from the first configuration to the second in one step. Specifically, there is an edge from \((a, b, c)\) to each of the following vertices (except those already equal to \((a, b, c)\)):
  - \((0, b, c)\) and \((a, 0, c)\) and \((a, b, 0)\) — dumping a jar into the lake
  - \((A, b, c)\) and \((a, B, c)\) and \((a, b, C)\) — filling a jar from the lake
  - \(\begin{cases} 
  (0, a + b, c) & \text{if } a + b \leq B \\
  (a + b-B, B, c) & \text{if } a + b \geq B 
  \end{cases}\) — pouring from jar 1 into jar 2
  - \(\begin{cases} 
  (0, b, a+c) & \text{if } a + c \leq C \\
  (a+c-C, b, C) & \text{if } a + c \geq C 
  \end{cases}\) — pouring from jar 1 into jar 3
\begin{align*}
- \begin{cases}
(a + b, 0, c) & \text{if } a + b \leq A \\
(A, a + b - A, c) & \text{if } a + b \geq A
\end{cases} \quad \text{— pouring from jar 2 into jar 1} \\
- \begin{cases}
(a, 0, b + c) & \text{if } b + c \leq C \\
(a, b + c - C, C) & \text{if } b + c \geq C
\end{cases} \quad \text{— pouring from jar 2 into jar 3} \\
- \begin{cases}
(a + c, b, 0) & \text{if } a + c \leq A \\
(A, b, a + c - A) & \text{if } a + c \geq A
\end{cases} \quad \text{— pouring from jar 3 into jar 1} \\
- \begin{cases}
(a, b + c, 0) & \text{if } b + c \leq B \\
(a, B, b + c - B) & \text{if } b + c \geq B
\end{cases} \quad \text{— pouring from jar 3 into jar 2}
\end{align*}

Since each vertex has at most 12 outgoing edges, there are at most \(12(A + 1) \times (B + 1)(C + 1) = O(ABC)\) edges altogether.

To solve the jars problem, we need to find the \textit{shortest path} in \(G\) from the start vertex \((0, 0, 0)\) to any target vertex of the form \((k, \cdot, \cdot)\) or \((\cdot, k, \cdot)\) or \((\cdot, \cdot, k)\). We can compute this shortest path by calling \textit{breadth-first search} starting at \((0, 0, 0)\), and then examining every target vertex by brute force. If BFS does not visit any target vertex, we report that no legal sequence of moves exists. Otherwise, we find the target vertex closest to \((0, 0, 0)\) and trace its parent pointers back to \((0, 0, 0)\) to determine the shortest sequence of moves. The resulting algorithm runs in \(O(V + E) = O(ABC)\) time.

We can make this algorithm faster by observing that every move either leaves at least one jar empty or leaves at least one jar full. Thus, we only need vertices \((a, b, c)\) where either \(a = 0\) or \(b = 0\) or \(c = 0\) or \(a = A\) or \(b = B\) or \(c = C\); no other vertices are reachable from \((0, 0, 0)\). The number of non-redundant vertices and edges is \(O(AB + BC + AC)\). Thus, if we only construct and search the relevant portion of \(G\), the algorithm runs in \(O(AB + BC + AC)\) time.

\[\text{Rubric: 10 points: standard graph reduction rubric (see next page)}\]
\begin{itemize}
    
    \item Brute force construction is fine.
    \item Subtract 1 for calling Dijkstra instead of BFS
    \item Max 8 points for \(O(ABC)\) time; scale partial credit.
\end{itemize}
Standard rubric for graph reduction problems. For problems out of 10 points:

+ 1 for correct vertices, including English explanation for each vertex
+ 1 for correct edges
  − ½ for forgetting “directed” if the graph is directed
+ 1 for stating the correct problem (in this case, “shortest path”)
  − “Breadth-first search” is not a problem; it’s an algorithm!
+ 1 for correctly applying the correct algorithm (in this case, “breadth-first search from (0,0,0) and then examine every target vertex”)
+ 1 for time analysis in terms of the input parameters.
+ 5 for other details of the reduction
  − If your graph is constructed by naive brute force, you do not need to describe the construction algorithm; in this case, points for vertices, edges, problem, algorithm, and running time are all doubled.
  − Otherwise, apply the appropriate rubric, including Deadly Sins, to the construction algorithm. For example, for a solution that uses dynamic programming to build the graph quickly, apply the standard dynamic programming rubric.
1. After moving to a new city, you decide to choose a walking route from your home to your new office. To get a good daily workout, your route must consist of an uphill path (for exercise) followed by a downhill path (to cool down), or just an uphill path, or just a downhill path.\(^1\) (You'll walk the same path home, so you'll get exercise one way or the other.) But you also want the shortest path that satisfies these conditions, so that you actually get to work on time.

Your input consists of an undirected graph \( G \), whose vertices represent intersections and whose edges represent road segments, along with a start vertex \( s \) and a target vertex \( t \). Every vertex \( v \) has a value \( h(v) \), which is the height of that intersection above sea level, and each edge \( uv \) has a value \( \ell(uv) \), which is the length of that road segment.

(a) Describe and analyze an algorithm to find the shortest uphill–downhill walk from \( s \) to \( t \). Assume all vertex heights are distinct.

(b) Suppose you discover that there is no path from \( s \) to \( t \) with the structure you want. Describe an algorithm to find a path from \( s \) to \( t \) that alternates between “uphill” and “downhill” subpaths as few times as possible, and has minimum length among all such paths. (There may be even shorter paths with more alternations, but you don't care about them.) Again, assume all vertex heights are distinct.

2. Let \( G = (V, E) \) be a directed graph with weighted edges; edge weights could be positive, negative, or zero.

(a) How could we delete an arbitrary vertex \( v \) from this graph, without changing the shortest-path distance between any other pair of vertices? Describe an algorithm that constructs a directed graph \( G' = (V', E') \) with weighted edges, where \( V' = V \setminus \{v\} \), and the shortest-path distance between any two nodes in \( G' \) is equal to the shortest-path distance between the same two nodes in \( G \), in \( O(V^2) \) time.

(b) Now suppose we have already computed all shortest-path distances in \( G' \). Describe an algorithm to compute the shortest-path distances in the original graph \( G \) from \( v \) to every other vertex, and from every other vertex to \( v \), all in \( O(V^2) \) time.

(c) Combine parts (a) and (b) into another all-pairs shortest path algorithm that runs in \( O(V^3) \) time. (The resulting algorithm is almost the same as Floyd-Warshall!)

---

\(^1\)A hill is an area of land that extends above the surrounding terrain, usually at a fairly gentle gradient. Like a building, but smoother and made of dirt and rock and trees instead of steel and concrete. It's hard to explain.
3. The first morning after returning from a glorious spring break, Alice wakes to discover that her car won’t start, so she has to get to her classes at Sham-Poobanana University by public transit. She has a complete transit schedule for Poobanana County. The bus routes are represented in the schedule by a directed graph $G$, whose vertices represent bus stops and whose edges represent bus routes between those stops. For each edge $u \rightarrow v$, the schedule records three positive real numbers:

- $\ell(u \rightarrow v)$ is the length of the bus ride from stop $u$ to stop $v$ (in minutes)
- $f(u \rightarrow v)$ is the first time (in minutes past 12am) that a bus leaves stop $u$ for stop $v$.
- $\Delta(u \rightarrow v)$ is the time between successive departures from stop $u$ to stop $v$ (in minutes).

Thus, the first bus for this route leaves $u$ at time $f(u \rightarrow v)$ and arrives at $v$ at time $f(u \rightarrow v) + \ell(u \rightarrow v)$, the second bus leaves $u$ at time $f(u \rightarrow v) + \Delta(u \rightarrow v)$ and arrives at $v$ at time $f(u \rightarrow v) + \Delta(u \rightarrow v) + \ell(u \rightarrow v)$, the third bus leaves $u$ at time $f(u \rightarrow v) + 2 \cdot \Delta(u \rightarrow v)$ and arrives at $v$ at time $f(u \rightarrow v) + 2 \cdot \Delta(u \rightarrow v) + \ell(u \rightarrow v)$, and so on.

Alice wants to leaves from stop $s$ (her home) at a certain time and arrive at stop $t$ (The See-Bull Center for Fake News Detection) as quickly as possible. If Alice arrives at a stop on one bus at the exact time that another bus is scheduled to leave, she can catch the second bus. Because she’s a student at SPU, Alice can ride the bus for free, so she doesn’t care how many times she has to change buses.

Describe and analyze an algorithm to find the earliest time Alice can reach her destination. Your input consists of the directed graph $G = (V, E)$, the vertices $s$ and $t$, the values $\ell(e), f(e), \Delta(e)$ for each edge $e \in E$, and Alice’s starting time (in minutes past 12am).

[Hint: In this rare instance, modifying the algorithm may be more efficient than modifying the input graph. Don’t describe the algorithm from scratch; just describe your changes.]
Solved Problem

4. Although we typically speak of “the” shortest path from one vertex to another, a single graph could contain several minimum-length paths with the same endpoints.

![Four of many equal-length shortest paths.]

Describe and analyze an algorithm to determine the number of shortest paths from a source vertex \( s \) to a target vertex \( t \) in an arbitrary directed graph \( G \) with weighted edges. You may assume that all edge weights are positive and that the necessary arithmetic operations can be performed in \( O(1) \) time each.

[Hint: Compute shortest path distances from \( s \) to every other vertex. Throw away all edges that cannot be part of a shortest path from \( s \) to another vertex. What’s left?]

**Solution:** We start by computing shortest-path distances \( \text{dist}(v) \) from \( s \) to \( v \), for every vertex \( v \), using Dijkstra’s algorithm. Call an edge \( u \rightarrow v \) **tight** if \( \text{dist}(u) + w(u \rightarrow v) = \text{dist}(v) \). Every edge in a shortest path from \( s \) to \( t \) must be tight. Conversely, every path from \( s \) to \( t \) that uses only tight edges has total length \( \text{dist}(t) \) and is therefore a shortest path!

Let \( H \) be the subgraph of all tight edges in \( G \). We can easily construct \( H \) in \( O(V + E) \) time. Because all edge weights are positive, \( H \) is a directed acyclic graph. It remains only to count the number of paths from \( s \) to \( t \) in \( H \).

For any vertex \( v \), let \( \text{NumPaths}(v) \) denote the number of paths in \( H \) from \( v \) to \( t \); we need to compute \( \text{NumPaths}(s) \). This function satisfies the following simple recurrence:

\[
\text{NumPaths}(v) = \begin{cases} 
1 & \text{if } v = t \\
\sum_{v \rightarrow w} \text{NumPaths}(w) & \text{otherwise}
\end{cases}
\]

In particular, if \( v \) is a sink but \( v \neq t \) (and thus there are no paths from \( v \) to \( t \)), this recurrence correctly gives us \( \text{NumPaths}(v) = \sum \emptyset = 0 \).

We can memoize this function into the graph itself, storing each value \( \text{NumPaths}(v) \) at the corresponding vertex \( v \). Since each subproblem depends only on its successors in \( H \), we can compute \( \text{NumPaths}(v) \) for all vertices \( v \) by considering the vertices in reverse topological order, or equivalently, by performing a depth-first search of \( H \) starting at \( s \). The resulting algorithm runs in \( O(V + E) \) time.

The overall running time of the algorithm is dominated by Dijkstra’s algorithm in the preprocessing phase, which runs in \( O(E \log V) \) time. ■
Rubric: 10 points = 5 points for reduction to counting paths in a dag (standard graph reduction rubric) + 5 points for the path-counting algorithm (standard dynamic programming rubric)
1. For any integer \( k \), the problem \( k\text{Sat} \) is defined as follows:
   • **INPUT**: A boolean formula \( \Phi \) in conjunctive normal form, with exactly \( k \) distinct literals in each clause.
   • **OUTPUT**: True if \( \Phi \) has a satisfying assignment, and False otherwise.

   (a) Describe a polynomial-time reduction from \( 2\text{Sat} \) to \( 3\text{Sat} \), and prove that your reduction is correct.

   (b) Describe and analyze a polynomial-time algorithm for \( 2\text{Sat} \). [Hint: This problem is strongly connected to topics covered earlier in the semester.]

   (c) Why don’t these results imply a polynomial-time algorithm for \( 3\text{Sat} \)?

2. This problem asks you to describe polynomial-time reductions between two closely related problems:
   • **SUBSETSUM**: Given a set \( S \) of positive integers and a target integer \( T \), is there a subset of \( S \) whose sum is \( T \)?
   • **PARTITION**: Given a set \( S \) of positive integers, is there a way to partition \( S \) into two subsets \( S_1 \) and \( S_2 \) that have the same sum?

   (a) Describe a polynomial-time reduction from **SUBSETSUM** to **PARTITION**.

   (b) Describe a polynomial-time reduction from **PARTITION** to **SUBSETSUM**.

   Don’t forget to prove that your reductions are correct.

3. **Pebbling** is a solitaire game played on an undirected graph \( G \), where each vertex has zero or more pebbles. A single pebbling move removes two pebbles from some vertex \( v \) and adds one pebble to an arbitrary neighbor of \( v \). (Obviously, \( v \) must have at least two pebbles before the move.) The **PEBBLECLEARING** problem asks, given a graph \( G = (V,E) \) and a pebble count \( p(v) \) for each vertex \( v \), whether is there a sequence of pebbling moves that removes all but one pebble. Prove that **PEBBLECLEARING** is NP-hard.
Solved Problem

4. Consider the following solitaire game. The puzzle consists of an \( n \times m \) grid of squares, where each square may be empty, occupied by a red stone, or occupied by a blue stone. The goal of the puzzle is to remove some of the given stones so that the remaining stones satisfy two conditions:

(1) Every row contains at least one stone.
(2) No column contains stones of both colors.

For some initial configurations of stones, reaching this goal is impossible; see the example below.

Prove that it is NP-hard to determine, given an initial configuration of red and blue stones, whether this puzzle can be solved.

Solution: We show that this puzzle is NP-hard by describing a reduction from 3SAT.

Let \( \Phi \) be a 3CNF boolean formula with \( m \) variables and \( n \) clauses. We transform this formula into a puzzle configuration in polynomial time as follows. The size of the board is \( n \times m \). The stones are placed as follows, for all indices \( i \) and \( j \):

- If the variable \( x_j \) appears in the \( i \)th clause of \( \Phi \), we place a blue stone at \((i, j)\).
- If the negated variable \( \overline{x_j} \) appears in the \( i \)th clause of \( \Phi \), we place a red stone at \((i, j)\).
- Otherwise, we leave cell \((i, j)\) blank.

We claim that this puzzle has a solution if and only if \( \Phi \) is satisfiable. This claim immediately implies that solving the puzzle is NP-hard. We prove our claim as follows:

\( \implies \) First, suppose \( \Phi \) is satisfiable; consider an arbitrary satisfying assignment. For each index \( j \), remove stones from column \( j \) according to the value assigned to \( x_j \):

- If \( x_j = \text{TRUE} \), remove all red stones from column \( j \).
- If \( x_j = \text{FALSE} \), remove all blue stones from column \( j \).

In other words, remove precisely the stones that correspond to \( \text{FALSE} \) literals. Because every variable appears in at least one clause, each column now contains stones of only one color (if any). On the other hand, each clause of \( \Phi \) must contain at least one \( \text{TRUE} \) literal, and thus each row still contains at least one stone. We conclude that the puzzle is satisfiable.
On the other hand, suppose the puzzle is solvable; consider an arbitrary solution. For each index $j$, assign a value to $x_j$ depending on the colors of stones left in column $j$:

- If column $j$ contains blue stones, set $x_j = \text{True}$.
- If column $j$ contains red stones, set $x_j = \text{False}$.
- If column $j$ is empty, set $x_j$ arbitrarily.

In other words, assign values to the variables so that the literals corresponding to the remaining stones are all $\text{True}$. Each row still has at least one stone, so each clause of $\Phi$ contains at least one $\text{True}$ literal, so this assignment makes $\Phi = \text{True}$. We conclude that $\Phi$ is satisfiable.

This reduction clearly requires only polynomial time. 

**Rubric (Standard polynomial-time reduction rubric):** 10 points =

+ 3 points for the reduction itself
  - For an NP-hardness proof, the reduction must be from a known NP-hard problem. You can use any of the NP-hard problems listed in the lecture notes (except the one you are trying to prove NP-hard, of course). See the list on the next page.
+ 3 points for the “if” proof of correctness
+ 3 points for the “only if” proof of correctness
+ 1 point for writing “polynomial time”

• An incorrect polynomial-time reduction that still satisfies half of the correctness proof is worth at most 4/10.
• A reduction in the wrong direction is worth 0/10.
Some useful NP-hard problems. You are welcome to use any of these in your own NP-hardness proofs, except of course for the specific problem you are trying to prove NP-hard.

**CircuitSat:** Given a boolean circuit, are there any input values that make the circuit output \textsc{true}?

**3Sat:** Given a boolean formula in conjunctive normal form, with exactly three distinct literals per clause, does the formula have a satisfying assignment?

**MaxIndependentSet:** Given an undirected graph \( G \), what is the size of the largest subset of vertices in \( G \) that have no edges among them?

**MaxClique:** Given an undirected graph \( G \), what is the size of the largest complete subgraph of \( G \)?

**MinVertexCover:** Given an undirected graph \( G \), what is the size of the smallest subset of vertices that touch every edge in \( G \)?

**MinSetCover:** Given a collection of subsets \( S_1, S_2, \ldots, S_m \) of a set \( S \), what is the size of the smallest subcollection whose union is \( S \)?

**MinHittingSet:** Given a collection of subsets \( S_1, S_2, \ldots, S_m \) of a set \( S \), what is the size of the smallest subset of \( S \) that intersects every subset \( S_i \)?

**3Color:** Given an undirected graph \( G \), can its vertices be colored with three colors, so that every edge touches vertices with two different colors?

**HamiltonianPath:** Given graph \( G \) (either directed or undirected), is there a path in \( G \) that visits every vertex exactly once?

**HamiltonianCycle:** Given a graph \( G \) (either directed or undirected), is there a cycle in \( G \) that visits every vertex exactly once?

**TravelingSalesman:** Given a graph \( G \) (either directed or undirected) with weighted edges, what is the minimum total weight of any Hamiltonian path/cycle in \( G \)?

**LongestPath:** Given a graph \( G \) (either directed or undirected, possibly with weighted edges), what is the length of the longest simple path in \( G \)?

**SteinerTree:** Given an undirected graph \( G \) with some of the vertices marked, what is the minimum number of edges in a subtree of \( G \) that contains every marked vertex?

**SubsetSum:** Given a set \( X \) of positive integers and an integer \( k \), does \( X \) have a subset whose elements sum to \( k \)?

**Partition:** Given a set \( X \) of positive integers, can \( X \) be partitioned into two subsets with the same sum?

**3Partition:** Given a set \( X \) of \( 3n \) positive integers, can \( X \) be partitioned into \( n \) three-element subsets, all with the same sum?

**IntegerLinearProgramming:** Given a matrix \( A \in \mathbb{Z}^{n \times d} \) and two vectors \( b \in \mathbb{Z}^n \) and \( c \in \mathbb{Z}^d \), compute \( \max\{c \cdot x \mid Ax \leq b, x \geq 0, x \in \mathbb{Z}^d\} \).

**FeasibleILP:** Given a matrix \( A \in \mathbb{Z}^{n \times d} \) and a vector \( b \in \mathbb{Z}^n \), determine whether the set of feasible integer points \( \{x \in \mathbb{Z}^d \mid Ax \leq b, x \geq 0\} \) is empty.

**Draughts:** Given an \( n \times n \) international draughts configuration, what is the largest number of pieces that can (and therefore must) be captured in a single move?

**SuperMarioBrothers:** Given an \( n \times n \) Super Mario Brothers level, can Mario reach the castle?

**SteamedHams:** Aurora borealis? At this time of year, at this time of day, in this part of the country, localized entirely within your kitchen? May I see it?
1. (a) A subset $S$ of vertices in an undirected graph $G$ is **half-independent** if each vertex in $S$ is adjacent to at most one other vertex in $S$. Prove that finding the size of the largest half-independent set of vertices in a given undirected graph is NP-hard.

   (b) A subset $S$ of vertices in an undirected graph $G$ is **sort-of-independent** if if each vertex in $S$ is adjacent to at most 374 other vertices in $S$. Prove that finding the size of the largest sort-of-independent set of vertices in a given undirected graph is NP-hard.

2. Fix an alphabet $\Sigma = \{0, 1\}$. Prove that the following problems are NP-hard.\(^1\)

   (a) Given a regular expression $R$ over the alphabet $\Sigma$, is $L(R) \neq \Sigma^*$?

   (b) Given an NFA $M$ over the alphabet $\Sigma$, is $L(M) \neq \Sigma^*$?

   \[\text{[Hint: Encode all the bad choices for some problem into a regular expression } R, \text{ so that if all choices are bad, then } L(R) = \Sigma^*.}\]

3. Let $\langle M \rangle$ denote the encoding of a Turing machine $M$ (or if you prefer, the Python source code for the executable code $M$). Recall that $x \cdot y$ denotes the concatenation of strings $x$ and $y$. Prove that the following language is undecidable.

\[\text{SelfSelfAccept} := \{ \langle M \rangle \mid M \text{ accepts the string } \langle M \rangle \cdot \langle M \rangle \}\]

   Note that Rice’s theorem does not apply to this language.

\[^1\text{In fact, both of these problems are NP-hard even when } |\Sigma| = 1, \text{ but proving that is much more difficult.}\]
Solved Problem

4. A **double-Hamiltonian tour** in an undirected graph $G$ is a closed walk that visits every vertex in $G$ exactly twice. Prove that it is NP-hard to decide whether a given graph $G$ has a double-Hamiltonian tour.

This graph contains the double-Hamiltonian tour $a \rightarrow b \rightarrow d \rightarrow g \rightarrow e \rightarrow b \rightarrow d \rightarrow c \rightarrow f \rightarrow a \rightarrow c \rightarrow f \rightarrow g \rightarrow e \rightarrow a$.

**Solution:** We prove the problem is NP-hard with a reduction from the standard Hamiltonian cycle problem. Let $G$ be an arbitrary undirected graph. We construct a new graph $H$ by attaching a small gadget to every vertex of $G$. Specifically, for each vertex $v$, we add two vertices $v^\flat$ and $v^\sharp$, along with three edges $vv^\flat$, $vv^\sharp$, and $v^\flat v^\sharp$.

I claim that $G$ has a Hamiltonian cycle if and only if $H$ has a double-Hamiltonian tour.

$\implies$ Suppose $G$ has a Hamiltonian cycle $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n \rightarrow v_1$. We can construct a double-Hamiltonian tour of $H$ by replacing each vertex $v_i$ with the following walk:

$\cdots \rightarrow v_i \rightarrow v_i^\flat \rightarrow v_i^\sharp \rightarrow v_i^\flat \rightarrow v_i^\sharp \rightarrow v_i \rightarrow \cdots$

$\impliedby$ Conversely, suppose $H$ has a double-Hamiltonian tour $D$. Consider any vertex $v$ in the original graph $G$; the tour $D$ must visit $v$ exactly twice. Those two visits split $D$ into two closed walks, each of which visits $v$ exactly once. Any walk from $v^\flat$ or $v^\sharp$ to any other vertex in $H$ must pass through $v$. Thus, one of the two closed walks visits only the vertices $v$, $v^\flat$, and $v^\sharp$. Thus, if we simply remove the vertices in $H \setminus G$ from $D$, we obtain a closed walk in $G$ that visits every vertex in $G$ once.

Given any graph $G$, we can clearly construct the corresponding graph $H$ in polynomial time.

With more effort, we can construct a graph $H$ that contains a double-Hamiltonian tour **that traverses each edge of $H$ at most once** if and only if $G$ contains a Hamiltonian cycle. For each vertex $v$ in $G$ we attach a more complex gadget containing five vertices and eleven edges, as shown on the next page.
Non-solution (self-loops): We attempt to prove the problem is NP-hard with a reduction from the Hamiltonian cycle problem. Let $G$ be an arbitrary undirected graph. We construct a new graph $H$ by attaching a self-loop every vertex of $G$. Given any graph $G$, we can clearly construct the corresponding graph $H$ in polynomial time.

Suppose $G$ has a Hamiltonian cycle $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n \rightarrow v_1$. We can construct a double-Hamiltonian tour of $H$ by alternating between edges of the Hamiltonian cycle and self-loops:

$$v_1 \rightarrow v_1 \rightarrow v_2 \rightarrow v_2 \rightarrow v_3 \rightarrow \cdots \rightarrow v_n \rightarrow v_n \rightarrow v_1.$$  

On the other hand, if $H$ has a double-Hamiltonian tour, we cannot conclude that $G$ has a Hamiltonian cycle, because we cannot guarantee that a double-Hamiltonian tour in $H$ uses any self-loops. The graph $G$ shown below is a counterexample; it has a double-Hamiltonian tour (even before adding self-loops!) but no Hamiltonian cycle.

Rubric: 10 points, standard polynomial-time reduction rubric
This homework is optional. However, similar undecidability questions may appear on the final exam, so we still strongly recommend treating at least those questions as regular homework. Solutions will be released next Tuesday as usual.

1. Let $M$ be a Turing machine, let $w$ be an arbitrary input string, and let $s$ be an integer. We say that $M$ accepts $w$ in space $s$ if, given $w$ as input, $M$ accesses only the first $s$ (or fewer) cells on its tape and eventually accepts.

   *(a) Sketch a Turing machine/algorithm that correctly decides the following language:

   $$\text{SquareSpace} = \{ \langle M, w \rangle \mid M \text{ accepts } w \text{ in space } |w|^2 \}$$

   (b) Prove that the following language is undecidable:

   $$\text{SomeSquareSpace} = \{ \langle M \rangle \mid M \text{ accepts at least one string } w \text{ in space } |w|^2 \}$$

2. Consider the following language:

   $$\text{Picky} = \{ \langle M \rangle \mid M \text{ accepts at least one input string and } M \text{ rejects at least one input string} \}$$

   (a) Prove that $\text{Picky}$ is undecidable.

   (b) Sketch a Turing machine/algorithm that accepts $\text{Picky}$. 
The following problems ask you to prove some “obvious” claims about recursively-defined string functions. In each case, we want a self-contained, step-by-step induction proof that builds on formal definitions and prior results, not on intuition. In particular, your proofs must refer to the formal recursive definitions of string length and string concatenation:

\[
|w| := \begin{cases} 
0 & \text{if } w = \varepsilon \\
1 + |x| & \text{if } w = ax \text{ for some symbol } a \text{ and some string } x
\end{cases}
\]

\[
w \cdot z := \begin{cases} 
z & \text{if } w = \varepsilon \\
ax \cdot (x \cdot z) & \text{if } w = ax \text{ for some symbol } a \text{ and some string } x
\end{cases}
\]

You may freely use the following results, which are proved in the lecture notes:

**Lemma 1:** \( w \cdot \varepsilon = w \) for all strings \( w \).

**Lemma 2:** \( |w \cdot x| = |w| + |x| \) for all strings \( w \) and \( x \).

**Lemma 3:** \((w \cdot x) \cdot y = w \cdot (x \cdot y)\) for all strings \( w, x, \) and \( y \).

The reversal \( w^R \) of a string \( w \) is defined recursively as follows:

\[
w^R := \begin{cases} 
\varepsilon & \text{if } w = \varepsilon \\
x^R \cdot a & \text{if } w = ax \text{ for some symbol } a \text{ and some string } x
\end{cases}
\]

For example, \( \text{STRESSED}^R = \text{DESSERTS} \) and \( \text{WTF374}^R = \text{473FTW} \).

1. Prove that \( |w| = |w^R| \) for every string \( w \).
2. Prove that \( (w \cdot z)^R = z^R \cdot w^R \) for all strings \( w \) and \( z \).
3. Prove that \( (w^R)^R = w \) for every string \( w \).

[Hint: You need #2 to prove #3, but you may find it easier to solve #3 first.]

To think about later: Let \((a, w)\) denote the number of times symbol \( a \) appears in string \( w \). For example, \((X, \text{WTF374}) = 0 \) and \((0, 000010101010010100) = 12 \).

4. Give a formal recursive definition of \((a, w)\).
5. Prove that \((a, w \cdot z) = (a, w) + (a, z)\) for all symbols \( a \) and all strings \( w \) and \( z \).
6. Prove that \((a, w^R) = (a, w)\) for all symbols \( a \) and all strings \( w \).
Give regular expressions for each of the following languages over the alphabet \{0, 1\}.

1. All strings containing the substring 000.

2. All strings \textit{not} containing the substring 000.

3. All strings in which every run of 0s has length at least 3.

4. All strings in which all the 1s appear before any substring 000.

5. All strings containing at least three 0s.

6. Every string except 000. \[\text{[Hint: Don't try to be clever.]}\]

\textbf{Work on these later:}

7. All strings \(w\) such that in every prefix of \(w\), the number of 0s and 1s differ by at most 1.

*8. All strings containing at least two 0s and at least one 1.

*9. All strings \(w\) such that in every prefix of \(w\), the number of 0s and 1s differ by at most 2.

\textbf{⋆10.} All strings in which the substring 000 appears an even number of times.

(For example, \textcolor{red}{0001000} and \textcolor{red}{0000} are in this language, but \textcolor{red}{00000} is not.)
Describe deterministic finite-state automata that accept each of the following languages over the alphabet \( \Sigma = \{0, 1\} \). Describe briefly what each state in your DFAs means.

Either drawings or formal descriptions are acceptable, as long as the states \( Q \), the start state \( s \), the accept states \( A \), and the transition function \( \delta \) are all be clear. Try to keep the number of states small.

1. All strings containing the substring \( \texttt{000} \).
2. All strings not containing the substring \( \texttt{000} \).
3. All strings in which every run of \( 0 \)s has length at least 3.
4. All strings in which all the \( 1 \)s appear before any substring \( \texttt{000} \).
5. All strings containing at least three \( 0 \)s.
6. Every string except \( \texttt{000} \). [Hint: Don’t try to be clever.]

**Work on these later:**

7. All strings \( w \) such that in every prefix of \( w \), the number of \( 0 \)s and \( 1 \)s differ by at most 1.
8. All strings containing at least two \( 0 \)s and at least one \( 1 \).
9. All strings \( w \) such that in every prefix of \( w \), the number of \( 0 \)s and \( 1 \)s differ by at most 2.

*10. All strings in which the substring \( \texttt{000} \) appears an even number of times.
   (For example, \( \texttt{0001000} \) and \( \texttt{0000} \) are in this language, but \( \texttt{000000} \) is not.)
Describe deterministic finite-state automata that accept each of the following languages over the alphabet \( \Sigma = \{0, 1\} \). You may find it easier to describe these DFAs formally than to draw pictures. Either drawings or formal descriptions are acceptable, as long as the states \( Q \), the start state \( s \), the accept states \( A \), and the transition function \( \delta \) are all clear. Try to keep the number of states small.

1. All strings in which the number of 0s is even and the number of 1s is not divisible by 3.
2. All strings that are both the binary representation of an integer divisible by 3 and the ternary (base-3) representation of an integer divisible by 4.

For example, the string 1100 is an element of this language, because it represents \( 2^3 + 2^2 = 12 \) in binary and \( 3^3 + 3^2 = 36 \) in ternary.

Work on these later:

3. All strings \( w \) such that \( \binom{|w|}{2} \mod 6 = 4 \).
   
   \[ \text{[Hint: Maintain both } \binom{|w|}{2} \mod 6 \text{ and } |w| \mod 6 \text{.]} \]
   \[ \text{[Hint: } \binom{n+1}{2} = \binom{n}{2} + n \text{.]} \]

\*4. All strings \( w \) such that \( F_{\#(10,w)} \mod 10 = 4 \), where \( \#(10,w) \) denotes the number of times 10 appears as a substring of \( w \), and \( F_n \) is the \( n \)th Fibonacci number:

\[
F_n = \begin{cases} 
0 & \text{if } n = 0 \\
1 & \text{if } n = 1 \\
F_{n-1} + F_{n-2} & \text{otherwise}
\end{cases}
\]
Prove that each of the following languages is not regular.

1. \( \{ 0^{2^n} \mid n \geq 0 \} \)

2. \( \{ 0^{2n} 1^n \mid n \geq 0 \} \)

3. \( \{ 0^m 1^n \mid m \neq 2n \} \)

4. Strings over \( \{0, 1\} \) where the number of 0s is exactly twice the number of 1s.

5. Strings of properly nested parentheses ( ), brackets [ ], and braces { }. For example, the string ( [ ] ) { } is in this language, but the string ( [ ] ) is not, because the left and right delimiters don’t match.

Work on these later:

6. Strings of the form \( w_1 \# w_2 \# \cdots \# w_n \) for some \( n \geq 2 \), where each substring \( w_i \) is a string in \( \{0, 1\}^* \), and some pair of substrings \( w_i \) and \( w_j \) are equal.

7. \( \{ 0^n \mid n \geq 0 \} \)

8. \( \{ w \in (0 + 1)^* \mid w \text{ is the binary representation of a perfect square} \} \)
1. (a) Convert the regular expression $(0^*1 + 01^*)^*$ into an NFA using Thompson’s algorithm.
   (b) Convert the NFA you just constructed into a DFA using the incremental subset construction. Draw the resulting DFA. Your DFA should have four states, all reachable from the start state. (Some of these states are obviously equivalent, but keep them separate.)
   (c) **Think about later:** Convert the DFA you just constructed into a regular expression using Han and Wood’s algorithm. You should not get the same regular expression you started with.
   (d) What is this language?

2. (a) Convert the regular expression $(\epsilon + (0 + 11\cdot0)(11)^\cdot)\cdot$ into an NFA using Thompson’s algorithm.
   (b) Convert the NFA you just constructed into a DFA using the incremental subset construction. Draw the resulting DFA. Your DFA should have six states, all reachable from the start state. (Some of these states are obviously equivalent, but keep them separate.)
   (c) **Think about later:** Convert the DFA you just constructed into a regular expression using Han and Wood’s algorithm. You should not get the same regular expression you started with.
   (d) What is this language?
Let $L$ be an arbitrary regular language.

1. Prove that the language $\text{insert}_1(L) := \{xy | x,y \in L\}$ is regular.

   Intuitively, $\text{insert}_1(L)$ is the set of all strings that can be obtained from strings in $L$ by inserting exactly one 1. For example, if $L = \{\epsilon, 00K!\}$, then $\text{insert}_1(L) = \{1, 100K!, 010K!, 001K!, 00K1!, 00K!1\}$.

2. Prove that the language $\text{delete}_1(L) := \{xy | xy \in L\}$ is regular.

   Intuitively, $\text{delete}_1(L)$ is the set of all strings that can be obtained from strings in $L$ by deleting exactly one 1. For example, if $L = \{101101, 00, \epsilon\}$, then $\text{delete}_1(L) = \{011101, 10101, 10110\}$.

---

**Work on these later:** (In fact, these might be easier than problems 1 and 2.)

3. Consider the following recursively defined function on strings:

   $\text{stutter}(w) := \begin{cases} 
   \epsilon & \text{if } w = \epsilon \\
   aa \cdot \text{stutter}(x) & \text{if } w = ax \text{ for some symbol } a \text{ and some string } x
   \end{cases}$

   Intuitively, $\text{stutter}(w)$ doubles every symbol in $w$. For example:

   - $\text{stutter}(\text{PRESTO}) = \text{PPRREESSTTOO}$
   - $\text{stutter}(\text{HOCUS}\cdot\text{POCUS}) = \text{HHOCCUUSS}\cdot\text{POOCCUUSS}$

   Let $L$ be an arbitrary regular language.

   (a) Prove that the language $\text{stutter}^{-1}(L) := \{w | \text{stutter}(w) \in L\}$ is regular.
   (b) Prove that the language $\text{stutter}(L) := \{\text{stutter}(w) | w \in L\}$ is regular.

4. Consider the following recursively defined function on strings:

   $\text{evens}(w) := \begin{cases} 
   \epsilon & \text{if } w = \epsilon \\
   \epsilon & \text{if } w = a \text{ for some symbol } a \\
   b \cdot \text{evens}(x) & \text{if } w = abx \text{ for some symbols } a \text{ and } b \text{ and some string } x
   \end{cases}$

   Intuitively, $\text{evens}(w)$ skips over every other symbol in $w$. For example:

   - $\text{evens}(\text{EXPELLIARMUS}) = \text{XELAMS}$
   - $\text{evens}(\text{AVADA}\cdot\text{KEDAVRA}) = \text{VD}\cdot\text{EAR}$.

   Once again, let $L$ be an arbitrary regular language.

   (a) Prove that the language $\text{evens}^{-1}(L) := \{w | \text{evens}(w) \in L\}$ is regular.
   (b) Prove that the language $\text{evens}(L) := \{\text{evens}(w) | w \in L\}$ is regular.
Let $L$ be an arbitrary regular language over the alphabet $\Sigma = \{0, 1\}$. Prove that the following languages are also regular. (You probably won’t get to all of these.)

1. \( \text{FLIPODDS}(L) := \{\text{flipOdds}(w) \mid w \in L\} \), where the function \( \text{flipOdds} \) inverts every odd-indexed bit in \( w \). For example:
   
   \[
   \text{flipOdds}(000111101010101) = 1010010111111111
   \]
   
   **Solution:** Let \( M = (Q,s,A,\delta) \) be a DFA that accepts \( L \). We construct a new DFA \( M' = (Q',s',A',\delta') \) that accepts \( \text{FLIPODDS}(L) \) as follows.
   
   Intuitively, \( M' \) receives some string \( \text{flipOdds}(w) \) as input, restores every other bit to obtain \( w \), and simulates \( M \) on the restored string \( w \).
   
   Each state \( (q,\text{flip}) \) of \( M' \) indicates that \( M \) is in state \( q \), and we need to flip the next input bit if \( \text{flip} = \text{True} \).

   \[
   Q' = Q \times \{\text{True, False}\}
   
   s' = (s,\text{True})
   
   A' = \text{UNFLIPODDS}(L)
   
   \delta'(((q,\text{flip}), a)) =
   \]

2. \( \text{UNFLIPODDS}(L) := \{w \in \Sigma^* \mid \text{flipOdd1s}(w) \in L\} \), where the function \( \text{flipOdd1s} \) inverts every other 1 bit of its input string, starting with the first 1. For example:
   
   \[
   \text{flipOdd1s}(0000111101010101) = 000010100010001
   \]
   
   **Solution:** Let \( M = (Q,s,A,\delta) \) be a DFA that accepts \( L \). We construct a new DFA \( M' = (Q',s',A',\delta') \) that accepts \( \text{UNFLIPODDS}(L) \) as follows.
   
   Intuitively, \( M' \) receives some string \( w \) as input, flips every other 1 bit, and simulates \( M \) on the transformed string.
   
   Each state \( (q,\text{flip}) \) of \( M' \) indicates that \( M \) is in state \( q \), and we need to flip the next 1 bit of and only if \( \text{flip} = \text{True} \).

   \[
   Q' = Q \times \{\text{True, False}\}
   
   s' = (s,\text{True})
   
   A' = \text{UNFLIPODDS}(L)
   
   \delta'(((q,\text{flip}), a)) =
   \]
3. \text{flipOdd}s(L) := \{\text{flipOdd}s(w) \mid w \in L\}, where the function \text{flipOdd}s is defined as in the previous problem.

\textbf{Solution:} Let \( M = (Q,s,A,\delta) \) be a DFA that accepts \( L \). We construct a new NFA \( M' = (Q',s',A',\delta') \) that accepts \text{flipOdd}s(L) as follows.

Intuitively, \( M' \) receives some string \( \text{flipOdd}s(w) \) as input, guesses which 0 bits to restore to 1s, and simulates \( M \) on the restored string \( w \). No string in \text{flipOdd}s(L) has two 1s in a row, so if \( M' \) ever sees 11, it rejects.

Each state \((q,\text{flip})\) of \( M' \) indicates that \( M \) is in state \( q \), and we need to flip a 0 bit before the next 1 if \( \text{flip} = \text{TRUE} \).

\[
\begin{align*}
Q' &= Q \times \{\text{TRUE, FALSE}\} \\
s' &= (s, \text{TRUE}) \\
A' &= \\
\delta'((q,\text{flip}),a) &=
\end{align*}
\]

4. \( \text{faro}(L) := \{\text{faro}(w,x) \mid w,x \in L \text{ and } |w| = |x|\} \), where the function \( \text{faro} \) is defined recursively as follows:

\[
\text{faro}(w,x) := \begin{cases} 
  x & \text{if } w = \epsilon \\
  a \cdot \text{faro}(x,y) & \text{if } w = ay \text{ for some } a \in \Sigma \text{ and some } y \in \Sigma^* 
\end{cases}
\]

For example, \( \text{faro}(0001101,1111001) = 01010111100011 \). (A "faro shuffle" splits a deck of cards into two equal piles and then perfectly interleaves them.)

\textbf{Solution:} Let \( M = (Q,s,A,\delta) \) be a DFA that accepts \( L \). We construct a DFA \( M' = (Q',s',A',\delta') \) that accepts \( \text{faro}(L) \) as follows.

Intuitively, \( M' \) reads the string \( \text{faro}(w,x) \) as input, splits the string into the subsequences \( w \) and \( x \), and passes each of those strings to an independent copy of \( M \).

Each state \((q_1,q_2,\text{next})\) indicates that the copy of \( M \) that gets \( w \) is in state \( q_1 \), the copy of \( M \) that gets \( x \) is in state \( q_2 \), and \( \text{next} \) indicates which copy gets the next input bit.

\[
\begin{align*}
Q' &= Q \times Q \times \{1,2\} \\
s' &= (s,s,1) \\
A' &= \\
\delta'((q_1,q_2,\text{next}),a) &=
\end{align*}
\]
Here are several problems that are easy to solve in $O(n)$ time, essentially by brute force. Your task is to design algorithms for these problems that are significantly faster.


   (a) Describe a fast algorithm that either computes an index $i$ such that $A[i] = i$ or correctly reports that no such index exists.

   (b) Suppose we know in advance that $A[1] > 0$. Describe an even faster algorithm that either computes an index $i$ such that $A[i] = i$ or correctly reports that no such index exists. \([\text{Hint: This is really easy.}]\)

2. Suppose we are given an array $A[1..n]$ such that $A[1] \geq A[2]$ and $A[n - 1] \leq A[n]$. We say that an element $A[x]$ is a \textit{local minimum} if both $A[x - 1] \geq A[x]$ and $A[x] \leq A[x + 1]$. For example, there are exactly six local minima in the following array:

   \[
   \begin{array}{cccccccccccc}
   9 & 7 & 7 & 2 & 1 & 3 & 7 & 5 & 4 & 7 & 3 & 4 & 8 & 6 & 9 \\
   \end{array}
   \]

   Describe and analyze a fast algorithm that returns the index of one local minimum. For example, given the array above, your algorithm could return the integer $9$, because $A[9]$ is a local minimum. \([\text{Hint: With the given boundary conditions, any array must contain at least one local minimum. Why?}]\)

3. Suppose you are given two sorted arrays $A[1..n]$ and $B[1..n]$ containing distinct integers. Describe a fast algorithm to find the median (meaning the $n$th smallest element) of the union $A \cup B$. For example, given the input

   \[
   A[1..8] = [0, 1, 6, 9, 12, 13, 18, 20] \quad B[1..8] = [2, 4, 5, 8, 17, 19, 21, 23]
   \]

   your algorithm should return the integer $9$. \([\text{Hint: What can you learn by comparing one element of $A$ with one element of $B$?}]\)

\textit{To think about later:}

4. Now suppose you are given two sorted arrays $A[1..m]$ and $B[1..n]$ and an integer $k$. Describe a fast algorithm to find the $k$th smallest element in the union $A \cup B$. For example, given the input

   \[
   A[1..8] = [0, 1, 6, 9, 12, 13, 18, 20] \quad B[1..5] = [2, 5, 7, 17, 19] \quad k = 6
   \]

   your algorithm should return the integer $7$. 


In lecture, Jeff described an algorithm of Karatsuba that multiplies two \( n \)-digit integers using \( O(n^{\log_2 3}) \) single-digit additions, subtractions, and multiplications. In this lab we’ll look at some extensions and applications of this algorithm.

1. Describe an algorithm to compute the product of an \( n \)-digit number and an \( m \)-digit number, where \( m < n \), in \( O(m^{\log_3 3} - 1)n \) time.

2. Describe an algorithm to compute the decimal representation of \( 2^n \) in \( O(n^{\log_3 3}) \) time.
   [Hint: Repeated squaring. The standard algorithm that computes one decimal digit at a time requires \( \Theta(n^2) \) time.]

3. Describe a divide-and-conquer algorithm to compute the decimal representation of an arbitrary \( n \)-bit binary number in \( O(n^{\log_3 3}) \) time.
   [Hint: Let \( x = a \cdot 2^{n/2} + b \). Watch out for an extra log factor in the running time.]

Think about later:

4. Suppose we can multiply two \( n \)-digit numbers in \( O(M(n)) \) time. Describe an algorithm to compute the decimal representation of an arbitrary \( n \)-bit binary number in \( O(M(n) \log n) \) time.
A subsequence of a sequence (for example, an array, linked list, or string), obtained by removing zero or more elements and keeping the rest in the same sequence order. A subsequence is called a substring if its elements are contiguous in the original sequence. For example:

- SUBSEQUENCE, UBSEQU, and the empty string ε are all substrings (and therefore subsequences) of the string SUBSEQUENCE;
- SBSQNC, SQUEE, and EEE are all subsequences of SUBSEQUENCE but not substrings;
- QUEUE, EQUUS, and DIMAGGIO are not subsequences (and therefore not substrings) of SUBSEQUENCE.

Describe recursive backtracking algorithms for the following problems. Don’t worry about running times.

1. Given an array $A[1..n]$ of integers, compute the length of a longest increasing subsequence. 
   A sequence $B[1..ℓ]$ is increasing if $B[i] > B[i−1]$ for every index $i ≥ 2$.
   For example, given the array
   \[
   \langle 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7 \rangle
   \]
   your algorithm should return the integer 6, because $\langle 1, 4, 5, 6, 8, 9 \rangle$ is a longest increasing subsequence (one of many).

2. Given an array $A[1..n]$ of integers, compute the length of a longest decreasing subsequence. 
   A sequence $B[1..ℓ]$ is decreasing if $B[i] < B[i−1]$ for every index $i ≥ 2$.
   For example, given the array
   \[
   \langle 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7 \rangle
   \]
   your algorithm should return the integer 5, because $\langle 9, 6, 5, 4, 2 \rangle$ is a longest decreasing subsequence (one of many).

   For example, given the array
   \[
   \langle 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7 \rangle
   \]
   your algorithm should return the integer 17, because $\langle 3, 1, 4, 1, 5, 2, 6, 5, 8, 7, 9, 3, 8, 4, 6, 2, 7 \rangle$ is a longest alternating subsequence (one of many).
To think about later:


For example, given the array

\[
\langle 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7 \rangle
\]

your algorithm should return the integer 6, because $\langle 3, 1, 2, 5, 9 \rangle$ is a longest convex subsequence (one of many).

5. Given an array $A[1..n]$, compute the length of a longest palindrome subsequence of $A$. Recall that a sequence $B[1..\ell]$ is a palindrome if $B[i] = B[\ell - i + 1]$ for every index $i$.

For example, given the array

\[
\langle 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7 \rangle
\]

your algorithm should return the integer 7, because $\langle 4, 9, 5, 3, 9, 4 \rangle$ is a longest palindrome subsequence (one of many).
A *subsequence* of a sequence (for example, an array, a linked list, or a string), obtained by removing zero or more elements and keeping the rest in the same sequence order. A subsequence is called a *substring* if its elements are contiguous in the original sequence. For example:

- SUBSEQUENCE, UBSEQU, and the empty string ε are all substrings of the string SUBSEQUENCE;
- SBSQNC, UEQUE, and EEE are all subsequences of SUBSEQUENCE but not substrings;
- QUEUE, SSS, and FOOBAR are not subsequences of SUBSEQUENCE.

Describe and analyze *dynamic programming* algorithms for the following problems. For the first three, use the backtracking algorithms you developed on Wednesday.


5. Given an array $A[1..n]$, compute the length of a longest *palindrome* subsequence of $A$. Recall that a sequence $B[1..\ell]$ is a *palindrome* if $B[i] = B[\ell - i + 1]$ for every index $i$. 


Basic steps in developing a dynamic programming algorithm

1. **Formulate the problem recursively.** This is the hard part. There are two distinct but equally important things to include in your formulation.

   (a) **Specification.** First, give a clear and precise English description of the problem you are claiming to solve. Not how to solve the problem, but what the problem actually is. Omitting this step in homeworks or exams is an automatic zero.

   (b) **Solution.** Second, give a clear recursive formula or algorithm for the whole problem in terms of the answers to smaller instances of exactly the same problem. It generally helps to think in terms of a recursive definition of your inputs and outputs. If you discover that you need a solution to a similar problem, or a slightly related problem, you’re attacking the wrong problem; go back to step 1.

2. **Build solutions to your recurrence from the bottom up.** Write an algorithm that starts with the base cases of your recurrence and works its way up to the final solution, by considering intermediate subproblems in the correct order. This stage can be broken down into several smaller, relatively mechanical steps:

   (a) **Identify the subproblems.** What are all the different ways can your recursive algorithm call itself, starting with some initial input?

   (b) **Analyze running time.** Add up the running times of all possible subproblems, ignoring the recursive calls.

   (c) **Choose a memoization data structure.** For most problems, each recursive subproblem can be identified by a few integers, so you can use a multidimensional array. But some problems need a more complicated data structure.

   (d) **Identify dependencies.** Except for the base cases, every recursive subproblem depends on other subproblems—which ones? Draw a picture of your data structure, pick a generic element, and draw arrows from each of the other elements it depends on. Then formalize your picture.

   (e) **Find a good evaluation order.** Order the subproblems so that each subproblem comes after the subproblems it depends on. Typically, you should consider the base cases first, then the subproblems that depends only on base cases, and so on. Be careful!

   (f) **Write down the algorithm.** You know what order to consider the subproblems, and you know how to solve each subproblem. So do that! If your data structure is an array, this usually means writing a few nested for-loops around your original recurrence.
Lenny Adve, the founding dean of the new Maximilian Q. Levchin College of Computer Science, has commissioned a series of snow ramps on the south slope of the Orchard Downs sledding hill\textsuperscript{1} and challenged Bill Kudeki, head of the Department of Electrical and Computer Engineering, to a sledding contest. Bill and Lenny will both sled down the hill, each trying to maximize their air time. The winner gets to expand their department/college into Siebel Center, the new ECE Building, and the English Building; the loser has to move their entire department/college under the Boneyard bridge next to Everitt Lab (along with the English department).

Whenever Lenny or Bill reaches a ramp \textit{while on the ground}, they can either use that ramp to jump through the air, possibly flying over one or more ramps, or sled past that ramp and stay on the ground. Obviously, if someone flies over a ramp, they cannot use that ramp to extend their jump.

1. Suppose you are given a pair of arrays \textit{Ramp} and \textit{Length}, where \textit{Ramp} is the distance from the top of the hill to the \textit{i}th ramp, and \textit{Length} is the distance that any sledder who takes the \textit{i}th ramp will travel through the air. Describe and analyze an algorithm to determine the maximum total distance that Lenny and Bill can travel through the air. [Hint: Do whatever you feel like you wanna do. Gosh!]

2. Uh-oh. The university lawyers heard about Lenny and Bill’s little bet and immediately objected. To protect the university from both lawsuits and sky-rocketing insurance rates, they impose an upper bound on the number of jumps that either sledder can take.

Describe and analyze an algorithm to determine the maximum total distance that Lenny or Bill can spend in the air with at most \textit{k} jumps, given the original arrays \textit{Ramp} and \textit{Length} and the integer \textit{k} as input.

3. To think about later: When the lawyers realized that imposing their restriction didn’t immediately shut down the contest, they added a new restriction: No ramp can be used more than once! Disgusted by the legal interference, Lenny and Bill give up on their bet and decide to cooperate to put on a good show for the spectators.

Describe and analyze an algorithm to determine the maximum total distance that Lenny and Bill can spend in the air, each taking at most \textit{k} jumps (so at most 2\textit{k} jumps total), and with each ramp used at most once.

\textsuperscript{1}The north slope is faster, but too short for an interesting contest.
1. A **basic arithmetic expression** is composed of characters from the set \{1, +, \times\} and parentheses. Almost every integer can be represented by more than one basic arithmetic expression. For example, all of the following basic arithmetic expression represent the integer 14:

\[
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
\]
\[
((1 + 1) \times (1 + 1 + 1 + 1)) + ((1 + 1) \times (1 + 1))
\]
\[
(1 + 1) \times (1 + 1 + 1 + 1 + 1 + 1 + 1 + 1)
\]
\[
(1 + 1) \times ((1 + 1 + 1) \times (1 + 1)) + 1
\]

Describe and analyze an algorithm to compute, given an integer \(n\) as input, the minimum number of 1’s in a basic arithmetic expression whose value is equal to \(n\). The number of parentheses doesn’t matter, just the number of 1’s. For example, when \(n = 14\), your algorithm should return 8, for the final expression above. The running time of your algorithm should be bounded by a small polynomial function of \(n\).

**Think about later:**

2. Suppose you are given a sequence of integers separated by + and − signs; for example:

\[
1 + 3 − 2 − 5 + 1 − 6 + 7
\]

You can change the value of this expression by adding parentheses in different places. For example:

\[
1 + 3 − 2 − 5 + 1 − 6 + 7 = −1
\]
\[
(1 + 3 − (2 − 5)) + (1 − 6) + 7 = 9
\]
\[
(1 + (3 − 2)) − (5 + 1) − (6 + 7) = −17
\]

Describe and analyze an algorithm to compute, given a list of integers separated by + and − signs, the maximum possible value the expression can take by adding parentheses. Parentheses must be used only to group additions and subtractions; in particular, do not use them to create implicit multiplication as in \(1 + 3(−2)(−5) + 1 − 6 + 7 = 33\).
For each of the problems below, transform the input into a graph and apply a standard graph algorithm that you’ve seen in class. Whenever you use a standard graph algorithm, you must provide the following information. (I recommend actually using a bulleted list.)

- What are the vertices? What does each vertex represent?
- What are the edges? Are they directed or undirected?
- If the vertices and/or edges have associated values, what are they?
- What problem do you need to solve on this graph?
- What standard algorithm are you using to solve that problem?
- What is the running time of your entire algorithm, including the time to build the graph, as a function of the original input parameters?

1. *Snakes and Ladders* is a classic board game, originating in India no later than the 16th century. The board consists of an \( n \times n \) grid of squares, numbered consecutively from 1 to \( n^2 \), starting in the bottom left corner and proceeding row by row from bottom to top, with rows alternating to the left and right. Certain pairs of squares, always in different rows, are connected by either “snakes” (leading down) or “ladders” (leading up). Each square can be an endpoint of at most one snake or ladder.

![A typical Snakes and Ladders board.](image)

You start with a token in cell 1, in the bottom left corner. In each move, you advance your token up to \( k \) positions, for some fixed constant \( k \) (typically 6). Then if the token is at the top of a snake, you must slide the token down to the bottom of that snake, and if the token is at the bottom of a ladder, you may move the token up to the top of that ladder.

Describe and analyze an efficient algorithm to compute the smallest number of moves required for the token to reach the last square of the Snakes and Ladders board.

2. Let \( G \) be an undirected graph. Suppose we start with two coins on two arbitrarily chosen vertices of \( G \). At every step, each coin must move to an adjacent vertex. Describe and analyze an efficient algorithm to compute the minimum number of steps to reach a configuration where both coins are on the same vertex, or to report correctly that no such configuration is reachable. The input to your algorithm consists of a graph \( G = (V, E) \) and two vertices \( u, v \in V \) (which may or may not be distinct).
Think about later:

3. Let $G$ be an undirected graph. Suppose we start with 374 coins on 374 arbitrarily chosen vertices of $G$. At every step, each coin must move to an adjacent vertex. Describe and analyze an efficient algorithm to compute the minimum number of steps to reach a configuration where both coins are on the same vertex, or to report correctly that no such configuration is reachable. The input to your algorithm consists of a graph $G = (V, E)$ and starting vertices $s_1, s_2, \ldots, s_{374}$ (which may or may not be distinct).
For each of the problems below, transform the input into a graph and apply a standard graph algorithm that you've seen in class. Whenever you use a standard graph algorithm, you must provide the following information. (I recommend actually using a bulleted list.)

- What are the vertices? What does each vertex represent?
- What are the edges? Are they directed or undirected?
- If the vertices and/or edges have associated values, what are they?
- What problem do you need to solve on this graph?
- What standard algorithm are you using to solve that problem?
- What is the running time of your entire algorithm, including the time to build the graph, as a function of the original input parameters?

1. Inspired by the previous lab, you decide to organize a Snakes and Ladders competition with \( n \) participants. In this competition, each game of Snakes and Ladders involves three players. After the game is finished, they are ranked first, second, and third. Each player may be involved in any (non-negative) number of games, and the number need not be equal among players.

   At the end of the competition, \( m \) games have been played. You realize that you forgot to implement a proper rating system, and therefore decide to produce the overall ranking of all \( n \) players as you see fit. However, to avoid being too suspicious, if player \( A \) ranked better than player \( B \) in any game, then \( A \) must rank better than \( B \) in the overall ranking.

   You are given the list of players and their ranking in each of the \( m \) games. Describe and analyze an algorithm that produces an overall ranking of the \( n \) players that is consistent with the individual game rankings, or correctly reports that no such ranking exists.

2. There are \( n \) galaxies connected by \( m \) intergalactic teleport-ways. Each teleport-way joins two galaxies and can be traversed in both directions. However, the company that runs the teleport-ways has established an extremely lucrative cost structure: Anyone can teleport further from their home galaxy at no cost whatsoever, but teleporting toward their home galaxy is prohibitively expensive.

   Judy has decided to take a sabbatical tour of the universe by visiting as many galaxies as possible, starting at her home galaxy. To save on travel expenses, she wants to teleport away from her home galaxy at every step, except for the very last teleport home.

   Describe and analyze an algorithm to compute the maximum number of galaxies that Judy can visit. Your input consists of an undirected graph \( G \) with \( n \) vertices and \( m \) edges describing the teleport-way network, an integer \( 1 \leq s \leq n \) identifying Judy's home galaxy, and an array \( D[1..n] \) containing the distances of each galaxy from \( s \).

To think about later:

3. Just before embarking on her universal tour, Judy wins the space lottery, giving her just enough money to afford two teleports toward her home galaxy. Describe and analyze a new algorithm to compute the maximum number of galaxies Judy can visit; if she visits the same galaxy twice, that counts as two visits. After all, argues the travel agent, who can see an entire galaxy in just one visit?
4. Judy replies angrily to the travel agent that she can see an entire galaxy in just one visit, because 99% of every galaxy is exactly the same glowing balls of plasma and lifeless chunks of rock and McDonalds and Starbucks and prefab “Irish” pubs and overpriced souvenir shops and Peruvian street-corner musicians as every other galaxy.

Describe and analyze an algorithm to compute the maximum number of distinct galaxies Judy can visit. She is still allowed to visit the same galaxy more than once, but only the first visit counts toward her total.
1. Describe and analyze an algorithm to compute the shortest path from vertex \( s \) to vertex \( t \) in a directed graph with weighted edges, where exactly one edge \( u \rightarrow v \) has negative weight. Assume the graph has no negative cycles. [Hint: Modify the input graph and run Dijkstra's algorithm. Alternatively, don’t modify the input graph, but run Dijkstra's algorithm anyway.]

2. You just discovered your best friend from elementary school on Twitbook. You both want to meet as soon as possible, but you live in two different cities that are far apart. To minimize travel time, you agree to meet at an intermediate city, and then you simultaneously hop in your cars and start driving toward each other. But where exactly should you meet?

You are given a weighted graph \( G = (V, E) \), where the vertices \( V \) represent cities and the edges \( E \) represent roads that directly connect cities. Each edge \( e \) has a weight \( w(e) \) equal to the time required to travel between the two cities. You are also given a vertex \( p \), representing your starting location, and a vertex \( q \), representing your friend's starting location.

Describe and analyze an algorithm to find the target vertex \( t \) that allows you and your friend to meet as soon as possible, assuming both of you leave home right now.

To think about later:

3. A looped tree is a weighted, directed graph built from a binary tree by adding an edge from every leaf back to the root. Every edge has a non-negative weight.

(a) How much time would Dijkstra’s algorithm require to compute the shortest path between two vertices \( u \) and \( v \) in a looped tree with \( n \) nodes?

(b) Describe and analyze a faster algorithm.
1. Suppose that you have just finished computing the array \( \text{dist}[1..V, 1..V] \) of shortest-path distances between all pairs of vertices in an edge-weighted directed graph \( G \). Unfortunately, you discover that you incorrectly entered the weight of a single edge \( u \rightarrow v \), so all that precious CPU time was wasted. Or was it? Maybe your distances are correct after all!

In each of the following problems, let \( w(u \rightarrow v) \) denote the weight that you used in your distance computation, and let \( w'(u \rightarrow v) \) denote the correct weight of \( u \rightarrow v \).

(a) Suppose \( w(u \rightarrow v) > w'(u \rightarrow v) \); that is, the weight you used for \( u \rightarrow v \) was larger than its true weight. Describe an algorithm that repairs the distance array in \( O(V^2) \) time under this assumption. [Hint: For every pair of vertices \( x \) and \( y \), either \( u \rightarrow v \) is on the shortest path from \( x \) to \( y \) or it isn’t.]

(b) Maybe even that was too much work. Describe an algorithm that determines whether your original distance array is actually correct in \( O(1) \) time, again assuming that \( w(u \rightarrow v) > w'(u \rightarrow v) \). [Hint: Either \( u \rightarrow v \) is the shortest path from \( u \) to \( v \) or it isn’t.]

(c) To think about later: Describe an algorithm that determines in \( O(VE) \) time whether your distance array is actually correct, even if \( w(u \rightarrow v) < w'(u \rightarrow v) \).

(d) To think about later: Argue that when \( w(u \rightarrow v) < w'(u \rightarrow v) \), repairing the distance array requires recomputing shortest paths from scratch, at least in the worst case.

2. You—yes, you—can cause a major economic collapse with the power of graph algorithms!\(^1\)

The arbitrage business is a money-making scheme that takes advantage of differences in currency exchange. In particular, suppose that 1 US dollar buys 120 Japanese yen; 1 yen buys 0.01 euros; and 1 euro buys 1.2 US dollars. Then, a trader starting with $1 can convert their money from dollars to yen, then from yen to euros, and finally from euros back to dollars, ending with $1.44! The cycle of currencies \( \$ \rightarrow \¥ \rightarrow \€ \rightarrow \$ \) is called an arbitrage cycle. Of course, finding and exploiting arbitrage cycles before the prices are corrected requires extremely fast algorithms.

Suppose \( n \) different currencies are traded in your currency market. You are given the matrix \( R[1..n] \) of exchange rates between every pair of currencies; for each \( i \) and \( j \), one unit of currency \( i \) can be traded for \( R[i, j] \) units of currency \( j \). (Do not assume that \( R[i, j] \cdot R[j, i] = 1 \).)

(a) Describe an algorithm that returns an array \( V[1..n] \), where \( V[i] \) is the maximum amount of currency \( i \) that you can obtain by trading, starting with one unit of currency \( 1 \), assuming there are no arbitrage cycles.

(b) Describe an algorithm to determine whether the given matrix of currency exchange rates creates an arbitrage cycle.

*(c) To think about later: Modify your algorithm from part (b) to actually return an arbitrage cycle, if such a cycle exists.*

\(^1\)No, you can’t.
1. **Flappy Bird** is a popular mobile game written by Nguyễn Hà Đông, originally released in May 2013. The game features a bird named “Faby”, who flies to the right at constant speed. Whenever the player taps the screen, Faby is given a fixed upward velocity; between taps, Faby falls due to gravity. Faby flies through a landscape of pipes until it touches either a pipe or the ground, at which point the game is over. Your task, should you choose to accept it, is to develop an algorithm to play Flappy Bird automatically.

Well, okay, not Flappy Bird exactly, but the following drastically simplified variant, which I will call **Flappy Pixel**. Instead of a bird, Faby is a single point, specified by three integers: horizontal position $x$ (in pixels), vertical position $y$ (in pixels), and vertical speed $y'$ (in pixels per frame). Faby’s environment is described by two arrays $Hi[1..n]$ and $Lo[1..n]$, where for each index $i$, we have $0 < Lo[i] < Hi[i] < h$ for some fixed height value $h$. The game is described by the following piece of pseudocode:

```
FLAPPYPXEL(Hi[1..n], Lo[1..n]):
    y ← ⌈h/2⌉
    y' ← 0
    for x ← 1 to n
        if the player taps the screen
            y' ← 10  \(\langle\text{flap}\rangle\)
        else
            y' ← y' - 1  \(\langle\text{fall}\rangle\)
        y ← y + y'
        if y < Lo[x] or y > Hi[x]
            return FALSE  \(\langle\text{player loses}\rangle\)
    return TRUE  \(\langle\text{player wins}\rangle\)
```

Notice that in each iteration of the main loop, the player has the option of tapping the screen.

Describe and analyze an algorithm to determine the minimum number of times that the player must tap the screen to win Flappy Pixel, given the integer $h$ and the arrays $Hi[1..n]$ and $Lo[1..n]$ as input. If the game cannot be won at all, your algorithm should return $\infty$. Describe the running time of your algorithm as a function of $n$ and $h$.

[Problem 2 is on the back.]
2. **Racetrack** (also known as *Graph Racers* and *Vector Rally*) is a two-player paper-and-pencil racing game that Jeff played on the bus in 5th grade. The game is played with a track drawn on a sheet of graph paper. The players alternately choose a sequence of grid points that represent the motion of a car around the track, subject to certain constraints explained below.

Each car has a *position* and a *velocity*, both with integer x- and y-coordinates. A subset of grid squares is marked as the *starting area*, and another subset is marked as the *finishing area*. The initial position of each car is chosen by the player somewhere in the starting area; the initial velocity of each car is always (0,0). At each step, the player optionally changes each component of the velocity by at most 1. The car’s new position is then determined by adding the new velocity to the car’s previous position. The new position must be inside the track; otherwise, the car crashes and that player loses the race. The race ends when the first car reaches a position inside the finishing area.

<table>
<thead>
<tr>
<th>velocity</th>
<th>position</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)</td>
<td>(1,5)</td>
</tr>
<tr>
<td>(1,0)</td>
<td>(2,5)</td>
</tr>
<tr>
<td>(2,−1)</td>
<td>(4,4)</td>
</tr>
<tr>
<td>(3,0)</td>
<td>(7,4)</td>
</tr>
<tr>
<td>(2,1)</td>
<td>(9,5)</td>
</tr>
<tr>
<td>(1,2)</td>
<td>(10,7)</td>
</tr>
<tr>
<td>(0,3)</td>
<td>(10,10)</td>
</tr>
<tr>
<td>(−1,4)</td>
<td>(9,14)</td>
</tr>
<tr>
<td>(0,3)</td>
<td>(9,17)</td>
</tr>
<tr>
<td>(1,2)</td>
<td>(10,19)</td>
</tr>
<tr>
<td>(2,2)</td>
<td>(12,21)</td>
</tr>
<tr>
<td>(2,1)</td>
<td>(14,22)</td>
</tr>
<tr>
<td>(2,0)</td>
<td>(16,22)</td>
</tr>
<tr>
<td>(1,−1)</td>
<td>(17,21)</td>
</tr>
<tr>
<td>(2,−1)</td>
<td>(19,20)</td>
</tr>
<tr>
<td>(3,0)</td>
<td>(22,20)</td>
</tr>
<tr>
<td>(3,1)</td>
<td>(25,21)</td>
</tr>
</tbody>
</table>

A 16-step Racetrack run, on a 25 × 25 track. This is not the shortest run on this track.

Suppose the racetrack is represented by an \( n \times n \) array of bits, where each \( 0 \) bit represents a grid point inside the track, each \( 1 \) bit represents a grid point outside the track, the “starting line” consists of all \( 0 \) bits in column 1, and the “finishing line” consists of all \( 0 \) bits in column \( n \).

Describe and analyze an algorithm to find the minimum number of steps required to move a car from the starting line to the finish line of a given racetrack.

*Hint: Your initial analysis can be improved.*

---

1The actual game is a bit more complicated than the version described here. See [http://harmmade.com/vectorracer/](http://harmmade.com/vectorracer/) for an excellent online version.

2However, it is not necessary for the entire line segment between the old position and the new position to lie inside the track. Sometimes Speed Racer has to push the A button.
To think about later:

3. Consider the following variant of Flappy Pixel. The mechanics of the game are unchanged, but now the environment is specified by an array \( \text{Points}[1..n, 1..h] \) of integers, which could be positive, negative, or zero. If Faby falls off the top or bottom edge of the environment, the game immediately ends and the player gets nothing. Otherwise, at each frame, the player earns \( \text{Points}[x,y] \) points, where \((x,y)\) is Faby’s current position. The game ends when Faby reaches the right end of the environment.

```python
FLAPPYPIXEL2(\text{Points}[1..n]):
    score ← 0
    y ← \lceil h/2 \rceil
    y′ ← 0
    for x ← 1 to n
        if the player taps the screen
            y′ ← 10 ⟨flap⟩
        else
            y′ ← y′ − 1 ⟨fail⟩
        y ← y + y′
        if y < 1 or y > h
            return −∞ ⟨fail⟩
    score ← score + \text{Points}[x,y]
    return score
```

Describe and analyze an algorithm to determine the maximum possible score that a player can earn in this game.

4. We can also consider a similar variant of Racetrack. Instead of bits, the “track” is described by an array \( \text{Points}[1..n, 1..n] \) of numbers, which could be positive, negative, or zero. Whenever the car lands on a grid cell \((i,j)\), the player receives \( \text{Points}[i,j] \) points. Forbidden grid cells are indicated by \( \text{Points}[i,j] = −\infty \).

Describe and analyze an algorithm to find the largest possible score that a player can earn by moving a car from column 1 (the starting line) to column \( n \) (the finish line).

[Hint: Wait, what if all the point values are positive?]
1. Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:

- **Input:** A boolean circuit $K$ with $n$ inputs and one output.
- **Output:** True if there are input values $x_1, x_2, \ldots, x_n \in \{\text{True}, \text{False}\}$ that make $K$ output True, and False otherwise.

Using this black box as a subroutine, describe an algorithm that solves the following related search problem in polynomial time:

- **Input:** A boolean circuit $K$ with $n$ inputs and one output.
- **Output:** Input values $x_1, x_2, \ldots, x_n \in \{\text{True}, \text{False}\}$ that make $K$ output True, or None if there are no such inputs.

   [Hint: You can use the magic box more than once.]

2. An **independent set** in a graph $G$ is a subset $S$ of the vertices of $G$, such that no two vertices in $S$ are connected by an edge in $G$. Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:

- **Input:** An undirected graph $G$ and an integer $k$.
- **Output:** True if $G$ has an independent set of size $k$, and False otherwise.

   (a) Using this black box as a subroutine, describe algorithms that solves the following optimization problem in polynomial time:

   - **Input:** An undirected graph $G$.
   - **Output:** The size of the largest independent set in $G$.

   [Hint: You’ve seen this problem before.]

   (b) Using this black box as a subroutine, describe algorithms that solves the following search problem in polynomial time:

   - **Input:** An undirected graph $G$.
   - **Output:** An independent set in $G$ of maximum size.
To think about later:

3. Formally, a **proper coloring** of a graph $G = (V,E)$ is a function $c : V \rightarrow \{1, 2, \ldots, k\}$, for some integer $k$, such that $c(u) \neq c(v)$ for all $uv \in E$. Less formally, a valid coloring assigns each vertex of $G$ a color, such that every edge in $G$ has endpoints with different colors. The **chromatic number** of a graph is the minimum number of colors in a proper coloring of $G$.

   Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:
   
   - **INPUT:** An undirected graph $G$ and an integer $k$.
   - **OUTPUT:** True if $G$ has a proper coloring with $k$ colors, and False otherwise.

Using this black box as a subroutine, describe an algorithm that solves the following **coloring problem** in polynomial time:

   - **INPUT:** An undirected graph $G$.
   - **OUTPUT:** A valid coloring of $G$ using the minimum possible number of colors.

   *Hint: You can use the magic box more than once. The input to the magic box is a graph and only a graph, meaning only vertices and edges.*
Proving that a problem $X$ is NP-hard requires several steps:

- Choose a problem $Y$ that you already know is NP-hard (because we told you so in class).
- Describe an algorithm to solve $Y$, using an algorithm for $X$ as a subroutine. Typically this algorithm has the following form: Given an instance of $Y$, transform it into an instance of $X$, and then call the magic black-box algorithm for $X$.
- **Prove** that your algorithm is correct. This always requires two separate steps, which are usually of the following form:
  - **Prove** that your algorithm transforms “good” instances of $Y$ into “good” instances of $X$.
  - **Prove** that your algorithm transforms “bad” instances of $Y$ into “bad” instances of $X$. Equivalently: Prove that if your transformation produces a “good” instance of $X$, then it was given a “good” instance of $Y$.
- Argue that your algorithm for $Y$ runs in polynomial time. (This is usually trivial.)

1. Recall the following $k$Color problem: Given an undirected graph $G$, can its vertices be colored with $k$ colors, so that every edge touches vertices with two different colors?

   (a) Describe a direct polynomial-time reduction from 3Color to 4Color.
   (b) Prove that $k$Color problem is NP-hard for any $k \geq 3$.

2. A Hamiltonian cycle in a graph $G$ is a cycle that goes through every vertex of $G$ exactly once. Deciding whether an arbitrary graph contains a Hamiltonian cycle is NP-hard.

   A tonian cycle in a graph $G$ is a cycle that goes through at least half of the vertices of $G$. Prove that deciding whether a graph contains a tonian cycle is NP-hard.

To think about later:

3. Let $G$ be an undirected graph with weighted edges. A Hamiltonian cycle in $G$ is **heavy** if the total weight of edges in the cycle is at least half of the total weight of all edges in $G$. Prove that deciding whether a graph contains a heavy Hamiltonian cycle is NP-hard.
Prove that each of the following problems is NP-hard.

1. Given an undirected graph $G$, does $G$ contain a simple path that visits all but 374 vertices?

2. Given an undirected graph $G$, does $G$ have a spanning tree in which every node has degree at most 374?

3. Given an undirected graph $G$, does $G$ have a spanning tree with at most 374 leaves?
Proving that a language $L$ is undecidable by reduction requires several steps. (These are the essentially the same steps you already use to prove that a problem is NP-hard.)

- Choose a language $L'$ that you already know is undecidable (because we told you so in class). The simplest choice is usually the standard halting language

\[ \text{HALT} := \{ \langle M, w \rangle \mid M \text{ halts on } w \} \]

- Describe an algorithm that decides $L'$, using an algorithm that decides $L$ as a black box. Typically your reduction will have the following form:

Given an arbitrary string $x$, construct a special string $y$, such that $y \in L$ if and only if $x \in L'$.

In particular, if $L = \text{HALT}$, your reduction will have the following form:

Given the encoding $\langle M, w \rangle$ of a Turing machine $M$ and a string $w$, construct a special string $y$, such that $y \in L$ if and only if $M$ halts on input $w$.

- Prove that your algorithm is correct. This proof almost always requires two separate steps:

  - Prove that if $x \in L'$ then $y \in L$.
  - Prove that if $x \notin L'$ then $y \notin L$.

Very important: Name every object in your proof, and always refer to objects by their names. Never refer to “the Turing machine” or “the algorithm” or “the code” or “the input string” or (gods forbid) “it” or “this”, even in casual conversation, even if you’re “just” explaining your intuition, even when you’re “just” thinking about the reduction to yourself.

Prove that the following languages are undecidable.

1. $\text{ACCEPTILLINI} := \{ \langle M \rangle \mid M \text{ accepts the string } \text{ILLINI} \}$
2. $\text{ACCEPTTHREE} := \{ \langle M \rangle \mid M \text{ accepts exactly three strings} \}$
3. $\text{ACCEPTPALINDROME} := \{ \langle M \rangle \mid M \text{ accepts at least one palindrome} \}$
4. $\text{ACCEPTONLYPALINDROMES} := \{ \langle M \rangle \mid \text{Every string accepted by } M \text{ is a palindrome} \}$

A solution for problem 1 appears on the next page; don’t look at it until you’ve thought a bit about the problem first.
Solution (for problem 1): For the sake of argument, suppose there is an algorithm \textsc{DecideAcceptIllini} that correctly decides the language \textsc{AcceptIllini}. Then we can solve the halting problem as follows:

\begin{center}
\begin{tabular}{lll}
| \textsc{DecideHalt}(⟨M,w⟩): & \\
| Encode the following Turing machine \(M'\): & \\
| \(M'(x):\) & \\
| run \(M\) on input \(w\) & \\
| return True & \\
| if \textsc{DecideAcceptIllini}(⟨\(M'\)⟩) & \\
| return True & \\
| else & \\
| return False & \\
\end{tabular}
\end{center}

We prove this reduction correct as follows:

\(\Rightarrow\) Suppose \(M\) halts on input \(w\).

Then \(M'\) accepts every input string \(x\).

In particular, \(M'\) accepts the string \textsc{ILLINI}.

So \textsc{DecideAcceptIllini} accepts the encoding \(⟨M'⟩\).

So \textsc{DecideHalt} correctly accepts the encoding \(⟨M,w⟩\).

\(\Leftarrow\) Suppose \(M\) does not halt on input \(w\).

Then \(M'\) diverges on every input string \(x\).

In particular, \(M'\) does not accept the string \textsc{ILLINI}.

So \textsc{DecideAcceptIllini} rejects the encoding \(⟨M'⟩\).

So \textsc{DecideHalt} correctly rejects the encoding \(⟨M,w⟩\).

In both cases, \textsc{DecideHalt} is correct. But that's impossible, because \textsc{Halt} is undecidable.

We conclude that the algorithm \textsc{DecideAcceptIllini} does not exist. \(\blacksquare\)

As usual for undecidability proofs, this proof invokes \textit{four} distinct Turing machines:

- The hypothetical algorithm \textsc{DecideAcceptIllini}.
- The new algorithm \textsc{DecideHalt} that we construct in the solution.
- The arbitrary machine \(M\) whose encoding is part of the input to \textsc{DecideHalt}.
- The special machine \(M'\) whose encoding \textsc{DecideHalt} constructs (from the encoding of \(M\) and \(w\)) and then passes to \textsc{DecideAcceptIllini}.
**Rice’s Theorem.** Let \( \mathcal{L} \) be any set of languages that satisfies the following conditions:

- There is a Turing machine \( Y \) such that \( \text{Accept}(Y) \in \mathcal{L} \).
- There is a Turing machine \( N \) such that \( \text{Accept}(N) \notin \mathcal{L} \).

The language \( \text{AcceptIn} (\mathcal{L}) := \{ \langle M \rangle \mid \text{Accept}(M) \in \mathcal{L} \} \) is undecidable.

You may find the following Turing machines useful:

- \( M_{\text{Accept}} \) accepts every input.
- \( M_{\text{Reject}} \) rejects every input.
- \( M_{\text{Hang}} \) infinite-loops on every input.

Prove that the following languages are undecidable using Rice’s Theorem:

1. \( \text{AcceptRegular} := \{ \langle M \rangle \mid \text{Accept}(M) \text{ is regular} \} \)
2. \( \text{AcceptILLINI} := \{ \langle M \rangle \mid M \text{ accepts the string } \text{ILLINI} \} \)
3. \( \text{AcceptPalindrome} := \{ \langle M \rangle \mid M \text{ accepts at least one palindrome} \} \)
4. \( \text{AcceptThree} := \{ \langle M \rangle \mid M \text{ accepts exactly three strings} \} \)
5. \( \text{AcceptUndecidable} := \{ \langle M \rangle \mid \text{Accept}(M) \text{ is undecidable} \} \)

**To think about later.** Which of the following languages are undecidable? How would you prove that? Remember that we know several ways to prove undecidability:

- Diagonalization: Assume the language is decidable, and derive an algorithm with self-contradictory behavior.
- Reduction: Assume the language is decidable, and derive an algorithm for a known undecidable language, like \( \text{HALT} \) or \( \text{SelfReject} \) or \( \text{NeverAccept} \).
- Rice’s Theorem: Find an appropriate family of languages \( \mathcal{L} \), a machine \( Y \) that accepts a language in \( \mathcal{L} \), and a machine \( N \) that does not accept a language in \( \mathcal{L} \).
- Closure: If two languages \( L \) and \( L' \) are decidable, then the languages \( L \cap L' \) and \( L \cup L' \) and \( L \setminus L' \) and \( L \oplus L' \) and \( L^* \) are all decidable, too.

6. \( \text{Accept}\{\varepsilon\} := \{ \langle M \rangle \mid M \text{ accepts only the string } \varepsilon; \text{ that is, } \text{Accept}(M) = \{\varepsilon\} \} \)
7. \( \text{Accept}\emptyset := \{ \langle M \rangle \mid M \text{ does not accept any strings}; \text{ that is, } \text{Accept}(M) = \emptyset \} \)
8. \( \text{Accept}\emptyset := \{ \langle M \rangle \mid \text{Accept}(M) \text{ is not an acceptable language} \} \)
9. \( \text{Accept}=\text{Reject} := \{ \langle M \rangle \mid \text{Accept}(M) = \text{Reject}(M) \} \)
10. \( \text{Accept}\neq\text{Reject} := \{ \langle M \rangle \mid \text{Accept}(M) \neq \text{Reject}(M) \} \)
11. \( \text{Accept}\cup\text{Reject} := \{ \langle M \rangle \mid \text{Accept}(M) \cup \text{Reject}(M) = \Sigma^* \} \)
1. For each statement below, check “Yes” if the statement is always true and “No” otherwise. Each correct answer is worth +1 point; each incorrect answer is worth $-\frac{1}{2}$ point; checking “I don’t know” is worth +\frac{1}{4} point; and flipping a coin is (on average) worth +\frac{1}{4} point. You do not need to prove your answer is correct.

Read each statement very carefully. Some of these are deliberately subtle.

(a) Every infinite language is regular.
(b) If L is not regular, then for every string w ∈ L, there is a DFA that accepts w.
(c) If L is context-free and L has a finite fooling set, then L is regular.
(d) If L is regular and L′ ∩ L = ∅, then L′ is regular.
(e) The language \{0^i1^j0^k | i + j + k ≥ 374\} is not regular.
(f) The language \{0^i1^j0^k | i + j − k ≥ 374\} is not regular.
(g) Let M = (Q, \{0, 1\}, s, A, δ) be an arbitrary DFA, and let M′ = (Q, \{0, 1\}, s, A, δ′) be the DFA obtained from M by changing every 0-transition into a 1-transition and vice versa. More formally, M and M′ have the same states, input alphabet, starting state, and accepting states, but δ′(q, 0) = δ(q, 1) and δ′(q, 1) = δ(q, 0). Then L(M) ∩ L(M′) = ∅.
(h) Let M = (Q, Σ, s, A, δ) be an arbitrary NFA, and M′ = (Q′, Σ, s, A′, δ′) be any NFA obtained from M by deleting some subset of the states. More formally, we have Q′ ⊆ Q, A′ = A ∩ Q′, and δ′(q, a) = δ(q, a) ∩ Q′ for all q ∈ Q′. Then L(M′) ⊆ L(M).
(i) For every regular language L, the language \{0^{|w|} | w ∈ L\} is also regular.
(j) For every context-free language L, the language \{0^{|w|} | w ∈ L\} is also context-free.

2. For any language L, define 

\[ \text{StripInit}^0s(L) = \{w \mid 0^j w ∈ L \text{ for some } j ≥ 0\} \]

Less formally, StripInit^0s(L) is the set of all strings obtained by stripping any number of initial 0s from strings in L. For example, if L is the one-string language \{00011010\}, then 

\[ \text{StripInit}^0s(L) = \{00011010, 0011010, 011010, 11010\} \]

Prove that if L is a regular language, then StripInit^0s(L) is also a regular language.
3. For each of the following languages $L$ over the alphabet $\Sigma = \{0, 1\}$, give a regular expression that represents $L$ and describe a DFA that recognizes $L$.

(a) $\{0^n w 1^n \mid n > 1 \text{ and } w \in \Sigma^*\}$

(b) All strings in $0^* 1 0^*$ whose length is a multiple of 3.

4. The parity of a bit-string is 0 if the number of 1 bits is even, and 1 if the number of 1 bits is odd. For example:

\[
\begin{align*}
\text{parity}(\epsilon) &= 0 \\
\text{parity}(0010100) &= 0 \\
\text{parity}(00101110100) &= 1
\end{align*}
\]

(a) Give a self-contained, formal, recursive definition of the parity function. In particular, do not refer to # or other functions defined in class.

(b) Let $L$ be an arbitrary regular language. Prove that the language $\text{EvenParity}(L) := \{w \in L \mid \text{parity}(w) = 0\}$ is also regular.

(c) Let $L$ be an arbitrary regular language. Prove that the language $\text{AddParity}(L) := \{w \cdot \text{parity}(w) \mid w \in L\}$ is also regular. For example, if $L$ contains the string 11100 and 11000, then $\text{AddParity}(L)$ contains the strings 111001 and 110000.

5. Let $L$ be the language $\{0^i 1^j 0^k \mid i = j \text{ or } j = k\}$.

(a) Prove that $L$ is not a regular language.

(b) Describe a context-free grammar for $L$. 


Write your answers in the separate answer booklet.
Please return this question sheet and your cheat sheet with your answers.

1. For each statement below, check "Yes" if the statement is always true and "No" otherwise. Each correct answer is worth +1 point; each incorrect answer is worth −½ point; checking "I don’t know" is worth +¼ point; and flipping a coin is (on average) worth +¼ point. You do not need to prove your answer is correct.

  **Read each statement very carefully.** Some of these are deliberately subtle.

(a) No infinite language is regular.
(b) If \( L \) is regular, then for every string \( w \in L \), there is a DFA that rejects \( w \).
(c) If \( L \) is context-free and \( L \) has a finite fooling set, then \( L \) is not regular.
(d) If \( L \) is regular and \( L' \cap L = \emptyset \), then \( L' \) is not regular.
(e) The language \( \{0^i1^j0^k \mid i + j + k \geq 374 \} \) is regular.
(f) The language \( \{0^i1^j0^k \mid i + j - k \geq 374 \} \) is regular.
(g) Let \( M = (Q, \{0,1\}, s, A, \delta) \) be an arbitrary DFA, and let \( M' = (Q, \{0,1\}, s', A', \delta') \) be the DFA obtained from \( M \) by changing every \( 0 \)-transition into a \( 1 \)-transition and vice versa. More formally, \( M \) and \( M' \) have the same states, input alphabet, starting state, and accepting states, but \( \delta'(q,0) = \delta(q,1) \) and \( \delta'(q,1) = \delta(q,0) \). Then \( L(M) \cup L(M') = \{0,1\}^* \).
(h) Let \( M = (Q, \Sigma, s, A, \delta) \) be an arbitrary NFA, and \( M' = (Q', \Sigma, s', A', \delta') \) be any NFA obtained from \( M \) by deleting some subset of the states. More formally, we have \( Q' \subseteq Q \), \( A' = A \cap Q' \), and \( \delta'(q,a) = \delta(q,a) \cap Q' \) for all \( q \in Q' \). Then \( L(M') \subseteq L(M) \).
(i) For every non-regular language \( L \), the language \( \{0^{|w|} \mid w \in L \} \) is also non-regular.
(j) For every context-free language \( L \), the language \( \{0^{|w|} \mid w \in L \} \) is also context-free.

2. For any language \( L \), define

\[
\text{StripFinal}0s(L) = \{w \mid w0^n \in L \text{ for some } n \geq 0\}
\]

Less formally, \( \text{StripFinal}0s(L) \) is the set of all strings obtained by stripping any number of final \( 0s \) from strings in \( L \). For example, if \( L \) is the one-string language \( \{01101000\} \), then

\[
\text{StripFinal}0s(L) = \{01101, 011010, 0110100, 01101000\}.
\]

Prove that if \( L \) is a regular language, then \( \text{StripFinal}0s(L) \) is also a regular language.
3. For each of the following languages $L$ over the alphabet $\Sigma = \{0, 1\}$, give a regular expression that represents $L$ and describe a DFA that recognizes $L$.

(a) $\{0^n1^n \mid n \geq 1 \text{ and } w \in \Sigma^+\}$
(b) All strings in $0^*1^*0^*$ whose length is even.

4. The parity of a bit-string is 0 if the number of 1 bits is even, and 1 if the number of 1 bits is odd. For example:

\[\text{parity}(\epsilon) = 0 \quad \text{parity}(0010100) = 0 \quad \text{parity}(00101110100) = 1\]

(a) Give a self-contained, formal, recursive definition of the parity function. In particular, do not refer to # or other functions defined in class.
(b) Let $L$ be an arbitrary regular language. Prove that the language $\text{OddParity}(L) := \{w \in L \mid \text{parity}(w) = 1\}$ is also regular.
(c) Let $L$ be an arbitrary regular language. Prove that the language $\text{AddParity}(L) := \{\text{parity}(w) \cdot w \mid w \in L\}$ is also regular. For example, if $L$ contains the strings 01110 and 01100, then $\text{AddParity}(L)$ contains the strings 101110 and 001100.

5. Let $L$ be the language $\{0^i1^j0^k \mid 2i = k \text{ or } i = 2k\}$.

(a) Prove that $L$ is not a regular language.
(b) Describe a context-free grammar for $L$. 
1. **Clearly** indicate the following structures in the directed graph below, or write NONE if the indicated structure does not exist. Don’t be subtle; to indicate a collection of edges, draw a heavy black line along the entire length of each edge.

   ![Graph Image]

   - (a) A depth-first tree rooted at $x$.
   - (b) A breadth-first tree rooted at $y$.
   - (c) A shortest-path tree rooted at $z$.
   - (d) The shortest directed cycle.

2. Suppose you are given a directed graph $G$ where some edges are red and the remaining edges are blue. Describe an algorithm to find the shortest walk in $G$ from one vertex $s$ to another vertex $t$ in which no three consecutive edges have the same color. That is, if the walk contains two red edges in a row, the next edge must be blue, and if the walk contains two blue edges in a row, the next edge must be red.

   For example, if you are given the graph below (where single arrows are red and double arrows are blue), your algorithm should return the integer 7, because the shortest legal walk from $s$ to $t$ is $s \rightarrow a \rightarrow b \Rightarrow d \rightarrow c \Rightarrow a \rightarrow b \rightarrow c$.

   ![Example Graph Image]

3. Let $G$ be an arbitrary (not necessarily acyclic) directed graph in which every vertex $v$ has an integer label $\ell(v)$. Describe an algorithm to find the longest directed path in $G$ whose vertex labels define an increasing sequence. Assume all labels are distinct.

   For example, given the following graph as input, your algorithm should return the integer 5, which is the length of the increasing path $1 \rightarrow 2 \rightarrow 4 \rightarrow 6 \rightarrow 7 \rightarrow 8$.

   ![Example Graph Image]
4. Suppose you have an integer array $A[1..n]$ that used to be sorted, but Swedish hackers have overwritten $k$ entries of $A$ with random numbers. Because you carefully monitor your system for intrusions, you know how many entries of $A$ are corrupted, but not which entries or what the values are.

Describe an algorithm to determine whether your corrupted array $A$ contains an integer $x$. Your input consists of the array $A$, the integer $k$, and the target integer $x$. For example, if $A$ is the following array, $k = 4$, and $x = 17$, your algorithm should return True. (The corrupted entries of the array are shaded.)

Assume that $x$ is not equal to any of the the corrupted values, and that all $n$ array entries are distinct. Report the running time of your algorithm as a function of $n$ and $k$. A solution only for the special case $k = 1$ is worth 5 points; a complete solution for arbitrary $k$ is worth 10 points. [Hint: First consider $k = 0$; then consider $k = 1$.]

5. Suppose you give one of your interns at Twitbook an undirected graph $G$ with weighted edges, and you ask them to compute a shortest-path tree rooted at a particular vertex. Two weeks later, your intern finally comes back with a spanning tree $T$ of $G$. Unfortunately, the intern didn’t record the shortest-path distances, the direction of the shortest-path edges, or even the source vertex (which you and the intern have both forgotten).

Describe and analyze an algorithm to determine, given a weighted undirected graph $G$ and a spanning tree $T$ of $G$, whether $T$ is in fact a shortest-path tree in $G$. Assume all edge weights are non-negative.

For example, given the inputs shown below, your algorithm should return True for the example on the left, because $T$ is a shortest-path tree rooted at the upper right vertex of $G$, but your algorithm should return False for the example on the right.
1. **Clearly** indicate the following structures in the directed graph below, or write NONE if the indicated structure does not exist. Don’t be subtle; to indicate a collection of edges, draw a heavy black line along the entire length of each edge.

   ![Directed Graph](image)

   (a) A depth-first tree rooted at $x$.
   (b) A breadth-first tree rooted at $y$.
   (c) A shortest-path tree rooted at $z$.
   (d) The shortest directed cycle.

2. Let $G$ be a directed graph, where every vertex $v$ has an associated height $h(v)$, and for every edge $u \rightarrow v$ we have the inequality $h(u) > h(v)$. Assume all heights are distinct. The span of a path from $u$ to $v$ is the height difference $h(u) - h(v)$.

   Describe and analyze an algorithm to find the minimum span of a path in $G$ with at least $k$ edges. Your input consists of the graph $G$, the vertex heights $h(\cdot)$, and the integer $k$. Report the running time of your algorithm as a function of $V$, $E$, and $k$.

   For example, given the following labeled graph and the integer $k = 3$ as input, your algorithm should return the integer 4, which is the span of the path $8 \rightarrow 7 \rightarrow 6 \rightarrow 4$.

   ![Labeled Graph](image)

3. Suppose you have an integer array $A[1..n]$ that used to be sorted, but Swedish hackers have overwritten $k$ entries of $A$ with random numbers. Because you carefully monitor your system for intrusions, you know how many entries of $A$ are corrupted, but not which entries or what the values are.

   Describe an algorithm to determine whether your corrupted array $A$ contains an integer $x$. Your input consists of the array $A$, the integer $k$, and the target integer $x$. For example, if $A$ is the following array, $k = 4$, and $x = 17$, your algorithm should return True. (The corrupted entries of the array are shaded.)

   ![Array with Corrupted Entries](image)

   Assume that $x$ is not equal to any of the the corrupted values, and that all $n$ array entries are distinct. Report the running time of your algorithm as a function of $n$ and $k$. A solution only for the special case $k = 1$ is worth 5 points; a complete solution for arbitrary $k$ is worth 10 points. [Hint: First consider $k = 0$; then consider $k = 1$.]
4. Suppose you are given a directed graph $G$ in which every edge is either red or blue, and a subset of the vertices are marked as special. A walk in $G$ is legal if color changes happen only at special vertices. That is, for any two consecutive edges $u \rightarrow v \rightarrow w$ in a legal walk, if the edges $u \rightarrow v$ and $v \rightarrow w$ have different colors, the intermediate vertex $v$ must be special.

Describe and analyze an algorithm that either returns the length of the shortest legal walk from vertex $s$ to vertex $t$, or correctly reports that no such walk exists.\footnote{If you’ve read China Miéville’s excellent novel *The City & the City*, this problem should look familiar. If you haven’t read *The City & the City*, I can’t tell you why this problem should look familiar without spoiling the book.}

For example, if you are given the following graph below as input (where single arrows are red, double arrows are blue), with special vertices $x$ and $y$, your algorithm should return the integer 8, which is the length of the shortest legal walk $s \rightarrow x \rightarrow a \rightarrow b \rightarrow x \Rightarrow y \Rightarrow b \Rightarrow c \Rightarrow t$. The shorter walk $s \rightarrow a \Rightarrow b \Rightarrow c \Rightarrow t$ is not legal, because vertex $b$ is not special.

\[\text{\includegraphics[width=\textwidth]{graph.png}}\]

5. Let $G$ be a directed graph with weighted edges, in which every vertex is colored either red, green, or blue. Describe and analyze an algorithm to compute the length of the shortest walk in $G$ that starts at a red vertex, then visits any number of vertices of any color, then visits a green vertex, then visits any number of vertices of any color, then visits a blue vertex, then visits any number of vertices of any color, and finally ends at a red vertex. Assume all edge weights are positive.
Write your answers in the separate answer booklet.
Please return this question sheet and your cheat sheet with your answers.

1. **Clearly** indicate the following structures in the directed graph below, or write NONE if the indicated structure does not exist. Don't be subtle; to indicate a collection of edges, draw a heavy black line along the entire length of each edge.

(a) A depth-first tree rooted at \(x\).
(b) A breadth-first tree rooted at \(y\).
(c) A shortest-path tree rooted at \(z\).
(d) The shortest directed cycle.

2. After a few weeks of following your uphill-downhill walking path to work, your boss demands that you start showing up to work on time, so you decide to change your walking strategy. Your new goal is to walk to the highest altitude you can (to maximize exercise), while keeping the total length of your walk from home to work below some threshold (to make sure you get to work on time). Describe and analyze an algorithm to compute your new favorite route.

Your input consists of an undirected graph \(G\), where each vertex \(v\) has a height \(h(v)\) and each edge \(e\) has a positive length \(\ell(e)\), along with a start vertex \(s\), a target vertex \(t\), and a maximum length \(L\). Your algorithm should return the maximum height reachable by a walk from \(s\) to \(t\) in \(G\), whose total length is at most \(L\).

*[Hint: This is the same input as HW8 problem 1, but the problem is completely different. In particular, the number of uphill/downhill switches in your walk is irrelevant.]*

3. Suppose you have an integer array \(A[1..n]\) that used to be sorted, but Swedish hackers have overwritten \(k\) entries of \(A\) with random numbers. Because you carefully monitor your system for intrusions, you know how many entries of \(A\) are corrupted, but not which entries or what the values are.

Describe an algorithm to determine whether your corrupted array \(A\) contains an integer \(x\). Your input consists of the array \(A\), the integer \(k\), and the target integer \(x\). For example, if \(A\) is the following array, \(k = 4\), and \(x = 17\), your algorithm should return TRUE. (The corrupted entries of the array are shaded.)

\[
2 \ 3 \ 99 \ 7 \ 11 \ 13 \ 17 \ 19 \ 25 \ 29 \ 31 \ -5 \ 41 \ 43 \ 47 \ 53 \ 8 \ 61 \ 67 \ 71
\]

Assume that \(x\) is not equal to any of the the corrupted values, and that all \(n\) array entries are distinct. Report the running time of your algorithm as a function of \(n\) and \(k\). A solution only for the special case \(k = 1\) is worth 5 points; a complete solution for arbitrary \(k\) is worth 10 points. *[Hint: First consider \(k = 0\); then consider \(k = 1\).]*
4. Let $G$ be a directed graph, where every vertex $v$ has an associated height $h(v)$, and for every edge $u \rightarrow v$ we have the inequality $h(u) > h(v)$. Assume all heights are distinct. The span of a path from $u$ to $v$ is the height difference $h(u) - h(v)$.

Describe and analyze an algorithm to find the maximum span of a path in $G$ with at most $k$ edges. Your input consists of the graph $G$, the vertex heights $h(\cdot)$, and the integer $k$. Report the running time of your algorithm as a function of $V$, $E$, and $k$.

For example, given the following labeled graph and the integer $k = 3$ as input, your algorithm should return the integer 8, which is the span of the downward path $9 \rightarrow 6 \rightarrow 5 \rightarrow 1$.

![Graph](image)

[Hint: This is a very different question from problem 2.]

5. Suppose you are given a directed graph $G$ where some edges are red and the remaining edges are blue, along with two vertices $s$ and $t$. Describe an algorithm to compute the length of the shortest walk in $G$ from $s$ to $t$ that traverses an even number of red edges and an even number of blue edges. If the walk traverses the same edge multiple times, each traversal counts toward the total for that color.

For example, if you are given the graph below (where single arrows are red and double arrows are blue), your algorithm should return the integer 6, because the shortest legal walk from $s$ to $t$ is $s \rightarrow a \rightarrow b \Rightarrow d \Rightarrow a \rightarrow b \rightarrow t$.

![Graph](image)
CS/ECE 374 A ♫ Spring 2018
♫ Final Exam ♫
May 8, 2018

Real name: ________________________________
NetID: ___________________________

Gradescope name: ________________________________
Gradescope email: ___________________________

• *Don’t panic!*  

• If you brought anything except your writing implements and your two double-sided 8½" × 11" cheat sheets, please put it away for the duration of the exam. In particular, please turn off and put away all medically unnecessary electronic devices.

• Please clearly print your real name, your university NetID, your Gradescope name, and your Gradescope email address in the boxes above. **We will not scan this page into Gradescope.**

• Please also print **only the name you are using on Gradescope** at the top of every page of the answer booklet, except this cover page. These are the pages we will scan into Gradescope.

• Please do not write outside the black boxes on each page; these indicate the area of the page that the scanner can actually see.

• **Please read the entire exam before writing anything.** Please ask for clarification if any question is unclear.

• **The exam lasts 180 minutes.**

• If you run out of space for an answer, continue on the back of the page, or on the blank pages at the end of this booklet, **but please tell us where to look.** Alternatively, feel free to tear out the blank pages and use them as scratch paper.

• As usual, answering any (sub)problem with “I don’t know” (and nothing else) is worth 25% partial credit. **Yes, even for problem 1.** Correct, complete, but suboptimal solutions are always worth more than 25%. A blank answer is not the same as “I don’t know”.

• **Please return your cheat sheets and all scratch paper with your answer booklet.**

• **Good luck!** And thanks for a great semester!
Beware of the man who works hard to learn something, learns it, and finds himself no wiser than before.

He is full of murderous resentment of people who are ignorant without having come by their ignorance the hard way.

— Bokonon
For each of the following questions, indicate every correct answer by marking the “Yes” box, and indicate every incorrect answer by marking the “No” box. Assume $P \neq NP$. If there is any other ambiguity or uncertainty, mark the “No” box. For example:

- $2 + 2 = 4$ (Yes)
- $x + y = 5$ (No)
- 3SAT can be solved in polynomial time. (Yes)
- Jeff is not the Queen of England. (Yes)
- If $P = NP$ then Jeff is the Queen of England. (No)

There are 40 yes/no choices altogether. Each correct choice is worth $+\frac{1}{2}$ point; each incorrect choice is worth $-\frac{1}{4}$ point. TO indicate “I don’t know”, write IDK to the left of the Yes/No boxes; each IDK is worth $+\frac{1}{8}$ point.

(a) Which of the following statements is true for every language $L \subseteq \{0, 1\}^*$?

- $L$ is infinite. (Yes)
- $L^*$ contains the empty string $\epsilon$. (Yes)
- $L^*$ is decidable. (Yes)
- If $L$ is regular then $(L^*)^*$ is regular. (Yes)
- If $L$ is the intersection of two decidable languages, then $L$ is decidable. (Yes)
- If $L$ is the intersection of two undecidable languages, then $L$ is undecidable. (Yes)
- If $L$ is the complement of a regular language, then $L^*$ is regular. (Yes)
- If $L$ has an infinite fooling set, then $L$ is undecidable. (Yes)
- $L$ is decidable if and only if its complement $\overline{L}$ is undecidable. (Yes)
(b) Which of the following statements is true for every directed graph \( G = (V, E) \)?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>E ( \neq \emptyset ).</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Given the graph ( G ) as input, Floyd-Warshall runs in ( O(E^3) ) time.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>If ( G ) has at least one source and at least one sink, then ( G ) is a dag.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>We can compute a spanning tree of ( G ) using whatever-first search.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>If the edges of ( G ) are weighted, we can compute the shortest path from any node ( s ) to any node ( t ) in ( O(E \log V) ) time using Dijkstra's algorithm.</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

(c) Which of the following languages over the alphabet \( \{0, 1\} \) are regular?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>( {0^m 1^n</td>
<td>m \leq n} )</td>
<td>Yes</td>
</tr>
<tr>
<td>( {0^m 1^n</td>
<td>m + n \geq 374} )</td>
<td>Yes</td>
</tr>
<tr>
<td>Binary representations of all perfect squares</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>( {x y</td>
<td>y x \text{ is a palindrome}} )</td>
<td>Yes</td>
</tr>
<tr>
<td>( {(M)</td>
<td>M \text{ accepts a finite number of non-palindromes}} )</td>
<td>Yes</td>
</tr>
</tbody>
</table>

(d) Which of the following languages are decidable?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary representations of all perfect squares</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>( {x y \in {0, 1}^*</td>
<td>y x \text{ is a palindrome}} )</td>
<td>Yes</td>
</tr>
<tr>
<td>( {(M)</td>
<td>M \text{ accepts the binary representation of every perfect square}} )</td>
<td>Yes</td>
</tr>
<tr>
<td>( {(M)</td>
<td>M \text{ accepts a finite number of non-palindromes}} )</td>
<td>Yes</td>
</tr>
<tr>
<td>The set of all regular expressions that represent the language ( {0, 1}^* ). (This is a language over the alphabet ( {\emptyset, \varepsilon, 0, 1, *, +, (, )}).)</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

1 (continued)
(e) Which of the following languages can be proved undecidable using Rice’s Theorem?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>({M} \mid M \text{ accepts a finite number of strings})</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>({M} \mid M \text{ accepts both } M \text{ and } M^R)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>({M} \mid M \text{ accepts exactly 374 palindromes})</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>({M} \mid M \text{ accepts some string } w \text{ after at most }</td>
<td>w</td>
</tr>
</tbody>
</table>

(f) Suppose we want to prove that the following language is undecidable.

\[ \text{CHALMERS} := \{ (M) \mid M \text{ accepts both STEAMED and HAMS} \} \]

Professor Skinner suggests a reduction from the standard halting language

\[ \text{HALT} := \{ (M) \#w \mid M \text{ halts on inputs } w \} \]

Specifically, suppose there is a Turing machine \(Ch\) that decides CHALMERS. Professor Skinner claims that the following algorithm decides \(HALT\).

\[
\text{DecideHalt}(\langle M \rangle \#w) : \\
\begin{align*}
\text{Encode the following Turing machine:} \\
\text{AuroraBorealis}(x): \\
\quad \text{if } x = \text{STEAMED or } x = \text{HAMS or } x = \text{ALBANY} \\
\quad \quad \text{run } M \text{ on input } w \\
\quad \quad \text{return FALSE} \\
\quad \text{else} \\
\quad \quad \text{return TRUE} \\
\end{align*}
\]

return \(Ch(\langle \text{AuroraBorealis} \rangle)\)

Which of the following statements is true for all inputs \(\langle M \rangle \#w\)?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>If (M) accepts (w), then (\text{AuroraBorealis}) accepts CLAMS.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>If (M) rejects (w), then (\text{AuroraBorealis}) rejects UTICA.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>If (M) rejects (w), then (\text{AuroraBorealis}) halts on every input string.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>If (M) accepts (w), then (Ch) accepts (\langle \text{AuroraBorealis} \rangle).</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(\text{DecideHalt}) decides the language (HALT). (That is, Professor Skinner’s reduction is actually correct.)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(\text{DecideHalt}) actually runs (or simulates) (M).</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>We could have proved (\text{CHALMERS}) is undecidable using Rice’s theorem instead of this reduction.</td>
<td></td>
</tr>
</tbody>
</table>
Consider the following pair of languages:

- 3COLOR := \{ G \mid G \text{ is a 3-colorable undirected graph}\}
- TREE := \{ G \mid G \text{ is a connected acyclic undirected graph}\}

(For concreteness, assume that in both of these languages, graphs are represented by adjacency matrices.) Which of the following must be true, assuming P≠NP?

1. TREE ∪ 3COLOR is NP-hard.
2. TREE ∩ 3COLOR is NP-hard.
3. 3COLOR is undecidable.
4. There is a polynomial-time reduction from 3COLOR to TREE.
5. There is a polynomial-time reduction from TREE to 3COLOR.
A \textit{wye} is an undirected graph that looks like the capital letter \textit{Y}. More formally, a wye consists of three paths of equal length with one common endpoint, called the \textit{hub}.

![Diagram of a wye]

Prove that the following problem is NP-hard: Given an undirected graph \( G \), what is the largest wye that is a subgraph of \( G \)? The three paths of the wye must not share any vertices except the hub, and they must have exactly the same length.
Fix the alphabet $\Sigma = \{0, 1\}$. Recall that a run in a string $w \in \Sigma^*$ is a maximal non-empty substring in which all symbols are equal. For example, the string $0000100011111101$ consists of exactly six runs: $0000100011111101 = 00000 \cdot 1 \cdot 000 \cdot 1111111 \cdot 0 \cdot 1$.

(a) Let $L$ be the set of all strings in $\Sigma^*$ where every run has odd length. For example, $L$ contains the string $000100000$, but $L$ does not contain the string $00011$.

Describe both a regular expression for $L$ and a DFA that accepts $L$.

(b) Let $L'$ be the set of all strings in $\Sigma^*$ that have the same number of even-length runs and odd-length runs. For example, $L'$ does not contain the string $00011101$, because it has three odd-length runs but only one even-length run, but $L'$ does contain the string $0000111011$, because it has two runs of each parity.

Prove that $L'$ is not regular.
Suppose we want to split an array $A[1..n]$ of integers into $k$ contiguous intervals that partition the sum of the values as evenly as possible. Specifically, define the cost of such a partition as the maximum, over all $k$ intervals, of the sum of the values in that interval; our goal is to minimize this cost. Describe and analyze an algorithm to compute the minimum cost of a partition of $A$ into $k$ intervals, given the array $A$ and the integer $k$ as input.

For example, given the array $A = [1, 6, -1, 8, 0, 3, 3, 9, 8, 7, 4, 9, 8, 9, 4, 8, 4, 8, 2]$ and the integer $k = 3$ as input, your algorithm should return the integer 37, which is the cost of the following partition:

```
[ 1, 6, -1, 8, 0, 3, 3, 9, 8 ] [ 8, 7, 4, 9, 8 ] [ 9, 4, 8, 4, 2 ]
```

The numbers above each interval show the sum of the values in that interval.
### Problem 5

(a) Fix the alphabet $\Sigma = \{0, 1\}$. Describe and analyze an efficient algorithm for the following problem: Given an NFA $M$ over $\Sigma$, does $M$ accept at least one string? Equivalently, is $L(M) \neq \emptyset$?

(b) Recall from Homework 10 that deciding whether a given NFA accepts every string is NP-hard. Also recall that the complement of every regular language is regular; thus, for any NFA $M$, there is another NFA $M'$ such that $L(M') = \Sigma^* \setminus L(M)$. So why doesn't your algorithm from part (a) imply that $P=NP$?
A number maze is an $n \times n$ grid of positive integers. A token starts in the upper left corner; your goal is to move the token to the lower-right corner. On each turn, you are allowed to move the token up, down, left, or right; the distance you may move the token is determined by the number on its current square. For example, if the token is on a square labeled 3, then you may move the token three steps up, three steps down, three steps left, or three steps right. However, you are never allowed to move the token off the edge of the board.

Describe and analyze an efficient algorithm that either returns the minimum number of moves required to solve a given number maze, or correctly reports that the maze has no solution.

A $5 \times 5$ number maze that can be solved in eight moves.
Some useful NP-hard problems. You are welcome to use any of these in your own NP-hardness proofs, except of course for the specific problem you are trying to prove NP-hard.

**CircuitSat**: Given a boolean circuit, are there any input values that make the circuit output True?

**3Sat**: Given a boolean formula in conjunctive normal form, with exactly three distinct literals per clause, does the formula have a satisfying assignment?

**MaxIndependentSet**: Given an undirected graph $G$, what is the size of the largest subset of vertices in $G$ that have no edges among them?

**MaxClique**: Given an undirected graph $G$, what is the size of the largest complete subgraph of $G$?

**MinVertexCover**: Given an undirected graph $G$, what is the size of the smallest subset of vertices that touch every edge in $G$?

**MinSetCover**: Given a collection of subsets $S_1, S_2, \ldots, S_m$ of a set $S$, what is the size of the smallest subcollection whose union is $S$?

**MinHittingSet**: Given a collection of subsets $S_1, S_2, \ldots, S_m$ of a set $S$, what is the size of the smallest subset of $S$ that intersects every subset $S_i$?

**3Color**: Given an undirected graph $G$, can its vertices be colored with three colors, so that every edge touches vertices with two different colors?

**HamiltonianPath**: Given graph $G$ (either directed or undirected), is there a path in $G$ that visits every vertex exactly once?

**HamiltonianCycle**: Given a graph $G$ (either directed or undirected), is there a cycle in $G$ that visits every vertex exactly once?

**TravelingSalesman**: Given a graph $G$ (either directed or undirected) with weighted edges, what is the minimum total weight of any Hamiltonian path/cycle in $G$?

**LongestPath**: Given a graph $G$ (either directed or undirected, possibly with weighted edges), what is the length of the longest simple path in $G$?

**SteinerTree**: Given an undirected graph $G$ with some of the vertices marked, what is the minimum number of edges in a subtree of $G$ that contains every marked vertex?

**SubsetSum**: Given a set $X$ of positive integers and an integer $k$, does $X$ have a subset whose elements sum to $k$?

**Partition**: Given a set $X$ of positive integers, can $X$ be partitioned into two subsets with the same sum?

**3Partition**: Given a set $X$ of $3n$ positive integers, can $X$ be partitioned into $n$ three-element subsets, all with the same sum?

**IntegerLinearProgramming**: Given a matrix $A \in \mathbb{Z}^{n \times d}$ and two vectors $b \in \mathbb{Z}^n$ and $c \in \mathbb{Z}^d$, compute $\max \{c \cdot x \mid Ax \leq b, x \geq 0, x \in \mathbb{Z}^d\}$.

**FeasibleILP**: Given a matrix $A \in \mathbb{Z}^{n \times d}$ and a vector $b \in \mathbb{Z}^n$, determine whether the set of feasible integer points $\max \{x \in \mathbb{Z}^d \mid Ax \leq b, x \geq 0\}$ is empty.

**Draughts**: Given an $n \times n$ international draughts configuration, what is the largest number of pieces that can (and therefore must) be captured in a single move?

**SuperMarioBrothers**: Given an $n \times n$ Super Mario Brothers level, can Mario reach the castle?

**SteamedHams**: Aurora borealis? At this time of year, at this time of day, in this part of the country, localized entirely within your kitchen? May I see it?
Real name: 
NetID: 

Gradescope name: 
Gradescope email: 

• Don’t panic!
• If you brought anything except your writing implements and your two double-sided 8½" × 11" cheat sheets, please put it away for the duration of the exam. In particular, please turn off and put away all medically unnecessary electronic devices.
• Please clearly print your real name, your university NetID, your Gradescope name, and your Gradescope email address in the boxes above. We will not scan this page into Gradescope.
• Please also print only the name you are using on Gradescope at the top of every page of the answer booklet, except this cover page. These are the pages we will scan into Gradescope.
• Please do not write outside the black boxes on each page; these indicate the area of the page that the scanner can actually see.
• Please read the entire exam before writing anything. Please ask for clarification if any question is unclear.
• The exam lasts 180 minutes.
• If you run out of space for an answer, continue on the back of the page, or on the blank pages at the end of this booklet, but please tell us where to look. Alternatively, feel free to tear out the blank pages and use them as scratch paper.
• As usual, answering any (sub)problem with “I don’t know” (and nothing else) is worth 25% partial credit. Yes, even for problem 1. Correct, complete, but suboptimal solutions are always worth more than 25%. A blank answer is not the same as “I don’t know”.
• Please return your cheat sheets and all scratch paper with your answer booklet.
• Good luck! And thanks for a great semester!
Beware of the man who works hard to learn something, learns it, and finds himself no wiser than before.

He is full of murderous resentment of people who are ignorant without having come by their ignorance the hard way.

— Bokonon
For each of the following questions, indicate every correct answer by marking the “Yes” box, and indicate every incorrect answer by marking the “No” box. Assume $P \neq NP$. If there is any other ambiguity or uncertainty, mark the “No” box. For example:

- $2 + 2 = 4$
- $x + y = 5$
- 3SAT can be solved in polynomial time.
- Jeff is not the Queen of England.
- If $P = NP$ then Jeff is the Queen of England.

There are 40 yes/no choices altogether. Each correct choice is worth $+\frac{1}{2}$ point; each incorrect choice is worth $-\frac{1}{4}$ point. TO indicate “I don’t know”, write IDK to the left of the Yes/No boxes; each IDK is worth $+1/8$ point.

(a) Which of the following statements is true for every language $L \subseteq \{0, 1\}^*$?

- $L$ is finite.
- $L^*$ contains the empty string $\epsilon$.
- $L^*$ is decidable.
- If $L$ is regular then $\Sigma^* \setminus L^*$ is regular.
- If $L$ is the intersection of two decidable languages, then $L$ is decidable.
- If $L$ is the intersection of two undecidable languages, then $L$ is undecidable.
- If $L^*$ is the complement of a regular language, then $L$ is regular.
- If $L$ is undecidable, then every fooling set for $L$ is infinite.
- $L$ is decidable if and only if its complement $\overline{L}$ is undecidable.
(b) Which of the following statements is true for every directed graph \( G = (V, E) \)?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>E ( \neq \emptyset ).</td>
<td></td>
</tr>
<tr>
<td>Given the graph ( G ) as input, Floyd-Warshall runs in ( O(E^3) ) time.</td>
<td></td>
</tr>
<tr>
<td>If ( G ) has at least one source and at least one sink, then ( G ) is a dag.</td>
<td></td>
</tr>
<tr>
<td>We can compute a spanning tree of ( G ) using whatever-first search.</td>
<td></td>
</tr>
<tr>
<td>If the edges of ( G ) are weighted, we can compute the shortest path from any node ( s ) to any node ( t ) in ( O(E \log V) ) time using Dijkstra’s algorithm.</td>
<td></td>
</tr>
</tbody>
</table>

(c) Which of the following languages over the alphabet \{0, 1\} are regular?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>{0^m1^n</td>
<td>m \geq n}</td>
</tr>
<tr>
<td>{0^m1^n</td>
<td>m - n \geq 374}</td>
</tr>
<tr>
<td>Binary representations of all integers divisible by 374</td>
<td></td>
</tr>
<tr>
<td>{x y</td>
<td>y x is a palindrome}</td>
</tr>
<tr>
<td>{(M)</td>
<td>M accepts a finite number of non-palindromes}</td>
</tr>
</tbody>
</table>

(d) Which of the following languages are decidable?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary representations of all integers divisible by 374</td>
<td></td>
</tr>
<tr>
<td>{x y \in {0, 1}^*</td>
<td>y x is a palindrome}</td>
</tr>
<tr>
<td>{(M)</td>
<td>M accepts the binary representation of every integer divisible by 374}</td>
</tr>
<tr>
<td>{(M)</td>
<td>M accepts a finite number of non-palindromes}</td>
</tr>
<tr>
<td>The set of all regular expressions that represent the language {0, 1}*. (This is a language over the alphabet {\emptyset, \varepsilon, 0, 1, *, +, (, )}.)</td>
<td></td>
</tr>
</tbody>
</table>
(e) Which of the following languages can be proved undecidable using Rice’s Theorem?

- Yes  No  \[ \{ \langle M \rangle \mid M \text{ accepts an infinite number of strings} \} \]
- Yes  No  \[ \{ \langle M \rangle \mid M \text{ accepts either } \langle M \rangle \text{ or } \langle M^R \rangle \} \]
- Yes  No  \[ \{ \langle M \rangle \mid M \text{ accepts 001100 but rejects 110011} \} \]
- Yes  No  \[ \{ \langle M \rangle \mid M \text{ accepts some string } w \text{ after at most } |w|^2 \text{ steps} \} \]

(f) Suppose we want to prove that the following language is undecidable.

\[ \text{CHALMERS} := \{ \langle M \rangle \mid M \text{ accepts both STEAMED and HAMS} \} \]

Professor Skinner suggests a reduction from the standard halting language

\[ \text{HALT} := \{ \langle M \rangle \# w \mid M \text{ halts on inputs } w \} . \]

Specifically, suppose there is a Turing machine \( Ch \) that decides \( \text{CHALMERS} \). Professor Skinner claims that the following algorithm decides \( \text{HALT} \).

\[
\text{DecideHalt}((M)\#w):
\quad \text{Encode the following Turing machine:}
\quad \text{AuroraBorealis}(x):
\quad \quad \text{if } x = \text{STEAMED or } x = \text{HAMS or } x = \text{ALBANY}
\quad \quad \quad \text{run } M \text{ on input } w
\quad \quad \quad \text{return True}
\quad \quad \text{else}
\quad \quad \quad \text{return False}
\quad \text{return } Ch(\langle \text{AuroraBorealis} \rangle)
\]

Which of the following statements is true for all inputs \( \langle M \rangle \# w \)?

- Yes  No  If \( M \) accepts \( w \), then \( \text{AuroraBorealis} \) accepts \( \text{CLAMS} \).
- Yes  No  If \( M \) rejects \( w \), then \( \text{AuroraBorealis} \) rejects \( \text{UTICA} \).
- Yes  No  If \( M \) hangs on \( w \), then \( \text{AuroraBorealis} \) accepts every input string.
- Yes  No  If \( M \) accepts \( w \), then \( Ch \) accepts \( \langle \text{AuroraBorealis} \rangle \).
- Yes  No  \( \text{DecideHalt} \) decides the language \( \text{HALT} \). (That is, Professor Skinner’s reduction is actually correct.)
- Yes  No  \( \text{DecideHalt} \) actually runs (or simulates) \( M \).
- Yes  No  We could have proved \( \text{CHALMERS} \) is undecidable using Rice’s theorem instead of this reduction.
Consider the following pair of languages:

- $3\text{COLOR} := \{G \mid G$ is a 3-colorable undirected graph$\}$
- $\text{TREE} := \{G \mid G$ is a connected acyclic undirected graph$\}$

(For concreteness, assume that in both of these languages, graphs are represented by adjacency matrices.) Which of the following must be true, assuming $P \neq NP$?

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Tree $\cup 3\text{COLOR}$ is NP-hard.
- Tree $\cap 3\text{COLOR}$ is NP-hard.
- 3COLOR is undecidable.
- There is a polynomial-time reduction from 3COLOR to TREE.
- There is a polynomial-time reduction from TREE to 3COLOR.
A wye is an undirected graph that looks like the capital letter Y. More formally, a wye consists of three paths of equal length with one common endpoint, called the hub.

This grid graph contains a wye whose paths have length 4.

Prove that the following problem is NP-hard: Given an undirected graph G, what is the largest wye that is a subgraph of G? The three paths of the wye must not share any vertices except the hub, and they must have exactly the same length.
Fix the alphabet $\Sigma = \{0, 1\}$. Recall that a run in a string $w \in \Sigma^*$ is a maximal non-empty substring in which all symbols are equal. For example, the string $0000100011111101$ consists of exactly six runs: $0000010001111110 = 00000 \cdot 1 \cdot 000 \cdot 1111111 \cdot 0 \cdot 1$.

(a) Let $L$ be the set of all strings in $\Sigma^*$ that contains at least one run whose length is divisible by 3. For example, $L$ contains the string $00111111000$, but $L$ does not contain the string $1000011$.

Describe both a regular expression for $L$ and a DFA that accepts $L$.

(b) Let $L'$ be the set of all strings in $\Sigma^*$ that have the same number of even-length runs and odd-length runs. For example, $L'$ does not contain the string $00011101$, because it has three odd-length runs but only one even-length run, but $L'$ does contain the string $0000111011$, because it has two runs of each parity.

Prove that $L'$ is not regular.
Suppose we want to split an array $A[1..n]$ of integers into $k$ contiguous intervals that partition the sum of the values as evenly as possible. Specifically, define the quality of such a partition as the minimum, over all $k$ intervals, of the sum of the values in that interval; our goal is to maximize quality. Describe and analyze an algorithm to compute the maximum quality of a partition of $A$ into $k$ intervals, given the array $A$ and the integer $k$ as input.

For example, given the array $A = [1, 6, -1, 8, 0, 3, 9, 8, 8, 7, 4, 9, 8, 9, 4, 8, 4, 8, 2]$ and the integer $k = 3$ as input, your algorithm should return the integer 35, which is the quality of the following partition:

\[
\begin{array}{c}
\hline
1, 6, -1, 8, 0, 3, 9, 8 \quad 37 \\
\hline
8, 7, 4, 9, 8 \quad 36 \\
\hline
9, 4, 8, 4, 8, 2 \quad 35 \\
\hline
\end{array}
\]

The numbers above each interval show the sum of the values in that interval.
(a) Fix the alphabet $\Sigma = \{0, 1\}$. Describe and analyze an efficient algorithm for the following problem: Given a DFA $M$ over $\Sigma$, does $M$ reject any string? Equivalently, is $L(M) \neq \Sigma^*$?

(b) Recall from Homework 10 that the corresponding problem for NFAs is NP-hard. But any NFA can be transformed into equivalent DFA using the incremental subset construction. So why doesn’t your algorithm from part (a) imply that P=NP?
A number maze is an $n \times n$ grid of positive integers. A token starts in the upper left corner; your goal is to move the token to the lower-right corner. On each turn, you are allowed to move the token up, down, left, or right; the distance you may move the token is determined by the number on its current square. For example, if the token is on a square labeled 3, then you may move the token three steps up, three steps down, three steps left, or three steps right. However, you are never allowed to move the token off the edge of the board.

Describe and analyze an efficient algorithm that either returns the minimum number of moves required to solve a given number maze, or correctly reports that the maze has no solution.

A $5 \times 5$ number maze that can be solved in eight moves.
Some useful NP-hard problems. You are welcome to use any of these in your own NP-hardness proofs, except of course for the specific problem you are trying to prove NP-hard.

**CircuitSat**: Given a boolean circuit, are there any input values that make the circuit output True?

**3Sat**: Given a boolean formula in conjunctive normal form, with exactly three distinct literals per clause, does the formula have a satisfying assignment?

**MaxIndependentSet**: Given an undirected graph \( G \), what is the size of the largest subset of vertices in \( G \) that have no edges among them?

**MaxClique**: Given an undirected graph \( G \), what is the size of the largest complete subgraph of \( G \)?

**MinVertexCover**: Given an undirected graph \( G \), what is the size of the smallest subset of vertices that touch every edge in \( G \)?

**MinSetCover**: Given a collection of subsets \( S_1, S_2, \ldots, S_m \) of a set \( S \), what is the size of the smallest subcollection whose union is \( S \)?

**MinHittingSet**: Given a collection of subsets \( S_1, S_2, \ldots, S_m \) of a set \( S \), what is the size of the smallest subset of \( S \) that intersects every subset \( S_i \)?

**3Color**: Given an undirected graph \( G \), can its vertices be colored with three colors, so that every edge touches vertices with two different colors?

**HamiltonianPath**: Given graph \( G \) (either directed or undirected), is there a path in \( G \) that visits every vertex exactly once?

**HamiltonianCycle**: Given a graph \( G \) (either directed or undirected), is there a cycle in \( G \) that visits every vertex exactly once?

**TravelingSalesman**: Given a graph \( G \) (either directed or undirected) with weighted edges, what is the minimum total weight of any Hamiltonian path/cycle in \( G \)?

**LongestPath**: Given a graph \( G \) (either directed or undirected, possibly with weighted edges), what is the length of the longest simple path in \( G \)?

**SteinerTree**: Given an undirected graph \( G \) with some of the vertices marked, what is the minimum number of edges in a subtree of \( G \) that contains every marked vertex?

**SubsetSum**: Given a set \( X \) of positive integers and an integer \( k \), does \( X \) have a subset whose elements sum to \( k \)?

**Partition**: Given a set \( X \) of positive integers, can \( X \) be partitioned into two subsets with the same sum?

**3Partition**: Given a set \( X \) of 3\( n \) positive integers, can \( X \) be partitioned into \( n \) three-element subsets, all with the same sum?

**IntegerLinearProgramming**: Given a matrix \( A \in \mathbb{Z}^{n \times d} \) and two vectors \( b \in \mathbb{Z}^n \) and \( c \in \mathbb{Z}^d \), compute \( \max \{ c \cdot x \mid Ax \leq b, x \geq 0, x \in \mathbb{Z}^d \} \).

**FeasibleILP**: Given a matrix \( A \in \mathbb{Z}^{n \times d} \) and a vector \( b \in \mathbb{Z}^n \), determine whether the set of feasible integer points \( \{ x \in \mathbb{Z}^d \mid Ax \leq b, x \geq 0 \} \) is empty.

**Draughts**: Given an \( n \times n \) international draughts configuration, what is the largest number of pieces that can (and therefore must) be captured in a single move?

**SuperMarioBrothers**: Given an \( n \times n \) Super Mario Brothers level, can Mario reach the castle?

**SteamedHams**: Aurora borealis? At this time of year, at this time of day, in this part of the country, localized entirely within your kitchen? May I see it?
• Each student must submit individual solutions for this homework. For all future homeworks, groups of up to three students can submit joint solutions.

• Submit your solutions electronically to Gradescope as PDF files. Submit a separate PDF file for each numbered problem. If you plan to typeset your solutions, please use the \LaTeX solution template on the course web site. If you must submit scanned handwritten solutions, please use a black pen on blank white paper and a high-quality scanner app (or an actual scanner).

• You are not required to sign up on Gradescope or Piazza with your real name and your illinois.edu email address; you may use any email address and alias of your choice. However, to give you credit for the homework, we need to know who Gradescope thinks you are. Please fill out the web form linked from the course web page.

☞ Some important course policies ☜

• You may use any source at your disposal—paper, electronic, or human—but you must cite every source that you use, and you must write everything yourself in your own words. See the academic integrity policies on the course web site for more details.

• The answer “I don’t know” (and nothing else) is worth 25% partial credit on any required problem or subproblem on any homework or exam. We will accept synonyms like “No idea” or “WTF” or “(ಠ_ಠ)”, but you must write something.

On the other hand, only the homework problems you submit actually contribute to your overall course grade, so submitting “I don’t know” for an entire numbered homework problem will almost certainly hurt your grade more than submitting nothing at all.

• Avoid the Three Deadly Sins! Any homework or exam solution that breaks any of the following rules will be given an automatic zero, unless the solution is otherwise perfect. Yes, we really mean it. We’re not trying to be scary or petty (Honest!), but we do want to break a few common bad habits that seriously impede mastery of the course material.

   – Always give complete solutions, not just examples.
   – Always declare all your variables, in English. In particular, always describe the precise problem your algorithm is supposed to solve.
   – Never use weak induction.

See the course web site for more information.

If you have any questions about these policies, please don’t hesitate to ask in class, in office hours, or on Piazza.
1. The infamous Scottish computational arborist Seòras na Coille has a favorite 26-node binary tree, whose nodes are labeled with the letters of the English alphabet. Preorder and inorder traversals of his tree yield the following letter sequences:

   Inorder: Z M X E J V O W I N D R T H U G K F A Q P S Y C B L

   (a) List the nodes in Professor na Coille's tree according to a postorder traversal.
   (b) Draw Professor na Coille's tree.

   You do not need to prove that your answers are correct. [Hint: It may be easier to write a short Python program than to figure this out by hand.]

2. For any string \( w \in \{0,1\}^* \), let \( \text{sort}(w) \) denote the string obtained by sorting the characters in \( w \). For example, \( \text{sort}(010101) = 000111 \). The \( \text{sort} \) function can be defined recursively as follows:

   \[
   \text{sort}(w) := \begin{cases} 
   \varepsilon & \text{if } w = \varepsilon \\
   0 \cdot \text{sort}(x) & \text{if } w = 0x \\
   \text{sort}(x) \cdot 1 & \text{if } w = 1x
   \end{cases}
   \]

   (a) Prove that \( \#(0, \text{sort}(w)) = \#(0, w) \) for every string \( w \in \{0,1\}^* \).
   (b) Prove that \( \text{sort}(w \cdot 1) = \text{sort}(w) \cdot 1 \) for every string \( w \in \{0,1\}^* \).
   (c) Prove that \( \text{sort}(\text{sort}(w)) = \text{sort}(w) \) for every string \( w \in \{0,1\}^* \).

   Think about these two problems on your own; do not submit solutions:

   (d) Prove that \( x \cdot 0 \neq y \cdot 1 \) for all strings \( x, y \in \{0,1\}^* \).
   (e) Prove that \( \text{sort}(w) \neq x \cdot 10 \cdot y \) for all strings \( w, x, y \in \{0,1\}^* \).

   You may assume without proof that \( \#(a, uv) = \#(a, u) + \#(a, v) \) for any symbol \( a \) and any strings \( u \) and \( v \), or any other result proved in class, in lab, or in the lecture notes. Your proofs for later parts of this problem can assume earlier parts even if you don't prove them. Otherwise, your proofs must be formal and self-contained.
3. Consider the set of strings $L \subseteq \{0,1\}^*$ defined recursively as follows:

- The empty string $\varepsilon$ is in $L$.
- For any strings $x$ in $L$, the strings $0x1$ and $1x0$ are also in $L$.
- For any two nonempty strings $x$ and $y$ in $L$, the string $x \cdot y$ is also in $L$.
- These are the only strings in $L$.

This problem asks you to prove that $L$ is the set of all strings $w$ where the number of 0s is equal to the number of 1s. More formally, for any string $w$, let $\Delta(w) = #(1,w) - #(0,w)$, or equivalently,

$$\Delta(w) = \begin{cases} 
0 & \text{if } w = \varepsilon \\
\Delta(x) - 1 & \text{if } w = 0x \\
\Delta(x) + 1 & \text{if } w = 1x 
\end{cases}$$

(a) Prove that the string $1101100101000$ is in $L$.
(b) Prove that $\Delta(w) = 0$ for every string $w \in L$.
(c) Prove that $L$ contains every string $w \in \{0,1\}^*$ such that $\Delta(w) = 0$.

You can assume the following properties of the $\Delta$ function, for all strings $w$ and $z$.

- Addition: $\Delta(wz) = \Delta(w) + \Delta(z)$.
- Downward interpolation: If $\Delta(wz) > 0$ and $\Delta(z) < 0$, then there are strings $x$ and $y$ such that $w = xy$ and $\Delta(yz) = 0$.
- Upward interpolation: If $\Delta(wz) < 0$ and $\Delta(z) > 0$, then there are strings $x$ and $y$ such that $w = xy$ and $\Delta(yz) = 0$.

The interpolation properties are a type of “intermediate value theorem”. **Think about how to prove these properties yourself.**

You can also assume any other result proved in class, in lab, or in the lecture notes. Otherwise, your proofs must be formal and self-contained.
Solved Problems

Each homework assignment will include at least one solved problem, similar to the problems assigned in that homework, together with the grading rubric we would apply if this problem appeared on a homework or exam. These model solutions illustrate our recommendations for structure, presentation, and level of detail in your homework solutions. Of course, the actual content of your solutions won’t match the model solutions, because your problems are different!

4. The reversal $w^R$ of a string $w$ is defined recursively as follows:

$$w^R := \begin{cases} 
\epsilon & \text{if } w = \epsilon \\
 x^R \cdot a & \text{if } w = a \cdot x 
\end{cases}$$

A palindrome is any string that is equal to its reversal, like AMANAPLANACANALPANAMA, RACECAR, POOP, I, and the empty string.

(a) Give a recursive definition of a palindrome over the alphabet $\Sigma$.

(b) Prove $w = w^R$ for every palindrome $w$ (according to your recursive definition).

(c) Prove that every string $w$ such that $w = w^R$ is a palindrome (according to your recursive definition).

You may assume without proof the following statements for all strings $x$, $y$, and $z$:

- Reversal reversal: $(x^R)^R = x$
- Concatenation reversal: $(x \cdot y)^R = y^R \cdot x^R$
- Right cancellation: If $x \cdot z = y \cdot z$, then $x = y$.

Solution:

(a) A string $w \in \Sigma^*$ is a palindrome if and only if either

- $w = \epsilon$, or
- $w = a$ for some symbol $a \in \Sigma$, or
- $w = axa$ for some symbol $a \in \Sigma$ and some palindrome $x \in \Sigma^*$.

Rubric: 2 points = $\frac{1}{2}$ for each base case + 1 for the recursive case. No credit for the rest of the problem unless this part is correct.

(b) Let $w$ be an arbitrary palindrome.

Assume that $x = x^R$ for every palindrome $x$ such that $|x| < |w|$. There are three cases to consider (mirroring the definition of “palindrome”):

- If $w = \epsilon$, then $w^R = \epsilon$ by definition, so $w = w^R$.
- If $w = a$ for some symbol $a \in \Sigma$, then $w^R = a$ by definition, so $w = w^R$.
- Finally, if $w = axa$ for some symbol $a \in \Sigma$ and some palindrome $x \in P$,
then

\[
R = (a \cdot x \cdot a)^R \\
= (x \cdot a)^R \cdot a \\
= a^R \cdot x^R \cdot a \\
= a \cdot x^R \cdot a \\
= a \cdot x \cdot a \\
= w
\]

by definition of reversal 
by concatenation reversal 
by definition of reversal 
by the inductive hypothesis 
by assumption

In all three cases, we conclude that \(w = w^R\).

Rubric: 4 points: standard induction rubric (scaled)

(c) Let \(w\) be an arbitrary string such that \(w = w^R\).
Assume that every string \(x\) such that \(|x| < |w|\) and \(x = x^R\) is a palindrome.
There are three cases to consider (mirroring the definition of “palindrome”):

- If \(w = \epsilon\), then \(w\) is a palindrome by definition.
- If \(w = a\) for some symbol \(a \in \Sigma\), then \(w\) is a palindrome by definition.
- Otherwise, we have \(w = ax\) for some symbol \(a\) and some non-empty string \(x\).
  The definition of reversal implies that \(w^R = (ax)^R = x^Ra\).
  Because \(x\) is non-empty, its reversal \(x^R\) is also non-empty.
  Thus, \(x^R = by\) for some symbol \(b\) and some string \(y\).
  It follows that \(w^R = bya\), and therefore \(w = (w^R)^R = (bya)^R = ay^Rb\).

[At this point, we need to prove that \(a = b\) and that \(y\) is a palindrome.]

Our assumption that \(w = w^R\) implies that \(bya = ay^Rb\).
The recursive definition of string equality immediately implies \(a = b\).
Because \(a = b\), we have \(w = ay^Ra\) and \(w^R = aya\).
The recursive definition of string equality implies \(y^Ra = ya\).
Right cancellation implies that \(y^R = y\).
The inductive hypothesis now implies that \(y\) is a palindrome.

We conclude that \(w\) is a palindrome by definition.

In all three cases, we conclude that \(w\) is a palindrome.

Rubric: 4 points: standard induction rubric (scaled)
Standard induction rubric. For problems worth 10 points:

+ 1 for explicitly considering an arbitrary object.
+ 2 for a valid strong induction hypothesis
  – Deadly Sin! Automatic zero for stating a weak induction hypothesis, unless the rest of the proof is absolutely perfect.
+ 2 for explicit exhaustive case analysis
  – No credit here if the case analysis omits an infinite number of objects. (For example: all odd-length palindromes.)
  – −1 if the case analysis omits a finite number of objects. (For example: the empty string.)
  – −1 for making the reader infer the case conditions. Spell them out!
  – No penalty if the cases overlap (for example: even length at least 2, odd length at least 3, and length at most 5.)
+ 1 for cases that do not invoke the inductive hypothesis (“base cases”)
  – No credit here if one or more “base cases” are missing.
+ 2 for correctly applying the stated inductive hypothesis
  – No credit here for applying a different inductive hypothesis, even if that different inductive hypothesis would be valid.
+ 2 for other details in cases that invoke the inductive hypothesis (“inductive cases”)
  – No credit here if one or more “inductive cases” are missing.

For (sub)problems worth less than 10 points, scale and round to the nearest half-integer.
Starting with this homework, groups of up to three people can submit joint solutions. Each problem should be submitted by exactly one person, and the beginning of the homework should clearly state the Gradescope names and email addresses of each group member. In addition, whoever submits the homework must tell Gradescope who their other group members are.

1. For each of the following languages over the alphabet \{0, 1\}, give a regular expression that describes that language, and briefly argue why your regular expression is correct.

   (a) All strings except 010.
   (b) All strings that contain the substring 010.
   (c) All strings that contain the subsequence 010.
   (d) All strings that do not contain the substring 010.
   (e) All strings that do not contain the subsequence 010.

   (The technical terms “substring” and “subsequence” are defined in the lecture notes.)

2. Let $L$ be the set of all strings in \{0, 1\}∗ that contain at least two occurrences of the substring 010.

   (a) Give a regular expression for $L$, and briefly argue why your expression is correct.
   (b) Describe a DFA over the alphabet $\Sigma = \{0, 1\}$ that accepts the language $L$.

   You may either draw the DFA or describe it formally, but the states $Q$, the start state $s$, the accepting states $A$, and the transition function $\delta$ must be clearly specified. (See the standard DFA rubric for more details.)

   Argue that your DFA is correct by explaining what each state in your DFA means. Drawings or formal descriptions without English explanations will receive no credit, even if they are correct.

   [Hint: The shortest string in $L$ has length 5.]
3. Let \( L \) denote the set of all strings \( w \in \{0, 1\}^* \) that satisfy \textit{at most two} of the following conditions:

- The substring \( 01 \) appears in \( w \) an odd number of times.
- \( \#(1, w) \) is divisible by 3.
- The binary value of \( w \) is \textit{not} a multiple of 7.

For example: The string \( 00100101 \) satisfies all three conditions, so \( 00100011 \) is not in \( L \), and the empty string \( \varepsilon \) satisfies only the second condition, so \( \varepsilon \in L \). (01 appears in \( \varepsilon \) zero times, and the binary value of \( \varepsilon \) is 0, because what else could it be?)

\textit{Formally} describe a DFA with input alphabet \( \Sigma = \{0, 1\} \) that accepts the language \( L \), by explicitly describing the states \( Q \), the start state \( s \), the accepting states \( A \), and the transition function \( \delta \). Do not attempt to draw your DFA; the smallest DFA for this language has 84 states, which is way too many for a drawing to be understandable.

Argue that your machine is correct by explaining what each state in your DFA means. Formal descriptions without English explanations will receive no credit, even if they are correct. (See the standard DFA rubric for more details.)

\textit{This is an exercise in clear communication.} We are not only asking you to design a \textit{correct} DFA. We are also asking you to clearly, precisely, and convincing explain your DFA to another human being who understands DFAs but has \textit{not} thought about this particular problem. Excessive formality and excessive brevity will hurt you just as much as imprecision and handwaving.
Solved problem

4. **C comments** are the set of strings over alphabet $\Sigma = \{*, /, A, \diamond, \downarrow\}$ that form a proper comment in the C program language and its descendants, like C++ and Java. Here $\downarrow$ represents the newline character, $\diamond$ represents any other whitespace character (like the space and tab characters), and $A$ represents any non-whitespace character other than $*$ or $/$.\(^1\) There are two types of C comments:

- Line comments: Strings of the form $// \cdots \downarrow$
- Block comments: Strings of the form $*/\cdots*/$

Following the C99 standard, we explicitly disallow nesting comments of the same type. A line comment starts with $//$ and ends at the first $\downarrow$ after the opening $//$; a block comment starts with $/*$ and ends at the first $*/$ completely after the opening $/*$; in particular, every block comment has at least two $*$s. For example, each of the following strings is a valid C comment:

```
/***/      //\diamond\diamond      /*//\diamond\diamond*//       /*//\diamond\diamond*/
```

On the other hand, none of the following strings is a valid C comment:

```
/*/*      /*//\diamond/       /*/    /*/\diamond\diamond/*
```

(Questions about C comments start on the next page.)

---

\(^1\)The actual C commenting syntax is considerably more complex than described here, because of character and string literals.

- The opening $/*$ or $//$ of a comment must not be inside a string literal ("\cdots") or a (multi-)character literal ('\cdots').
- The opening double-quote of a string literal must not be inside a character literal ("\") or a comment.
- The closing double-quote of a string literal must not be escaped (\")
- The opening single-quote of a character literal must not be inside a string literal (\"\cdots\") or a comment.
- The closing single-quote of a character literal must not be escaped (\')
- A backslash escapes the next symbol if and only if it is not itself escaped (\") or inside a comment.

For example, the string "/\"\"//\"\"//\"\"//\"\"/*\"\"/\"\"/\"\"/\"\"/\"\"/\"\"/\"\"/* is a valid string literal (representing the 5-character string /\"\"//\"\"/\"\"/\"\"/*, which is itself a valid block comment) followed immediately by a valid block comment. *For this homework question, just pretend that the characters \", \", and \ don't exist.*

Commenting in C++ is even more complicated, thanks to the addition of raw string literals. Don't ask.

Some C and C++ compilers do support nested block comments, in violation of the language specification. A few other languages, like OCaml, explicitly allow nesting block comments.
(a) Describe a regular expression for the set of all C comments.

Solution:

\[
//((/ + * + A + \diamond)^*\downarrow + /* (/(/ + * + A + \diamond + *\star(\diamond + \diamond)\star)^* */)^*/*
\]

The first subexpression matches all line comments, and the second subexpression matches all block comments. Within a block comment, we can freely use any symbol other than *, but any run of *s must be followed by a character in (A + \diamond + \diamond) or by the closing slash of the comment.

Rubric: Standard regular expression rubric. This is not the only correct solution.

(b) Describe a regular expression for the set of all strings composed entirely of blanks (\diamond), newlines (\uparrow), and C comments.

Solution:

\[
(\diamond + \uparrow + \text{ //} (/(/ + * + A + \diamond)^*\downarrow + /* (/ + A + \diamond + \diamond + *\star(A + \diamond + \diamond))\star^* */)^*)^*
\]

This regular expression has the form (\text{ (whitespace) + (comment) })^*, where (\text{ (whitespace) }) is the regular expression \diamond + \uparrow and (\text{ (comment) }) is the regular expression from part (a).

Rubric: Standard regular expression rubric. This is not the only correct solution.

Standard regular expression rubric. For problems worth 10 points:

- 2 points for a syntactically correct regular expression.
- Homework only: 4 points for a brief English explanation of your regular expression. This is how you argue that your regular expression is correct.
  - Deadly Sin (“Declare your variables.”): No credit for the problem if the English explanation is missing, even if the regular expression is correct.
  - For longer expressions, you should explain each of the major components of your expression, and separately explain how those components fit together.
  - We do not want a transcription; don’t just translate the regular-expression notation into English.
- 4 points for correctness. (8 points on exams, with all penalties doubled)
  - −1 for a single mistake: one typo, excluding exactly one string in the target language, or including exactly one string not in the target language.
  - −2 for incorrectly including/excluding more than one but a finite number of strings.
  - −4 for incorrectly including/excluding an infinite number of strings.
- Regular expressions that are more complex than necessary may be penalized. Regular expressions that are significantly too complex may get no credit at all. On the other hand, minimal regular expressions are not required for full credit.
(c) Describe a DFA that accepts the set of all C comments.

**Solution:** The following eight-state DFA recognizes the language of C comments. All missing transitions lead to a hidden reject state.

The states are labeled mnemonically as follows:
- **s** — We have not read anything.
- **/** — We just read the initial `/`.
- **//** — We are reading a line comment.
- **L** — We have just read a complete line comment.
- **/*** — We are reading a block comment, and we did not just read a `*` after the opening `/*`.
- **/** — We are reading a block comment, and we just read a `*` after the opening `/*`.
- **B** — We have just read a complete block comment.

**Rubric:** Standard DFA design rubric. This is not the only correct solution, or even the simplest correct solution. (We don’t need two distinct accepting states.)
(d) Describe a DFA that accepts the set of all strings composed entirely of blanks (⋄), newlines (↲), and C comments.

**Solution:** By merging the accepting states of the previous DFA with the start state and adding white-space transitions at the start state, we obtain the following six-state DFA. Again, all missing transitions lead to a hidden reject state.

![DFA Diagram]

The states are labeled mnemonically as follows:
- s — We are between comments.
- / — We just read the initial / of a comment.
- // — We are reading a line comment.
- /* — We are reading a block comment, and we did not just read a * after the opening /*.
- /** — We are reading a block comment, and we just read a * after the opening /*.

**Rubric:** Standard DFA design rubric. This is not the only correct solution, but it is the simplest correct solution.
Standard DFA design rubric. For problems worth 10 points:

- 2 points for an unambiguous description of a DFA, including the states set \( Q \), the start state \( s \), the accepting states \( A \), and the transition function \( \delta \).
  - **Drawings:** Use an arrow from nowhere to indicate \( s \), and doubled circles to indicate accepting states \( A \). If \( A = \emptyset \), say so explicitly. If your drawing omits a junk/trash/reject state, say so explicitly. **Draw neatly!** If we can’t read your solution, we can’t give you credit for it.
  - **Text descriptions:** You can describe the transition function either using a 2d array, using mathematical notation, or using an algorithm.
  - **Product constructions:** You must give a complete description of each the DFAs you are combining (as either drawings, text, or recursive products), together with the accepting states of the product DFA.

- **Homework only:** 4 points for briefly explaining the purpose of each state in English. This is how you argue that your DFA is correct.
  - **Deadly Sin (“Declare your variables.”): No credit for the problem if the English description is missing, even if the DFA is correct.**
    - For product constructions, explaining the states in the factor DFAs is both necessary and sufficient.

- 4 points for correctness. (8 points on exams, with all penalties doubled)
  - -1 for a single mistake: a single misdirected transition, a single missing or extra accepting state, rejecting exactly one string that should be accepted, or accepting exactly one string that should be accepted.
  - -2 for incorrectly accepting/rejecting more than one but a finite number of strings.
  - -4 for incorrectly accepting/rejecting an infinite number of strings.

- DFAs that are more complex than necessary may be penalized. DFAs that are **significantly** more complex than necessary may get no credit at all. On the other hand, **minimal** DFAs are not required for full credit, unless the problem explicitly asks for them.

- Half credit for describing an NFA when the problem asks for a DFA.
Recall that the reversal $w^R$ of a string $w$ is defined recursively as follows:

$$w^R := \begin{cases} 
\epsilon & \text{if } w = \epsilon \\
 x^R \cdot a & \text{if } w = a \cdot x
\end{cases}$$

The reversal $L^R$ of any language $L$ is the set of reversals of all strings in $L$:

$$L^R := \{ w^R \mid w \in L \}.$$

Prove that the reversal of every regular language is regular.

**Solution:** Let $r$ be an arbitrary regular expression. We want to derive a regular expression $r'$ such that $L(r') = L(r)^R$.

Assume for any proper subexpression $s$ of $r$ that there is a regular expression $s'$ such that $L(s') = L(s)^R$.

There are five cases to consider (mirroring the definition of regular expressions).

(a) If $r = \emptyset$, then we set $r' = \emptyset$, so that

$$L(r^R) = L(\emptyset)^R = \emptyset^R = \emptyset = L(\emptyset)$$

(b) If $r = w$ for some string $w \in \Sigma^*$, then we set $r' := w^R$, so that

$$L(r^R) = L(w^R) = \{ w \}^R = \{ w \} = L(w)$$

(c) Suppose $r = s^*$ for some regular expression $s$. The inductive hypothesis implies a regular expressions $s'$ such that $L(s') = L(s)^R$. Let $r' = (s')^*$; then we have

$$L(r^R) = L(s^*)^R = (L(s^*))^R = (L(s)^R)^* = (L(s)^R)^* = L((s')^*) = L((s')^*)^R = L(r')$$

(d) Suppose $r = s + t$ for some regular expressions $s$ and $t$. The inductive hypothesis implies regular expressions $s'$ and $t'$ such that $L(s') = L(s)^R$ and $L(t') = L(t)^R$.

$$L(r^R) = L(s + t)^R = (L(s) + L(t))^R = (L(s))^R + (L(t))^R = L(s') + L(t') = L(s'^*) + L(t'^*) = L((s')^* + (t')^*) = L((s + t)^*) = L(r'^*)$$
Set \( r' := s' + t' \); then we have

\[
L(r)^R = L(s + t)^R \\
= (L(s) \cup L(t))^R \\
= \{ w^R \mid w \in (L(s) \cup L(t)) \} \\
= \{ w^R \mid w \in L(s) \text{ or } w \cup L(t) \} \\
= \{ w^R \mid w \in L(s) \} \cup \{ w^R \mid w \cup L(t) \} \\
= L(s)^R \cup L(t)^R \\
= L(s') \cup L(t') \\
= L(s' + t') \\
= L(r')
\]

because \( r = s + t \)
by definition of +
by definition of \( L^R \)
by definition of \( \cup \)
by definition of \( \cup \)
by definition of \( L^R \)
by definition of \( s' \) and \( t' \)
by definition of \( + \)
by definition of \( r' \)

(e) Suppose \( r = s \cdot t \) for some regular expressions \( s \) and \( t \). The inductive hypothesis implies regular expressions \( s' \) and \( t' \) such that \( L(s') = L(s)^R \) and \( L(t') = L(t)^R \).

Set \( r' = t's' \); then we have

\[
L(r)^R = L(st)^R \\
= (L(s) \cdot L(t))^R \\
= \{ w^R \mid w \in (L(s) \cdot L(t)) \} \\
= \{ (x \cdot y)^R \mid x \in L(s) \text{ and } y \in L(t) \} \\
= \{ y^R \cdot x^R \mid x \in L(s) \text{ and } y \in L(t) \} \\
\text{concatenation reversal} \\
= \{ y' \cdot x' \mid x' \in L(s)^R \text{ and } y' \in L(t)^R \} \\
= \{ y' \cdot x' \mid x' \in L(s') \text{ and } y' \in L(t') \} \\
= L(t') \cdot L(s') \\
= L(t' \cdot s') \\
= L(r')
\]

because \( r = s + t \)
by definition of \( \cdot \)
by definition of \( L^R \)
by definition of \( \cdot \)
by definition of \( \cdot \)
by definition of \( s' \) and \( t' \)
by definition of \( \cdot \)
by definition of \( \cdot \)
by definition of \( r' \)

In all five cases, we have found a regular expression \( r' \) such that \( L(r') = L(r)^R \). It follows that \( L(r)^R \) is regular.

\[\blacksquare\]

**Rubric:** Standard induction rubric!!
1. Prove that the following languages are not regular.

(a) \(\{0^m1^n \mid m > n\}\)

(b) \(\{w \in (0+1)^* \mid #(0,w)/#(1,w) \text{ is an integer}\}\) \text{ [Hint: } n/0 \text{ is never an integer.]}\]

(c) The set of all palindromes in \((0 + 1)^*\) whose length is divisible by 7.

2. For each of the following regular expressions, describe or draw two finite-state machines:

- An NFA that accepts the same language, constructed from the given regular expression using Thompson’s algorithm (described in class and in the notes).
- An equivalent DFA, constructed from your NFA using the incremental subset algorithm (described in class and in the notes). For each state in your DFA, identify the corresponding subset of states in your NFA. Your DFA should have no unreachable states.

(a) \((0 + 1)^*(00 + 1)^*\)

(b) \(((0^* + 1)^* + 0)^* + 1)^*\)

3. For each of the following languages over the alphabet \(\Sigma = \{0, 1\}\), either prove that the language is regular (by constructing an appropriate DFA, NFA, or regular expression) or prove that the language is not regular (by constructing an infinite fooling set). Recall that \(\Sigma^+\) denotes the set of all nonempty strings over \(\Sigma\). Watch those parentheses!

(a) \(\{0a^1b^0c^1 \mid a \leq b + c \text{ and } b \leq a + c \text{ or } c \leq a + b\}\)

(b) \(\{0a^1b^0c^1 \mid a \leq b + c \text{ and } (b \leq a + c \text{ or } c \leq a + b)\}\)

(c) \(\{wxw^R \mid w, x \in \Sigma^+\}\)

(d) \(\{ww^Rx \mid w, x \in \Sigma^+\}\)

[Hint: Exactly two of these languages are regular.]
Solved problem

4. For each of the following languages, either prove that the language is regular (by constructing an appropriate DFA, NFA, or regular expression) or prove that the language is not regular (by constructing an infinite fooling set).

Recall that a palindrome is a string that equals its own reversal: \( w = w^R \). Every string of length 0 or 1 is a palindrome.

(a) Strings in \((\emptyset + 1)^*\) in which no prefix of length at least 2 is a palindrome.

**Solution:** Regular: \( \varepsilon + 01^* + 10^* \). Call this language \( L_a \).

Let \( w \) be an arbitrary non-empty string in \((\emptyset + 1)^*\). Without loss of generality, assume \( w = \emptyset x \) for some string \( x \). There are two cases to consider.

- If \( x \) contains a \( 0 \), then we can write \( w = 01^n \emptyset y \) for some integer \( n \) and some string \( y \). The prefix \( 01^n \emptyset \) is a palindrome of length at least 2. Thus, \( w \notin L_a \).
- Otherwise, \( x \in 1^* \). Every non-empty prefix of \( w \) is equal to \( 01^n \) for some non-negative integer \( n \leq |x| \). Every palindrome that starts with \( 0 \) also ends with \( 0 \), so the only palindrome prefixes of \( w \) are \( \varepsilon \) and \( 0 \), both of which have length less than 2. Thus, \( w \in L_a \).

We conclude that \( \emptyset x \in L_a \) if and only if \( x \in 1^* \). A similar argument implies that \( 1x \in L_a \) if and only if \( x \in \emptyset^* \). Finally, trivially, \( \varepsilon \in L_a \). ■

**Rubric:** 2½ points = ½ for “regular” + 1 for regular expression + 1 for justification. This is more detail than necessary for full credit.

(b) Strings in \((\emptyset + 1 + 2)^*\) in which no prefix of length at least 2 is a palindrome.

**Solution:** Not regular. Call this language \( L_b \).

I claim that the infinite language \( F = (012)^+ \) is a fooling set for \( L_b \).

Let \( x \) and \( y \) be arbitrary distinct strings in \( F \).

Then \( x = (012)^i \) and \( y = (012)^j \) for some positive integers \( i \neq j \).

Without loss of generality, assume \( i < j \).

Let \( z \) be the suffix \((210)^i \).

- \( xz = (012)^i(210)^i \) is a palindrome of length \( 6i \geq 2 \), so \( xz \notin L_b \).
- \( yz = (012)^j(210)^i \) has no palindrome prefixes except \( \varepsilon \) and \( \emptyset \), because \( i < j \), so \( yz \in L_b \).

We conclude that \( F \) is a fooling set for \( L_b \), as claimed.

Because \( F \) is infinite, \( L_b \) cannot be regular. ■

**Rubric:** 2½ points = ½ for “not regular” + 2 for fooling set proof (standard rubric, scaled).
(c) Strings in \((0 + 1)^*\) in which no prefix of length at least 3 is a palindrome.

**Solution:** Not regular. Call this language \(L_c\).

I claim that the infinite language \(F = (001101)^+\) is a fooling set for \(L_c\).

Let \(x\) and \(y\) be arbitrary distinct strings in \(F\).

Then \(x = (001101)^i\) and \(y = (001101)^j\) for some positive integers \(i \neq j\).

Without loss of generality, assume \(i < j\).

Let \(z\) be the suffix \((101100)^i\).

- \(xz = (001101) \epsilon (101100)^i\) is a palindrome of length \(12i \geq 2\), so \(xz \notin L_b\).
- \(yz = (001101) \epsilon (101100)^i\) has no palindrome prefixes except \(\epsilon\) and \(0\), because \(i < j\), so \(yz \in L_b\).

We conclude that \(F\) is a fooling set for \(L_c\), as claimed.

Because \(F\) is infinite, \(L_c\) cannot be regular. ■

**Rubric:** 2½ points = ½ for “not regular” + 2 for fooling set proof (standard rubric, scaled).


(d) Strings in \((0 + 1)^*\) in which no substring of length at least 3 is a palindrome.

**Solution:** Regular. Call this language \(L_d\).

Every palindrome of length at least 3 contains a palindrome substring of length 3 or 4. Thus, the complement language \(\overline{L_d}\) is described by the regular expression

\[(0 + 1)^* (00 + 01 + 10 + 11 + 000 + 001 + 011 + 100 + 110 + 0011 + 1100) (0 + 1)^*\]

Thus, \(\overline{L_d}\) is regular, so its complement \(L_d\) is also regular. ■

**Solution:** Regular. Call this language \(L_d\).

In fact, \(L_d\) is finite! Appending either \(0\) or \(1\) to any of the underlined strings creates a palindrome suffix of length 3 or 4.

\[\epsilon + 0 + 1 + 00 + 01 + 10 + 11 + 001 + 011 + 100 + 110 + 0011 + 1100\]

**Rubric:** 2½ points = ½ for “regular” + 2 for proof:

- 1 for expression for \(\overline{L_d}\) + 1 for applying closure
- 1 for regular expression + 1 for justification
Standard fooling set rubric. For problems worth 5 points:

- 2 points for the fooling set:
  - +1 for explicitly describing the proposed fooling set $F$.
  - +1 if the proposed set $F$ is actually a fooling set for the target language.
  - − No credit for the proof if the proposed set is not a fooling set.
  - − No credit for the problem if the proposed set is finite.

- 3 points for the proof:
  - ○ The proof must correctly consider arbitrary strings $x, y \in F$.
    - − No credit for the proof unless both $x$ and $y$ are always in $F$.
    - − No credit for the proof unless $x$ and $y$ can be any strings in $F$.
  - +1 for correctly describing a suffix $z$ that distinguishes $x$ and $y$.
  - +1 for proving either $xz \in L$ or $yz \in L$.
  - +1 for proving either $yz \notin L$ or $xz \notin L$, respectively.

As usual, scale partial credit (rounded to nearest ½) for problems worth fewer points.
1. Describe context-free grammars for the following languages over the alphabet $\Sigma = \{0, 1\}$. For each non-terminal in your grammars, describe in English the language generated by that non-terminal.

   (a) $\{0^m 1^n | m > n\}$
   (b) The set of all palindromes in $(0 + 1)^*$ whose length is divisible by 7.
   (c) $\{0^a 1^b | a \neq 2b \text{ and } b \neq 2a\}$

   [Hint: You proved that the first two languages are non-regular in HW2.1(a) and HW2.1(c). The language described in HW2.1(b) is not even context-free!]

2. For any string $w$, let $\text{contract}(w)$ denote the string obtained by collapsing each maximal substring of equal symbols to one symbol. For example:

   $\text{contract}(010101) = 010101$
   $\text{contract}(001110) = 010$
   $\text{contract}(111111) = 1$
   $\text{contract}(1) = 1$
   $\text{contract}(\varepsilon) = \varepsilon$

   Prove that for every regular language $L$ over the alphabet $\{0, 1\}$, the following languages are also regular:

   (a) $\text{contract}(L) = \{\text{contract}(w) | w \in L\}$
   (b) $\text{contract}^{-1}(L) = \{w \in \{0, 1\}^* | \text{contract}(w) \in L\}$

3. For any string $w$, let $\text{oneswap}(w)$ be the set of all strings obtained by swapping exactly one pair of adjacent symbols in $w$. For example:

   $\text{oneswap}(010101) = \{100101, 001101, 011001, 010011, 010110\}$
   $\text{oneswap}(001110) = \{001110, 010110, 001101\}$
   $\text{oneswap}(111111) = \{111111\}$
   $\text{oneswap}(1) = \emptyset$
   $\text{oneswap}(\varepsilon) = \emptyset$

   For any language $L$, define a new language $\text{oneswap}(L)$ as follows:

   $\text{oneswap}(L) := \bigcup_{w \in L} \text{oneswap}(w)$

   Prove that if $L$ is a regular language over the alphabet $\{0, 1\}$, the language $\text{oneswap}(L)$ is also regular.
Solved problem

4. (a) Fix an arbitrary regular language \( L \). Prove that the language \( \text{half}(L) := \{ w \mid ww \in L \} \) is also regular.

**Solution:** Let \( M = (\Sigma, Q, s, A, \delta) \) be an arbitrary DFA that accepts \( L \). We define a new NFA \( M' = (\Sigma, Q', s', A', \delta') \) with \( \epsilon \)-transitions that accepts \( \text{half}(L) \), as follows:

\[
Q' = (Q \times Q \times Q) \cup \{s'\}
\]

\( s' \) is an explicit state in \( Q' \)

\[
A' = \{(h, h, q) \mid h \in Q \text{ and } q \in A\}
\]

\[
\delta'(s', \epsilon) = \{(s, h, h) \mid h \in Q\}
\]

\[
\delta'(s', a) = \emptyset
\]

\[
\delta'((p, h, q), \epsilon) = \emptyset
\]

\[
\delta'((p, h, q), a) = \{(\delta(p, a), h, \delta(q, a))\}
\]

\( M' \) reads its input string \( w \) and simulates \( M \) reading the input string \( ww \). Specifically, \( M' \) simultaneously simulates two copies of \( M \), one reading the left half of \( ww \) starting at the usual start state \( s \), and the other reading the right half of \( ww \) starting at some intermediate state \( h \).

- The new start state \( s' \) non-deterministically guesses the “halfway” state \( h = \delta^*(s, w) \) without reading any input; this is the only non-determinism in \( M' \).
- State \((p, h, q)\) means the following:
  - The left copy of \( M \) (which started at state \( s \)) is now in state \( p \).
  - The initial guess for the halfway state is \( h \).
  - The right copy of \( M \) (which started at state \( h \)) is now in state \( q \).
- \( M' \) accepts if and only if the left copy of \( M \) ends at state \( h \) (so the initial non-deterministic guess \( h = \delta^*(s, w) \) was correct) and the right copy of \( M \) ends in an accepting state.

\[\square\]

**Solution (smartass):** A complete solution is given in the lecture notes. \[\square\]

**Rubric:** 5 points: standard language transformation rubric (scaled). Yes, the smartass solution would be worth full credit.
(b) Describe a regular language $L$ such that the language $\text{double}(L) := \{ww \mid w \in L\}$ is not regular. Prove your answer is correct.

**Solution:** Consider the regular language $L = \emptyset^*1$.

Expanding the regular expression lets us rewrite $L = \{0^n1 \mid n \geq 0\}$. It follows that $\text{double}(L) = \{0^n10^n1 \mid n \geq 0\}$. I claim that this language is not regular.

Let $x$ and $y$ be arbitrary distinct strings in $L$.

Then $x = 0^i1$ and $y = 0^j1$ for some integers $i \neq j$.

Then $x$ is a distinguishing suffix of these two strings, because

- $xx \in \text{double}(L)$ by definition, but
- $yx = 0^i10^j1 \notin \text{double}(L)$ because $i \neq j$.

We conclude that $L$ is a fooling set for $\text{double}(L)$.

Because $L$ is infinite, $\text{double}(L)$ cannot be regular. ■

**Solution:** Consider the regular language $L = \Sigma^* = (0 + 1)^*$.

I claim that the language $\text{double}(\Sigma^*) = \{ww \mid w \in \Sigma^*\}$ is not regular.

Let $F$ be the infinite language $01^*0$.

Let $x$ and $y$ be arbitrary distinct strings in $F$.

Then $x = 01^i0$ and $y = 01^j0$ for some integers $i \neq j$.

The string $z = 1^i$ is a distinguishing suffix of these two strings, because

- $xz = 01^i01^i = ww$ where $w = 01^i$, so $xz \in \text{double}(\Sigma^*)$, but
- $yx = 01^i01^i \notin \text{double}(\Sigma^*)$ because $i \neq j$.

We conclude that $F$ is a fooling set for $\text{double}(\Sigma^*)$.

Because $F$ is infinite, $\text{double}(\Sigma^*)$ cannot be regular. ■

**Rubric:** 5 points:

- 2 points for describing a regular language $L$ such that $\text{double}(L)$ is not regular.
- 1 point for describing an infinite fooling set for $\text{double}(L)$:
  - + ½ for explicitly describing the proposed fooling set $F$.
  - + ½ if the proposed set $F$ is actually a fooling set.
    - No credit for the proof if the proposed set is not a fooling set.
    - No credit for the problem if the proposed set is finite.
- 2 points for the proof:
  - + ½ for correctly considering arbitrary strings $x$ and $y$
    - No credit for the proof unless both $x$ and $y$ are always in $F$.
    - No credit for the proof unless both $x$ and $y$ can be any string in $F$.
  - + ½ for correctly stating a suffix $z$ that distinguishes $x$ and $y$.
  - + ½ for proving either $xz \in L$ or $yz \in L$.
  - + ½ for proving either $yz \notin L$ or $xz \notin L$, respectively.

These are not the only correct solutions. These are not the only fooling sets for these languages.
Standard language transformation rubric. For problems worth 10 points:

+ 2 for a formal, complete, and unambiguous description of the output automaton, including the states, the start state, the accepting states, and the transition function, as functions of an arbitrary input DFA. The description must state whether the output automaton is a DFA, an NFA without \( \epsilon \)-transitions, or an NFA with \( \epsilon \)-transitions.
  
  • No points for the rest of the problem if this is missing.

+ 2 for a brief English explanation of the output automaton. We explicitly do not want a formal proof of correctness, or an English transcription, but a few sentences explaining how your machine works and justifying its correctness. What is the overall idea? What do the states represent? What is the transition function doing? Why these accepting states?
  
  • Deadly Sin: No points for the rest of the problem if this is missing.

+ 6 for correctness

  + 3 for accepting all strings in the target language
  
  + 3 for accepting only strings in the target language
  
  − 1 for a single mistake in the formal description (for example a typo)
  
  • Double-check correctness when the input language is \( \emptyset \), or \( \{ \epsilon \} \), or \( 0^* \), or \( \Sigma^* \).
1. The following variant of the infamous StoogeSort algorithm\(^1\) was discovered by the British actor Patrick Troughton during rehearsals for the 20th anniversary *Doctor Who* special “The Five Doctors”.\(^2\)

\[
\text{\texttt{WHO}} \text{\texttt{SORT}}(A[1..n]):
\]
\[
\begin{align*}
\text{if } n < 13 & \quad \text{sort } A \text{ by brute force} \\
\text{else} & \\
& \quad k = \lceil n/5 \rceil \\
& \quad \text{\texttt{WHO}} \text{\texttt{SORT}}(A[1..3k]) \quad \langle \text{Hartnell}\rangle \\
& \quad \text{\texttt{WHO}} \text{\texttt{SORT}}(A[2k+1..n]) \quad \langle \text{Troughton}\rangle \\
& \quad \text{\texttt{WHO}} \text{\texttt{SORT}}(A[1..3k]) \quad \langle \text{Pertwee}\rangle \\
& \quad \text{\texttt{WHO}} \text{\texttt{SORT}}(A[k+1..4k]) \quad \langle \text{Davison}\rangle 
\end{align*}
\]

(a) Prove by induction that \texttt{WHO\texttt{SORT}} correctly sorts its input. [\textit{Hint: Where can the smallest } k \text{ elements be?}]

(b) Would \texttt{WHO\texttt{SORT}} still sort correctly if we replaced “if } n < 13” with “if } n < 4”? Justify your answer.

(c) Would \texttt{WHO\texttt{SORT}} still sort correctly if we replaced “} k = [n/5]” with “} k = [n/5]? Justify your answer.

(d) What is the running time of \texttt{WHO\texttt{SORT}}? (Set up a running-time recurrence and then solve it, ignoring the floors and ceilings.)

2. In the lab on Wednesday, we developed an algorithm to compute the median of the union of two sorted arrays size \(n\) in \(O(\log n)\) time.

But now suppose we are given \textit{three} sorted arrays \(A[1..n]\), \(B[1..n]\), and \(C[1..n]\). Describe and analyze an algorithm to compute the median of \(A \cup B \cup C\) in \(O(\log n)\) time. (You can assume the arrays contain \(3n\) distinct integers.)

\(^1\)https://en.wikipedia.org/wiki/Stooge_sort

\(^2\)Tom Baker, the fourth Doctor, declined to return for the reunion; hence, only four Doctors appeared in “The Five Doctors”. (Well, okay, technically the BBC used excerpts of the unfinished episode “Shada” to include Baker, but he wasn’t really \textit{there}—to the extent that any fictional character in a television show about a time traveling wizard arguing with several other versions of himself about immortality can be said to be “really” “there”.)
3. At the end of the second act of the action blockbuster *Fast and Impossible XIII\¾: Guardians of Expendable Justice Reloaded*, the villainous Dr. Metaphor hypnotizes the entire Hero League/Force/Squad, arranges them in a long line at the edge of a cliff, and instructs each hero to shoot the closest taller heroes to their left and right, at a prearranged signal.

Suppose we are given the heights of all $n$ heroes, in order from left to right, in an array $Ht[1..n]$. (To avoid salary arguments, the producers insisted that no two heroes have the same height.) Then we can compute the Left and Right targets of each hero in $O(n^2)$ time using the following algorithm.

```plaintext
WHOTARGETSWHOM(Ht[1..n]):
  for j ← 1 to n
    ⟨⟨Find the left target $L[j]$ for hero $j⟩⟩$
    $L[j] ← \text{None}$
    for i ← 1 to $j - 1$
      if $Ht[i] > Ht[j]$
        $L[j] ← i$
    ⟨⟨Find the right target $R[j]$ for hero $j⟩⟩$
    $R[j] ← \text{None}$
    for k ← n down to $j + 1$
      if $Ht[k] > Ht[j]$
        $R[j] ← k$
  return $L[1..n], R[1..n]$
```

(a) Describe a divide-and-conquer algorithm that computes the output of WHOTARGETSWHOM in $O(n \log n)$ time.

(b) Prove that at least $\lfloor n/2 \rfloor$ of the $n$ heroes are targets. That is, prove that the output arrays $R[0..n-1]$ and $L[0..n-1]$ contain at least $\lfloor n/2 \rfloor$ distinct values (other than None).

(c) Alas, Dr. Metaphor’s diabolical plan is successful. At the prearranged signal, all the heroes simultaneously shoot their targets, and all targets fall over the cliff, apparently dead. Metaphor repeats his dastardly experiment over and over; after each massacre, he forces the remaining heroes to choose new targets, following the same algorithm, and then shoot their targets at the next signal. Eventually, only the shortest member of the Hero Crew/Alliance/Posse is left alive.³

Describe an algorithm that computes the number of rounds before Dr. Metaphor’s deadly process finally ends. For full credit, your algorithm should run in $O(n)$ time.

---

³In the thrilling final act, Retcon the Squirrel, the last surviving member of the Hero Team/Group/Society (played by Tom Baker, of course), saves everyone by traveling back in time and retroactively replacing the other $n-1$ heroes with lifelike balloon sculptures. So, yeah, it’s basically *Avengers: Endgame* meets *Doom Patrol*. 
Solved problem

4. Suppose we are given two sets of \( n \) points, one set \( \{ p_1, p_2, \ldots, p_n \} \) on the line \( y = 0 \) and the other set \( \{ q_1, q_2, \ldots, q_n \} \) on the line \( y = 1 \). Consider the \( n \) line segments connecting each point \( p_i \) to the corresponding point \( q_i \). Describe and analyze a divide-and-conquer algorithm to determine how many pairs of these line segments intersect, in \( O(n \log n) \) time. See the example below.

![Diagram of seven segments with endpoints on parallel lines, with 11 intersecting pairs.]

Your input consists of two arrays \( P[1..n] \) and \( Q[1..n] \) of \( x \)-coordinates; you may assume that all \( 2n \) of these numbers are distinct. No proof of correctness is necessary, but you should justify the running time.

**Solution:** We begin by sorting the array \( P[1..n] \) and permuting the array \( Q[1..n] \) to maintain correspondence between endpoints, in \( O(n \log n) \) time. Then for any indices \( i < j \), segments \( i \) and \( j \) intersect if and only if \( Q[i] > Q[j] \). Thus, our goal is to compute the number of pairs of indices \( i < j \) such that \( Q[i] > Q[j] \). Such a pair is called an inversion.

We count the number of inversions in \( Q \) using the following extension of mergesort; as a side effect, this algorithm also sorts \( Q \). If \( n < 100 \), we use brute force in \( O(1) \) time. Otherwise:

- Color the elements in the Left half \( Q[1..\lfloor n/2 \rfloor] \) blue.
- Color the elements in the Right half \( Q[\lceil n/2 \rceil + 1..n] \) red.
- Recursively count inversions in (and sort) the blue subarray \( Q[1..\lfloor n/2 \rfloor] \).
- Recursively count inversions in (and sort) the red subarray \( Q[\lceil n/2 \rceil + 1..n] \).
- Count red/blue inversions as follows:
  - Merge the sorted subarrays \( Q[1..n/2] \) and \( Q[n/2 + 1..n] \), maintaining the element colors.
  - For each blue element \( Q[i] \) of the now-sorted array \( Q[1..n] \), count the number of smaller red elements \( Q[j] \).

The last substep can be performed in \( O(n) \) time using a simple for-loop:
CountRedBlue(A[1..n]):
    count ← 0
    total ← 0
    for i ← 1 to n
        if A[i] is red
            count ← count + 1
        else
            total ← total + count
    return total

Merge and CountRedBlue each run in \(O(n)\) time. Thus, the running time of our inversion-counting algorithm obeys the mergesort recurrence \(T(n) = 2T(n/2) + O(n)\). (We can safely ignore the floors and ceilings in the recursive arguments.) We conclude that the overall running time of our algorithm is \(O(n \log n)\), as required.

**Rubric:** This is enough for full credit.

In fact, we can execute the third merge-and-count step directly by modifying the Merge algorithm, without any need for “colors”. Here changes to the standard Merge algorithm are indicated in red.

MergeAndCount(A[1..n], m):
    i ← 1; j ← m + 1; count ← 0; total ← 0
    for k ← 1 to n
        if j > n
            B[k] ← A[i]; i ← i + 1; total ← total + count
        else if i > m
            B[k] ← A[j]; j ← j + 1; count ← count + 1
        else if A[i] < A[j]
            B[k] ← A[i]; i ← i + 1; total ← total + count
        else
            B[k] ← A[j]; j ← j + 1; count ← count + 1
    for k ← 1 to n
        A[k] ← B[k]
    return total

We can further optimize MergeAndCount by observing that count is always equal to \(j - m - 1\), so we don’t need an additional variable. (Proof: Initially, \(j = m + 1\) and count = 0, and we always increment \(j\) and count together.)
MergeAndCount2 \((A[1..n], m)\):

\[
i \leftarrow 1; \quad j \leftarrow m + 1; \quad \text{total} \leftarrow 0
\]

For \(k \leftarrow 1\) to \(n\):

If \(j > n\)

\[
B[k] \leftarrow A[i]; \quad i \leftarrow i + 1; \quad \text{total} \leftarrow \text{total} + j - m - 1
\]

Else if \(i > m\)

\[
B[k] \leftarrow A[j]; \quad j \leftarrow j + 1
\]

Else if \(A[i] < A[j]\)

\[
B[k] \leftarrow A[i]; \quad i \leftarrow i + 1; \quad \text{total} \leftarrow \text{total} + j - m - 1
\]

Else

\[
B[k] \leftarrow A[j]; \quad j \leftarrow j + 1
\]

For \(k \leftarrow 1\) to \(n\):

\[
A[k] \leftarrow B[k]
\]

Return \(\text{total}\)

MergeAndCount2 still runs in \(O(n)\) time, so the overall running time is still \(O(n \log n)\), as required.

Rubric: 10 points = 2 for base case + 3 for divide (split and recurse) + 3 for conquer (merge and count) + 2 for time analysis. Max 3 points for a correct \(O(n^2)\)-time algorithm. This is neither the only way to correctly describe this algorithm nor the only correct \(O(n \log n)\)-time algorithm. No proof of correctness is required.

Notice that each boxed algorithm is preceded by an English description of the task that algorithm performs. Omitting these descriptions is a Deadly Sin.
1. Farmers Boggis, Bunce, and Bean have set up an obstacle course for Mr. Fox. The course consists of a long row of booths, each with a number painted on the front with bright red paint. Formally, Mr. Fox is given an array $A[1..n]$, where $A[i]$ is the number painted on the front of the $i$th booth. Each number $A[i]$ could be positive, negative, or zero. Everyone agrees with the following rules:

- Mr. Fox must visit all the booths in order from 1 to $n$.
- At each booth, Mr. Fox must say one word: either “Ring!” or “Ding!”
- If Mr. Fox says “Ring!” at the $i$th booth, he earns a reward of $A[i]$ chickens. (If $A[i] < 0$, Mr. Fox pays a penalty of $-A[i]$ chickens.)
- If Mr. Fox says “Ding!” at the $i$th booth, he pays a penalty of $A[i]$ chickens. (If $A[i] < 0$, Mr. Fox earns a reward of $-A[i]$ chickens.)
- Mr. Fox is forbidden to say the same word more than three times in a row. For example, if he says “Ring!” at booths 6, 7, and 8, then he must say “Ding!” at booth 9.
- All accounts will be settled at the end, after Mr. Fox visits every booth and the umpire calls “Hot box!” Mr. Fox does not actually have to carry chickens (or anti-chickens) through the obstacle course.
- Finally, if Mr. Fox violates any of the rules, or if he ends the obstacle course owing the farmers chickens, the farmers will shoot him.

Describe and analyze an algorithm to compute the largest number of chickens that Mr. Fox can earn by running the obstacle course, given the array $A[1..n]$ of numbers as input. [Hint: Watch out for the burning pine cone!]

2. Recall that a supersequence of a string $w$ is any string obtained from $w$ by inserting zero or more symbols. For example, the strings STRING, STIRRING, and MISTERFINNIGAN are all supersequences of the string STRING.

   (a) Recall that a palindrome is a string that is equal to its reversal, like the empty string, A, HANNAH, or AMANAPLANACATACANALPANAMA. Describe an algorithm to compute the length of the shortest palindrome supersequence of a given string.

   (b) A dromedrome is an even-length string whose first half is equal to its second half, like the empty string, AA, ACKACK, or AMANAPLANAMANAPLAN. Describe an algorithm to compute the length of the shortest dromedrome supersequence of a given string.

For example, given the string SUPERSEQUENCE as input, your algorithm for part (a) should return 21 (the length of SUPECNRSEQUQESRNCEPUS), and your algorithm for part (b) should return 20 (the length of SEQUPERNCESEQUPERNCE). The input to both algorithms is an array $A[1..n]$ representing a string.
3. Suppose you are given a DFA $M$ with $k$ states for Jeff’s favorite regular language $L \subseteq (0+1)^*$. 

(a) Describe and analyze an algorithm that decides whether a given bit-string belongs to the language $L^*$. 

(b) Describe and analyze an algorithm that partitions a given bit-string into as many substrings as possible, such that $L$ contains every substring in the partition. Your algorithm should return only the number of substrings, not their actual positions. (In light of your algorithm from part (a), you can assume that an appropriate partition exists.) 

For example, suppose $L$ is the set of all bit-strings that start and end with 1 and whose length is not divisible by 3.\(^1\) Then given the input string $10111000110110111101$, your algorithm for part (a) should return True, and your algorithm for part (b) should return the integer 5, which is the length of the following partition:

$1011 \cdot 1 \cdot 1000110101 \cdot 1011 \cdot 1101$

The input to both algorithms consists of (some reasonable representation of) the DFA $M$ and an array $A[1..n]$ of bits. Express the running time of your algorithms as functions of both $k$ (the number of states in $M$) and $n$ (the length of the input string). 

[Hint: Do not try to build a DFA for $L^*$.] 

---

\(^1\)This is not actually Jeff’s favorite regular language.
Solved Problem

4. A shuffle of two strings $X$ and $Y$ is formed by interspersing the characters into a new string, keeping the characters of $X$ and $Y$ in the same order. For example, the string \texttt{BANANAANANAS} is a shuffle of the strings \texttt{BANANA} and \texttt{ANANAS} in several different ways.

\[
\begin{array}{c}
\text{BANANAANANAS} \\
\text{BANANAANANAS} \\
\text{BANANAANANAS}
\end{array}
\]

Similarly, the strings \texttt{PRODGYRNAMAMIINCG} and \texttt{DYPRONGARMAMMICING} are both shuffles of \texttt{DYNAMIC} and \texttt{PROGRAMMING}:

\[
\begin{array}{c}
\text{PRODGYRNAMAMIINCG} \\
\text{DYPRONGARMAMMICING}
\end{array}
\]

Given three strings $A[1..m]$, $B[1..n]$, and $C[1..m+n]$, describe and analyze an algorithm to determine whether $C$ is a shuffle of $A$ and $B$.

**Solution:** We define a boolean function $Shuf(i, j)$, which is True if and only if the prefix $C[1..i+j]$ is a shuffle of the prefixes $A[1..i]$ and $B[1..j]$. This function satisfies the following recurrence:

\[
Shuf(i, j) = \begin{cases} 
\text{TRUE} & \text{if } i = j = 0 \\
Shuf(0, j-1) \land (B[j] = C[j]) & \text{if } i = 0 \text{ and } j > 0 \\
Shuf(i-1, 0) \land (A[i] = C[i]) & \text{if } i > 0 \text{ and } j = 0 \\
(Shuf(i-1, j) \land (A[i] = C[i+j])) \\
\quad \lor (Shuf(i, j-1) \land (B[j] = C[i+j])) & \text{if } i > 0 \text{ and } j > 0
\end{cases}
\]

We need to compute $Shuf(m, n)$.

We can memoize all function values into a two-dimensional array $Shuf[0..m][0..n]$. Each array entry $Shuf[i, j]$ depends only on the entries immediately below and immediately to the right: $Shuf[i-1, j]$ and $Shuf[i, j-1]$. Thus, we can fill the array in standard row-major order. The original recurrence gives us the following pseudocode:

```plaintext
SHUFFLE?(A[1..m], B[1..n], C[1..m+n]):
    Shuf[0, 0] ← TRUE
    for j ← 1 to n
        Shuf[0, j] ← Shuf[0, j-1] ∧ (B[j] = C[j])
    for i ← 1 to m
        Shuf[i, 0] ← Shuf[i-1, 0] ∧ (A[i] = B[i])
        for j ← 1 to n
            Shuf[i, j] ← FALSE
            if A[i] = C[i+j]
                Shuf[i, j] ← Shuf[i, j] ∨ Shuf[i-1, j]
            if B[i] = C[i+j]
                Shuf[i, j] ← Shuf[i, j] ∨ Shuf[i, j-1]
    return Shuf[m, n]
```

The algorithm runs in $O(mn)$ time. ■
Rubric: Max 10 points: Standard dynamic programming rubric. No proofs required. Max 7 points for a slower polynomial-time algorithm; scale partial credit accordingly.

Standard dynamic programming rubric. For problems worth 10 points:

- 6 points for a correct recurrence, described either using mathematical notation or as pseudocode for a recursive algorithm.
  - + 1 point for a clear English description of the function you are trying to evaluate. (Otherwise, we don’t even know what you’re trying to do.) Deadly Sin: Automatic zero if the English description is missing.
  - + 1 point for stating how to call your function to get the final answer.
  - + 1 point for base case(s). $-\frac{1}{2}$ for one minor bug, like a typo or an off-by-one error.
  - + 3 points for recursive case(s). $-1$ for each minor bug, like a typo or an off-by-one error. No credit for the rest of the problem if the recursive case(s) are incorrect.

- 4 points for details of the dynamic programming algorithm
  - + 1 point for describing the memoization data structure
  - + 2 points for describing a correct evaluation order; a clear picture is usually sufficient. If you use nested loops, be sure to specify the nesting order.
  - + 1 point for time analysis

- It is not necessary to state a space bound.

- For problems that ask for an algorithm that computes an optimal structure—such as a subset, partition, subsequence, or tree—an algorithm that computes only the value or cost of the optimal structure is sufficient for full credit, unless the problem specifically says otherwise.

- Official solutions usually include pseudocode for the final iterative dynamic programming algorithm, but iterative pseudocode is not required for full credit. If your solution includes iterative pseudocode, you do not need to separately describe the recurrence, memoization structure, or evaluation order. But you do still need to describe the underlying recursive function in English.

- Official solutions will provide target time bounds. Algorithms that are faster than this target are worth more points; slower algorithms are worth fewer points, typically by 2 or 3 points (out of 10) for each factor of $n$. Partial credit is scaled to the new maximum score, and all points above 10 are recorded as extra credit.

  We rarely include these target time bounds in the actual questions, because when we have included them, significantly more students turned in algorithms that meet the target time bound but didn’t work (earning 0/10) instead of correct algorithms that are slower than the target time bound (earning 8/10).
1. A non-empty sequence $S[1..\ell]$ of positive integers is called a perfect ruler sequence if it satisfies the following conditions:

- The length of $S$ is one less than a power of 2; that is, $\ell = 2^k - 1$ for some integer $k$.
- Let $m = \lceil \ell/2 \rceil = 2^k - 1$. Then $S[m]$ is the unique maximum element of $S$.
- If $\ell > 1$, then the prefix $S[1..m-1]$ is a perfect ruler sequence.
- If $\ell > 1$, then the suffix $S[m+1..\ell]$ is a perfect ruler sequence.

For example, the following sequence is a perfect ruler sequence:

$$\{2, 7, 6, 9, 5, 8, 5, 12, 1, 9, 4, 10, 7, 8, 3\}$$

Describe and analyze an efficient algorithm to compute the longest perfect ruler subsequence of a given array $A[1..n]$ of integers.

2. Suppose you are running a ferry across Lake Michigan.\(^1\) The vehicle hold in your ferry is $L$ meters long and three lanes wide. As each vehicle drives up to your ferry, you direct it to one of the three lanes; the vehicle then parks as far forward in that lane as possible. Vehicles must enter the ferry in the order they arrived; if the vehicle at the front of the queue doesn’t fit into any of the lanes, then no more vehicles are allowed to board.

Because your uncle runs the concession stand at the ferry terminal, you want to load as few vehicles onto your ferry as possible for each trip. But you don’t want to be obvious about it; if the vehicle at the front of the queue fits anywhere, you must assign it to a lane where it fits. You can see the lengths of all vehicles in the queue on your security camera.

Describe and analyze an algorithm to load the ferry. The input to your algorithm is the integer $L$ and an array $len[1..n]$ containing the (integer) lengths of all vehicles in the queue. (You can assume that $1 \leq len[i] \leq L$ for all $i$.) Your output should be the smallest integer $k$ such that you can put vehicles 1 through $k$ onto the ferry, in such a way that vehicle $k+1$ does not fit. Express the running time of your algorithm as a function of both $n$ (the number of vehicles) and $L$ (the length of the ferry).

For example, suppose $L = 6$, and the first six vehicles in the queue have lengths $3, 3, 4, 4, 2,$ and $2$. Your algorithm should return the integer $3$, because if you assign the first three vehicles to three different lanes, the fourth vehicle won’t fit. (A different lane assignment gets all six vehicles on board, but that would rob your uncle of three customers.)

---

\(^1\)Welcome aboard the Recursion Ferry! How we get across the water is none of your business!
3. CS 125 students Chef Gallon and Fade Waygone wrote some inorder traversal code for their MP on binary search trees. To keep things simple, they wisely chose the integers 1 through \( n \) as their search keys. Unfortunately, their code contained a subtle bug (which was nearly impossible to track down, thanks to version inconsistencies between Fade’s laptop, the submission/grading server, and Oracle’s ridiculous licencing terms) that would sporadically swap left and right child pointers in some binary tree nodes. As a result, their traversal code rarely returned the search keys in sorted order.

For example, given the binary search tree below, if the four marked nodes had their left and right pointers swapped, Chef and Fade’s traversal code would return the garbled “inorder” sequence 7, 6, 4, 5, 2, 1, 8, 13, 9, 12, 10, 14, 15, 16.

![Binary Search Tree Diagram]

Chef and Fade submitted the output of several garbled traversals, but before they could submit the actual traversal code, Fade’s laptop was infested with bees. After receiving a grade of 0 on their MP, Chef and Fade argued with their instructor that they should get some partial credit, because the sequences their code produced were at least consistent with correct binary search trees, and anyway the bees weren’t their fault.

Design and analyze an efficient algorithm to verify or refute Chef and Fade’s claim (about the binary search trees, not the bees). The input to your algorithm is an array \( A[1..n] \) containing a permutation of the integers 1 through \( n \). Your algorithm should output \textbf{True} if this array is the inorder traversal of an actual binary search tree with keys 1 through \( n \), possibly with some left and right child pointers swapped, and \textbf{False} otherwise. For example, if the input array contains \([5,2,3,4,1]\), your algorithm should return \textbf{True}, and if the input array contains \([2,5,3,1,4]\), your algorithm should return \textbf{False}. 


Solved Problems

4. A string \( w \) of parentheses ( and ) and brackets [ and ] is \textbf{balanced} if and only if \( w \) is generated by the following context-free grammar:

\[
S \rightarrow \varepsilon \mid (S) \mid [S] \mid SS
\]

For example, the string \( w = ( [ ( ) ] ( ) ) ) ( ( ) ) \) is balanced, because \( w = xy \), where

\[
x = ( [ ( ) ] ( ) ) \quad \text{and} \quad y = ( ( ) ) ( ).
\]

Describe and analyze an algorithm to compute the length of a longest balanced subsequence of a given string of parentheses and brackets. Your input is an array \( A[1..n] \), where \( A[i] \in \{ (, ), [ , ] \} \) for every index \( i \).

\[
\textbf{Solution:} \quad \text{Suppose } A[1..n] \text{ is the input string. For all indices } i \text{ and } k, \text{ let } LBS(i,k) \text{ denote the length of the longest balanced subsequence of the substring } A[i..k]. \text{ We need to compute } LBS(1,n). \text{ This function obeys the following recurrence:}
\]

\[
LBS(i,j) = \begin{cases} 
0 & \text{if } i \geq k \\
\max \left\{ \begin{array}{l}
2 + LBS(i+1,k-1) \\
\max_{j=1}^{k-1} \left( LBS(i,j) + LBS(j+1,k) \right) \end{array} \right. & \text{if } A[i] \sim A[k] \\
\max_{j=1}^{k-1} \left( LBS(i,j) + LBS(j+1,k) \right) & \text{otherwise}
\end{cases}
\]


We can memoize this function into a two-dimensional array \( LBS[1..n,1..n] \). Since every entry \( LBS[i,j] \) depends only on entries in later rows or earlier columns (or both), we can evaluate this array row-by-row from bottom up in the outer loop, scanning each row from left to right in the inner loop. The resulting algorithm runs in \( O(n^3) \) \textbf{time}.

\[
\textbf{LONGESTBALANCEDSUBSEQUENCE}(A[1..n]):
\]

\[
\text{for } i \leftarrow n \text{ down to } 1 \\
\quad \text{LBS}[i,i] \leftarrow 0 \\
\text{for } k \leftarrow i + 1 \text{ to } n \\
\quad \text{if } A[i] \sim A[k] \\
\quad \quad \text{LBS}[i,k] \leftarrow LBS[i+1,k-1] + 2 \\
\quad \text{else} \\
\quad \quad \text{LBS}[i,k] \leftarrow 0 \\
\text{for } j \leftarrow k - 1 \text{ to } i \\
\quad \text{LBS}[i,k] \leftarrow \max \{ \text{LBS}[i,k], \text{LBS}[i,j] + \text{LBS}[j+1,k] \} \\
\text{return } LBS[1,n]
\]

\[
\textbf{Rubric:} \quad 10 \text{ points, standard dynamic programming rubric}
\]
5. Oh, no! You’ve just been appointed as the new organizer of Giggle, Inc.’s annual mandatory holiday party! The employees at Giggle are organized into a strict hierarchy, that is, a tree with the company president at the root. The all-knowing oracles in Human Resources have assigned a real number to each employee measuring how “fun” the employee is. In order to keep things social, there is one restriction on the guest list: An employee cannot attend the party if their immediate supervisor is also present. On the other hand, the president of the company must attend the party, even though she has a negative fun rating; it’s her company, after all.

Describe an algorithm that makes a guest list for the party that maximizes the sum of the “fun” ratings of the guests. The input to your algorithm is a rooted tree $T$ describing the company hierarchy, where each node $v$ has a field $v.fun$ storing the “fun” rating of the corresponding employee.

Solution (two functions): We define two functions over the nodes of $T$.

- $MaxFunYes(v)$ is the maximum total “fun” of a legal party among the descendants of $v$, where $v$ is definitely invited.
- $MaxFunNo(v)$ is the maximum total “fun” of a legal party among the descendants of $v$, where $v$ is definitely not invited.

We need to compute $MaxFunYes(root)$. These two functions obey the following mutual recurrences:

$$MaxFunYes(v) = v.fun + \sum_{\text{children } w \text{ of } v} MaxFunNo(w)$$

$$MaxFunNo(v) = \sum_{\text{children } w \text{ of } v} \max\{MaxFunYes(w), MaxFunNo(w)\}$$

(These recurrences do not require separate base cases, because $\sum \emptyset = 0$.) We can memoize these functions by adding two additional fields $v.yes$ and $v.no$ to each node $v$ in the tree. The values at each node depend only on the values at its children, so we can compute all $2n$ values using a postorder traversal of $T$.

<table>
<thead>
<tr>
<th>BestParty($T$):</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v.\text{yes} \leftarrow v.fun$</td>
</tr>
<tr>
<td>$v.\text{no} \leftarrow 0$</td>
</tr>
<tr>
<td>for all children $w$ of $v$</td>
</tr>
<tr>
<td>$\text{ComputeMaxFun}(w)$</td>
</tr>
<tr>
<td>$v.\text{yes} \leftarrow v.\text{yes} + w.\text{no}$</td>
</tr>
<tr>
<td>$v.\text{no} \leftarrow v.\text{no} + \max{w.\text{yes}, w.\text{no}}$</td>
</tr>
</tbody>
</table>

(Yes, this is still dynamic programming; we’re only traversing the tree recursively because that’s the most natural way to traverse trees!) The algorithm spends $O(1)$ time at each node, and therefore runs in $O(n)$ time altogether. ■

---

4 A naïve recursive implementation would run in $O(\phi^n)$ time in the worst case, where $\phi = (1 + \sqrt{5})/2 \approx 1.618$ is the golden ratio. The worst-case tree is a path—every non-leaf node has exactly one child.
Solution (one function): For each node $v$ in the input tree $T$, let $\text{MaxFun}(v)$ denote the maximum total “fun” of a legal party among the descendants of $v$, where $v$ may or may not be invited.

The president of the company must be invited, so none of the president’s “children” in $T$ can be invited. Thus, the value we need to compute is

$$\text{root.fun} + \sum_{\text{grandchildren } w \text{ of } \text{root}} \text{MaxFun}(w).$$

The function $\text{MaxFun}$ obeys the following recurrence:

$$\text{MaxFun}(v) = \max \left\{ v.\text{fun} + \sum_{\text{grandchildren } x \text{ of } v} \text{MaxFun}(x), \sum_{\text{children } w \text{ of } v} \text{MaxFun}(w) \right\}$$

(This recurrence does not require a separate base case, because $\sum \emptyset = 0$.) We can memoize this function by adding an additional field $v.\text{maxFun}$ to each node $v$ in the tree. The value at each node depends only on the values at its children and grandchildren, so we can compute all values using a postorder traversal of $T$.

```plaintext
BEST PARTY(T):
   COMPUTE MAX FUN(T.root)
   party ← T.root.fun
   for all children $w$ of T.root
      for all children $x$ of $w$
         party ← party + $x.\text{maxFun}$
   return party

COMPUTE MAX FUN(v):
   yes ← v.fun
   no ← 0
   for all children $w$ of $v$
      COMPUTE MAX FUN(w)
      no ← no + $w.\text{maxFun}$
   for all children $x$ of $w$
      yes ← yes + $x.\text{maxFun}$
   $v.\text{maxFun} ← \max\{\text{yes, no}\}$
```

(Yes, this is still dynamic programming; we’re only traversing the tree recursively because that’s the most natural way to traverse trees!)

The algorithm spends $O(1)$ time at each node (because each node has exactly one parent and one grandparent) and therefore runs in $O(n)$ time altogether.

$^a$Like the previous solution, a direct recursive implementation would run in $O(\phi^n)$ time in the worst case, where $\phi = (1 + \sqrt{5})/2 \approx 1.618$ is the golden ratio.

Rubric: 10 points: standard dynamic programming rubric. These are not the only correct solutions.
You new job at Object Oriented Parcel Service is to help direct delivery drivers through the city of Gridville. You are given a complete street map, in the form of a graph $G$, whose vertices are intersections, and whose edges represent streets between those intersections. Every street in Gridville runs in a straight line either north-south or east-west, and there are no one-way streets. One specific vertex $s$ of $G$ represents the OOPS warehouse.

To increase fuel economy, decrease delivery times, and reduce accidents, OOPS imposes the following strict policies on its drivers.¹

- U-turns are forbidden, except at dead ends, where they are obviously required.
- Left turns are forbidden, except where the road turns left, with no option to continue either straight or right.
- Drivers must stop at every intersection.
- Drivers must park as close as possible to their destination address.

Your job is to find routes from the OOPS warehouse to other locations in Gridville, with the smallest possible number of stops, that satisfy OOPS’s driving policies. A destination is specified by an edge of $G$.

(a) Describe and analyze an algorithm to find a legal route with the minimum number of stops from the OOPS warehouse to an arbitrary destination address. The input to your algorithm is the graph $G$, the start vertex $s$, and the destination edge; the output is the number of stops on the best legal route (or $\infty$ if there is no legal route).

(b) After submitting your fancy new algorithm to your boss, you gently remind her that trucks have to return to the warehouse after making each delivery. Describe and analyze an algorithm to find a legal route with the minimum number of stops, from the OOPS warehouse, to an arbitrary destination address, and then back to the warehouse. The input to your algorithm is the graph $G$, the start vertex $s$, and the destination edge; the output is the number of stops on the best legal route (or $\infty$ if there is no legal route).

For example, given the map on the next page, your algorithm for part (a) should return 15, and your algorithm for part (b) should return 28. Both optimal routes start with a forced right turn, followed by a forced U-turn, because turning left at a T intersection is forbidden. Notice that the optimal route to the destination is not a prefix of the optimal route to the destination and back.

¹OOPS maintains GPS trackers on every truck. If a driver ever breaks any of these rules, the tracker immediately shuts down and locks the truck, trapping the driver until a manager arrives, unlocks the truck, fires the driver, and installs a new replacement driver. OOPS managers are notoriously lazy, so most drivers keep enough food and water in their trucks to last several days.
2. Suppose you are given an undirected graph $G$ in which every edge is either red, green, or blue, along with two vertices $s$ and $t$. Call a walk from $s$ to $t$ *awesome* if the walk does not contain three consecutive edges with the same color.

Describe and analyze an algorithm to find the length of the shortest awesome walk from $s$ to $t$. For example, given either the left or middle input below, your algorithm should return the integer 6, and given the input on the right, your algorithm should return $\infty$.

3. You are helping a group of ethnographers analyze some oral history data. The ethnographers have collected information about the lifespans of $n$ different people, all now deceased, arbitrarily labeled with the integers 1 through $n$. Specifically, for some pairs $(i, j)$, the ethnographers have learned one of the following facts:

   (a) Person $i$ died before person $j$ was born.
   (b) Person $i$ and person $j$ were both alive at some moment.

The ethnographers are not sure that their facts are correct; after all, this information was passed down by word of mouth over generations, and memory is notoriously unreliable. So they would like you to determine whether the data they have collected is at least internally consistent, meaning there could have been people whose births and deaths consistent with their data.

Describe and analyze an algorithm to answer the ethnographers' problem. Your algorithm should either output possible dates of birth and death that are consistent with all the stated facts, or it should report correctly that no such dates exist.
Solved Problem

4. Professor McClane takes you out to a lake and hands you three empty jars. Each jar holds a positive integer number of gallons; the capacities of the three jars may or may not be different. The professor then demands that you put exactly \( k \) gallons of water into one of the jars (which one doesn’t matter), for some integer \( k \), using only the following operations:

(a) Fill a jar with water from the lake until the jar is full.
(b) Empty a jar of water by pouring water into the lake.
(c) Pour water from one jar to another, until either the first jar is empty or the second jar is full, whichever happens first.

For example, suppose your jars hold 6, 10, and 15 gallons. Then you can put 13 gallons of water into the third jar in six steps:

- Fill the third jar from the lake.
- Fill the first jar from the third jar. (Now the third jar holds 9 gallons.)
- Empty the first jar into the lake.
- Fill the second jar from the lake.
- Fill the first jar from the second jar. (Now the second jar holds 4 gallons.)
- Empty the second jar into the third jar.

Describe and analyze an efficient algorithm that either finds the smallest number of operations that leave exactly \( k \) gallons in any jar, or reports correctly that obtaining exactly \( k \) gallons of water is impossible. Your input consists of the capacities of the three jars and the positive integer \( k \). For example, given the four numbers 6, 10, 15, and 13 as input, your algorithm should return the number 6 (the length of the sequence of operations listed above).

Solution: Let \( A, B, C \) denote the capacities of the three jars. We reduce the problem to breadth-first search in the following directed graph:

- \( V = \{(a, b, c) \mid 0 \leq a \leq A \) and \( 0 \leq b \leq B \) and \( 0 \leq c \leq C \} \). Each vertex corresponds to a possible configuration of water in the three jars. There are \((A+1)(B+1)(C+1) = O(ABC)\) vertices altogether.
- The graph has a directed edge \((a, b, c) \rightarrow (a', b', c')\) whenever it is possible to move from the first configuration to the second in one step. Specifically, there is an edge from \((a, b, c)\) to each of the following vertices (except those already equal to \((a, b, c)\)):
  - \((0, b, c)\) and \((a, 0, c)\) and \((a, b, 0)\) — dumping a jar into the lake
  - \((A, b, c)\) and \((a, B, c)\) and \((a, b, C)\) — filling a jar from the lake
  - \(\begin{cases} (0, a + b, c) & \text{if } a + b \leq B \\ (a + b - B, B, c) & \text{if } a + b \geq B \end{cases}\) — pouring from jar 1 into jar 2
  - \(\begin{cases} (0, b, a + c) & \text{if } a + c \leq C \\ (a + c - C, b, C) & \text{if } a + c \geq C \end{cases}\) — pouring from jar 1 into jar 3
\[
\begin{align*}
&\begin{cases}
(a + b, 0, c) \text{ if } a + b \leq A \\
(A, a + b - A, c) \text{ if } a + b \geq A
\end{cases} & \text{— pouring from jar 2 into jar 1} \\
&\begin{cases}
(a, 0, b + c) \text{ if } b + c \leq C \\
(a, b + c - C, C) \text{ if } b + c \geq C
\end{cases} & \text{— pouring from jar 2 into jar 3} \\
&\begin{cases}
(a + c, b, 0) \text{ if } a + c \leq A \\
(A, b, a + c - A) \text{ if } a + c \geq A
\end{cases} & \text{— pouring from jar 3 into jar 1} \\
&\begin{cases}
(a, b + c, 0) \text{ if } b + c \leq B \\
(a, B, b + c - B) \text{ if } b + c \geq B
\end{cases} & \text{— pouring from jar 3 into jar 2}
\end{align*}
\]

Since each vertex has at most 12 outgoing edges, there are at most 12(A + 1) \times (B + 1)(C + 1) = O(ABC) edges altogether.

To solve the jars problem, we need to find the shortest path in \( G \) from the start vertex \((0, 0, 0)\) to any target vertex of the form \((k, \cdot, \cdot)\) or \((\cdot, k, \cdot)\) or \((\cdot, \cdot, k)\). We can compute this shortest path by calling breadth-first search starting at \((0, 0, 0)\), and then examining every target vertex by brute force. If BFS does not visit any target vertex, we report that no legal sequence of moves exists. Otherwise, we find the target vertex closest to \((0, 0, 0)\) and trace its parent pointers back to \((0, 0, 0)\) to determine the shortest sequence of moves. The resulting algorithm runs in \(O(V + E) = O(ABC)\) time.

We can make this algorithm faster by observing that every move either leaves at least one jar empty or leaves at least one jar full. Thus, we only need vertices \((a, b, c)\) where either \(a = 0\) or \(b = 0\) or \(c = 0\) or \(a = A\) or \(b = B\) or \(c = C\); no other vertices are reachable from \((0, 0, 0)\). The number of non-redundant vertices and edges is \(O(AB + BC + AC)\). Thus, if we only construct and search the relevant portion of \( G \), the algorithm runs in \(O(AB + BC + AC)\) time.

\(\blacksquare\)

Rubric: 10 points: standard graph reduction rubric (see next page)

- Brute force construction is fine.
- \(-1\) for calling Dijkstra instead of BFS
- max 8 points for \(O(ABC)\) time; scale partial credit.
Standard rubric for graph reduction problems. For problems out of 10 points:

+ 1 for correct vertices, including English explanation for each vertex
+ 1 for correct edges
  — ½ for forgetting “directed” if the graph is directed
+ 1 for stating the correct problem (in this case, “shortest path”)
  — “Breadth-first search” is not a problem; it’s an algorithm!
+ 1 for correctly applying the correct algorithm (in this case, “breadth-first search from (0, 0, 0) and then examine every target vertex”)
  — ½ for using a slower or more specific algorithm than necessary
+ 1 for time analysis in terms of the input parameters.
+ 5 for other details of the reduction
  — If your graph is constructed by naive brute force, you do not need to describe the construction algorithm; in this case, points for vertices, edges, problem, algorithm, and running time are all doubled.
  — Otherwise, apply the appropriate rubric, including Deadly Sins, to the construction algorithm. For example, for a solution that uses dynamic programming to build the graph quickly, apply the standard dynamic programming rubric.
1. Over the summer, you pick up a part-time consulting gig at a gun range, designing targets for their customers to shoot at. A target consists of a properly nested set of circles, meaning for any two circles in the set, the smaller circle lies entirely inside the larger circle. The score for each shot is equal to the number of circles that contain the bullet hole.

The shooters at the range aren't very good; their shots tend to be distributed uniformly at random on the target sheet. As a result, the expected score for any shot is proportional to the sum of the areas of the circles that make up the target. You'd like to make this expected score as large as possible.

Now suppose your boss hands you a target sheet with \( n \) circles drawn on it. Describe and analyze an efficient algorithm to find a properly nested subset of these circles that maximizes the sum of the circle areas. You cannot move the circles; you must keep them exactly where your boss has drawn them.

The input to your algorithm consists of three arrays \( R[1..n] \), \( X[1..n] \), and \( Y[1..n] \), specifying the radius of each circle and the \( x \)- and \( y \)-coordinates of its center. The output is the sum of the circle areas in the best target.

2. The Cheery Hells neighborhood of Sham-Poobanana runs a popular and well-regulated Halloween celebration, attended by thousands of costumed children from all across Poobanana County. To regulate and protect the flood of costumed children, the Cheery Hells Neighborhood Association has designated a walking direction for each stretch of sidewalk.

After paying the $25 entrance fee, each child receives a complete map of the neighborhood, in the form of a directed graph \( G \), whose vertices represent houses. Each edge \( v \rightarrow w \) indicates that one can walk directly from house \( v \) to house \( w \) following the designated sidewalk directions. (Anyone caught walking backward along a sidewalk is summarily ejected from Cheery Hells, without their candy. No refunds.) One special vertex \( s \) designates the entrance to Cheery Hells. Children can visit houses as many times
as they like, but biometric scanners at every house ensure that each child receives candy only at their first visit to each house.

Unknown to the Neighborhood Association, the children of Cheery Hells have published a secret web site, accessible only through a link embedded in yet another TikTok cover of “Spooky Scary Skeletons”, listing the amount of candy that each house in Cheery Hells will give to each visitor. (The web site also asks visitors to say “Gimme some Skittles, but I don’t wanna pay for them” instead of “Trick or treat”, just to mess with the grownups.)

Describe and analyze an algorithm to compute the maximum amount of candy that a single child can obtain in a walk through Cheery Hells, starting at the entrance node $s$.

The input to your algorithm is the directed graph $G$, along with a non-negative integer $c(v)$ for each vertex describing the amount of candy that house gives each first-time visitor.

[Hint: Think about two special cases first: (1) Cheery Hells is strongly connected, and (2) Cheery Hells is acyclic. Solving only these two special cases is worth half credit.]

3. Morty needs to retrieve a stabilized plumbus from the Clackspire Labyrinth. He must enter the labyrinth using Rick’s interdimensional portal gun, traverse the Labyrinth to a plumbus, then take that plumbus through the Labyrinth to a fleeb to be stabilized, and finally take the stabilized plumbus back to the original portal to return home. Plumbuses are stabilized by fleeb juice, which any fleeb will release immediately after being removed from its fleebhole. An unstabilized plumbus will explode if it is carried more than 137 flinks from its original storage unit. The Clackspire Labyrinth smells like farts, so Morty wants to spend as little time there as possible.

Rick has given Morty a detailed map of the Clackspire Labyrinth, which consist of a directed graph $G = (V, E)$ with non-negative edge weights (indicating distance in flinks), along with two disjoint subsets $P \subset V$ and $F \subset V$, indicating the plumbus storage units and fleebholes, respectively. Morty needs to identify a start vertex $s$, a plumbus storage unit $p \in P$, and a fleebhole $f \in F$, such that the shortest-path distance from $p$ to $f$ is at most 137 flinks long, and the length of the shortest walk $s \leadsto p \leadsto f \leadsto s$ is as short as possible.

Describe and analyze an algorithm to solve Morty’s problem. You can assume that it is in fact possible for Morty to succeed.

Solved Problem

4. Although we typically speak of “the” shortest path from one vertex to another, a single graph could contain several minimum-length paths with the same endpoints.

Four (of many) equal-length shortest paths.
Describe and analyze an algorithm to compute the number of shortest paths from a source vertex $s$ to a target vertex $t$ in an arbitrary directed graph $G$ with weighted edges. Assume that all edge weights are positive and that any necessary arithmetic operations can be performed in $O(1)$ time each.

[Hint: Compute shortest path distances from $s$ to every other vertex. Throw away all edges that cannot be part of a shortest path from $s$ to another vertex. What’s left?]

**Solution:** We start by computing shortest-path distances $\text{dist}(v)$ from $s$ to $v$, for every vertex $v$, using Dijkstra’s algorithm. Call an edge $u \rightarrow v$ **tight** if $\text{dist}(u) + w(u \rightarrow v) = \text{dist}(v)$. Every edge in a shortest path from $s$ to $t$ must be tight. Conversely, every path from $s$ to $t$ that uses only tight edges has total length $\text{dist}(t)$ and is therefore a shortest path!

Let $H$ be the subgraph of all tight edges in $G$. We can easily construct $H$ in $O(V + E)$ time. Because all edge weights are positive, $H$ is a directed acyclic graph. It remains only to count the number of paths from $s$ to $t$ in $H$.

For any vertex $v$, let $\text{NumPaths}(v)$ denote the number of paths in $H$ from $v$ to $t$; we need to compute $\text{NumPaths}(s)$. This function satisfies the following simple recurrence:

$$\text{NumPaths}(v) = \begin{cases} 1 & \text{if } v = t \\ \sum_{v \rightarrow w} \text{NumPaths}(w) & \text{otherwise} \end{cases}$$

In particular, if $v$ is a sink but $v \neq t$ (and thus there are no paths from $v$ to $t$), this recurrence correctly gives us $\text{NumPaths}(v) = \sum \emptyset = 0$.

We can memoize this function into the graph itself, storing each value $\text{NumPaths}(v)$ at the corresponding vertex $v$. Since each subproblem depends only on its successors in $H$, we can compute $\text{NumPaths}(v)$ for all vertices $v$ by considering the vertices in reverse topological order, or equivalently, by performing a depth-first search of $H$ starting at $s$. The resulting algorithm runs in $O(V + E)$ time.

The overall running time of the algorithm is dominated by Dijkstra’s algorithm in the preprocessing phase, which runs in $O(E \log V)$ time.

**Rubric:** 10 points = 5 points for reduction to counting paths in a dag (standard graph reduction rubric) + 5 points for the path-counting algorithm (standard dynamic programming rubric)
1. This problem asks you to develop polynomial-time algorithms for two (apparently) minor variants of 3Sat.

   (a) The input to 2Sat is a boolean formula $\Phi$ in conjunctive normal form, with exactly \textbf{two} literals per clause, and the 2Sat problem asks whether there is an assignment to the variables of $\Phi$ such that every clause contains at least one \textsc{true} literal. 

   Describe a polynomial-time algorithm for 2Sat. [\textit{Hint: This problem is strongly connected to topics covered earlier in the semester.}]

   (b) The input to \textsc{Majority3Sat} is a boolean formula $\Phi$ in conjunctive normal form, with exactly three literals per clause. \textsc{Majority3Sat} asks whether there is an assignment to the variables of $\Phi$ such that every clause contains \textit{at least two} \textsc{true} literals.

   Describe and analyze a polynomial-time reduction from \textsc{Majority3Sat} to 2Sat. Don’t forget to prove that your reduction is correct.

   (c) Combining parts (a) and (b) gives us an algorithm for \textsc{Majority3Sat}. What is the running time of this algorithm?

2. Suppose we are given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ with the same set of vertices $V = \{1, 2, \ldots, n\}$. Prove that is it \textsc{np}-hard to find the smallest subset $S \subseteq V$ of vertices whose deletion leaves identical subgraphs $G_1 \setminus S = G_2 \setminus S$. For example, given the graphs below, the smallest subset has size 4.

3. A \textsc{wye} is an undirected graph that looks like the capital letter Y. More formally, a \textsc{wye} consists of three paths of equal length with one common endpoint, called the \textit{hub}.

   Prove that the following problem is \textsc{np}-hard: Given an undirected graph $G$, what is the largest \textsc{wye} that is a subgraph of $G$? The three paths of the \textsc{wye} must not share any vertices except the hub, and they must have exactly the same length.
Solved Problem

4. Consider the following solitaire game. The puzzle consists of an \( n \times m \) grid of squares, where each square may be empty, occupied by a red stone, or occupied by a blue stone. The goal of the puzzle is to remove some of the given stones so that the remaining stones satisfy two conditions:

1. Every row contains at least one stone.
2. No column contains stones of both colors.

For some initial configurations of stones, reaching this goal is impossible; see the example below.

Prove that it is NP-hard to determine, given an initial configuration of red and blue stones, whether this puzzle can be solved.

Solution: We show that this puzzle is NP-hard by describing a reduction from 3SAT.

Let \( \Phi \) be a 3CNF boolean formula with \( m \) variables and \( n \) clauses. We transform this formula into a puzzle configuration in polynomial time as follows. The size of the board is \( n \times m \). The stones are placed as follows, for all indices \( i \) and \( j \):

- If the variable \( x_j \) appears in the \( i \)th clause of \( \Phi \), we place a blue stone at \((i, j)\).
- If the negated variable \( \overline{x_j} \) appears in the \( i \)th clause of \( \Phi \), we place a red stone at \((i, j)\).
- Otherwise, we leave cell \((i, j)\) blank.

We claim that this puzzle has a solution if and only if \( \Phi \) is satisfiable. This claim immediately implies that solving the puzzle is NP-hard. We prove our claim as follows:

\[ \implies \] First, suppose \( \Phi \) is satisfiable; consider an arbitrary satisfying assignment. For each index \( j \), remove stones from column \( j \) according to the value assigned to \( x_j \):

- If \( x_j = \text{TRUE} \), remove all red stones from column \( j \).
- If \( x_j = \text{FALSE} \), remove all blue stones from column \( j \).

In other words, remove precisely the stones that correspond to \( \text{FALSE} \) literals. Because every variable appears in at least one clause, each column now contains stones of only one color (if any). On the other hand, each clause of \( \Phi \) must contain at least one \( \text{TRUE} \) literal, and thus each row still contains at least one stone. We conclude that the puzzle is satisfiable.
On the other hand, suppose the puzzle is solvable; consider an arbitrary solution. For each index $j$, assign a value to $x_j$ depending on the colors of stones left in column $j$:

- If column $j$ contains blue stones, set $x_j = \text{True}$.
- If column $j$ contains red stones, set $x_j = \text{False}$.
- If column $j$ is empty, set $x_j$ arbitrarily.

In other words, assign values to the variables so that the literals corresponding to the remaining stones are all $\text{True}$. Each row still has at least one stone, so each clause of $\Phi$ contains at least one $\text{True}$ literal, so this assignment makes $\Phi = \text{True}$. We conclude that $\Phi$ is satisfiable.

This reduction clearly requires only polynomial time.

\[\blacksquare\]

Rubric (Standard polynomial-time reduction rubric): 10 points =

+ 3 points for the reduction itself
  - For an NP-hardness proof, the reduction must be from a known NP-hard problem. You can use any of the NP-hard problems listed in the lecture notes (except the one you are trying to prove NP-hard, of course). **See the list on the next page.**

+ 3 points for the “if” proof of correctness

+ 3 points for the “only if” proof of correctness

+ 1 point for writing “polynomial time”

• An incorrect polynomial-time reduction that still satisfies half of the correctness proof is worth at most 4/10.

• A reduction in the wrong direction is worth 0/10.
**Some useful NP-hard problems.** You are welcome to use any of these in your own NP-hardness proofs, except of course for the specific problem you are trying to prove NP-hard.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>CircuitSat</strong></td>
<td>Given a boolean circuit, are there any input values that make the circuit output True?</td>
</tr>
<tr>
<td><strong>3Sat</strong></td>
<td>Given a boolean formula in conjunctive normal form, with exactly three distinct literals per clause, does the formula have a satisfying assignment?</td>
</tr>
<tr>
<td><strong>MaxIndependentSet</strong></td>
<td>Given an undirected graph $G$, what is the size of the largest subset of vertices in $G$ that have no edges among them?</td>
</tr>
<tr>
<td><strong>MaxClique</strong></td>
<td>Given an undirected graph $G$, what is the size of the largest complete subgraph of $G$?</td>
</tr>
<tr>
<td><strong>MinVertexCover</strong></td>
<td>Given an undirected graph $G$, what is the size of the smallest subset of vertices that touch every edge in $G$?</td>
</tr>
<tr>
<td><strong>MinSetCover</strong></td>
<td>Given a collection of subsets $S_1, S_2, \ldots, S_m$ of a set $S$, what is the size of the smallest subcollection whose union is $S$?</td>
</tr>
<tr>
<td><strong>MinHittingSet</strong></td>
<td>Given a collection of subsets $S_1, S_2, \ldots, S_m$ of a set $S$, what is the size of the smallest subset of $S$ that intersects every subset $S_i$?</td>
</tr>
<tr>
<td><strong>3Color</strong></td>
<td>Given an undirected graph $G$, can its vertices be colored with three colors, so that every edge touches vertices with two different colors?</td>
</tr>
<tr>
<td><strong>HamiltonianPath</strong></td>
<td>Given graph $G$ (either directed or undirected), is there a path in $G$ that visits every vertex exactly once?</td>
</tr>
<tr>
<td><strong>HamiltonianCycle</strong></td>
<td>Given a graph $G$ (either directed or undirected), is there a cycle in $G$ that visits every vertex exactly once?</td>
</tr>
<tr>
<td><strong>TravelingSalesman</strong></td>
<td>Given a graph $G$ (either directed or undirected) with weighted edges, what is the minimum total weight of any Hamiltonian path/cycle in $G$?</td>
</tr>
<tr>
<td><strong>LongestPath</strong></td>
<td>Given a graph $G$ (either directed or undirected, possibly with weighted edges), what is the length of the longest simple path in $G$?</td>
</tr>
<tr>
<td><strong>SteinerTree</strong></td>
<td>Given an undirected graph $G$ with some of the vertices marked, what is the minimum number of edges in a subtree of $G$ that contains every marked vertex?</td>
</tr>
<tr>
<td><strong>SubsetSum</strong></td>
<td>Given a set $X$ of positive integers and an integer $k$, does $X$ have a subset whose elements sum to $k$?</td>
</tr>
<tr>
<td><strong>Partition</strong></td>
<td>Given a set $X$ of positive integers, can $X$ be partitioned into two subsets with the same sum?</td>
</tr>
<tr>
<td><strong>3Partition</strong></td>
<td>Given a set $X$ of $3n$ positive integers, can $X$ be partitioned into $n$ three-element subsets, all with the same sum?</td>
</tr>
<tr>
<td><strong>IntegerLinearProgramming</strong></td>
<td>Given a matrix $A \in \mathbb{Z}^{nxd}$ and two vectors $b \in \mathbb{Z}^n$ and $c \in \mathbb{Z}^d$, compute $\max{c \cdot x \mid Ax \leq b, x \geq 0, x \in \mathbb{Z}^d}$.</td>
</tr>
<tr>
<td><strong>FeasibleILP</strong></td>
<td>Given a matrix $A \in \mathbb{Z}^{nxd}$ and a vector $b \in \mathbb{Z}^n$, determine whether the set of feasible integer points $\max{x \in \mathbb{Z}^d \mid Ax \leq b, x \geq 0}$ is empty.</td>
</tr>
<tr>
<td><strong>Draughts</strong></td>
<td>Given an $n \times n$ international draughts configuration, what is the largest number of pieces that can (and therefore must) be captured in a single move?</td>
</tr>
<tr>
<td><strong>SuperMarioBrothers</strong></td>
<td>Given an $n \times n$ Super Mario Brothers level, can Mario reach the castle?</td>
</tr>
<tr>
<td><strong>SteamedHams</strong></td>
<td>Aurora borealis? At this time of year, at this time of day, in this part of the country, localized entirely within your kitchen? May I see it?</td>
</tr>
</tbody>
</table>
This is the last graded homework before the final exam.

This brings the total number of graded homework problems to 33, at most 24 of which will count toward your final course grade.

1. A subset $S$ of vertices in an undirected graph $G$ is called **square-free** if, for every four distinct vertices $u, v, w, x \in S$, at least one of the four edges $uv, vw, wx, xu$ is absent from $G$. That is, the subgraph of $G$ induced by $S$ has no cycles of length 4. Prove that finding the size of the largest square-free subset of vertices in a given undirected graph is NP-hard.

   ![A square-free subset of 9 vertices, and all edges between them. This is **not** the largest square-free subset in this graph.](image)

2. Fix an alphabet $\Sigma = \{0, 1\}$. Prove that the following problems are NP-hard.1

   (a) Given a regular expression $R$ over the alphabet $\Sigma$, is $L(R) \neq \Sigma^*$?

   (b) Given an NFA $M$ over the alphabet $\Sigma$, is $L(M) \neq \Sigma^*$?

   *[Hint: Encode all the **bad** choices for some problem into a regular expression $R$, so that if all choices are bad, then $L(R) = \Sigma^*$]*

3. **This problem has been removed.** — We are deferring all discussion of undecidability until after Thanksgiving break. This problem will reappear on “Homework 11”.

---

1In fact, both of these problems are NP-hard even when $|\Sigma| = 1$, but proving that is much more difficult.
Solved Problem

4. A double-Hamiltonian tour in an undirected graph $G$ is a closed walk that visits every vertex in $G$ exactly twice. Prove that it is NP-hard to decide whether a given graph $G$ has a double-Hamiltonian tour.

This graph contains the double-Hamiltonian tour $a \rightarrow b \rightarrow d \rightarrow g \rightarrow e \rightarrow b \rightarrow d \rightarrow c \rightarrow f \rightarrow a \rightarrow c \rightarrow f \rightarrow g \rightarrow e \rightarrow a$.

Solution: We prove the problem is NP-hard with a reduction from the standard Hamiltonian cycle problem. Let $G$ be an arbitrary undirected graph. We construct a new graph $H$ by attaching a small gadget to every vertex of $G$. Specifically, for each vertex $v$, we add two vertices $v^\#$ and $v^\flat$, along with three edges $vv^\flat$, $vv^\#$, and $v^\flat v^\#$.

I claim that $G$ has a Hamiltonian cycle if and only if $H$ has a double-Hamiltonian tour.

$\implies$ Suppose $G$ has a Hamiltonian cycle $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n \rightarrow v_1$. We can construct a double-Hamiltonian tour of $H$ by replacing each vertex $v_i$ with the following walk:

$$\cdots \rightarrow v_i \rightarrow v_i^\# \rightarrow v_i^\flat \rightarrow v_i^\# \rightarrow v_i^\flat \rightarrow v_i \rightarrow \cdots$$

$\impliedby$ Conversely, suppose $H$ has a double-Hamiltonian tour $D$. Consider any vertex $v$ in the original graph $G$; the tour $D$ must visit $v$ exactly twice. Those two visits split $D$ into two closed walks, each of which visits $v$ exactly once. Any walk from $v^\flat$ or $v^\#$ to any other vertex in $H$ must pass through $v$. Thus, one of the two closed walks visits only the vertices $v$, $v^\flat$, and $v^\#$. Thus, if we simply remove the vertices in $H \setminus G$ from $D$, we obtain a closed walk in $G$ that visits every vertex in $G$ once.

Given any graph $G$, we can clearly construct the corresponding graph $H$ in polynomial time.

With more effort, we can construct a graph $H$ that contains a double-Hamiltonian tour that traverses each edge of $H$ at most once if and only if $G$ contains a Hamiltonian cycle. For each vertex $v$ in $G$ we attach a more complex gadget containing five vertices and eleven edges, as shown on the next page.
Rubric: 10 points, standard polynomial-time reduction rubric. This is not the only correct solution.

Non-solution (self-loops): We attempt to prove the problem is NP-hard with a reduction from the Hamiltonian cycle problem. Let $G$ be an arbitrary undirected graph. We construct a new graph $H$ by attaching a self-loop every vertex of $G$. Given any graph $G$, we can clearly construct the corresponding graph $H$ in polynomial time.

Suppose $G$ has a Hamiltonian cycle $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n \rightarrow v_1$. We can construct a double-Hamiltonian tour of $H$ by alternating between edges of the Hamiltonian cycle and self-loops:

$$v_1 \rightarrow v_1 \rightarrow v_2 \rightarrow v_2 \rightarrow v_3 \rightarrow \cdots \rightarrow v_n \rightarrow v_n \rightarrow v_1.$$

Unfortunately, if $H$ has a double-Hamiltonian tour, we cannot conclude that $G$ has a Hamiltonian cycle, because we cannot guarantee that a double-Hamiltonian tour in $H$ uses any self-loops. The graph $G$ shown below is a counterexample; it has a double-Hamiltonian tour (even before adding self-loops!) but no Hamiltonian cycle.
This homework is not for submission. However, undecidability questions are in scope for the final exam, so we still strongly recommend treating at least those questions as regular homework. Solutions will be released next Monday.

1. Let $\langle M \rangle$ denote the encoding of a Turing machine $M$ (or if you prefer, the Python source code for the executable code $M$). Recall that $w^R$ denotes the reversal of string $w$. Prove that the following language is undecidable.

   \[
   \text{SELFREVACCEPT} := \{ \langle M \rangle \mid M \text{ accepts the string } \langle M \rangle^R \}\]

   Note that Rice's theorem does not apply to this language.

2. Let $M$ be a Turing machine, let $w$ be an arbitrary input string, and let $s$ be an integer. We say that $M$ accepts $w$ in space $s$ if, given $w$ as input, $M$ accesses only the first $s$ (or fewer) cells on its tape and eventually accepts.

   (a) Prove that the following language is undecidable:

   \[
   \text{SOME SQUARE SPACE} := \{ \langle M \rangle \mid M \text{ accepts at least one string } w \text{ in space } |w|^2 \}\]

   [Hint: The only thing you need to know about Turing machines for this problem is that they consume a resource called “space”.

   *(b) Sketch a Turing machine/algorithm that correctly decides the following language:

   \[
   \text{SQUARE SPACE} := \{ \langle M, w \rangle \mid M \text{ accepts } w \text{ in space } |w|^2 \}\]

   [Hint: This question is only for people who really want to get down in the Turing-machine weeds. Nothing like this will appear on the final exam.]

3. Consider the following language:

   \[
   \text{PICKY} = \{ \langle M \rangle \mid M \text{ accepts at least one input string and } M \text{ rejects at least one input string} \}\]

   (a) Prove that PICKY is undecidable.

   (b) Sketch a Turing machine/algorithm that accepts PICKY.
• Don’t panic!
• If you brought anything except your writing implements, your hand-written double-sided 8½" × 11" cheat sheet, and your university ID, please put it away for the duration of the exam. In particular, please turn off and put away all medically unnecessary electronic devices.
• Please clearly print your real name, your university NetID, your Gradescope name, and your Gradescope email address in the boxes above. However, if you are using your real name and your university email address on Gradescope, you do not need to write everything twice. We will not scan this page into Gradescope.
• Please also print only the name you are using on Gradescope at the top of every page of the answer booklet, except this cover page. These are the pages we will scan into Gradescope.
• Please do not write outside the black boxes on each page; these indicate the area of the page that the scanner can actually see.
• If you run out of space for an answer, feel free to use the scratch pages at the back of the answer booklet, but please clearly indicate where we should look.
• Proofs are required for full credit if and only if we explicitly ask for them, using the word prove in bold italics.
• Please return all paper with your answer booklet: your question sheet, your cheat sheet, and all scratch paper.
For each statement below, check “True” if the statement is *always* true and “False” otherwise. Each correct answer is worth +1 point; each incorrect answer is worth $-\frac{1}{2}$ point; checking “I don’t know” is worth +\(\frac{1}{4}\) point; and flipping a coin is (on average) worth +\(\frac{1}{4}\) point.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>IDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every integer in the empty set is prime.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The language ({0^m1^n \mid m + n \leq 374}) is regular.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The language ({0^m1^n \mid m - n \leq 374}) is regular.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For all languages (L), the language (L^*) is regular.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For all languages (L), the language (L^*) is infinite.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For all languages (L \subset \Sigma^<em>), if (L) can be represented by a regular expression, then (\Sigma^</em> \setminus L) is recognized by a DFA.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For all languages (L) and (L'), if (L \cap L' = \emptyset) and (L') is not regular, then (L) is regular.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Let (M = (\Sigma, Q, s, A, \delta)) and (M' = (\Sigma, Q, s, Q \setminus A, \delta)) be arbitrary DFAs with identical alphabets, states, starting states, and transition functions, but with complementary accepting states. Then (L(M) \cap L(M') = \emptyset).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Let (M = (\Sigma, Q, s, A, \delta)) and (M' = (\Sigma, Q, s, Q \setminus A, \delta)) be arbitrary NFAs with identical alphabets, states, starting states, and transition functions, but with complementary accepting states. Then (L(M) \cap L(M') = \emptyset).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For all context-free language (L), the language (L^*) is also context-free.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For each of the following languages over the alphabet \( \Sigma = \{0, 1\} \), either prove that the language is regular or prove that the language is not regular. **Exactly one of these two languages is regular.** Both of these languages contain the string \(0011010000110100\).

1. \( \{0^n10^n \mid w \in \Sigma^+ \text{ and } n > 0\} \)

2. \( \{w0^n1w \mid w \in \Sigma^+ \text{ and } n > 0\} \)
The parity of a bit-string $w$ is 0 if $w$ has an even number of 1s, and 1 if $w$ has an odd number of 1s. For example:

\[\text{parity}(\epsilon) = 0 \quad \text{parity}(0010100) = 0 \quad \text{parity}(00101110100) = 1\]

(a) Give a self-contained, formal, recursive definition of the parity function. (In particular, do not refer to # or other functions defined in class.)

(b) Let $L$ be an arbitrary regular language. Prove that the language $\text{OddParity}(L) := \{w \in L \mid \text{parity}(w) = 1\}$ is also regular.

(c) Let $L$ be an arbitrary regular language. Prove that the language $\text{AddParity}(L) := \{\text{parity}(w) \cdot w \mid w \in L\}$ is also regular.

[Hint: Yes, you have enough room.]
For each of the following languages $L$, give a regular expression that represents $L$ and describe a DFA that recognizes $L$. You do not need to prove that your answers are correct.

(a) All strings in $(0 + 1)^*$ that do not contain the substring $0110$.

(b) All strings in $0^*10^*$ whose length is a multiple of 3.
Consider the language $L$ of all strings in $\{0, 1\}^*$ in which the number of $0$s is even, the number of $1$s is divisible by 3, and the total number of symbols is divisible by 5. For example, the strings $01011$ and $000000000$ are in $L$, but the strings $01011$ and $10101010$ are not.

Formally describe a DFA $M = (Q, s, A, \delta)$ over the alphabet $\Sigma = \{0, 1\}$ that recognizes $L$. Do not attempt to draw the DFA. Do not use the phrase “product construction”. Instead, formally and explicitly specify each of the the components $Q, s, A,$ and $\delta$. 
Write your answers in the separate answer booklet.
Please return this question sheet and your cheat sheet with your answers.

1. For each statement below, check “Yes” if the statement is **always** true and “No” otherwise. Each correct answer is worth +1 point; each incorrect answer is worth −½ point; checking “I don’t know” is worth +¼ point; and flipping a coin is (on average) worth +¼ point. You do **not** need to prove your answer is correct.

   **Read each statement very carefully.** Some of these are deliberately subtle.

   (a) If $2 + 2 = 5$, then zero is odd.
   (b) Language $L$ is regular if and only if there is a DFA that accepts every string in $L$.
   (c) Two languages $L$ and $L'$ are regular if and only if $L \cup L'$ is regular.
   (d) For every language $L$, if $L^*$ is empty, then $L$ is empty.
   (e) Every regular language is recognized by a DFA with exactly one accepting state.
   (f) If $L$ has a fooling set of size 374, then $L$ is regular.
   (g) The language $\{0^{374n} \mid n \geq 374\}$ is regular.
   (h) The language $\{0^{37n}1^{4n} \mid n \geq 374\}$ is regular.
   (i) The language $\{0^{3n}1^{74n} \mid n \leq 374\}$ is regular.
   (j) Every language is either regular or context-free.

2. For any string $w \in \{0,1\}^*$, let $\text{slash}(w)$ be the string in $\{0,1,\}/^*$ obtained from $w$ by inserting a new symbol $\text{/}$ between any two consecutive appearances of the same symbol. For example:

   $$\text{slash}(\epsilon) = \epsilon$$
   $$\text{slash}(10101) = 10/0101$$
   $$\text{slash}(001010111) = 0/01/010111$$

   For any language $L \subseteq \{0,1\}^*$, let $\text{slash}(L) = \{\text{slash}(w) \mid w \in L\}$.

   (a) Draw or describe a DFA that accepts the language $\text{slash}(\{0,1\}^*)$.
   (b) Give a regular expression for the language $\text{slash}(\{0,1\}^*)$.
   (c) **Prove** that for any regular language $L$, the language $\text{slash}(L)$ is also regular.

   (You do not need to justify your answers to parts (a) and (b).)
3. Let \( L \) be the language \( \{a^b b^c \mid 2a = b + c\} \).
   
   (a) **Prove** that \( L \) is not a regular language.
   
   (b) Describe a context-free grammar for \( L \). (You do not need to justify your answer.)

4. For each of the following languages \( L \), give a regular expression that represents \( L \) and draw or describe a DFA that recognizes \( L \). You do not need to justify your answers.
   
   (a) All strings in \( \{0, 1\}^* \) that do not contain either 100 or 011 as a substring
   
   (b) All strings in \( \{0, 1, 2\}^* \) that do not contain either 01 or 12 or 20 as a substring

5. For any string \( w \in \{0, 1\}^* \), let \( \text{stupefy}(w) \) denote the string obtained from \( w \) by deleting the first 1 (if any) and replacing each remaining 1 with a 0. For example:
   
   \[
   \begin{align*}
   \text{stupefy}(\epsilon) &= \epsilon \\
   \text{stupefy}(000) &= 000 \\
   \text{stupefy}(00100) &= 0000 \\
   \text{stupefy}(11111) &= 000000 \\
   \text{stupefy}(010001101) &= 000000000
   \end{align*}
   \]

   Let \( L \) be an arbitrary regular language.
   
   (a) **Prove** that the language \( \{\text{stupefy}(w) \mid w \in L\} \) is regular.
   
   (b) **Prove** that the language \( \{w \in \{0, 1\}^* \mid \text{stupefy}(w) \in L\} \) is regular.
Write your answers in the separate answer booklet.
Please return this question sheet and your cheat sheet with your answers.

1. For each statement below, check “Yes” if the statement is always true and “No” otherwise. Each correct answer is worth +1 point; each incorrect answer is worth −½ point; checking “I don’t know” is worth +¼ point; and flipping a coin is (on average) worth +¼ point. You do not need to prove your answer is correct.

Read each statement very carefully. Some of these are deliberately subtle.

(a) If zero is odd, then \(2 + 2 = 5\).
(b) For every language \(L\), and for every string \(w \in L\), there is a DFA that accepts \(w\).
(c) Two languages \(L\) and \(L'\) are regular if and only if \(L \cap L'\) is regular.
(d) For every language \(L\), the language \(L^*\) is non-empty.
(e) Every regular language is recognized by an NFA with exactly 374 accepting states.
(f) If \(L\) does not have a fooling set of size 374, then \(L\) is regular.
(g) The language \(\{0^{374n} \mid n \geq 374\}\) is regular.
(h) The language \(\{0^{37n}1^{4n} \mid n \geq 374\}\) is regular.
(i) The language \(\{0^{3n}1^{74n} \mid n \leq 374\}\) is regular.
(j) The empty language is context-free.

2. For any string \(w \in \{0,1\}^*\), let \(\text{slash}(w)\) be the string in \(\{0,1,/\}^*\) obtained from \(w\) by inserting a new symbol \(/\) between any two consecutive symbols that are not equal. For example:

\[
\text{slash}(\varepsilon) = \varepsilon \\
\text{slash}(00000) = 00000 \\
\text{slash}(000110111) = 000/11/0/111
\]

For any language \(L \subseteq \{0,1\}^*\), let \(\text{slash}(L) = \{\text{slash}(w) \mid w \in L\}\).

(a) Draw or describe a DFA that accepts the language \(\text{slash}(\{0,1\}^*)\).
(b) Give a regular expression for the language \(\text{slash}(\{0,1\}^*)\).
(c) Prove that for any regular language \(L\), the language \(\text{slash}(L)\) is also regular.

(You do not need to justify your answers to parts (a) and (b).)
3. Let $L$ be the language $\{a^e b^f c^g \mid a + b = 2c\}$

(a) **Prove** that $L$ is not a regular language.
(b) Describe a context-free grammar for $L$. (You do not need to justify your answer.)

4. For each of the following languages $L$, give a regular expression that represents $L$ and draw or describe a DFA that recognizes $L$. You do not need to justify your answers.

(a) All strings in $\{0, 1\}^*$ that do not contain either 001 or 110 as a substring
(b) All strings in $\{0, 1, 2\}^*$ that do not contain either 01 or 12 as a substring

5. For any string $w \in \{0, 1\}^*$, let $\text{obliviate}(w)$ denote the string obtained from $w$ by removing every 1. For example:

\[
\text{obliviate}(\varepsilon) = \varepsilon \\
\text{obliviate}(000000) = 000000 \\
\text{obliviate}(111111) = \varepsilon \\
\text{obliviate}(010001101) = 000000
\]

Let $L$ be an arbitrary regular language.

(a) **Prove** that the language $\{\text{obliviate}(w) \mid w \in L\}$ is regular.
(b) **Prove** that the language $\{w \in \{0, 1\}^* \mid \text{obliviate}(w) \in L\}$ is regular.
CS/ECE 374 A  Fall 2019

Fake Midterm 2

November 11, 2019

<table>
<thead>
<tr>
<th>Real name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>NetID:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gradescope name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradescope email:</td>
</tr>
</tbody>
</table>

- Don’t panic!
- All problems are described in more detail in a separate handout. If any problem is unclear or ambiguous, please don’t hesitate to ask us for clarification.
- If you brought anything except your writing implements, your hand-written double-sided 8½" × 11" cheat sheet, and your university ID, please put it away for the duration of the exam. In particular, please turn off and put away all medically unnecessary electronic devices.
- Please clearly print your real name, your university NetID, your Gradescope name, and your Gradescope email address in the boxes above. However, if you are using your real name and your university email address on Gradescope, you do not need to write everything twice. We will not scan this page into Gradescope.
- Please also print only the name you are using on Gradescope at the top of every page of the answer booklet, except this cover page. These are the pages we will scan into Gradescope.
- Please do not write outside the black boxes on each page; these indicate the area of the page that the scanner can actually see.
- If you run out of space for an answer, feel free to use the scratch pages at the back of the answer booklet, but please clearly indicate where we should look.
- Except for greedy algorithms, proofs are required for full credit if and only if we explicitly ask for them, using the word prove in bold italics.
- Please return all paper with your answer booklet: your question sheet, your cheat sheet, and all scratch paper.
Clearly indicate the following structures in the directed graph below, or write NONE if the indicated structure does not exist. Don't be subtle; to indicate a collection of edges, draw a heavy black line along the entire length of each edge.

(a) A depth-first tree rooted at $x$.

(b) A breadth-first tree rooted at $y$.

(c) A shortest-path tree rooted at $z$.

(d) The shortest directed cycle.
A vertex $v$ in a (weakly) connected graph $G$ is called a cut vertex if the subgraph $G - v$ is disconnected. For example, the following graph has three cut vertices, which are shaded in the figure.

Suppose you are given a (weakly) connected dag $G$ with one source and one sink. Describe and analyze an algorithm that returns TRUE if $G$ has a cut vertex and FALSE otherwise.
The City Council of Sham-Poobanana needs to partition Purple Street into voting districts. A total of \( n \) people live on Purple Street, at consecutive addresses 1, 2, \ldots, \( n \). Each voting district must be a contiguous interval of addresses \( i, i + 1, \ldots, j \) for some \( 1 \leq i < j \leq n \). By law, each Purple Street address must lie in exactly one district, and the number of addresses in each district must be between \( k \) and \( 2k \), where \( k \) is some positive integer parameter.

Every election in Sham-Poobanana is between two rival factions: Oceania and Eurasia. A majority of the City Council are from Oceania, so they consider a district to be good if more than half the residents of that district voted for Oceania in the previous election. Naturally, the City Council has complete voting records for all \( n \) residents.

For example, the figure below shows a legal partition of 22 addresses into 4 good districts and 3 bad districts, where \( k = 2 \). Each O indicates a vote for Oceania, and each X indicates a vote for Eurasia.

Describe an algorithm to find the largest possible number of good districts in a legal partition. Your input consists of the integer \( k \) and a boolean array \( \text{GoodVote}[1..n] \) indicating which residents previously voted for Oceania (TRUE) or Eurasia (FALSE). You can assume that a legal partition exists. Analyze the running time of your algorithm in terms of the parameters \( n \) and \( k \).
After graduation, you accept a job with Aviophiles-¥-Us, the leading traveling agency for people who love to fly. Your job is to build a system to help customers plan airplane trips from one city to another. Your customers love flying, but they absolutely despise airports. You know all the departure and arrival times of all the flights on the planet.

Suppose one of your customers wants to fly from city $X$ to city $Y$. Describe an algorithm to find a sequence of flights that minimizes the total time spent in airports. Assume (unrealistically) that your customer can enter the starting airport immediately before the first flight leaves $X$, that they can leave the final airport at $Y$ immediately after the final flight arrives at $Y$. 
For this problem, a subtree of a binary tree means any connected subgraph. A binary tree is complete if every internal node has two children, and every leaf has exactly the same depth.

Describe and analyze a recursive algorithm to compute the largest complete subtree of a given binary tree. Your algorithm should return both the root and the depth of this subtree. For example, given the following tree $T$ as input, your algorithm should return the left child of the root of $T$ and the integer 2.
Write your answers in the separate answer booklet.
Please return this question sheet and your cheat sheet with your answers.

1. **Clearly** indicate the following structures in the directed graph below, or write NONE if the indicated structure does not exist. Don’t be subtle; to indicate a collection of edges, draw a heavy black line along the entire length of each edge.

   (a) A depth-first search tree rooted at vertex \( a \).
   (b) A breadth-first tree rooted at vertex \( a \).
   (c) The strong components of \( G \). (Circle each strong component.)
   (d) Draw the strong-component graph of \( G \).

2. As the days get shorter in winter, Eggsy Hutmacher is increasingly worried about his walk home from work. The city has recently been invaded by the notorious Antimilliner gang, whose members hang out on dark street corners and steal hats from unwary passers-by, and a gentleman is simply not seen out in public without a hat. The city council is slowly installing street lamps at intersections to deter the Antimilliners, whose uncovered faces can be easily identified in the light. Eggsy keeps \( k \) extra hats in his briefcase in case of theft or other millinery emergencies.

   Eggsy has a map of the city in the form of an undirected graph \( G \), whose vertices represent intersections and whose edges represent streets between them. A subset of the vertices are marked to indicate that the corresponding intersections are lit. Every edge \( e \) has a non-negative length \( \ell(e) \). The graph has two special nodes \( s \) and \( t \), which represent Eggsy’s work and home, respectively.

   Describe an algorithm that computes the shortest path in \( G \) from \( s \) to \( t \) that visits at most \( k \) unlit vertices.

3. An undirected graph \( G = (V, E) \) is **bipartite** if each of its vertices can be colored either black or white, so that every edge in \( E \) has one white endpoint and one black endpoint. Describe and analyze an algorithm to determine, given an undirected graph \( G \) as input, whether \( G \) is bipartite. [Hint: Every tree is bipartite.]
4. Satya is in charge of establishing a new testing center for the Standardized Awesomeness Test (SAT), and found an old conference hall that is perfect. The conference hall has $n$ rooms of various sizes along a single long hallway, numbered in order from 1 through $n$. Satya knows exactly how many students fit into each room, and he wants to use a subset of the rooms to host as many students as possible for testing.

Unfortunately, there have been several incidents of students cheating at other testing centers by tapping secret codes through walls. To prevent this type of cheating, Satya can use two adjacent rooms only if he demolishes the wall between them. The city’s chief architect has determined that demolishing the walls on both sides of the same room would threaten the building’s structural integrity. For this reason, Satya can never host students in three consecutive rooms.

Describe an efficient algorithm that computes the largest number of students that Satya can host for testing without using three consecutive rooms. The input to your algorithm is an array $S[1..n]$, where each $S[i]$ is the (non-negative integer) number of students that can fit in room $i$.

5. Suppose you are given a set $P$ of $n$ points in the plane. A point $p \in P$ is maximal in $P$ if no other point in $P$ is both above and to the right of $P$. Intuitively, the maximal points define a “staircase” with all the other points of $P$ below it.

Describe and analyze an algorithm to compute the number of maximal points in $P$ in $O(n \log n)$ time. For example, given the ten points shown above, your algorithm should return the integer 4. The input to your algorithm is a pair of arrays $X[1..n]$ and $Y[1..n]$ containing the $x$- and $y$-coordinates of the points in $P$. 

A set of ten points, four of which are maximal.
Write your answers in the separate answer booklet.
Please return this question sheet and your cheat sheet with your answers.

1. Clearly indicate the following structures in the directed graph below, or write NONE if the indicated structure does not exist. Don't be subtle; to indicate a collection of edges, draw a heavy black line along the entire length of each edge.

(a) A depth-first search tree rooted at vertex c.
(b) A breadth-first tree rooted at vertex c.
(c) The strong components of G. (Circle each strong component.)
(d) Draw the strong-component graph of G.

2. During her walk to work every morning, Rachel likes to buy a cappuccino at a local coffee shop, and a croissant at a local bakery. Her home town has lots of coffee shops and lots of bakeries, but strangely never in the same building. Punctuality is not Rachel’s strongest trait, so to avoid losing her job, she wants to follow the shortest possible route.

Rachel has a map of her home town in the form of an undirected graph G, whose vertices represent intersections and whose edges represent roads between them. A subset of the vertices are marked as bakeries; another disjoint subset of vertices are marked as coffee shops. The graph has two special nodes s and t, which represent Rachel’s home and work, respectively.

Describe an algorithm that computes the shortest path in G from s to t that visits both a bakery and a coffee shop, or correctly reports that no such path exists.

3. An undirected graph $G = (V, E)$ is **bipartite** if its vertices can be partitioned into two subsets $L$ and $R$, such that every edge in $E$ has one endpoint in $L$ and one endpoint in $R$. Describe and analyze an algorithm to determine, given an undirected graph $G$ as input, whether $G$ is bipartite. [Hint: Every tree is bipartite.]
4. Satya is in charge of establishing a new testing center for the Standardized Awesomeness Test (SAT), and found an old conference hall that is perfect. The conference hall has \( n \) rooms of various sizes along a single long hallway, numbered in order from 1 through \( n \). Each pair of adjacent rooms \( i \) and \( i + 1 \) is separated by a single wall. Satya knows exactly how many students fit into each room, and he wants to use a subset of the rooms to host as many students as possible for testing.

Unfortunately, there have been several incidents of students cheating at other testing centers by tapping secret codes through walls. To prevent this type of cheating, Satya can use two adjacent rooms only if he demolishes the wall between them. For example, if Satya wants to use rooms 1, 3, 4, 5, 7, 8, and 10, he must demolish three walls: between rooms 3 and 4, between rooms 4 and 5, and between rooms 7 and 8.

The city’s chief architect has determined that demolishing more than \( k \) walls would threaten the structural integrity of the building.

Describe an efficient algorithm that computes the largest number of students that Satya can host for testing without demolishing more than \( k \) walls. The input to your algorithm is the integer \( k \) and an array \( S[1..n] \), where each \( S[i] \) is the (non-negative integer) number of students that can fit in room \( i \).

5. Suppose you are given an array \( A[1..n] \) of numbers.

(a) Describe and analyze an algorithm that either returns two indices \( i \) and \( j \) such that \( A[i] + A[j] = 374 \), or correctly reports that no such indices exist.

(b) Describe and analyze an algorithm that either returns three indices \( i \), \( j \), and \( k \) such that \( A[i] + A[j] + A[k] = 374 \), or correctly reports that no such indices exist.

Do not use hashing. As always, faster correct algorithms are worth more points.
• Don't panic!

• If you brought anything except your writing implements and your two double-sided 8½" × 11" cheat sheets, please put it away for the duration of the exam. In particular, please turn off and put away all medically unnecessary electronic devices.

• Please clearly print your real name, your university NetID, your Gradescope name, and your Gradescope email address in the boxes above. We will not scan this page into Gradescope.

• Please also print only the name you are using on Gradescope at the top of every page of the answer booklet, except this cover page. These are the pages we will scan into Gradescope.

• Please do not write outside the black boxes on each page; these indicate the area of the page that the scanner can actually see.

• Please read the entire exam before writing anything. Please ask for clarification if any question is unclear.

• The exam lasts 180 minutes.

• If you run out of space for an answer, continue on the back of the page, or on the blank pages at the end of this booklet, but please tell us where to look. Alternatively, feel free to tear out the blank pages and use them as scratch paper.

• As usual, answering any (sub)problem with “I don't know” (and nothing else) is worth 25% partial credit. Yes, even for problem 1. Correct, complete, but suboptimal solutions are always worth more than 25%. A blank answer is not the same as “I don't know”.

• Please return your cheat sheets and all scratch paper with your answer booklet.

• May the Sith be with you.
Beware of the man who works hard to learn something,
learns it, and finds himself no wiser than before.

He is full of murderous resentment of people who are ignorant
without having come by their ignorance the hard way.

— Bokonon
For each of the following questions, indicate every correct answer by marking the “Yes” box, and indicate every incorrect answer by marking the “No” box. Assume P ≠ NP. If there is any other ambiguity or uncertainty, mark the “No” box. For example:

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>IDK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x + y = 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3SAT can be solved in polynomial time.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jeff is not the Queen of England.</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If P = NP then Jeff is the Queen of England.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are 40 yes/no choices altogether. Each correct choice is worth +½ point; each incorrect choice is worth −¼ point; each checked “IDK” is worth +1/8 point.

(a) Which of the following statements is true for every language \( L \subseteq \{0, 1\}^* \)?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>IDK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>( L^* ) is non-empty.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>( L^* ) is regular.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>( L^* ) is decidable.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If ( L ) is NP-hard, then ( L ) is not regular.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If ( L ) is not regular, then ( L ) is undecidable.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If ( L ) is context-free, then ( L ) is infinite.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>( L ) is the intersection of two regular languages if and only if ( L ) is regular.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>( L ) is decidable if and only if ( L^* ) is decidable.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>( L ) is decidable if and only if its reversal ( L^R = {w^R \mid w \in L} ) is decidable. (Recall that ( w^R ) denotes the reversal of the string ( w ).)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>( L ) is decidable if and only if its complement ( \overline{L} ) is undecidable.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(b) Consider the following sets of undirected graphs:

- Trees is the set of all connected undirected graphs with no cycles.
- 3Color is the set of all undirected graphs that can be properly colored using at most 3 colors.

(For concreteness, assume that in both of these languages, graphs are represented by their adjacency matrices.) Which of the following must be true, assuming \( P \neq NP \)?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>IDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \text{Trees} \in \mathbb{NP} )</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( \text{Trees} \subseteq \text{3Color} )</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>There is a polynomial-time reduction from Trees to 3Color</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>There is a polynomial-time reduction from 3Color to Trees</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trees is NP-hard.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(c) Let \( M \) be the following NFA:

Which of the following statements about \( M \) are true?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>IDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>( M ) accepts the empty string ( \varepsilon )</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( \delta^*(s, 010) = {s, a, c} )</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( \varepsilon)-reach(( a )) = {s, a, c}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( M ) rejects the string ( 11100111000 )</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( L(M) = (\emptyset)^* + (111)^* )</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(d) Which of the following languages over the alphabet $\Sigma = \{0, 1\}$ are regular? Recall that $\#(a, w)$ denotes the number of times symbol $a$ appears in string $w$.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>IDK</td>
<td>The intersection of two regular languages</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>IDK</td>
<td>${w \in \Sigma^* \mid</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>IDK</td>
<td>${w \in \Sigma^* \mid #(\emptyset, w) + #(1, w) &gt; 374}$</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>IDK</td>
<td>${w \in \Sigma^* \mid #(\emptyset, w) - #(1, w) &gt; 374}$</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>IDK</td>
<td>The language generated by the context-free grammar $S \to \emptyset S \mid 10 S \mid \epsilon$</td>
</tr>
</tbody>
</table>

(e) Which of the following languages or problems are decidable?

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>IDK</td>
<td>$\Sigma^*$</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>IDK</td>
<td>3Sat</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>IDK</td>
<td>${\langle M \rangle \mid M \text{ accepts every string whose length is prime}}$</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>IDK</td>
<td>${\langle M \rangle \mid M \text{ accepts all strings in } 0^* \text{ and rejects all strings in } 1^*}$</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>IDK</td>
<td>${\langle M \rangle \mid M \text{ is a Turing machine with at least two states}}$</td>
</tr>
</tbody>
</table>

(f) Which of the following languages or problems can be proved undecidable using Rice’s Theorem?

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>IDK</td>
<td>$\Sigma^*$</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>IDK</td>
<td>3Sat</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>IDK</td>
<td>${\langle M \rangle \mid M \text{ accepts every string whose length is prime}}$</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>IDK</td>
<td>${\langle M \rangle \mid M \text{ accepts all strings in } 0^* \text{ and rejects all strings in } 1^*}$</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>IDK</td>
<td>${\langle M \rangle \mid M \text{ is a Turing machine with at least two states}}$</td>
</tr>
</tbody>
</table>
(g) Suppose we want to prove that the following language is undecidable.

\[
\text{Marvin} := \{ \langle M \rangle \mid M \text{ rejects an infinite number of strings} \}
\]

Professor Prefect, your instructor in Vogon Poetry and Knowing Where Your Towel Is, suggests a reduction from the standard halting language

\[
\text{Halt} := \{ \langle M, w \rangle \mid M \text{ halts on inputs } w \}.
\]

Specifically, suppose there is a program \text{ParanoidAndroid} that decides \text{Marvin}. Professor Prefect claims that the following algorithm decides \text{Halt}.

\[
\text{DecideHalt}(\langle M \rangle, w):
\]
Write code for the following algorithm:

\[
\text{HoopyFrood}(x):
\]
run \( M \) on input \( w \)
if \( x = \text{DONTPANIC} \)
return True
else
return False

return \text{ParanoidAndroid}(\langle \text{HoopyFrood} \rangle)

Which of the following statements is true for all inputs \( \langle M, w \rangle \)?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>IDK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If ( M ) accepts ( w ), then \text{HoopyFrood} accepts \text{BEEBLEBROX}.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>IDK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If ( M ) rejects ( w ), then \text{HoopyFrood} rejects \text{BEEBLEBROX}.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>IDK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If ( M ) hangs on ( w ), then \text{HoopyFrood} rejects \text{DONTPANIC}.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>IDK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\text{ParanoidAndroid} accepts \langle \text{HoopyFrood} \rangle.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>IDK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\text{DecideHalt} decides \text{Halt}; that is, Professor Prefect’s proof is correct.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
You are planning a hiking trip in Jellystone National Park over winter break. You have a complete map of the park's trails; the map indicates that some trail segments have a high risk of bear encounters. All visitors to the park are required to purchase a canister of bear repellent. You can safely traverse a high-bear-risk trail segment only by completely using up a full canister of bear repellent. The park rangers have installed refilling stations at several locations around the park, where you can refill empty canisters at no cost. The canisters themselves are expensive and heavy, so you cannot carry more than one. Because the trails are narrow, each trail segment allows traffic in only one direction.

You have converted the trail map into a directed graph $G = (V, E)$, whose vertices represent trail intersections, and whose edges represent trail segments. A subset $R \subseteq V$ of the vertices indicate the locations of the Repellent Refilling stations, and a subset $B \subseteq E$ of the edges are marked as having a high risk of Bears. Your campsite appears on the map as a particular vertex $s \in V$, and the visitor center is another vertex $t \in V$.

(a) Describe and analyze an algorithm to decide if you can safely walk from your campsite $s$ to the visitor center $t$. Assume there is a refill station at your camp site, and another refill station at the visitor center.

(b) Describe and analyze an algorithm to decide if you can walk safely from any refill station any other refill station. In other words, for every pair of vertices $u$ and $v$ in $R$, is there a safe path from $u$ to $v$?
Recall that a proper 3-coloring of a graph $G$ assigns each vertex of $G$ one of three colors, so that every edge of $G$ has endpoints with different colors. A proper 3-coloring is balanced if each color is assigned to exactly the same number of vertices.

A balanced proper 3-coloring. A proper 3-coloring that is not balanced.

The $\text{BALANCED}_3\text{COLOR}$ problem asks, given an undirected graph $G$, whether $G$ has a balanced proper 3-coloring. \textbf{Prove} that $\text{BALANCED}_3\text{COLOR}$ is NP-hard.
For each of the following languages, state whether the language is regular or not, and then justify your answer as follows:

- If the language is regular, *either* give an regular expression that describes the language, *or* draw/describe a DFA or NFA that accepts the language. You do not need to prove that your automaton or regular expression is correct.

- If the language is not regular, *prove* that the language is not regular.

*Hint: Exactly one of these languages is regular.*

(a) \( \{ xy \mid x, y \in \Sigma^+ \text{ and } x \text{ and } y \text{ are both palindromes} \} \)

(b) \( \{ xy \mid x, y \in \Sigma^+ \text{ and } x \text{ is not a palindrome} \} \)
(a) Recall that a palindrome is any string that is equal to its reversal, like REDIVIDER or POOP. Describe an algorithm to find the length of the longest subsequence of a given string that is a palindrome.

(b) A double palindrome is the concatenation of two non-empty palindromes, like POOPREDIVIDER or POOPPOOP. Describe an algorithm to find the length of the longest subsequence of a given string that is a double palindrome. [Hint: Use your algorithm from part (a).]

For both algorithms, the input is an array A[1..n], and the output is an integer. For example, given the string MAYBEDYNAMICPROGRAMMING as input, your algorithm for part (a) should return 7 (for the palindrome subsequence NMRORMN), and your algorithm for part (b) should return 12 (for the double palindrome subsequence MAYBYAMIRORI).
Let $M$ be an arbitrary DFA. Describe and analyze an efficient algorithm to decide whether $M$ rejects an infinite number of strings.
Some useful NP-hard problems. You are welcome to use any of these in your own NP-hardness proofs, except of course for the specific problem you are trying to prove NP-hard.

CircuitSat: Given a boolean circuit, are there any input values that make the circuit output True?

3Sat: Given a boolean formula in conjunctive normal form, with exactly three distinct literals per clause, does the formula have a satisfying assignment?

MaxIndependentSet: Given an undirected graph \( G \), what is the size of the largest subset of vertices in \( G \) that have no edges among them?

MaxClique: Given an undirected graph \( G \), what is the size of the largest complete subgraph of \( G \)?

MinVertexCover: Given an undirected graph \( G \), what is the size of the smallest subset of vertices that touch every edge in \( G \)?

MinSetCover: Given a collection of subsets \( S_1, S_2, \ldots, S_m \) of a set \( S \), what is the size of the smallest subcollection whose union is \( S \)?

MinHittingSet: Given a collection of subsets \( S_1, S_2, \ldots, S_m \) of a set \( S \), what is the size of the smallest subset of \( S \) that intersects every subset \( S_i \)?

3Color: Given an undirected graph \( G \), can its vertices be colored with three colors, so that every edge touches vertices with two different colors?

HamiltonianPath: Given graph \( G \) (either directed or undirected), is there a path in \( G \) that visits every vertex exactly once?

HamiltonianCycle: Given a graph \( G \) (either directed or undirected), is there a cycle in \( G \) that visits every vertex exactly once?

TravelingSalesman: Given a graph \( G \) (either directed or undirected) with weighted edges, what is the minimum total weight of any Hamiltonian path/cycle in \( G \)?

LongestPath: Given a graph \( G \) (either directed or undirected, possibly with weighted edges), what is the length of the longest simple path in \( G \)?

SteinerTree: Given an undirected graph \( G \) with some of the vertices marked, what is the minimum number of edges in a subtree of \( G \) that contains every marked vertex?

SubsetSum: Given a set \( X \) of positive integers and an integer \( k \), does \( X \) have a subset whose elements sum to \( k \)?

Partition: Given a set \( X \) of positive integers, can \( X \) be partitioned into two subsets with the same sum?

3Partition: Given a set \( X \) of \( 3n \) positive integers, can \( X \) be partitioned into \( n \) three-element subsets, all with the same sum?

IntegerLinearProgramming: Given a matrix \( A \in \mathbb{Z}^{n \times d} \) and two vectors \( b \in \mathbb{Z}^n \) and \( c \in \mathbb{Z}^d \), compute \( \max \{ c \cdot x \mid Ax \leq b, x \geq 0, x \in \mathbb{Z}^d \} \).

FeasibleLP: Given a matrix \( A \in \mathbb{Z}^{n \times d} \) and a vector \( b \in \mathbb{Z}^n \), determine whether the set of feasible integer points \( \max \{ x \in \mathbb{Z}^d \mid Ax \leq b, x \geq 0 \} \) is empty.

Draughts: Given an \( n \times n \) international draughts configuration, what is the largest number of pieces that can (and therefore must) be captured in a single move?

SuperMarioBrothers: Given an \( n \times n \) Super Mario Brothers level, can Mario reach the castle?

SteamedHams: Aurora borealis? At this time of year, at this time of day, in this part of the country, localized entirely within your kitchen? May I see it?
Real name: 
NetID: 

Gradescope name: 
Gradescope email: 

• Don’t panic!

• If you brought anything except your writing implements and your two double-sided 8½” × 11” cheat sheets, please put it away for the duration of the exam. In particular, please turn off and put away all medically unnecessary electronic devices.

• Please clearly print your real name, your university NetID, your Gradescope name, and your Gradescope email address in the boxes above. We will not scan this page into Gradescope.

• Print the name you are using on Gradescope at the top of every page of the answer booklet, except this cover page. These are the pages we will scan into Gradescope.

• Please do not write outside the black boxes on each page; these indicate the area of the page that the scanner can actually see.

• Please read the entire exam before writing anything. Please ask for clarification if any question is unclear.

• The exam lasts 180 minutes.

• If you run out of space for an answer, continue on the back of the page, or on the blank pages at the end of this booklet, but please tell us where to look. Alternatively, feel free to tear out the blank pages and use them as scratch paper.

• As usual, answering any (sub)problem with “I don’t know” (and nothing else) is worth 25% partial credit. Yes, even for problem 1. Correct, complete, but suboptimal solutions are always worth more than 25%. A blank answer is not the same as “I don’t know”.

• Please return your cheat sheets and all scratch paper with your answer booklet.

• Good luck, and thanks for a great semester!
Beware of the man who works hard to learn something, learns it, and finds himself no wiser than before.

He is full of murderous resentment of people who are ignorant without having come by their ignorance the hard way.

— Bokonon
For each of the following questions, indicate every correct answer by marking the “Yes” box, and indicate every incorrect answer by marking the “No” box. Assume P ≠ NP. If there is any other ambiguity or uncertainty, mark the “No” box. For example:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>IDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are 40 yes/no choices altogether. Each correct choice is worth +½ point; each incorrect choice is worth −¼ point; each checked “IDK” is worth +1/8 point.

(a) Which of the following statements are true for at least one language $L \subseteq \{0, 1\}^*$?

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>IDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) Which of the following statements are true for every language $L \subseteq \{0, 1\}^*$?

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>IDK</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(c) Consider the following sets of undirected graphs:

- **Trees** is the set of all connected undirected graphs with no cycles.
- **MostlyIndependent** is the set of all undirected graphs that have an independent set containing at least half of the vertices. (Deciding whether a graph has this property is NP-hard.)

(For concreteness, assume that in both of these languages, graphs are represented by their adjacency matrices.) Which of the following **must** be true, assuming \( P \neq NP? \)

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>IDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><strong>Trees ( \not\in P )</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><strong>Trees ( \subseteq MostlyIndependent )</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>There is a polynomial-time reduction from <strong>Trees</strong> to <strong>MostlyIndependent</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>There is a polynomial-time reduction from <strong>MostlyIndependent</strong> to <strong>Trees</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><strong>Trees</strong> is NP-hard.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(d) Let \( M \) be the following NFA:

![NFA Diagram]

Which of the following statements about \( M \) are true?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>IDK</th>
</tr>
</thead>
</table>
| 1 | \( M \) rejects the empty string \( \varepsilon \).
| 2 | \( \delta^*(s, \varepsilon 01) = \{a, d\} \)
| 3 | \( \varepsilon\)-reach(\( s \)) = \( \{s, a, c\} \)
| 4 | \( M \) accepts the string \( 01101011 \)
| 5 | \( L(M) = (011)^* + (01)^* \)
(e) Which of the following languages over the alphabet \( \Sigma = \{0, 1\} \) are regular? Recall that \(#(a, w)\) denotes the number of times symbol \( a \) appears in string \( w \).

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>IDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>( w \in \Sigma^* \mid #(1, w) \text{ is a perfect square} )</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The language generated by the context-free grammar \( S \rightarrow \varepsilon | S \varepsilon | S \mid 1 \)

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>IDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>( w \in \Sigma^* \mid #(\emptyset, w) + #(1, w) &lt; 374 )</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>IDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>( w \in \Sigma^* \mid #(\emptyset, w) - #(1, w) &lt; 374 )</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The complement of a regular language

(f) Which of the following languages or problems are decidable?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>IDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>( {\langle M \rangle \mid M \text{ accepts all non-empty strings but rejects the empty string } \varepsilon } )</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>IDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>( {\langle M \rangle \mid M \text{ accepts every string whose length is a perfect square} } )</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>IDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>( {\langle M \rangle \mid M \text{ is a Turing machine with at least two states} } )</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\( \emptyset \)

(g) Which of the following languages or problems can be proved undecidable using Rice's Theorem?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>IDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>( {\langle M \rangle \mid M \text{ accepts all non-empty strings but rejects the empty string } \varepsilon } )</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>IDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>( {\langle M \rangle \mid M \text{ accepts every string whose length is a perfect square} } )</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>IDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>( {\langle M \rangle \mid M \text{ is a Turing machine with at least two states} } )</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\( \emptyset \)
(h) Suppose we want to prove that the following language is undecidable.

\[ \text{Marvin} := \{ \langle M \rangle \mid M \text{ rejects an infinite number of strings} \} \]

Professor Beeblebrox, your instructor in Infinitely Improbable Galactic Presidencies, suggests a reduction from the standard halting language

\[ \text{Halt} := \{ (\langle M \rangle, w) \mid M \text{ halts on inputs } w \} . \]

Specifically, suppose there is a program PARANOIDANDROID that decides Marvin. Professor Beeblebrox claims that the following algorithm decides Halt.

```
DECIDEHALT(⟨M⟩, w):
Write code for the following algorithm:

HEARTOFGOLD(x):
run M on input w
if x = VOGONPOETRY
return False
else
return True

return PARANOIDANDROID(⟨HEARTOFGOLD⟩)
```

Which of the following statements is true for all inputs (⟨M⟩, w)?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>IDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>If M accepts w, then HEARTOFGOLD accepts VOGONPOETRY.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If M rejects w, then HEARTOFGOLD rejects VOGONPOETRY.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If M hangs on w, then HEARTOFGOLD rejects EDDIE.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARANOIDANDROID rejects ⟨HEARTOFGOLD⟩.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DECIDEHALT decides Halt; that is, Professor Beeblebrox’s proof is correct.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
You and your friends are planning a hiking trip in Jellystone National Park over winter break. You have a map of the park’s trails that lists all the scenic views in the park but also warns that certain trail segments have a high risk of bear encounters. To make the hike worthwhile, you want to see at least three scenic views. You also don’t want to get eaten by a bear, so you are willing to hike at most one high-bear-risk segment. Because the trails are narrow, each trail segment allows traffic in only one direction.

Your friend has converted the map into a directed graph $G = (V, E)$, where $V$ is the set of intersections and $E$ is the set of trail segments. A subset $S$ of the edges are marked as Scenic; another subset $B$ of the edges are marked as high-Bear-risk. You may assume that $S \cap B = \emptyset$. Each segment $e \in E$ is also labeled with a positive length $\ell(e)$ in miles. Your campsite appears on the map as a particular vertex $s \in V$, and the visitor center is another vertex $t \in V$.

Describe and analyze an algorithm to compute the shortest hike from your campsite $s$ to the visitor center $t$ that includes at least three scenic views and at most one high-bear-risk trail segment. You may assume such a hike exists.
For each of the following languages over the alphabet \{0, 1\}, state whether the language is regular or not, and then justify your answer as follows:

- If the language is regular, either give an regular expression that describes the language, or draw/describe a DFA or NFA that accepts the language. You do not need to prove that your automaton or regular expression is correct.

- If the language is not regular, prove that the language is not regular.

[Hint: Exactly one of these languages is regular.]

(a) \{xy \mid x \text{ is a palindrome and } y \text{ is a palindrome}\}
(b) \{xy \mid x \text{ is a palindrome and } |x| \geq 2\}
Vankin’s Mile is an American solitaire game played on an $n \times n$ square grid. The player starts by placing a token on any square of the grid. Then on each turn, the player moves the token either one square to the right or one square down. The game ends when player moves the token off the edge of the board. Each square of the grid has a numerical value, which could be positive, negative, or zero. The player starts with a score of zero; whenever the token lands on a square, the player adds its value to his score. The object of the game is to score as many points as possible.

For example, given the grid shown below, the player can score $7 - 2 + 3 + 5 + 6 - 4 + 8 + 0 = 23$ points by following the path on the left, or they can score $8 - 4 + 1 + 5 + 1 - 4 + 8 = 15$ points by following the path on the right.

(a) Describe and analyze an efficient algorithm to compute the maximum possible score for a game of Vankin’s Mile, given the $n \times n$ array of values as input.

(b) A variant called Vankin’s Niknav adds an additional constraint to Vankin’s Mile: The sequence of values that the token touches must be a palindrome. Thus, the example path on the right is valid, but the example path on the left is not. Describe and analyze an efficient algorithm to compute the maximum possible score for an instance of Vankin’s Niknav, given the $n \times n$ array of values as input.
Recall that a satisfying assignment for a 3CNF Boolean formula $\Phi$ assigns values (True or False) to the variables of $\Phi$ so that $\Phi$ evaluates to True. A satisfying assignment is balanced if exactly half of the variables are set to True.

The BALANCED3SAT problem asks whether a given 3CNF formula $\Phi$ has a balanced satisfying assignment. Prove that BALANCED3SAT is NP-hard.
Let $M$ be an arbitrary NFA without $\varepsilon$-transitions, with input alphabet $\Sigma = \{0, 1\}$. Describe and analyze an efficient algorithm to decide whether $M$ accepts an infinite number of strings.
(scratch paper)
**Some useful NP-hard problems.** You are welcome to use any of these in your own NP-hardness proofs, except of course for the specific problem you are trying to prove NP-hard.

- **CircuitSat:** Given a boolean circuit, are there any input values that make the circuit output \texttt{True}?  
- **3Sat:** Given a boolean formula in conjunctive normal form, with exactly three distinct literals per clause, does the formula have a satisfying assignment?  
- **MaxIndependentSet:** Given an undirected graph \( G \), what is the size of the largest subset of vertices in \( G \) that have no edges among them?  
- **MaxClique:** Given an undirected graph \( G \), what is the size of the largest complete subgraph of \( G \)?  
- **MinVertexCover:** Given an undirected graph \( G \), what is the size of the smallest subset of vertices that touch every edge in \( G \)?  
- **MinSetCover:** Given a collection of subsets \( S_1, S_2, \ldots, S_m \) of a set \( S \), what is the size of the smallest subcollection whose union is \( S \)?  
- **MinHittingSet:** Given a collection of subsets \( S_1, S_2, \ldots, S_m \) of a set \( S \), what is the size of the smallest subset of \( S \) that intersects every subset \( S_i \)?  
- **3Color:** Given an undirected graph \( G \), can its vertices be colored with three colors, so that every edge touches vertices with two different colors?  
- **HamiltonianPath:** Given graph \( G \) (either directed or undirected), is there a path in \( G \) that visits every vertex exactly once?  
- **HamiltonianCycle:** Given a graph \( G \) (either directed or undirected), is there a cycle in \( G \) that visits every vertex exactly once?  
- **TravelingSalesman:** Given a graph \( G \) (either directed or undirected) with weighted edges, what is the minimum total weight of any Hamiltonian path/cycle in \( G \)?  
- **LongestPath:** Given a graph \( G \) (either directed or undirected, possibly with weighted edges), what is the length of the longest simple path in \( G \)?  
- **SteinerTree:** Given an undirected graph \( G \) with some of the vertices marked, what is the minimum number of edges in a subtree of \( G \) that contains every marked vertex?  
- **SubsetSum:** Given a set \( X \) of positive integers and an integer \( k \), does \( X \) have a subset whose elements sum to \( k \)?  
- **Partition:** Given a set \( X \) of positive integers, can \( X \) be partitioned into two subsets with the same sum?  
- **3Partition:** Given a set \( X \) of \( 3n \) positive integers, can \( X \) be partitioned into \( n \) three-element subsets, all with the same sum?  
- **IntegerLinearProgramming:** Given a matrix \( A \in \mathbb{Z}^{n \times d} \) and two vectors \( b \in \mathbb{Z}^n \) and \( c \in \mathbb{Z}^d \), compute \( \max \{ c \cdot x \mid Ax \leq b, x \geq 0, x \in \mathbb{Z}^d \} \).  
- **FeasibleILP:** Given a matrix \( A \in \mathbb{Z}^{n \times d} \) and a vector \( b \in \mathbb{Z}^n \), determine whether the set of feasible integer points \( \{ x \in \mathbb{Z}^d \mid Ax \leq b, x \geq 0 \} \) is empty.  
- **Draughts:** Given an \( n \times n \) international draughts configuration, what is the largest number of pieces that can (and therefore must) be captured in a single move?  
- **SuperMarioBrothers:** Given an \( n \times n \) Super Mario Brothers level, can Mario reach the castle?  
- **SteamedHams:** Aurora borealis? At this time of year, at this time of day, in this part of the country, localized entirely within your kitchen? May I see it?
• **This homework tests your familiarity with prerequisite material:** designing, describing, and analyzing elementary algorithms; fundamental graph problems and algorithms; and especially facility with recursion and induction. Notes on most of this prerequisite material are available on the course web page.

• **Each student must submit individual solutions for this homework.** For all future homeworks, groups of up to three students will be allowed to submit joint solutions.

• **Submit your solutions electronically on Gradescope as PDF files.**
  – Submit a separate file for each numbered problem.
  – You can find a \LaTeX solution template on the course web site (soon); please use it if you plan to typeset your homework.
  – If you plan to submit scanned handwritten solutions, please use dark ink (not pencil) on blank white printer paper (not notebook or graph paper), and use a high-quality scanner or scanning app to create a high-quality PDF for submission (not a raw cell-phone photo).

---

**Some important course policies**

• **You may use any source at your disposal**—paper, electronic, or human—but you **must** cite every source that you use, and you **must** write everything yourself in your own words. See the academic integrity policies on the course web site for more details.

• **Avoid the Deadly Sins!** There are a few common writing (and thinking) practices that will be automatically penalized on every homework or exam problem. We’re not just trying to be scary control freaks; history strongly suggests people who commit these sins are more likely to make other serious mistakes as well. So we’re trying to break bad habits that seriously impede mastery of the course material.
  – Always give complete solutions, not just examples.
  – Every algorithm requires an English specification.
  – Greedy algorithms require formal correctness proofs.
  – Never use weak induction. Weak induction should die in a fire.

---

**See the course web site for more information.**

If you have any questions about these policies, please don’t hesitate to ask in class, in office hours, or on Piazza.
The standard Tower of Hanoi puzzle consists of \( n \) circular disks of different sizes, each with a hole in the center, and three pegs. The disks are labeled 1, 2, \ldots, \( n \) in increasing order of size. Initially all \( n \) disks are on one peg, sorted by size, with disk \( n \) at the bottom and disk 1 at the top. The goal is to move all \( n \) disks to a different peg, by repeatedly moving individual disks. At each step, we are allowed to move the highest disk on any peg to any other peg, subject to the constraint that a larger disk is never placed above a smaller disk. A recursive strategy that solves this problem using exactly \( 2^n - 1 \) moves is well known (and described in the textbook).

This question concerns a variant of the Tower of Hanoi that I’ll call the Tower of Fibonacci. In this variant, whenever any two disks \( i - 1 \) and \( i + 1 \) are adjacent, the intermediate disk \( i \) immediately teleports between them; otherwise, the setup, rules, and goal of the puzzle are unchanged. This teleport does not count as a move; on the other hand, the teleport is not optional. For example, the four-disk Tower of Fibonacci can be solved in nine moves (and two teleports, after moves 5 and 8) as follows:

(a) Describe a recursive algorithm to solve the Tower of Fibonacci puzzle. Briefly justify why your algorithm is correct. (We don’t need a complete formal proof of correctness; just convince us that you know why it works.)

(b) How many moves does your algorithm perform, as a function of the number of disks? Prove that your answer is correct.

(c) How many teleports does your algorithm induce, as a function of the number of disks? Prove that your answer is correct.

For full credit, give exact answers to parts (b) and (c), not just \( O() \) bounds. Express your answers to parts (b) and (c) in terms of the Fibonacci numbers, defined as follows:

\[
F_n = \begin{cases} 
0 & \text{if } n = 0 \\
1 & \text{if } n = 1 \\
F_{n-1} + F_{n-2} & \text{otherwise}
\end{cases}
\]
2. Prove that every integer (positive, negative, or zero) can be written as the sum of distinct powers of $-2$. For example:

\[
\begin{align*}
17 &= (-2)^4 + (-2)^0 = 16 + 1 \\
-23 &= (-2)^3 + (-2)^4 + (-2)^3 + (-2)^0 = -32 + 16 - 8 + 1 \\
42 &= (-2)^6 + (-2)^5 + (-2)^4 + (-2)^3 + (-2)^2 + (-2)^1 = 64 - 32 + 16 - 8 + 4 - 2 \\
473 &= (-2)^{10} + (-2)^9 + (-2)^5 + (-2)^3 + (-2)^0 = 1024 - 512 - 32 - 8 + 1
\end{align*}
\]

[Hint: The empty set is a set, and weak induction should die in a fire.]

3. The famous puzzle-maker Kaniel the Dane invented a solitaire game played with two tokens on an $n \times n$ square grid. Some squares of the grid are marked as obstacles, and one grid square is marked as the target. In each turn, the player must move one of the tokens from its current position as far as possible upward, downward, right, or left, stopping just before the token hits (1) the edge of the board, (2) an obstacle square, or (3) the other token. The goal is to move either of the tokens onto the target square.

For example, we can solve the puzzle shown above by moving the red token down until it hits the obstacle, then moving the green token left until it hits the red token, and then moving the red token left, down, right, and up. The red token stops at the target on the 6th move because the green token is just above the target square.

Describe and analyze an algorithm to determine whether an instance of this puzzle is solvable. Your input consists of the integer $n$, a list of obstacle locations, the target location, and the initial locations of the tokens. The output of your algorithm is a single boolean: True if the given puzzle is solvable and False otherwise.

[Hint: Construct and search a graph. What are the vertices? What are the edges? Is the graph directed or undirected? Do the vertices or edges have weights? How long does it take to construct the graph? What problem do you need to solve on this graph? What textbook algorithm can you use to solve that problem? (Don't regurgitate the textbook algorithm; just point to the textbook!) What is the running time of that algorithm as a function of $n$?]
Starting with this homework, groups of up to three students can submit joint solutions for each problem. For each numbered problem, exactly one member of each homework group should submit a solution and identify the other group members (if any).

If you use a greedy algorithm, you **must** prove that it is correct, or you will get zero points even if your algorithm is correct.

---

1. **Dance Dance Revolution** (ダンスダンスレボリューション) is a dance video game, first introduced in Japan by Konami in 1998. Players stand on a platform marked with four arrows, pointing forward, back, left, and right, arranged in a cross pattern. During play, the game plays a song and scrolls a sequence of $n$ arrows ($\leftarrow, \uparrow, \downarrow,$ or $\rightarrow$) from the bottom to the top of the screen. At the precise moment each arrow reaches the top of the screen, the player must step on the corresponding arrow on the dance platform. (The arrows are timed so that you'll step with the beat of the song.)

You are playing a variant of this game called “Vogue Vogue Revolution” where the goal is to play perfectly but move as little as possible. When an arrow reaches the top of the screen, if one of your feet is already on the correct arrow, you are awarded one style point for maintaining your current pose. If neither foot is on the right arrow, you must move one (and only one) foot from its current location to the correct arrow on the platform. If you ever step on the wrong arrow, or fail to step on the correct arrow, or move more than one foot at a time, or move either foot when you are already standing on the correct arrow, all your style points are taken away and you lose the game.

How should you move your feet to maximize your total number of style points? Assume you start the game with your left foot on $\leftarrow$ and your right foot on $\rightarrow$, and that you’ve memorized the entire sequence of arrows. For example, if the sequence is $\uparrow\uparrow\downarrow\downarrow\leftarrow\leftrightarrow\leftrightarrow\rightarrow$, you can earn 5 style points by moving your feet as shown below:

![Diagram of movement sequence]

(a) Prove that for any sequence of $n$ arrows, it is possible to earn at least $n/4 - 1$ style points.

(b) Describe and analyze an efficient algorithm to find the maximum number of style points you can earn during a given VVR routine. The input to your algorithm is an array $Arrow[1..n]$ containing the sequence of arrows.
2. You’ve been hired to store a sequence of \( n \) books on shelves in a library, using as little vertical space as possible. The order of the books is fixed by the cataloging system and cannot be changed; each shelf must store a contiguous interval of the given sequence of books. You can adjust the height of each shelf to match the tallest book on that shelf; in particular, you can change the height of any empty shelf to zero.

You are given two arrays \( H[1..n] \) and \( W[1..n] \), where \( H[i] \) and \( W[i] \) are respectively the height and width of the \( i \)th book. Each shelf has the same fixed length \( L \). Each book as width at most \( L \), and the total width of all books on each shelf cannot exceed \( L \). Your task is to shelve the books so that the sum of the heights of the shelves is as small as possible.

(a) There is a natural greedy algorithm, which actually yields an optimal solution when all books have the same height: If \( n > 0 \), pack as many books as possible onto the first shelf, and then recursively shelve the remaining books.

Show that this greedy algorithm does not yield an optimal solution if the books can have different heights. [Hint: There is a small counterexample.]

(b) Describe and analyze an efficient algorithm to assign books to shelves to minimize the total height of the shelves.

3. (a) Any string can be decomposed into a sequence of palindromes. For example, the string **BUBBASEESABANANA** (“Bubba sees a banana.”) can be broken into palindromes in the following ways (and 65 others):

\[
\begin{align*}
\text{BUB } & \cdot \text{ BASEESAB } \cdot \text{ ANANA} \\
B & \cdot U & \cdot BB & \cdot ASEESA & \cdot B & \cdot ANANA \\
\text{BUB } & \cdot B & \cdot A & \cdot SEES & \cdot ABA & \cdot N & \cdot ANA \\
B & \cdot U & \cdot BB & \cdot A & \cdot S & \cdot EE & \cdot S & \cdot A & \cdot B & \cdot A & \cdot NAN & \cdot A \\
B & \cdot U & \cdot B & \cdot B & \cdot A & \cdot S & \cdot E & \cdot E & \cdot S & \cdot A & \cdot B & \cdot A & \cdot N & \cdot A & \cdot N & \cdot A
\end{align*}
\]

Describe and analyze an efficient algorithm to find the smallest number of palindromes that make up a given input string. For example, given the input string **BUBBASEESABANANA**, your algorithm should return 3.

(b) A **metapalindrome** is a decomposition of a string into a sequence of palindromes, such that the sequence of palindrome lengths is itself a palindrome. For example, the string **BOBSMAMASEESAUKULELE** (“Bob’s mama sees a ukulele”) has the following metapalindromes (among others):

\[
\begin{align*}
\text{BOB } & \cdot S & \cdot MAM & \cdot ASEESA & \cdot UKU & \cdot L & \cdot ELE \\
B & \cdot O & \cdot B & \cdot S & \cdot M & \cdot A & \cdot M & \cdot A & \cdot S & \cdot E & \cdot E & \cdot S & \cdot A & \cdot K & \cdot U & \cdot L & \cdot E & \cdot L & \cdot E
\end{align*}
\]

The length sequences of these metapalindromes are \((3, 1, 3, 6, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)\) and \((1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)\); notice that both of these sequences are themselves palindromes.

Describe and analyze an efficient algorithm to find the smallest number of palindromes in any metapalindrome for a given string. For example, given the input string **BOBSMAMASEESAUKULELE**, your algorithm should return 7.
1. Let $D[1..n]$ be an array of digits, each an integer between 0 and 9. A digital subsequence of $D$ is a sequence of positive integers composed in the usual way from disjoint intervals of $D$. For example, the sequence $3, 4, 5, 6, 8, 9, 32, 38, 46, 64, 83, 279$ is a digital subsequence of the first several digits of $\pi$:

$$3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3, 3, 8, 3, 2, 7, 9$$

The length of a digital subsequence is the number of integers it contains, not the number of digits; the preceding example has length 12. As usual, a digital subsequence is increasing if each number is larger than its predecessor.

Describe and analyze an efficient algorithm to compute the longest increasing digital subsequence of $D$. [Hint: First consider the special case where none of the digits is 0. Be careful about your computational assumptions. How long does it take to compare two $k$-digit integers?]}

2. The (Eleventh) Doctor and River Song decide to play a game on a directed acyclic graph $G$, which has one source vertex $s$ and one sink vertex $t$.\(^1\)

Each player has a token on one of the vertices of $G$. At the start of the game, The Doctor’s token is on the source $s$, and River’s token is on the sink $t$. The players alternate turns, with The Doctor moving first. On each of his turns, the Doctor moves his token forward along a directed edge; on each of her turns, River moves her token backward along a directed edge.

If the two tokens ever meet on the same vertex, River wins the game. (“Hello, Sweetie!”) If the Doctor’s token reaches $t$ or River’s token reaches $s$ before the two tokens meet, then the Doctor wins the game.

Describe and analyze an algorithm to determine who wins this game, assuming both players play perfectly. That is, if the Doctor can win no matter how River moves, then your algorithm should output “Doctor”, and if River can win no matter how the Doctor moves, your algorithm should output “River”. (Why are these the only two possibilities?) The input to your algorithm is the graph $G$.

---

\(^1\)The labels $s$ and $t$ are abbreviations for the Untempered Schism and the Time Vortex, or the Shining World of the Seven Systems (also known as Gallifrey) and Trenzalore, or Skaro and Telos, or Something else Timey-wimey. It’s all very complicated, never mind.
3. [Extra credit²] After seeing your expertise in solving problem 2 in Homework 1, the Order of the Library of the Neitherlands immediately recruited you to tackle a significantly larger shelving project. Their problem is exactly the same as the one you already solved—they need an algorithm to put a sequence of \( n \) books on shelves using as little vertical space as possible—but the Neitherlands Library contains far too many books for an \( O(n^2) \)-time algorithm to be useful.

Describe and analyze an algorithm to compute the minimum total height required to shelve a sequence of \( n \) books \textbf{in} \( O(n \log n) \) \textbf{time}. As in Homework 1 problem 2, the input consists of two arrays \( H[1..n] \) and \( W[1..n] \), specifying the height and width of each book, and a number \( L \), which is the common length of every shelf. Heights, widths, and lengths are not necessarily integers.

[I have no reason to believe that \( O(n \log n) \) is the best possible running time. For the special case where heights, widths, and lengths are integers, \( O(n \log n) \) is definitely \textbf{not} the best possible running time.]

²Extra credit problems are ignored when we compute the curve at the end of the semester. In particular, they do not count toward the top 24 homework scores we will use to compute your raw homework average.
1. **[Extra credit]** Suppose we want to visualize a large set $S$ of values—for example, grade-point averages for every student who ever attended UIUC—using a variable-width histogram. To construct a histogram, we choose a sorted sequence of **breakpoints** $b_0 < b_1 < \cdots < b_k$, such that every element of $S$ lies between $b_0$ and $b_k$. Each interval $[b_{i-1}, b_i)$ between two consecutive buckets is called a **bin**. Any histogram includes a rectangle for each bin, whose height is the number of elements of $S$ that lie inside that bin.

![A variable-width histogram with seven bins.](image)

Unlike a standard histogram, which requires the intervals to have equal width, we are free to choose the breakpoints arbitrarily. For visualization purposes, it is useful for the **areas** of the rectangles to be as close to equal as possible, so we want the sum of the squares of the areas to be as small as possible. To simplify computation, we require that every breakpoint is an element of the dataset $S$.

More precisely, suppose we are given a sorted array $S[1..n]$ of distinct real numbers and an integer $k$. For any indices $i < j$, let

$$area(i, j) = (j - i) \cdot (S[j] - S[i])$$

denote the area of a single histogram rectangle representing the $j - i$ items in the interval $S[i..j-1]$. A histogram for $S$ is determined by a sorted array $B[0..k]$ of distinct **breakpoint** indices, such that $B[0] = 1$ and $B[k] = n$. We need to choose these breakpoints to minimize the sum of the squared areas of its rectangles:

$$Cost(B) = \sum_{i=1}^{k} (area(B[i-1], B[i]))^2.$$  

(a) Define an **upper-triangular** array $A[1..n, 1..n]$ by setting $A[i, j] = (area(i, j))^2$ if $i < j$ and leaving $A[i, j]$ undefined otherwise. Prove that this array has the Monge property.

A partial array has the Monge property if, for all indices $i < i'$ and $j < j'$ such that $A[i, j]$ and $A[i', j']$ and $A[i, j']$ and $A[i', j]$ are defined, we have $A[i, j] + A[i', j'] \leq A[i, j'] + A[i', j'']$. If $A$ is upper-triangular, it suffices to check the Monge condition where $i' = i + 1$ and $j' = j + 1$.

---

¹As far as I know, this objective has no statistical justification, but it makes the pictures look nice.
(b) Describe an algorithm to find the minimum element in every row of an \( n \times n \) upper triangular Monge array in \( O(n \log n) \) time. (The original SMAWK algorithm requires a full rectangular array.) [Hint: Use SMAWK as a subroutine.]

(c) Describe and analyze an algorithm to compute a variable-width histogram with minimum cost for a given set \( S \) of data values and a given number \( k \) of bins. For full credit, your algorithm should take advantage of parts (a) and (b). [Hint: You can assume parts (a) and (b) even without a proof.]

2. Let \( T \) be an arbitrary tree—a connected undirected graph with no cycles. Describe and analyze an algorithm to cover the vertices of \( T \) with as few disjoint paths as possible. Each vertex of \( T \) must lie on exactly one of the paths. (The figure below shows a tree covered by seven disjoint paths, three of which have length zero.)

![Tree Diagram]

3. Consider the following non-standard algorithm for shuffling a deck of \( n \) cards, initially numbered in order from 1 on the top to \( n \) on the bottom. At each step, we remove the top card from the deck and insert it randomly back into the deck, choosing one of the \( n \) possible positions uniformly at random. The algorithm ends immediately after we pick up card \( n - 1 \) and insert it randomly into the deck.

   (a) Prove that this algorithm uniformly shuffles the deck, meaning each permutation of the deck has equal probability. [Hint: Prove that at all times, the cards below card \( n - 1 \) are uniformly shuffled.]

   (b) What is the exact expected number of steps executed by the algorithm? [Hint: Split the algorithm into phases that end when card \( n - 1 \) changes position.]

π. [Warmup only; do not submit solutions]

After sending his loyal friends Rosencrantz and Guildenstern off to Norway, Hamlet decides to amuse himself by repeatedly flipping a fair coin until the sequence of flips satisfies some condition. For each of the following conditions, compute the exact expected number of flips until that condition is met.

   (a) Hamlet flips heads.

   (b) Hamlet flips both heads and tails (in different flips, of course).
(c) Hamlet flips heads twice.
(d) Hamlet flips heads twice in a row.
(e) Hamlet flips heads followed immediately by tails.
(f) Hamlet flips more heads than tails.
(g) Hamlet flips the same number of heads and tails.
(h) Hamlet flips the same positive number of heads and tails.
(i) Hamlet flips more than twice as many heads as tails.

[Hint: Be careful! If you’re relying on intuition instead of a proof, you’re probably wrong.]
1. Consider a random walk on a path with vertices numbered 1, 2, \ldots, n from left to right. At each step, we flip a coin to decide which direction to walk, moving one step left or one step right with equal probability. The random walk ends when we fall off one end of the path, either by moving left from vertex 1 or by moving right from vertex n.

(a) Prove that if we start at vertex 1, the probability that the walk ends by falling off the right end of the path is exactly \( \frac{1}{n+1} \).
(b) Prove that if we start at vertex \( k \), the probability that the walk ends by falling off the right end of the path is exactly \( \frac{k}{n+1} \).
(c) Prove that if we start at vertex 1, the expected number of steps before the random walk ends is exactly \( n \).
(d) What is the exact expected length of the random walk if we start at vertex \( k \), as a function of \( n \) and \( k \)? Prove your result is correct. (For partial credit, give a tight \( \Theta \)-bound for the case \( k = \frac{n+1}{2} \), assuming \( n \) is odd.)

[Hint: Trust the recursion fairy. Yes, (b) implies (a) and (d) implies (c).]

2. The following randomized variant of “one-armed quicksort” selects the \( k \)th smallest element in an unsorted array \( A[1..n] \). As usual, \( \text{PARTITION}(A[1..n], p) \) partitions the array \( A \) into three parts by comparing the pivot element \( A[p] \) to every other element, using \( n-1 \) comparisons, and returns the new index of the pivot element.

```plaintext
\text{QuickSelect}(A[1..n], k):
    r ← \text{Partition}(A[1..n], \text{Random}(n))
    \text{if } k < r
      \text{return QuickSelect}(A[1..r-1], k)
    \text{else if } k > r
      \text{return QuickSelect}(A[r+1..n], k-r)
    \text{else}
      \text{return } A[k]
```

(a) State a recurrence for the expected running time of \text{QuickSelect}, as a function of \( n \) and \( k \).
(b) What is the exact probability that \text{QuickSelect} compares the \( i \)th smallest and \( j \)th smallest elements in the input array? The correct answer is a simple function of \( i, j, \) and \( k \) (with a few cases). [Hint: Check your answer by trying a few small examples.]
(c) What is the exact probability that in some recursive call to \text{QuickSelect}, the first argument is the subarray \( A[i..j] \)? The correct answer is a simple function of \( i, j, \) and \( k \) (with more cases). [Hint: Check your answer by trying a few small examples.]
(d) Show that for any \( n \) and \( k \), \text{QuickSelect} runs in \( \Theta(n) \) expected time. You can use either the recurrence from part (a) or the probabilities from part (b) or (c).
3. A **meldable priority queue** stores a set of priorities from some totally-ordered universe (such as the integers) and supports the following operations:

- **MAKEQUEUE**: Return a new priority queue containing the empty set.
- **FINDMIN(Q)**: Return the smallest element of Q (if any).
- **DELETEMIN(Q)**: Remove the smallest element in Q (if any).
- **INSERT(Q, x)**: Insert element x into Q, if it is not already there.
- **DECREASEPRIORITY(Q, x, y)**: Replace an element x ∈ Q with a new element y < x. (If y ≥ x, the operation fails.) The input includes a pointer directly to the node in Q containing x.
- **DELETE(Q, x)**: Delete the element x ∈ Q. The input is a pointer directly to the node in Q containing x.
- **MELD(Q_1, Q_2)**: Return a new priority queue containing all the elements of Q_1 and Q_2; this operation destroys Q_1 and Q_2. The elements of Q_1 and Q_2 could be arbitrarily intermixed; we do not assume, for example, that every element of Q_1 is smaller than every element of Q_2.

A simple way to implement such a data structure is to use a heap-ordered binary tree, where each node stores a priority, along with pointers to its parent and two children. **MELD** can be implemented using the following randomized algorithm. The input consists of pointers to the roots of the two trees.

```
MELD(Q_1, Q_2):
if Q_1 = NULL then return Q_2
if Q_2 = NULL then return Q_1
if priority(Q_1) > priority(Q_2)
    swap Q_1 ↔ Q_2
    with probability 1/2
    left(Q_1) ← MELD(left(Q_1), Q_2)
else
    right(Q_1) ← MELD(right(Q_1), Q_2)
return Q_1
```

(a) Prove that for any heap-ordered binary trees Q_1 and Q_2 (not just those constructed by the operations listed above), the expected running time of **MELD(Q_1, Q_2)** is O(log n), where n = |Q_1| + |Q_2|. [Hint: What is the expected length of a random root-to-leaf path in an n-node binary tree, where each left/right choice is made with equal probability?]

(b) Prove that **MELD(Q_1, Q_2)** runs in O(log n) time with high probability. [Hint: You can use Chernoff bounds, but the simpler identity \((\frac{c}{k})^k \leq (ce)^k\) is actually sufficient.]

(c) Show that each of the other meldable priority queue operations can be implemented with at most one call to **MELD** and O(1) additional time. (It follows that every operation takes O(log n) time with high probability.)
1. In this problem we consider yet another method for universal hashing. Suppose we are hashing from the universe \( U = \{0, 1, \ldots, 2^w - 1\} \) of \( w \)-bit strings to a hash table of size \( m = 2^\ell \); that is, we are hashing \( w \)-bit words into \( \ell \)-bit labels. To define our universal family of hash functions, we think of words and labels as boolean vectors of length \( w \) and \( \ell \), respectively, and we specify our hash function by choosing a random boolean matrix.

For any \( \ell \times w \) matrix \( M \) of 0s and 1s, define the hash function \( h_M : \{0, 1\}^w \rightarrow \{0, 1\}^\ell \) by the boolean matrix-vector product

\[
h_M(x) = Mx \mod 2 = \bigoplus_{i=1}^{w} M_i x_i = \bigoplus_{i: x_i = 1} M_i.
\]

where \( \oplus \) denotes bitwise exclusive-or (that is, addition mod 2), \( M_i \) denotes the \( i \)th column of \( M \), and \( x_i \) denotes the \( i \)th bit of \( x \). Let \( \mathcal{M} = \{ h_m \mid M \in \{0, 1\}^{w \times \ell} \} \) denote the set of all such random-matrix hash functions.

For example, suppose \( w = 8 \) and \( \ell = 4 \). Let \( M \) be the \( w \times \ell \) matrix

\[
M = \begin{pmatrix}
0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 1 & 1 & 0
\end{pmatrix}
\]

Then we can compute \( h_M(173) = 12 \) as follows:

\[
\begin{pmatrix}
0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 1 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
1 \\
0 \\
1 \\
1
\end{pmatrix}
= \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\bigoplus
\begin{pmatrix}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}
\bigoplus
\begin{pmatrix}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}
\bigoplus
\begin{pmatrix}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}
= \begin{pmatrix}
1 \\
1 \\
1 \\
0
\end{pmatrix}
\]

(a) Prove that \( \mathcal{M} \) is a universal family of hash functions.
(b) Prove that \( \mathcal{M} \) is not uniform.
(c) Now consider a modification of the previous scheme, where we specify a hash function by a random matrix \( M \in \{0, 1\}^{\ell \times w} \) and an independent random offset vector \( b \in \{0, 1\}^\ell \):

\[
h_{M,b}(x) = (Mx + b) \mod 2 = \bigoplus_{i=1}^{w} M_i x_i \oplus b
\]

Prove that the family \( \mathcal{M}^+ \) of all such functions is strongly universal (2-uniform).
(d) Prove that \( \mathcal{M}^+ \) is not 4-uniform.
(e) [Extra credit] Prove that \( \mathcal{M}^+ \) is actually 3-uniform.
2. **Reservoir sampling** is a method for choosing an item uniformly at random from an arbitrarily long stream of data.

```plaintext
GetOneSample(stream S):
    ℓ ← 0
    while S is not done
        x ← next item in S
        ℓ ← ℓ + 1
        if Random(ℓ) = 1
            sample ← x  (⋆)
    return sample
```

At the end of the algorithm, the variable ℓ stores the length of the input stream S; this number is not known to the algorithm in advance. If S is empty, the output of the algorithm is (correctly!) undefined.

In the following questions, consider an arbitrary non-empty input stream S, and let n denote the (unknown) length of S.

(a) Prove that the item returned by GetOneSample(S) is chosen uniformly at random from S.

(b) What is the exact expected number of times that GetOneSample(S) executes line (⋆)?

(c) What is the exact expected value of ℓ when GetOneSample(S) executes line (⋆) for the last time?

(d) What is the exact expected value of ℓ when either GetOneSample(S) executes line (⋆) for the second time (or the algorithm ends, whichever happens first)?

3. (This is a continuation of the previous problem.) Describe and analyze an algorithm that returns a subset of k distinct items chosen uniformly at random from a data stream of length at least k. Prove that your algorithm is correct. Your algorithm should have the following form:

```plaintext
GetSample(stream S, k):
    (Do some preprocessing)
    while S is not done
        x ← next item in S
        (Do something with x)
    return (something)
```

Both the time for each `(step)` in your algorithm and the space for any necessary data structures must be bounded by functions of k, not the length of the stream.

For example, if k = 2 and the stream contains the sequence ⟨♦, ♥, ♦, ♣⟩, your algorithm should return the subset {♦, ♣} with probability 1/6.
For the rest of the semester, you are welcome to use randomized algorithms in your homework and exam solutions, but please report your running times carefully. Without further qualification, “O(n^2) time” means O(n^2) time in the worst case. If you mean O(n^2) expected time, or O(n^2) time with high probability, you must write that explicitly.

1. Describe and analyze an even faster algorithm to find the length of the longest substring that appears both forward and backward in an input string T[1..n]. The forward and backward substrings must not overlap. Here are several examples:

   - Given the input string ALGORITHM, your algorithm should return 0.
   - Given the input string RECURSION, your algorithm should return 1, for the substring R.
   - Given the input string REDIVIDE, your algorithm should return 3, for the substring EDI. (Remember: The forward and backward substrings must not overlap!)

   Yes, this exact problem appeared in Midterm 1, so you should already know how to solve it in O(n^2) time. You can do better now.

2. Describe an efficient algorithm to determine if a given p × q rectangular pattern of bits appears anywhere in an m × n bitmap. (The pattern may be shifted horizontally and/or vertically, but it may not be rotated or reflected.)

   ![Pattern Example]

3. Describe an efficient algorithm to decide, given two rooted ordered trees P and T, whether P (the “pattern”) occurs anywhere as a subtree of T (the “text”).

   A rooted ordered tree is a rooted tree where every node has a (possibly empty) sequence of children. The order of these children matters: Two rooted ordered trees are identical if and only if their roots have the same number of children and, for each index i, the subtrees rooted at the ith children of both roots are identical.

   For purposes of this problem, a subtree of T contains some node and all its descendants in T, along with the edges of T between those vertices.
There is no data stored in the nodes, only pointers to children (if any). We want an algorithm that compares the *shapes* of the trees.

For example, in the figure below, $P$ appears exactly once as a subtree of $T$. 

![Diagram of trees](image-url)
1. Suppose you are given a directed graph $G = (V, E)$, two vertices $s$ and $t$, a capacity function $c : E \rightarrow \mathbb{R}^+$, and a second function $f : E \rightarrow \mathbb{R}$.

   (a) Describe and analyze an efficient algorithm to determine whether $f$ is a maximum $(s, t)$-flow in $G$.

   (b) Describe and analyze an efficient algorithm to determine whether $f$ is the unique maximum $(s, t)$-flow in $G$.

   Do not assume anything about the function $f$.

2. A new assistant professor, teaching maximum flows for the first time, suggested the following greedy modification to the generic Ford-Fulkerson augmenting path algorithm. Instead of maintaining a residual graph, the greedy algorithm just reduces the capacity of edges along the augmenting path. In particular, whenever the algorithm saturates an edge, that edge is simply removed from the graph.

   ```
   GREEDYFLOW(G, c, s, t):
   for every edge $e$ in $G$
       $f(e) \leftarrow 0$
   while there is a path from $s$ to $t$ in $G$
       $\pi \leftarrow$ arbitrary path from $s$ to $t$ in $G$
       $F \leftarrow$ minimum capacity of any edge in $\pi$
       for every edge $e$ in $\pi$
           $f(e) \leftarrow f(e) + F$
           if $c(e) = F$
               remove $e$ from $G$
           else
               $c(e) \leftarrow c(e) - F$
   return $f$
   ```

   (a) Prove that GREEDYFLOW does not always compute a maximum flow.

   (b) Prove that GREEDYFLOW is not even guaranteed to compute a good approximation to the maximum flow. That is, for any constant $\alpha > 1$, describe a flow network $G$ such that the value of the maximum flow is more than $\alpha$ times the value of the flow computed by GREEDYFLOW. [Hint: Assume that GREEDYFLOW chooses the worst possible path $\pi$ at each iteration.]

3. Suppose you are given a flow network $G$ with integer edge capacities and an integer maximum flow $f^*$ in $G$. Describe algorithms for the following operations:
(a) Increment$(e)$: Increase the capacity of edge $e$ by $1$ and update the maximum flow.

(b) Decrement$(e)$: Decrease the capacity of edge $e$ by $1$ and update the maximum flow.

Both algorithms should modify $f^*$ so that it is still a maximum flow, but more quickly than recomputing a maximum flow from scratch.
1. Suppose you are given an $n \times n$ checkerboard with some of the squares deleted. You have a large set of dominos, just the right size to cover two squares of the checkerboard. Describe and analyze an algorithm to determine whether one tile the board with dominos—each domino must cover exactly two undeleted squares, and each undeleted square must be covered by exactly one domino.

Your input is a boolean array $\text{Deleted}[1..n, 1..n]$, where $\text{Deleted}[i, j] = \text{True}$ if and only if the square in row $i$ and column $j$ has been deleted. Your output is a single boolean; you do not have to compute the actual placement of dominos. For example, for the board shown below, your algorithm should return $\text{True}$.

![Checkerboard with dominos]

2. A $k$-orientation of an undirected graph $G$ is an assignment of directions to the edges of $G$ so that every vertex of $G$ has at most $k$ incoming edges. For example, the figure below shows a 2-orientation of the graph of the cube.

![Graph with edge orientations]

Describe and analyze an algorithm that determines the smallest value of $k$ such that $G$ has a $k$-orientation, given the undirected graph $G$ input. Equivalently, your algorithm should find an orientation of the edges of $G$ such that the maximum in-degree is as small as possible. For example, given the cube graph as input, your algorithm should return 2.
3. Suppose you have a sequence of jobs, indexed from 1 to \( i \), that you want to run on two processors. For each index \( i \), running job \( i \) on processor 1 requires \( A[i] \) time, and running job \( i \) on processor 2 takes \( B[i] \) time. If two jobs \( i \) and \( j \) are assigned to different processors, there is an additional communication overhead of \( C[i, j] = C[j, i] \). Thus, if we assign the jobs in some subset \( S \subseteq \{1, 2, \ldots, n\} \) to processor 1, and we assign the remaining \( n - |S| \) jobs to processor 2, then the total execution time is

\[
\sum_{i \in S} A[i] + \sum_{i \not\in S} B[i] + \sum_{i \in S} \sum_{j \not\in S} C[i, j].
\]

Describe an algorithm to assign jobs to processors so that this total execution time is as small as possible. The input to your algorithm consists of the arrays \( A[1..n] \), \( B[1..n] \), and \( C[1..n, 1..n] \).
1. Every year, Professor Dumbledore assigns the instructors at Hogwarts to various faculty committees. There are $n$ faculty members and $c$ committees. Each committee member has submitted a list of their prices for serving on each committee; each price could be positive, negative, zero, or even infinite. For example, Professor Snape might declare that he would serve on the Student Recruiting Committee for 1000 Galleons, that he would pay 10000 Galleons to serve on the Defense Against the Dark Arts Course Revision Committee, and that he would not serve on the Muggle Relations committee for any price.

Conversely, Dumbledore knows how many instructors are needed for each committee, and he has compiled a list of instructors who would be suitable members for each committee. (For example: “Dark Arts Revision: 5 members, anyone but Snape.”) If Dumbledore assigns an instructor to a committee, he must pay that instructor’s price from the Hogwarts treasury.

Dumbledore needs to assign instructors to committees so that (1) each committee is full, (2) no instructor is assigned to more than three committees, (3) only suitable and willing instructors are assigned to each committee, and (4) the total cost of the assignment is as small as possible. Describe and analyze an efficient algorithm that either solves Dumbledore’s problem, or correctly reports that there is no valid assignment whose total cost is finite.

2. Let $G = (L \cup R, E)$ be a bipartite graph, whose left vertices $L$ are indexed $\ell_1, \ell_2, \ldots, \ell_n$ and whose right vertices are indexed $r_1, r_2, \ldots, r_n$. A matching $M$ in $G$ is non-crossing if, for every pair of edges $\ell_i r_j$ and $\ell_{i'} r_{j'}$ in $M$, we have $i < i'$ if and only if $j < j'$. If we place the vertices of $G$ in index order along two vertical lines and draw the edges of $G$ as straight line segments, a matching is non-crossing if its edges do not cross.

Describe and analyze an algorithm to find the smallest number of disjoint non-crossing matchings $M_1, M_2, \ldots, M_k$ that cover $G$, meaning each edge in $G$ lies in exactly one matching $M_i$.

[Hint: How would you compute the largest non-crossing matching in $G$?]
3. An *Euler tour* in a directed graph $G$ is a closed walk (starting and ending at the same vertex) that traverses every edge in $G$ exactly once; a directed graph is *Eulerian* if it has an Euler tour. Euler tours are named after Leonhard Euler, who was the first person to systematically study them, starting with the Bridges of Königsberg puzzle.

(a) Prove that a directed graph $G$ with no isolated vertices is Eulerian if and only if 
   (1) $G$ is strongly connected\(^1\) and (2) the in-degree of each vertex of $G$ is equal to its out-degree.\(^2\) [Hint: Flow decomposition!]

(b) Suppose that we are given a strongly connected directed graph $G$ with no isolated vertices that is not Eulerian, and we want to make $G$ Eulerian by duplicating existing edges. Each edge $e$ has a duplication cost $\mathcal{C}(e) \geq 0$. We are allowed to add as many copies of an existing edge $e$ as we like, but we must pay $\mathcal{C}(e)$ for each new copy. On the other hand, if $G$ does not already have an edge from vertex $u$ to vertex $v$, we cannot add a new edge from $u$ to $v$.

Describe an algorithm that computes the minimum-cost set of edge-duplications that makes $G$ Eulerian.

---

\(^1\)A directed graph $G$ is *strongly connected* if, for any two vertices $u$ and $v$, there is a directed walk in $G$ from $u$ to $v$ and a directed walk in $G$ from $v$ to $u$.

\(^2\)The *in-degree* of a vertex is its number of incoming edges; the *out-degree* is its number of outgoing edges.
This is the last homework assignment.

1. (a) Give a linear-programming formulation of the **bipartite maximum matching** problem. The input is a bipartite graph $G = (U \cup V; E)$, where $E \subseteq U \times V$; the output is the largest matching in $G$. Your linear program should have one variable for each edge. (Don't worry about the optimal solution being integral; it will be.)

(b) Now derive the dual of your linear program from part (a). What do the dual variables represent? What does the objective function represent? What problem is this!? 

2. Given points $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ in the plane, the **linear regression problem** asks for real numbers $a$ and $b$ such that the line $y = ax + b$ fits the points as closely as possible, according to some criterion. The most common fit criterion is minimizing the $L_2$ **error**, defined as follows:

$$
\epsilon_2(a, b) = \sum_{i=1}^{n} (y_i - ax_i - b)^2.
$$

But there are many other ways of measuring a line's fit to a set of points, some of which can be optimized via linear programming.

(a) The $L_1$ **error** (or **total absolute deviation**) of the line $y = ax + b$ is defined as follows:

$$
\epsilon_1(a, b) = \sum_{i=1}^{n} |y_i - ax_i - b|.
$$

Describe a linear program whose solution $(a, b)$ describes the line with minimum $L_1$ error.

(b) The $L_\infty$ **error** (or **maximum absolute deviation**) of the line $y = ax + b$ is defined as follows:

$$
\epsilon_\infty(a, b) = \max_{i=1}^{n} |y_i - ax_i - b|.
$$

Describe a linear program whose solution $(a, b)$ describes the line with minimum $L_\infty$ error.

---

1This measure is also known as **sum of squared residuals**, and the algorithm to compute the best fit is normally called (ordinary/linear) least squares.
3. Suppose you are given a rooted tree $T$, where every edge $e$ has two associated values: a non-negative length $\ell(e)$ and a cost $\$(e)$ (which could be positive, negative, or zero). Your goal is to add a non-negative stretch $s(e) \geq 0$ to the length of every edge $e$ in $T$, subject to the following conditions:

- Every root-to-leaf path $\pi$ in $T$ has the same total stretched length $\sum_{e \in \pi} (\ell(e) + s(e))$
- The total weighted stretch $\sum_e s(e) \cdot \$(\ell)$ is as small as possible.

(a) Describe an instance of this problem with no optimal solution.

(b) Give a concise linear programming formulation of this problem.

(c) Suppose that for the given tree $T$ and the given lengths and costs, the optimal solution to this problem is unique. Prove that in the optimal solution, $s(e) = 0$ for every edge on some longest root-to-leaf path in $T$. In other words, prove that the optimally stretched tree has the same depth as the input tree. [Hint: What is a basis in your linear program? When is a basis feasible?]

(d) Describe and analyze an algorithm that solves this problem in $O(n)$ time. Your algorithm should either compute the minimum total weighted stretch, or report correctly that the total weighted stretch can be made arbitrarily negative.
Write your answers in the separate answer booklet.
Please return this question sheet and your cheat sheet with your answers.

1. Suppose you want to build a house for your new dog Fluffy. Your friend, who happens to be a master carpenter, has given you a long plank of wood, helpfully marked at \( n - 1 \) places where you should cut the plank into the \( n \) shorter boards you actually need to build Fluffy’s doghouse. Since you don’t own a saw, and your friend is out of town, you drive your plank down to Woodchuck & Woodchuck Woodcutters. Woodchuck & Woodchuck charge more to cut longer planks, at a rate of \$1/foot. For example, they charge \$13 to cut a /one.Alt.oldstyle/three.oldstyle-foot-long plank, but only \$1.50 to cut a 1\&half-foot-long plank.

The total price for all \( n - 1 \) cuts depends on the order in which the cuts are made. For example, suppose your plank is /one.Alt.oldstyle/zero.oldstyle feet long, and the marks are /two.oldstyle feet, /three.oldstyle feet, and /six.oldstyle feet from the left end of the plank, as illustrated below.

- Making the cuts in order from left to right costs \$10 + \$8 + \$7 = \$25.
- Making the cuts in order from right to left costs \$10 + \$6 + \$3 = \$19.
- Making the middle cut first and then the other two costs \$10 + \$3 + \$7 = \$20.

Describe and analyze an efficient algorithm that returns the minimum cost to make all \( n - 1 \) marked cuts. The input to your algorithm is a sorted array \( M[1 .. n] \) of positive numbers, where \( M[i] \) is the distance from the left end of the plank to the \( i \)th cut mark, and \( M[n] \) is the total length of the plank.

2. Describe and analyze an efficient algorithm to find the length of the longest substring that appears both forward and backward in an input string \( T[1 .. n] \). The forward and backward substrings must not overlap. Here are several examples:

- Given the input string ALGORITHM, your algorithm should return 0.
- Given the input string RECURSION, your algorithm should return 1, for the substring R.
- Given the input string REDIVIDE, your algorithm should return 3, for the substring EDI. (Remember: The forward and backward substrings must not overlap!)
- Given the input string SOMANVDYNAMICPROGRAMS, your algorithm should return 4, for the substring MANY.
3. Suppose you are given a directed acyclic graph $G$ whose nodes represent jobs and whose edges represent precedence constraints; that is, each edge $u \rightarrow v$ indicates that job $u$ must be completed before job $v$ begins. Each node $v$ stores a non-negative number $v_{.duration}$ indicating the time required to execute job $v$. All jobs are executed in parallel; any job can start or end while any number of other jobs are executing, provided all the precedence constraints are satisfied. You’d like to get all these jobs done as quickly as possible.

Describe an algorithm to determine, for every vertex $v$ in $G$, the earliest time that job $v$ can begin, assuming no job starts before time 0 and no precedence constraints are violated. Your algorithm should record the answer for each vertex $v$ in a new field $v_{.earliest}$.

4. Oh, no! You have been appointed as the gift czar for Twitbook’s annual mandatory holiday party! The president of the company has declared that every Twitbook employee must receive one of three gifts: (1) an all-expenses-paid six-week vacation anywhere in the world, (2) an all-the-pancakes-you-can-eat breakfast for two at Jumping Jack Flash’s Flapjack Stack Shack, or (3) a burning paper bag full of dog poop. Company rules prohibit any employee from receiving the same gift as their direct supervisor. Any employee who receives a better gift than their direct supervisor will almost certainly be fired in a fit of jealousy. How do you choose gifts so that as few people as possible get fired?

More formally, suppose you are given a rooted tree $T$, representing the Twitbook company hierarchy. You need to label each vertex of $T$ with an integer 1, 2, or 3, such that every node has a different label from its parent. The cost of a labeling is the number of vertices that have smaller labels than their parents. Describe and analyze an algorithm to compute the minimum cost of any labeling of the given tree $T$.

For example, the following figure shows a tree labeling with cost 9; the nine bold nodes have smaller labels than their parents. (This is not the optimal labeling for this tree.)
1. A fugue (pronounced “fyoog”) is a highly structured style of musical composition that was popular in the 17th and 18th century. A fugue begins with an initial melody, called the subject, that is repeated several times throughout the piece.

Suppose we want to design an algorithm to detect the subject of a fugue. We will assume a very simple representation as an array $F[1..n]$ of integers, each representing a note in the fugue as the number of half-steps above or below middle C. (We are deliberately ignoring all other musical aspects of real-life fugues, like multiple voices, timing, rests, volume, and timbre.)

(a) Describe an algorithm to find the length of the longest prefix of $F$ that reappears later as a substring of $F$. The prefix and its later repetition must not overlap.

(b) In many fugues, later occurrences of the subject are transposed, meaning they are all shifted up or down by a common value. For example, the subject $(3, 1, 4, 1, 5, 9, 2)$ might be transposed down two half-steps to $(1, -1, 2, -1, 3, 7, 0)$.

Describe an algorithm to find the length of the longest prefix of $F$ that reappears later, possibly transposed, as a substring of $F$. Again, the prefix and its later repetition must not overlap.

For example, if the input array is

$3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 1, 4, 1, -1, 2, -1, 3, 7, 0, 1, 4, 2$

then your first algorithm should return 4, and your second algorithm should return 7.

2. A network of secret agents, numbered from 1 to $n$, have established the following randomized communication protocol. At a precise prearranged signal, each agent sends a message to exactly one of the other $n-1$ agents, chosen independently and uniformly at random.

As a running example, if $n = 3$, then agents 1 and 2 might both send their messages to agent 3, while agent 3 sends their message to agent 1.

(a) An agent is bored if no other agent sends them a message. (In the example scenario, agent 2 is bored.) Let $B(n)$ denote the expected number of bored agents; thus, $B(n)/n$ is the expected fraction of agents that are bored. Prove that $\lim_{n \to \infty} B(n)/n = 1/e$.

(b) An agent is swamped if more than one other agent sends them a message. (In the example scenario, agent 3 is swamped.) Let $S(n)$ denote the expected number of swamped agents. What is $\lim_{n \to \infty} S(n)/n$?

(c) Suppose each agent can accept at most one message. Thus, each swamped agent accepts one of the messages sent to them, chosen arbitrarily, and rejects the rest. (In the example scenario, exactly one message is rejected.) Let $R(n)$ denote the expected number of rejected messages. What is $\lim_{n \to \infty} R(n)/n$?

[Hint: The World’s Most Useful Limit is useful.]
3. Suppose we are given a directed flow network \( G = (V, E) \) where every edge has capacity 1, together with an integer \( k \). Describe and analyze an algorithm to identify \( k \) edges in \( G \) such that after deleting those \( k \) edges, the value of the maximum \( (s, t) \)-flow in the remaining subgraph is as small as possible. [Hint: First consider the case \( k = 1 \).]

4. Let \( S \) be an arbitrary set of \( n \) points in the plane with distinct \( x \)- and \( y \)-coordinates. A point \( p \) in \( S \) is **Pareto-optimal** if no other point in \( S \) is both above and to the right of \( p \). The **staircase** of \( S \) is the set of all points in the plane (not just in \( S \)) that have at least one point in \( S \) both above and to the right. All Pareto-optimal points lie on the boundary of the staircase.

![A set of points in the plane and its staircase (shaded), with Pareto-optimal points in black.](image)

(a) Describe and analyze an algorithm that identifies the Pareto-optimal points in \( S \) in \( O(n \log n) \) time.

(b) Suppose each point in \( S \) is chosen independently and uniformly at random from the unit square \([0, 1] \times [0, 1]\). What is the **exact** expected number of Pareto-optimal points in \( S \)? [Hint: What is the probability that the leftmost point in \( S \) is Pareto-optimal?]
Some Useful Inequalities

Suppose $X$ is the sum of random indicator variables $X_1, X_2, \ldots, X_n$. For each index $i$, let $p_i = \Pr[X_i = 1] = E[X_i]$, and let $\mu = \sum_i p_i = E[X]$.

- **Markov’s Inequality:**
  \[
  \Pr[X \geq x] \leq \frac{\mu}{x} \quad \text{for all } x > 0, \text{ and therefore } \ldots
  \]
  \[
  \Pr[X \geq (1 + \delta)\mu] \leq \frac{1}{1 + \delta} \quad \text{for all } \delta > 0
  \]

- **Chebyshev’s Inequality:** If the variables $X_i$ are pairwise independent, then...
  \[
  \Pr[(X - \mu)^2 \geq z] < \frac{\mu}{z} \quad \text{for all } z > 0, \text{ and therefore } \ldots
  \]
  \[
  \Pr[X \geq (1 + \delta)\mu] < \frac{1}{\delta^2 \mu} \quad \text{for all } \delta > 0
  \]
  \[
  \Pr[X \leq (1 - \delta)\mu] < \frac{1}{\delta^2 \mu} \quad \text{for all } \delta > 0
  \]

- **Higher Moment Inequalities:** If the variables $X_i$ are 2k-wise independent, then...
  \[
  \Pr[(X - \mu)^{2k} \geq z] = O\left(\frac{\mu^k}{z}\right) \quad \text{for all } z > 0, \text{ and therefore } \ldots
  \]
  \[
  \Pr[X \geq (1 + \delta)\mu] = O\left(\frac{1}{\delta^{2k} \mu^k}\right) \quad \text{for all } \delta > 0
  \]
  \[
  \Pr[X \leq (1 - \delta)\mu] = O\left(\frac{1}{\delta^{2k} \mu^k}\right) \quad \text{for all } \delta > 0
  \]

- **Chernoff’s Inequality:** If the variables $X_i$ are fully independent, then...
  \[
  \Pr[X \geq x] \leq e^{x - \mu} \left(\frac{\mu}{x}\right)^x \quad \text{for all } x \geq \mu, \text{ and therefore } \ldots
  \]
  \[
  \Pr[X \geq (1 + \delta)\mu] \leq e^{-\delta^2 \mu/3} \quad \text{for all } 0 < \delta < 1
  \]
  \[
  \Pr[X \leq (1 - \delta)\mu] \leq e^{-\delta^2 \mu/2} \quad \text{for all } 0 < \delta < 1
  \]

- The World’s Most Useful Inequality: $1 + x \leq e^x$ for all $x$
- The World’s Most Useful Limit: $\lim_{n \to \infty} (1 + \frac{a}{n})^n = e^a$ for any real number $a$.

Hashing Properties

$\mathcal{H}$ is a set of functions from some universe $\mathcal{U}$ to $[m] = \{0, 1, 2, \ldots, m - 1\}$.

- **Universal:** $\Pr_{h \in \mathcal{H}}[h(x) = h(y)] \leq \frac{1}{m}$ for all distinct items $x \neq y$
- **Near-universal:** $\Pr_{h \in \mathcal{H}}[h(x) = h(y)] \leq O\left(\frac{1}{m}\right)$ for all distinct items $x \neq y$
- **Strongly universal:** $\Pr_{h \in \mathcal{H}}[h(x) = i \text{ and } h(y) = j] = \frac{1}{m^2}$ for all distinct $x \neq y$ and all $i$ and $j$
- **2-uniform:** Same as strongly universal.
- **Ideal Random:** Fiction.
1. An $n \times n$ grid is an undirected graph with $n^2$ vertices organized into $n$ rows and $n$ columns. Every vertex is connected to the nearest vertex (if any) above, below, to the right, and to the left.

Suppose $m$ distinct vertices in the $n \times n$ grid are marked as terminals. The escape problem asks whether there are $m$ vertex-disjoint paths in the grid that connect the terminals to any $m$ distinct boundary vertices. Describe and analyze an efficient algorithm to solve the escape problem.

For example, given the input on the left below, your algorithm should return True.

2. A boolean expression tree is a binary tree where every internal node has exactly two children, every internal node is labeled with one of the boolean operations $\land$ (“and”) or $\lor$ (“or”), and every leaf is labeled either True or False.

(a) Describe and analyze an algorithm to evaluate the boolean expression described by a given boolean expression tree. For example, given the following boolean expression tree, which describes the boolean expression $(F \lor (T \land F)) \lor (T \land T)$, your algorithm should return True.

(b) Now suppose you are are given a boolean expression tree without the leaf labels. Describe and analyze an algorithm to count the number of different ways to label the leaves so that the resulting expression evaluates to True. For example, given the following labeled tree as input, your algorithm should return the integer 23.
3. A line of \( n \) passengers is waiting to board an airplane with \( n \) seats. Each passenger has an assigned seat. The very first passenger in line is an absent-minded tenured algorithms professor, who is distracted by planning his final exam and has forgotten his assigned seat. When the professor boards the plane, he chooses a seat uniformly at random and sits there.

The remaining \( n-1 \) passengers then board the plane one at a time. When each passenger boards, if the professor is sitting in their assigned seat, the professor apologetically chooses a different unoccupied seat, again uniformly at random, and sits there. The next passenger enters only after the previous passenger and the professor are seated. After all \( n \) passengers have boarded, everyone is in their assigned seat, including the professor.

(a) What is the exact probability that the professor never moves after choosing his first seat?

(b) What is the exact probability that the \( k \)th passenger to board the plane has to ask the professor to move?

(c) What is the exact expected number of times the professor changes seats?

(d) What is the exact probability that the professor moves exactly once?

4. Describe and analyze an algorithm for string matching with wildcards. A wildcard is a special symbol \( * \) that can appear in the pattern but not in the text, and which matches any substring in the text. The input to your algorithm consists of the pattern array \( P[1..m] \) and the text array \( T[1..n] \).

For example, given the pattern \( ABR*CAD*BRA \) and the text \( SCHWABR\ AIDS \ CADBRA \NCH \), your algorithm should return \( \text{true} \), because the pattern matches the substring \( ABR\ AIDS \ CADBRA \), with the first wildcard matching \( AIN \) and the second wildcard matching the empty string.

5. Suppose you are given an array \( A[1..n] \) of numbers, some of which are marked as icky. Describe and analyze an algorithm to compute the length of the longest increasing subsequence of \( A \) that includes at most \( k \) icky numbers. Your input consists of the array \( A[1..n] \) of numbers, another boolean array \( Icky[1..n] \), and the integer \( k \).

For example, suppose your input consists of the integer \( k = 2 \) and the following array (with icky numbers are indicated by stars):

\[
\begin{array}{cccccccccccc}
3 & 1^* & 4 & 1^* & 5 & 9 & 2^* & 6 & 5 & 3^* & 5 & 9 \quad 7 & 9^* & 3 & 2 & 3 & 8^* & 4 & 6^* & 2 & 6^*
\end{array}
\]

Then your algorithm should return the integer 5, which is the length of the increasing subsequence \( 4, 5^*, 6, 7, 9^* \).
6. *This problem is broken.* Everybody who took the exam received full credit for this problem. In fact, this problem is NP-hard, but not trivially so; the first NP-hardness proof appears to have been published in late 2019.

Suppose you are given a directed acyclic graph $G$ with a single source vertex $s$. Describe an algorithm to find the size of the largest **rooted binary subtree** of $G$. Your algorithm is looking for a subgraph $T$ of $G$ with as many vertices as possible, such that every vertex in $T$ except one (the root) has exactly one incoming edge in $T$, and every vertex in $T$ has at most two outgoing edges in $T$. Your algorithm should return the number of vertices in $T$, not the actual subgraph.

For example, given the dag on the left below as input, your algorithm should return the integer 5, which is the size of the rooted binary tree on the right.

![Diagram](image1)

6. *This is the question that we should have asked.*

Suppose you are given a directed acyclic graph $G$ with a single source vertex $s$. Describe an algorithm to determine whether $G$ contains a **spanning binary tree**. Your algorithm is looking for a spanning tree $T$ of $G$, such that every vertex in $G$ has at most two outgoing edges in $T$ and every vertex of $G$ except $s$ has exactly one incoming edge in $T$.

For example, given the dag on the left below as input, your algorithm should return **False**, because the largest binary subtree excludes one of the vertices.

![Diagram](image2)

---

6It’s pronounced “sñix”.
• Submit your written solutions electronically to Gradescope as PDF files. Submit a separate PDF file for each numbered problem. If you plan to typeset your solutions, please use the \LaTeX solution template on the course web site. If you must submit scanned handwritten solutions, please use a black pen on blank white paper and a high-quality scanner app (or an actual scanner).

• Groups of up to three people can submit joint solutions on Gradescope. Exactly one student in each group should upload the solution and indicate their other group members. All group members must be already registered on Gradescope.

• You are not required to sign up on Gradescope or Piazza with your real name and your illinois.edu email address; you may use any email address and alias of your choice. However, to give you credit for the homework, we need to know who Gradescope thinks you are. Please fill out the web form linked from the course web page.

• You may use any source at your disposal—paper, electronic, or human—but you must cite every source that you use, and you must write everything yourself in your own words. See the academic integrity policies on the course web site for more details.

• Written homework will be due every Tuesday at 8pm, except in weeks with exams. In addition, guided problems sets on PrairieLearn are due every Monday at 8pm; each student must do these individually. In particular, Guided Problem Set 1 is due Monday, August 30! Each Guided Problem Set has the same weight as one numbered homework problem.

See the course web site for more information.

If you have any questions about these policies, please don’t hesitate to ask in class, in office hours, or on Piazza.
1. Consider the following pair of mutually recursive functions on strings:

\[
\text{odds}(w) := \begin{cases} 
\epsilon & \text{if } w = \epsilon \\
 a \cdot \text{evens}(x) & \text{if } w = ax
\end{cases}
\]

\[
\text{evens}(w) := \begin{cases} 
\epsilon & \text{if } w = \epsilon \\
 \text{odds}(x) & \text{if } w = ax
\end{cases}
\]

For example, the following derivation shows that \( \text{evens}(\text{PARITY}) = \text{AIY} \):

\[
\text{evens}(\text{PARITY}) = \text{odds}(\text{ARITY}) \\
= \Lambda \cdot \text{evens}(\text{RITY}) \\
= \Lambda \cdot \text{odds}(\text{ITY}) \\
= \Lambda \cdot (\text{I} \cdot \text{evens}(\text{TY})) \\
= \Lambda \cdot (\text{I} \cdot \text{odds}(\text{Y})) \\
= \Lambda \cdot (\text{I} \cdot (\text{Y} \cdot \text{evens}(\epsilon))) \\
= \Lambda \cdot (\text{I} \cdot (\text{Y} \cdot \epsilon))) \\
= \text{AIY}
\]

A similar derivation implies that \( \text{odds}(\text{PARITY}) = \text{PRT} \).

(a) Give a self-contained recursive definition for the function \( \text{evens} \) that does not involve the function \( \text{odds} \).

(b) Prove the following identity for all strings \( w \) and \( x \):

\[
\text{evens}(w \cdot x) = \begin{cases} 
\text{evens}(w) \cdot \text{evens}(x) & \text{if } |w| \text{ is even}, \\
\text{evens}(w) \cdot \text{odds}(x) & \text{if } |w| \text{ is odd}.
\end{cases}
\]

You may assume without proof any result proved in class, in lab, or in the lecture notes. Otherwise, your proofs must be formal and self-contained, and they must invoke the formal definitions of concatenation \( \cdot \), length \(|\cdot|\), and the \( \text{evens} \) and \( \text{odds} \) functions. Do not appeal to intuition!
2. Consider the following recursive function that perfectly shuffles two strings together:

\[
\text{shuffle}(w, z) := \begin{cases} 
  z & \text{if } w = \varepsilon \\
  a \cdot \text{shuffle}(z, x) & \text{if } w = ax
\end{cases}
\]

For example, the following derivation shows that \(\text{shuffle}(\text{PRT}, \text{AIY}) = \text{PARY}\):

\[
\text{shuffle}(\text{PRT}, \text{AIY}) = P \cdot \text{shuffle}(\text{AIY}, \text{RT}) = P \cdot (A \cdot \text{shuffle}(\text{RT}, \text{Y})) = P \cdot (A \cdot (R \cdot \text{shuffle}(\text{IY}, T))) = P \cdot (A \cdot (R \cdot (I \cdot \text{shuffle}(T, Y)))) = P \cdot (A \cdot (R \cdot (I \cdot (T \cdot \text{shuffle}(Y, \varepsilon))))) = P \cdot (A \cdot (R \cdot (I \cdot (T \cdot (Y \cdot \varepsilon))))) = \text{PARY}
\]

(a) Prove that \(\text{shuffle}(\text{odds}(w), \text{evens}(w)) = w\) for every string \(w\).
(b) Prove \(\text{evens}(\text{shuffle}(w, z)) = z\) for all strings \(w\) and \(z\) such that \(|w| = |z|\).

You may assume without proof any result proved in class, in lab, or in the lecture notes. Otherwise, your proofs must be formal and self-contained, and they must invoke the formal definitions of concatenation \(\cdot\) and the functions \(\text{shuffle}, \text{evens}, \text{and odds}\). Do not appeal to intuition!
Rubrics

We will announce standard grading rubrics for common question types, which we will apply on all homeworks and exams. However, please remember that some homework and exam questions may fall outside the scope of these standard rubrics.

<table>
<thead>
<tr>
<th>Standard induction rubric. For problems worth 10 points:</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 1 for explicitly considering an arbitrary object.</td>
</tr>
<tr>
<td>+ 2 for a valid strong induction hypothesis</td>
</tr>
<tr>
<td>− Deadly Sin! No credit here for stating a weak induction hypothesis, unless the rest of the proof is absolutely perfect.</td>
</tr>
<tr>
<td>+ 2 for explicit exhaustive case analysis</td>
</tr>
<tr>
<td>− No credit here if the case analysis omits an infinite number of objects. (For example: all odd-length palindromes.)</td>
</tr>
<tr>
<td>− −1 if the case analysis omits an finite number of objects. (For example: the empty string.)</td>
</tr>
<tr>
<td>− −1 for making the reader infer the case conditions. Spell them out!</td>
</tr>
<tr>
<td>− No penalty if the cases overlap (for example: even length at least 2, odd length at least 3, and length at most 5.)</td>
</tr>
<tr>
<td>+ 1 for cases that do not invoke the inductive hypothesis (“base cases”)</td>
</tr>
<tr>
<td>− No credit here if one or more “base cases” are missing.</td>
</tr>
<tr>
<td>+ 2 for correctly applying the stated inductive hypothesis</td>
</tr>
<tr>
<td>− No credit here for applying a different inductive hypothesis, even if that different inductive hypothesis would be valid.</td>
</tr>
<tr>
<td>+ 2 for other details in cases that invoke the inductive hypothesis (“inductive cases”)</td>
</tr>
<tr>
<td>− No credit here if one or more “inductive cases” are missing.</td>
</tr>
</tbody>
</table>

For (sub)problems worth less than 10 points, scale and round to the nearest half-integer.

Solved Problems

Each homework assignment will include at least one fully solved problem, similar to the problems assigned in that homework, together with the grading rubric we would apply if this problem appeared on a homework or exam. These model solutions illustrate our recommendations for structure, presentation, and level of detail in your homework solutions. Of course, the actual content of your solutions won’t match the model solutions, because your problems are different!

4. For any string $w \in \{0, 1\}^*$, let $\text{swap}(w)$ denote the string obtained from $w$ by swapping the first and second symbols, the third and fourth symbols, and so on. For any string $w \in \{0, 1\}^*$, let $\text{swap}(w)$ denote the string obtained from $w$ by swapping the first and second symbols, the third and fourth symbols, and so on. For example:

$$\text{swap}(1011001101) = 01110010011.$$
The swap function can be formally defined as follows:

\[
\text{swap}(w) := \begin{cases} 
\epsilon & \text{if } w = \epsilon \\
 w & \text{if } w = 0 \text{ or } w = 1 \\
 ba \cdot \text{swap}(x) & \text{if } w = ax \text{ for some } a, b \in \{0, 1\} \text{ and } x \in \{0, 1\}^* 
\end{cases}
\]

(a) Prove that \(|\text{swap}(w)| = |w|\) for every string \(w\).

**Solution:** Let \(w\) be an arbitrary string.

Assume \(|\text{swap}(x)| = |x|\) for every string \(x\) that is shorter than \(w\).

There are three cases to consider (mirroring the definition of \(\text{swap}\)):

- If \(w = \epsilon\), then

  \[|\text{swap}(w)| = |\text{swap}(\epsilon)| = |\epsilon| = |w|\]

- If \(w = 0 \text{ or } w = 1\), then

  \[|\text{swap}(w)| = |w|\]

- Finally, if \(w = ax\) for some \(a, b \in \{0, 1\}\) and \(x \in \{0, 1\}^*\), then

  \[|\text{swap}(w)| = |\text{swap}(ax)| = |ba \cdot \text{swap}(x)| = |ba| + |\text{swap}(x)| = |ba| + |x| = 2 + |x| = |ab| + |x| = |ab \cdot x| = |abx| = |w|\]

In all cases, we conclude that \(|\text{swap}(w)| = |w|\).

**Rubric:** 5 points: Standard induction rubric (scaled). This is more detail than necessary for full credit.
(b) Prove that \( \text{swap}(\text{swap}(w)) = w \) for every string \( w \).

**Solution:** Let \( w \) be an arbitrary string.
Assume \( \text{swap}(\text{swap}(x)) = x \) for every string \( x \) that is shorter than \( w \).
There are three cases to consider (mirroring the definition of \( \text{swap} \)):

- If \( w = \epsilon \), then
  \[
  \text{swap}(\text{swap}(w)) = \text{swap}(\text{swap}(\epsilon)) = \text{swap}(\epsilon) = \epsilon = w
  \]
  because \( w = \epsilon \) by definition of \( \text{swap} \).

- If \( w = 0 \) or \( w = 1 \), then
  \[
  \text{swap}(\text{swap}(w)) = \text{swap}(w) = w
  \]
  by definition of \( \text{swap} \).

- Finally, if \( w = abx \) for some \( a, b \in \{0, 1\} \) and \( x \in \{0, 1\}^* \), then
  \[
  \text{swap}(\text{swap}(w)) = \text{swap}(\text{swap}(abx)) = \text{swap}(ba \cdot \text{swap}(x)) = \text{swap}(ba \cdot z) = \text{swap}(ba \cdot x) = abx = w
  \]
  because \( w = abx \) by the induction hypothesis.

In all cases, we conclude that \( \text{swap}(\text{swap}(w)) = w \). ■

**Rubric:** 5 points: Standard induction rubric (scaled). This is more detail than necessary for full credit.
5. The reversal $w^R$ of a string $w$ is defined recursively as follows:

$$w^R := \begin{cases} 
\varepsilon & \text{if } w = \varepsilon \\
x^R \cdot a & \text{if } w = a \cdot x
\end{cases}$$

A palindrome is any string that is equal to its reversal, like AMANAPLANACANALPANAMA, RACECAR, POOP, I, and the empty string.

(a) Give a recursive definition of a palindrome over the alphabet $\Sigma$.

Solution: A string $w \in \Sigma^*$ is a palindrome if and only if either

- $w = \varepsilon$, or
- $w = a$ for some symbol $a \in \Sigma$, or
- $w = axa$ for some symbol $a \in \Sigma$ and some palindrome $x \in \Sigma^*$.

Rubric: 2 points = $\frac{1}{2}$ for each base case + 1 for the recursive case. No credit for the rest of the problem unless this part is correct.

(b) Prove $w = w^R$ for every palindrome $w$ (according to your recursive definition).

You may assume the following facts about all strings $x$, $y$, and $z$:

- Reversal reversal: $(x^R)^R = x$
- Concatenation reversal: $(x \cdot y)^R = y^R \cdot x^R$
- Right cancellation: If $x \cdot z = y \cdot z$, then $x = y$.

Solution: Let $w$ be an arbitrary palindrome.

Assume that $x = x^R$ for every palindrome $x$ such that $|x| < |w|$.

There are three cases to consider (mirroring the definition of “palindrome”):

- If $w = \varepsilon$, then $w^R = \varepsilon$ by definition, so $w = w^R$.
- If $w = a$ for some symbol $a \in \Sigma$, then $w^R = a$ by definition, so $w = w^R$.
- Finally, if $w = axa$ for some symbol $a \in \Sigma$ and some palindrome $x \in \Sigma$, then

$$w^R = (a \cdot x \cdot a)^R$$
$$= (x \cdot a)^R \cdot a \quad \text{by definition of reversal}$$
$$= a^R \cdot x^R \cdot a \quad \text{by concatenation reversal}$$
$$= a \cdot x^R \cdot a \quad \text{by definition of reversal}$$
$$= a \cdot x^R \cdot a \quad \text{by the inductive hypothesis}$$
$$= w \quad \text{by assumption}$$

In all three cases, we conclude that $w = w^R$.

Rubric: 4 points: standard induction rubric (scaled)
(c) Prove that every string $w$ such that $w = w^R$ is a palindrome (according to your recursive definition).

Again, you may assume the following facts about all strings $x$, $y$, and $z$:

- Reversal reversal: $(x^R)^R = x$
- Concatenation reversal: $(x \cdot y)^R = y^R \cdot x^R$
- Right cancellation: If $x \cdot z = y \cdot z$, then $x = y$.

**Solution:** Let $w$ be an arbitrary string such that $w = w^R$.
Assume that every string $x$ such that $|x| < |w|$ and $x = x^R$ is a palindrome.
There are three cases to consider (mirroring the definition of “palindrome”):

- If $w = \epsilon$, then $w$ is a palindrome by definition.
- If $w = a$ for some symbol $a \in \Sigma$, then $w$ is a palindrome by definition.
- Otherwise, we have $w = ax$ for some symbol $a$ and some non-empty string $x$.
  The definition of reversal implies that $w^R = (ax)^R = x^R a$.
  Because $x$ is non-empty, its reversal $x^R$ is also non-empty.
  Thus, $x^R = by$ for some symbol $b$ and some string $y$.
  It follows that $w^R = bya$, and therefore $w = (w^R)^R = (bya)^R = ay^R b$.

  [At this point, we need to prove that $a = b$ and that $y$ is a palindrome.]

Our assumption that $w = w^R$ implies that $bya = ay^R b$.
The recursive definition of string equality immediately implies $a = b$.

Because $a = b$, we have $w = ay^R a$ and $w^R = aya$.
The recursive definition of string equality implies $y^R a = ya$.
Right cancellation implies that $y^R = y$.
The inductive hypothesis now implies that $y$ is a palindrome.

We conclude that $w$ is a palindrome by definition.
In all three cases, we conclude that $w$ is a palindrome. □

**Rubric:** 4 points: standard induction rubric (scaled).
CS/ECE 374 A  •  Fall 2021

Homework 2  •

Due Tuesday, September 7, 2021 at 8pm

• Submit your written solutions electronically to Gradescope as PDF files. Submit a separate PDF file for each numbered problem. If you plan to typeset your solutions, please use the \LaTeX\ solution template on the course web site. If you must submit scanned handwritten solutions, please use a black pen on blank white paper and a high-quality scanner app (or an actual scanner).

• You may use any source at your disposal—paper, electronic, or human—but you must cite every source that you use, and you must write everything yourself in your own words. See the academic integrity policies on the course web site for more details.

1. Let $L$ be the set of all strings $w$ in $\{A,B\}^*$ for which $\#(ABBA, w) \geq 2$. Here $\#(x, w)$ denotes the number of occurrences of the substring $x$ in the string $w$.

   (a) Give a regular expression for $L$, and briefly argue why your expression is correct.

   (b) Describe a DFA over the alphabet $\Sigma = \{A,B\}$ that accepts the language $L$.

      You may either draw the DFA or describe it formally, but the states $Q$, the start state $s$, the accepting states $A$, and the transition function $\delta$ must be clearly specified. (See the standard DFA rubric for more details.)

      Argue that your DFA is correct by explaining what each state in your DFA means. Drawings or formal descriptions without English explanations will be heavily penalized, even if they are perfectly correct.

      [Hint: The shortest string in $L$ has length 7.]
2. Let \( L \) denote the set of all strings \( w \in \{0, 1\}^* \) that satisfy at most two of the following conditions:

- The number of times the substring \( 01 \) appears in \( w \) is not divisible by 3. \(^1\)
- The length of \( w \) is even.
- The binary value of \( w \) equals \( 2 \pmod{3} \).

For example: The string \( 0101 \) satisfies all three conditions, so \( 0101 \) is not in \( L \), and the empty string \( \epsilon \) satisfies only the second condition, so \( \epsilon \in L \). (\( 01 \) appears in \( \epsilon \) zero times, and the binary value of \( \epsilon \) is 0, because what else could it be?)

\textbf{Formally} describe a DFA with input alphabet \( \Sigma = \{0, 1\} \) that accepts the language \( L \), by explicitly describing the states \( Q \), the start state \( s \), the accepting states \( A \), and the transition function \( \delta \). Do not attempt to draw your DFA; the smallest DFA for this language has 36 states, which is far too many for a drawing to be understandable.

Argue that your machine is correct by explaining what each state in your DFA means. Formal descriptions without English explanations will be heavily penalized, even if they are perfectly correct. (See the standard DFA rubric for more details.)

\textit{This is an exercise in clear communication.} We are not only asking you to design a \textit{correct} DFA. We are also asking you to clearly, precisely, and convincingly explain your DFA to another human being who understands DFAs but has not thought about this particular problem. Excessive formality and excessive brevity could be as problematic as imprecision and handwaving.

\(^1\)Recall that \( a \) is divisible by \( b \) if and only if \( a \equiv 0 \pmod{b} \).
Standard regular expression rubric. For problems worth 10 points:

- 2 points for a syntactically correct regular expression.
- **Homework only:** 4 points for a brief English explanation of your regular expression. This is how you argue that your regular expression is correct.
  - For longer expressions, you should explain each of the major components of your expression, and separately explain how those components fit together.
  - We do not want a transcription; don’t just translate the regular-expression notation into English.
- 4 points for correctness. (8 points on exams, with all penalties doubled)
  - $-1$ for a single mistake: one typo, excluding exactly one string in the target language, or including exactly one string not in the target language.
  - $-2$ for incorrectly including/excluding more than one but a finite number of strings.
  - $-4$ for incorrectly including/excluding an infinite number of strings.
- Regular expressions that are more complex than necessary may be penalized. Regular expressions that are *significantly* too complex may get no credit at all. On the other hand, minimal regular expressions are not required for full credit.
**Standard DFA design rubric.** For problems worth 10 points:

- **2 points for an unambiguous description** of a DFA, including the states set $Q$, the start state $s$, the accepting states $A$, and the transition function $\delta$.

- **Drawings:**
  - Use an arrow from nowhere to indicate $s$.
  - Use doubled circles to indicate accepting states $A$.
  - If $A = \emptyset$, you must say so explicitly.
  - If your drawing omits a junk/trash/reject state, you must say so explicitly.
  - **Draw neatly!** If we can’t read your solution, we can’t give you credit for it.

- **Text descriptions:** You can describe the transition function either using a 2d array, using mathematical notation, or using an algorithm. But you must still give an explicit description of the states $Q$, the start state $s$, and the accepting states $A$.

- **Product constructions:** You must give a complete description of each the DFAs you are combining (as either drawings, text, or recursive products), together with the accepting states of the product DFA.

- **Homework only:** 4 points for briefly explaining the purpose of each state in English. This is how you argue that your DFA is correct.
  - In particular, each state must have a mnemonic name.
  - For product constructions, explaining the states in the factor DFAs is both necessary and sufficient.
  - Yes, we mean it: A perfectly correct drawing of a perfectly correct DFA with no state explanation is worth at most 6 points.

- **4 points for correctness.** (8 points on exams, with all penalties doubled)
  - $-1$ for a single mistake: a single misdirected transition, a single missing or extra accepting state, rejecting exactly one string that should be accepted, or accepting exactly one string that should be accepted.
  - $-2$ for incorrectly accepting/rejecting more than one but a finite number of strings.
  - $-4$ for incorrectly accepting/rejecting an infinite number of strings.

- DFAs that are more complex than necessary may be penalized. DFAs that are significantly more complex than necessary may get no credit at all. On the other hand, minimal DFAs are not required for full credit, unless the problem explicitly asks for them.

- **Half credit for describing an NFA** when the problem asks for a DFA.
Solved problem

3. **C comments** are the set of strings over alphabet $\Sigma = \{\ast, /, A, \diamond, \downarrow\}$ that form a proper comment in the C program language and its descendants, like C++ and Java. Here $\downarrow$ represents the newline character, $\diamond$ represents any other whitespace character (like the space and tab characters), and $A$ represents any non-whitespace character other than $\ast$ or $/$.² There are two types of C comments:

- Line comments: Strings of the form // ··· $\downarrow$
- Block comments: Strings of the form /* ··· */

Following the C99 standard, we explicitly disallow **nesting** comments of the same type. A line comment starts with // and ends at the first $\downarrow$ after the opening //. A block comment starts with /* and ends at the the first */ completely after the opening /*; in particular, every block comment has at least two $\ast$s. For example, each of the following strings is a valid C comment:

```
/***/ //\diamond\downarrow /*///\diamond\diamond */
```

On the other hand, **none** of the following strings is a valid C comment:

```
/* */ //\diamond\diamond\downarrow /* */
```

(Questions about C comments start on the next page.)

²The actual C commenting syntax is considerably more complex than described here, because of character and string literals.

- The opening /* or // of a comment must not be inside a string literal ("····") or a (multi-)character literal (· · ·).
- The opening double-quote of a string literal must not be inside a character literal ("·") or a comment.
- The closing double-quote of a string literal must not be escaped (\")
- The opening single-quote of a character literal must not be inside a string literal (·····`) or a comment.
- The closing single-quote of a character literal must not be escaped (`)
- A backslash escapes the next symbol if and only if it is not itself escaped (\") or inside a comment.

For example, the string "/*\"*/\"*/\"*/\"*/\"*/\"*/\"*/ is a valid string literal (representing the 5-character string /*"*/), which is itself a valid block comment) followed immediately by a valid block comment.

**For this homework question, pretend that the characters \', " , and \ do not exist.**

Commenting in C++ is even more complicated, thanks to the addition of *raw* string literals. Don't ask.

Some C and C++ compilers do support nested block comments, in violation of the language specification. A few other languages, like OCaml, explicitly allow nesting block comments.
(a) Describe a regular expression for the set of all C comments.

**Solution:**

```plaintext
/\((/ + * + A + .)(.*) + /\((/ + A + . + \ )(\text{block comment}))\)*. */\)
```

The first subexpression matches all line comments, and the second subexpression matches all block comments. Within a block comment, we can freely use any symbol other than *, but any run of *s must be followed by a character in (A + . + ) or by the closing slash of the comment.

**Rubric:** Standard regular expression rubric. This is not the only correct solution.

(b) Describe a regular expression for the set of all strings composed entirely of blanks (.), newlines (\), and C comments.

**Solution:**

```plaintext
(\ + \ + /\((/ + * + A + .)(.*) + /\((/ + A + . + \ )(\text{block comment}))\)*. */\)*)
```

This regular expression has the form ([whitespace] + [comment])*, where [whitespace] is the regular expression \ + \ and [comment] is the regular expression from part (a).

**Rubric:** Standard regular expression rubric. This is not the only correct solution.
(c) Describe a DFA that accepts the set of all C comments.

**Solution:** The following eight-state DFA recognizes the language of C comments. All missing transitions lead to a hidden reject state.

The states are labeled mnemonically as follows:

- **s** — We have not read anything.
- **/** — We just read the initial `/`.
- **//** — We are reading a line comment.
- **L** — We have just read a complete line comment.
- **/*** — We are reading a block comment, and we did not just read a `*` after the opening `/*`.
- **/** — We are reading a block comment, and we just read a `*` after the opening `/*`.
- **B** — We have just read a complete block comment.

**Rubric:** Standard DFA design rubric. This is not the only correct solution, or even the simplest correct solution. (We don’t need two distinct accepting states.)
(d) Describe a DFA that accepts the set of all strings composed entirely of blanks ($\diamond$), newlines ($\dagger$), and C comments.

**Solution:** By merging the accepting states of the previous DFA with the start state and adding white-space transitions at the start state, we obtain the following six-state DFA. Again, all missing transitions lead to a hidden reject state.

The states are labeled mnemonically as follows:

- $s$ — We are between comments.
- $/$ — We just read the initial $/$ of a comment.
- $$ — We are reading a line comment.
- $$ — We are reading a block comment, and we did not just read a $*$ after the opening $/$.
- $$ — We are reading a block comment, and we just read a $*$ after the opening $/$.

**Rubric:** Standard DFA design rubric. This is not the only correct solution, but it is the simplest correct solution.
1. Prove that the following languages are not regular.

(a) \( \{0^m1^n \mid m \text{ and } n \text{ are relatively prime} \} \)
(b) \( \{w \in (0+1)^* \mid 10^n1^n \text{ for } n > 0 \text{ is a suffix of } w \} \)
(c) The set of all palindromes in \((0+1)^*\) whose length is divisible by 3.

2. For each of the following languages over the alphabet \( \Sigma = \{0,1\} \), either prove that the language is regular (by constructing an appropriate DFA, NFA, or regular expression) or prove that the language is not regular (by constructing an infinite fooling set). Recall that \( \Sigma^+ \) denotes the set of all nonempty strings over \( \Sigma \). Watch those parentheses!

(a) \( \{0^a1^w1^c \mid w \in \Sigma^+, (a \leq |w| + c) \text{ and } (|w| \leq a + c \text{ or } c \leq a + |w|) \} \)
(b) \( \{0^aw0^a \mid w \in \Sigma^+, a > 0, |w| \geq 0 \} \)
(c) \( \{xww^{R}y \mid w, x, y \in \Sigma^+ \} \)
(d) \( \{ww^{R}xy \mid w, x, y \in \Sigma^+ \} \)

[Hint: Exactly two of these languages are regular.]
Solved problem

4. For each of the following languages, either prove that the language is regular (by constructing an appropriate DFA, NFA, or regular expression) or prove that the language is not regular (by constructing an infinite fooling set).

Recall that a palindrome is a string that equals its own reversal: \( w = w^R \). Every string of length 0 or 1 is a palindrome.

(a) Strings in \((\emptyset + 1)^*\) in which no prefix of length at least 2 is a palindrome.

Solution: Regular: \( \epsilon + 01^* + 10^* \). Call this language \( L_a \).

Let \( w \) be an arbitrary non-empty string in \((\emptyset + 1)^*\). Without loss of generality, assume \( w = \emptyset x \) for some string \( x \). There are two cases to consider.

- If \( x \) contains a \( \emptyset \), then we can write \( w = 01^n \emptyset y \) for some integer \( n \) and some string \( y \). The prefix \( 01^n \emptyset \) is a palindrome of length at least 2. Thus, \( w \notin L_a \).
- Otherwise, \( x \in 1^* \). Every non-empty prefix of \( w \) is equal to \( 01^n \) for some non-negative integer \( n \leq |x| \). Every palindrome that starts with \( \emptyset \) also ends with \( \emptyset \), so the only palindrome prefixes of \( w \) are \( \epsilon \) and \( \emptyset \), both of which have length less than 2. Thus, \( w \in L_a \).

We conclude that \( \emptyset x \in L_a \) if and only if \( x \in 1^* \). A similar argument implies that \( 1x \in L_a \) if and only if \( x \in \emptyset^* \). Finally, trivially, \( \epsilon \in L_a \). ■

Rubric: 2½ points = ½ for “regular” + 1 for regular expression + 1 for justification. This is more detail than necessary for full credit.

(b) Strings in \((\emptyset + 1 + 2)^*\) in which no prefix of length at least 2 is a palindrome.

Solution: Not regular. Call this language \( L_b \).

I claim that the infinite language \( F = (012)^+ \) is a fooling set for \( L_b \).

Let \( x \) and \( y \) be arbitrary distinct strings in \( F \).

Then \( x = (012)^i \) and \( y = (012)^j \) for some positive integers \( i \neq j \).

Without loss of generality, assume \( i < j \).

Let \( z \) be the suffix \((210)^l\).

- \( xz = (012)^i(210)^l \) is a palindrome of length \( 6i \geq 2 \), so \( xz \notin L_b \).
- \( yz = (012)^j(210)^l \) has no palindrome prefixes except \( \epsilon \) and \( \emptyset \), because \( i < j \), so \( yz \in L_b \).

We conclude that \( F \) is a fooling set for \( L_b \), as claimed.

Because \( F \) is infinite, \( L_b \) cannot be regular. ■

Rubric: 2½ points = ½ for “not regular” + 2 for fooling set proof (standard rubric, scaled).
(c) Strings in \((0 + 1)^*\) in which no prefix of length at least 3 is a palindrome.

**Solution:** Not regular. Call this language \(L_c\).

I claim that the infinite language \(F = (001101)^+\) is a fooling set for \(L_c\).

Let \(x\) and \(y\) be arbitrary distinct strings in \(F\).

Then \(x = (001101)^i\) and \(y = (001101)^j\) for some positive integers \(i \neq j\).

Without loss of generality, assume \(i < j\).

Let \(z\) be the suffix \((101100)^i\).

- \(xz = (001101)^i(101100)^i\) is a palindrome of length \(12i \geq 2\), so \(xz \notin L_b\).
- \(yz = (001101)^i(101100)^i\) has no palindrome prefixes except \(\epsilon\) and \(0\), because \(i < j\), so \(yz \in L_b\).

We conclude that \(F\) is a fooling set for \(L_c\), as claimed.

Because \(F\) is infinite, \(L_c\) cannot be regular. □

**Rubric:** 2½ points = ½ for “not regular” + 2 for fooling set proof (standard rubric, scaled).

(d) Strings in \((0 + 1)^*\) in which no substring of length at least 3 is a palindrome.

**Solution:** Regular. Call this language \(L_d\).

Every palindrome of length at least 3 contains a palindrome substring of length 3 or 4. Thus, the complement language \(\overline{L_d}\) is described by the regular expression

\[
(0 + 1)^*(000 + 010 + 101 + 111 + 0110 + 1001)(0 + 1)^*
\]

Thus, \(\overline{L_d}\) is regular, so its complement \(L_d\) is also regular. □

**Solution:** Regular. Call this language \(L_d\).

In fact, \(L_d\) is finite! Appending either \(0\) or \(1\) to any of the underlined strings creates a palindrome suffix of length 3 or 4.

\[
\epsilon + 0 + 1 + 00 + 01 + 10 + 11 + 001 + 011 + 100 + 110 + 0011 + 1100
\]

**Rubric:** 2½ points = ½ for “regular” + 2 for proof:
- 1 for expression for \(\overline{L_d}\) + 1 for applying closure
- 1 for regular expression + 1 for justification
Standard fooling set rubric. For problems worth 5 points:

- 2 points for the fooling set:
  - + 1 for explicitly describing the proposed fooling set $F$.
  - + 1 if the proposed set $F$ is actually a fooling set for the target language.
    - No credit for the proof if the proposed set is not a fooling set.
    - No credit for the problem if the proposed set is finite.

- 3 points for the proof:
  - The proof must correctly consider arbitrary strings $x, y \in F$.
    - No credit for the proof unless both $x$ and $y$ are always in $F$.
    - No credit for the proof unless $x$ and $y$ can be any strings in $F$.
  - + 1 for correctly describing a suffix $z$ that distinguishes $x$ and $y$.
  - + 1 for proving either $xz \in L$ or $yz \in L$.
  - + 1 for proving either $yz \not\in L$ or $xz \not\in L$, respectively.

As usual, scale partial credit (rounded to nearest ½) for problems worth fewer points.
1. For each of the following regular expressions, describe or draw two finite-state machines:

   • An NFA that accepts the same language, constructed from the given regular expression using Thompson’s algorithm (described in class and in the notes).

   • An equivalent DFA, constructed from your NFA using the incremental subset algorithm (described in class and in the notes). For each state in your DFA, identify the corresponding subset of states in your NFA. Your DFA should have no unreachable states.

   (a) \((0 + 11)^*(00 + 1)^*\)

   (b) \(((0^* + 1)^* + 0)^* + 1)^*\)

   (see next page for Question 2)
2. Let \( L \) be any regular language over the alphabet \( \Sigma = \{0, 1\} \). Prove that the following languages are also regular.

(a) \( \text{thirds}(L) := \{ \text{thirds}(w) | w \in L \} \),
where \( \text{thirds}(w) \) is the subsequence of \( w \) containing every third symbol.
For example, \( \text{thirds}(01100110) = 100 \).
(notice, we picked the third, sixth, and ninth symbols in \( 01100110 \))

(b) \( \text{thirds}^{-1}(L) := \{ w \in \Sigma^* | \text{thirds}(w) \in L \} \).

\[\text{Standard language transformation rubric.} \quad \text{For problems worth 10 points:}\]

\[+ \, 2 \text{ for a formal, complete, and unambiguous description of the output automaton, including the states, the start state, the accepting states, and the transition function, as functions of an arbitrary input DFA. The description must state whether the output automaton is a DFA, an NFA without \( \epsilon \)-transitions, or an NFA with \( \epsilon \)-transitions.}\]

- No points for the rest of the problem if this is missing.

\[+ \, 2 \text{ for a brief English explanation of the output automaton. We explicitly do not want a formal proof of correctness, or an English transcription, but a few sentences explaining how your machine works and justifying its correctness. What is the overall idea? What do the states represent? What is the transition function doing? Why these accepting states?}\]

- **Deadly Sin:** No points for the rest of the problem if this is missing.

\[+ \, 6 \text{ for correctness}\]

- \[+ \, 3 \text{ for accepting all strings in the target language}\]
- \[+ \, 3 \text{ for accepting only strings in the target language}\]
- \[-1 \text{ for a single mistake in the formal description (for example a typo)}\]
- \[\text{Double-check correctness when the input language is } \varnothing, \{ \epsilon \}, \text{ or } \theta^*, \text{ or } \Sigma^*.\]
Solved problem

3. (a) Fix an arbitrary regular language $L$. Prove that the language $\text{half}(L) := \{w \mid ww \in L\}$ is also regular.

**Solution:** Let $M = (\Sigma, Q, s, A, \delta)$ be an arbitrary DFA that accepts $L$. We define a new NFA $M' = (\Sigma, Q', s', A', \delta')$ with $\epsilon$-transitions that accepts $\text{half}(L)$, as follows:

$$Q' = (Q \times Q \times Q) \cup \{s'\}$$

$s'$ is an explicit state in $Q'$

$$A' = \{(h, h, q) \mid h \in Q \text{ and } q \in A\}$$

$$\delta'(s', \epsilon) = \{(s, h, h) \mid h \in Q\}$$

$$\delta'(s', a) = \emptyset$$

$$\delta'((p, h, q), \epsilon) = \emptyset$$

$$\delta'((p, h, q), a) = \{\delta(p, a), h, \delta(q, a)\}$$

$M'$ reads its input string $w$ and simulates $M$ reading the input string $ww$. Specifically, $M'$ simultaneously simulates two copies of $M$, one reading the left half of $ww$ starting at the usual start state $s$, and the other reading the right half of $ww$ starting at some intermediate state $h$.

- The new start state $s'$ non-deterministically guesses the “halfway” state $h = \delta^*(s, w)$ without reading any input; this is the only non-determinism in $M'$.
- State $(p, h, q)$ means the following:
  - The left copy of $M$ (which started at state $s$) is now in state $p$.
  - The initial guess for the halfway state is $h$.
  - The right copy of $M$ (which started at state $h$) is now in state $q$.
- $M'$ accepts if and only if the left copy of $M$ ends at state $h$ (so the initial non-deterministic guess $h = \delta^*(s, w)$ was correct) and the right copy of $M$ ends in an accepting state.

**Solution (smartass):** A complete solution is given in the lecture notes.

**Rubric:** 5 points: standard language transformation rubric (scaled). Yes, the smartass solution would be worth full credit.
(b) Describe a regular language \( L \) such that the language \( \text{double}(L) := \{ww \mid w \in L\} \) is not regular. Prove your answer is correct.

Solution: Consider the regular language \( L = 0^*1 \).

Expanding the regular expression lets us rewrite \( L = \{0^n1 \mid n \geq 0\} \). It follows that \( \text{double}(L) = \{0^n10^n1 \mid n \geq 0\} \). I claim that this language is not regular.

Let \( x \) and \( y \) be arbitrary distinct strings in \( L \).
Then \( x = 0^i1 \) and \( y = 0^j1 \) for some integers \( i \neq j \).

Then \( x \) is a distinguishing suffix of these two strings, because
- \( xx \in \text{double}(L) \) by definition, but
- \( yx = 0^i10^j1 \notin \text{double}(L) \) because \( i \neq j \).

We conclude that \( L \) is a fooling set for \( \text{double}(L) \).
Because \( L \) is infinite, \( \text{double}(L) \) cannot be regular. \( \blacksquare \)

Solution: Consider the regular language \( L = \Sigma^* = (0 + 1)^* \).

I claim that the language \( \text{double}(\Sigma^*) = \{ww \mid w \in \Sigma^*\} \) is not regular.

Let \( F \) be the infinite language \( 01^*0 \).

Let \( x \) and \( y \) be arbitrary distinct strings in \( F \).
Then \( x = 01^i0 \) and \( y = 01^j0 \) for some integers \( i \neq j \).

The string \( z = 1^i \) is a distinguishing suffix of these two strings, because
- \( xz = 01^i01^i = ww \) where \( w = 01^i \), so \( xz \in \text{double}(\Sigma^*) \), but
- \( yx = 01^i01^i \notin \text{double}(\Sigma^*) \) because \( i \neq j \).

We conclude that \( F \) is a fooling set for \( \text{double}(\Sigma^*) \).
Because \( F \) is infinite, \( \text{double}(\Sigma^*) \) cannot be regular. \( \blacksquare \)

Rubric: 5 points:
- 2 points for describing a regular language \( L \) such that \( \text{double}(L) \) is not regular.
- 1 point for describing an infinite fooling set for \( \text{double}(L) \):
  + ½ for explicitly describing the proposed fooling set \( F \).
  + ½ if the proposed set \( F \) is actually a fooling set.
    - No credit for the proof if the proposed set is not a fooling set.
    - No credit for the problem if the proposed set is finite.
- 2 points for the proof:
  + ½ for correctly considering arbitrary strings \( x \) and \( y \)
    - No credit for the proof unless both \( x \) and \( y \) are always in \( F \).
    - No credit for the proof unless both \( x \) and \( y \) can be any string in \( F \).
  + ½ for correctly stating a suffix \( z \) that distinguishes \( x \) and \( y \).
  + ½ for proving either \( xz \in L \) or \( yz \in L \).
  + ½ for proving either \( yz \notin L \) or \( xz \notin L \), respectively.

These are not the only correct solutions. These are not the only fooling sets for these languages.
# Standard language transformation rubric

For problems worth 10 points:

+ 2 for a formal, complete, and unambiguous description of the output automaton, including the states, the start state, the accepting states, and the transition function, as functions of an arbitrary input DFA. The description must state whether the output automaton is a DFA, an NFA without ε-transitions, or an NFA with ε-transitions.
  
  • No points for the rest of the problem if this is missing.

+ 2 for a brief English explanation of the output automaton. We explicitly do not want a formal proof of correctness, or an English transcription, but a few sentences explaining how your machine works and justifying its correctness. What is the overall idea? What do the states represent? What is the transition function doing? Why these accepting states?
  
  • **Deadly Sin:** No points for the rest of the problem if this is missing.

+ 6 for correctness

  + 3 for accepting all strings in the target language
  + 3 for accepting only strings in the target language
  - 1 for a single mistake in the formal description (for example a typo)
  + Double-check correctness when the input language is $\emptyset$, or $\{\varepsilon\}$, or $0^*$, or $\Sigma^*$.
1. Consider the following cruel and unusual sorting algorithm, proposed by Gary Miller:

\[
\text{Cruel}(A[1..n]): \\
\text{if } n > 1 \\
\text{Cruel}(A[1..n/2]) \\
\text{Cruel}(A[n/2+1..n]) \\
\text{Unusual}(A[1..n])
\]

\[
\text{Unusual}(A[1..n]): \\
\text{if } n = 2 \\
\text{\quad if } A[1] > A[2] \quad \text{\{the only comparison!\}} \\
\text{\quad \quad swap } A[1] \leftrightarrow A[2] \\
\text{\quad else} \\
\text{\quad \quad for } i \leftarrow 1 \text{ to } n/4 \\
\text{\quad \quad \quad swap } A[i+n/4] \leftrightarrow A[i+n/2] \\
\text{\quad \quad Unusual(A[1..n/2]) \quad \{\text{recurse on left half}\}} \\
\text{\quad \quad Unusual(A[n/2+1..n]) \quad \{\text{recurse on right half}\}} \\
\text{\quad \quad Unusual(A[n/4+1..3n/4]) \quad \{\text{recurse on middle half}\}}
\]

The comparisons performed by Miller’s algorithm do not depend at all on the values in the input array; such a sorting algorithm is called oblivious. Assume for this problem that the input size \(n\) is always a power of 2.

(a) Prove by induction that Cruel correctly sorts any input array. [Hint: Follow the smallest \(n/4\) elements. Follow the largest \(n/4\) elements. Follow the middle \(n/2\) elements. What does Unusual actually do??]

(b) Prove that Cruel would not correctly sort if we removed the for-loop from Unusual.

(c) Prove that Cruel would not correctly sort if we swapped the last two lines of Unusual.

(d) What is the running time of Unusual? Justify your answer.

(e) What is the running time of Cruel? Justify your answer.

2. Dakshita is putting together a list of famous cryptographers, each with their dates of birth and death: al-Kindi (801–873), Giovanni Fontana (1395–1455), Leon Alberti (1404–1472), Charles Babbage (1791–1871), Alan Turing (1912–1954), Joan Clarke (1917–1996), Ann Caracristi (1921–2016), and so on. She wonders which two cryptographers on her list had the longest overlap between their lifetimes. For example, among the seven example cryptographers, Clarke and Caracristi had the longest overlap of 45 years (1921–1966).
Dakshita formalizes her problem as follows. The input is an array $A[1..n]$ of records, each with two numerical fields $A[i].birth$ and $A[i].death$ and a string field $A[i].name$. The desired output is the maximum, over all indices $i \neq j$, of the overlap length


Describe and analyze an efficient algorithm to solve Dakshita's problem.

[Hint: Start by splitting the list in half by birth date. Do not assume that cryptographers always die in the same order they are born. Assume that birth and death dates are distinct and accurate to the nanosecond.]
Rubrics

Solved Problems

4. Suppose we are given two sets of \( n \) points, one set \( \{p_1, p_2, \ldots, p_n\} \) on the line \( y = 0 \) and the other set \( \{q_1, q_2, \ldots, q_n\} \) on the line \( y = 1 \). Consider the \( n \) line segments connecting each point \( p_i \) to the corresponding point \( q_i \). Describe and analyze a divide-and-conquer algorithm to determine how many pairs of these line segments intersect, in \( O(n \log n) \) time.

See the example below.

![Diagram of line segments](image_url)

Seven segments with endpoints on parallel lines, with 11 intersecting pairs.

Your input consists of two arrays \( P[1..n] \) and \( Q[1..n] \) of \( x \)-coordinates; you may assume that all \( 2n \) of these numbers are distinct. No proof of correctness is necessary, but you should justify the running time.

**Solution:** We begin by sorting the array \( P[1..n] \) and permuting the array \( Q[1..n] \) to maintain correspondence between endpoints, in \( O(n \log n) \) time. Then for any indices \( i < j \), segments \( i \) and \( j \) intersect if and only if \( Q[i] > Q[j] \). Thus, our goal is to compute the number of pairs of indices \( i < j \) such that \( Q[i] > Q[j] \). Such a pair is called an **inversion**.

We count the number of inversions in \( Q \) using the following extension of mergesort; as a side effect, this algorithm also sorts \( Q \). If \( n < 100 \), we use brute force in \( O(1) \) time. Otherwise:

- Color the elements in the Left half \( Q[1..[n/2]] \) **blue**.
- Color the elements in the Right half \( Q[[n/2]+1..n] \) **red**.
- Recursively count inversions in (and sort) the **blue** subarray \( Q[1..[n/2]] \).
- Recursively count inversions in (and sort) the **red** subarray \( Q[[n/2]+1..n] \).
- Count **red/blue** inversions as follows:
  - **MERGE** the sorted subarrays \( Q[1..n/2] \) and \( Q[n/2+1..n] \), maintaining the element colors.
  - For each **blue** element \( Q[i] \) of the now-sorted array \( Q[1..n] \), count the number of smaller **red** elements \( Q[j] \).

The last substep can be performed in \( O(n) \) time using a simple for-loop:
CountRedBlue(A[1 .. n]):
  count ← 0
  total ← 0
  for i ← 1 to n
    if A[i] is red
      count ← count + 1
    else
      total ← total + count
  return total

Merge and CountRedBlue each run in $O(n)$ time. Thus, the running time of our inversion-counting algorithm obeys the mergesort recurrence $T(n) = 2T(n/2) + O(n)$. (We can safely ignore the floors and ceilings in the recursive arguments.) We conclude that the overall running time of our algorithm is $O(n \log n)$, as required.

Rubric: This is enough for full credit.

In fact, we can execute the third merge-and-count step directly by modifying the Merge algorithm, without any need for “colors”. Here changes to the standard Merge algorithm are indicated in red.

MergeAndCount(A[1 .. n], m):
  i ← 1; j ← m + 1; count ← 0; total ← 0
  for k ← 1 to n
    if j > n
      B[k] ← A[i]; i ← i + 1; total ← total + count
    else if i > m
      B[k] ← A[j]; j ← j + 1; count ← count + 1
    else if A[i] < A[j]
      B[k] ← A[i]; i ← i + 1; total ← total + count
    else
      B[k] ← A[j]; j ← j + 1; count ← count + 1
  for k ← 1 to n
  A[k] ← B[k]
  return total

We can further optimize MergeAndCount by observing that count is always equal to $j - m - 1$, so we don’t need an additional variable. (Proof: Initially, $j = m + 1$ and count = 0, and we always increment j and count together.)
**MergeAndCount2** \( (A[1 .. n], m) \):

\[
i \leftarrow 1; \ j \leftarrow m + 1; \ \text{total} \leftarrow 0
\]

for \( k \leftarrow 1 \) to \( n \)

if \( j > n \)

\[
B[k] \leftarrow A[i]; \ i \leftarrow i + 1; \ \text{total} \leftarrow \text{total} + j - m - 1
\]
else if \( i > m \)

\[
B[k] \leftarrow A[j]; \ j \leftarrow j + 1
\]

\[
B[k] \leftarrow A[i]; \ i \leftarrow i + 1; \ \text{total} \leftarrow \text{total} + j - m - 1
\]
else

\[
B[k] \leftarrow A[j]; \ j \leftarrow j + 1
\]

for \( k \leftarrow 1 \) to \( n \)

\[
A[k] \leftarrow B[k]
\]

**Rubric:**

10 points = 2 for base case + 2 for divide (split and recurse) + 4 for conquer (merge and count) + 2 for time analysis. This is neither the only way to correctly describe this algorithm nor the only correct \( O(n \log n) \)-time algorithm. No proof of correctness is required.

Max 3 points for a correct \( O(n^2) \)-time algorithm.

Notice that each boxed algorithm is preceded by a clear English description of the task that algorithm performs—not how the algorithm works, but the relationship between its input and its output. Each English description is worth 25% of the credit for that algorithm (rounding to the nearest point). For example, the **COUNTRED** algorithm is worth 4 points ("conquer"); the English description alone ("For each blue element \( Q[i] \) of the now-sorted array \( Q[1 .. n] \), count the number of smaller red elements \( Q[j] \).") is worth 1 point.

**MergeAndCount2** still runs in \( O(n) \) time, so the overall running time is still \( O(n \log n) \), as required.
1. Vankin’s Mile is an American solitaire game played on an $n \times n$ square grid. The player starts by placing a token on any square of the grid. Then on each turn, the player moves the token either one square to the right or one square down. The game ends when player moves the token off the edge of the board. Each square of the grid has a numerical value, which could be positive, negative, or zero. The player starts with a score of zero; whenever the token lands on a square, the player adds its value to his score. The object of the game is to score as many points as possible.

For example, given the grid shown below, the player can score $7 - 2 + 3 + 5 + 6 - 4 + 8 + 0 = 23$ points by following the path on the left, or they can score $8 - 4 + 1 + 5 + 1 - 4 + 8 = 15$ points by following the path on the right.

\[
\begin{array}{cccc}
  -1 & 7 & 2 & 10 & -5 \\
  8 & -4 & 3 & -6 & 0 \\
  5 & 1 & 5 & 6 & -5 \\
  -7 & -4 & 1 & -4 & 8 \\
  7 & 1 & -9 & 4 & 0 \\
\end{array}
\]

(a) Describe and analyze an efficient algorithm to compute the maximum possible score for a game of Vankin’s Mile, given the $n \times n$ array of values as input.

(b) A variant called Vankin’s Niknav adds an additional constraint to Vankin’s Mile: The sequence of values that the token touches must be a palindrome. Thus, the example path on the right is valid, but the example path on the left is not. Describe and analyze an efficient algorithm to compute the maximum possible score for an instance of Vankin’s Niknav, given the $n \times n$ array of values as input.
2. A snowball is a poem or sentence that starts with a one-letter word, where each later word is one letter longer than its predecessor. For example:

I am the fire demon, moving castles: Calcifer!

Snowballs, sometimes also known as chaterisms or rhopalisms, are one of many styles of constrained writing practiced by OuLiPo, a loose gathering of writers and mathematicians, founded in France in 1960 but still active today.

Describe and analyze an algorithm to extract the longest snowball hidden in a given string of text. You are given an array $T[1..n]$ of English letters as input. Your goal is to find the longest possible sequence of disjoint substrings of $T$, where the $i$th substring is an English word of length $i$. Your algorithm should return the number of words in this sequence.

Your algorithm will call the library function IsWord, which takes a string $w$ as input and returns True if and only if $w$ is an English word. IsWord$(w)$ runs in $O(|w|)$ time.

For example, given the input string

EVENIFYOUAMTHEAREMYFIRELEASTDEMONFAVORITEMOVINGCASTLESVEGETABLECALCIFER

your algorithm should return the integer 8:

EVENIFYOUAMTHEAREMYFIRELEASTDEMONFAVORITEMOVINGCASTLESVEGETABLECALCIFER
Standard dynamic programming rubric. For problems worth 10 points:

- 3 points for a clear and correct English description of the recursive function you are trying to evaluate. (Otherwise, we don't even know what you're trying to do.)
  - No credit if the description is inconsistent with the recurrence.
  - No credit if the description does not explicitly describe how the function value depends on the named input parameters.
  - No credit if the description refers to internal states of the eventual dynamic programming algorithm, like “the current index” or “the best score so far”. The function must have a well-defined value that depends only on its input parameters (and constant global variables).
  - An English explanation of the recurrence or algorithm does not qualify. We want a description of what your function returns, not (here) an explanation of how that value is computed.
  - 1 for naming the function “OPT” or “DP” or any single letter.
- 4 points for a correct recurrence, described either using mathematical notation or as pseudocode for a recursive algorithm.
  + 1 for base case(s). —½ for one minor bug, like a typo or an off-by-one error.
  + 3 for recursive case(s). —1 for each minor bug, like a typo or an off-by-one error.
  - 2 for greedy optimizations without proof, even if they are correct.
  - No credit for the rest of the problem if the recursive case(s) are incorrect.
- 3 points for iterative details
  + 1 for describing an appropriate memoization data structure
  + 1 for describing a correct evaluation order; a clear picture is usually sufficient. If you use nested for loops, be sure to specify the nesting order.
  + 1 for correct time analysis. (It is not necessary to state a space bound.)

- For problems that ask for an algorithm that computes an optimal structure—such as a subset, partition, subsequence, or tree—an algorithm that computes only the value or cost of the optimal structure is sufficient for full credit, unless the problem specifically says otherwise.
- Official solutions usually include pseudocode for the final iterative dynamic programming algorithm, but iterative pseudocode is not required for full credit. If your solution includes iterative pseudocode, you do not need to separately describe the recurrence, memoization structure, or evaluation order. But you do still need and English description of the underlying recursive function (or equivalently, the contents of the memoization structure). Perfectly correct iterative pseudocode, with no explanation or time analysis, is worth at most 6 points out of 10.

- Official solutions will provide target time bounds. Faster algorithms are worth more points, and slower algorithms are worth fewer points, typically by 2 or 3 points (out of 10) for each factor of $n$ in either direction. Partial credit is scaled to the new maximum score, and all points above 10 (for algorithms that are faster than our target time bound) are recorded as extra credit.
  
  We rarely include these target time bounds in the actual questions, because when we do include them, significantly more students submit incorrect algorithms with the target running time (earning 0/10) instead of correct algorithms that are slower than the target (earning 7/10).

- Partial credit for incomplete solutions depends on the running time of the best possible completion (up to the target running time). For example, consider a solution that contains only a clear English description of a function, with no recurrence or iterative details. If the described function can be developed into an algorithm with the target running time, the solution is worth 3 points; however, if the function leads to an algorithm that is slower than the target time by a factor of $n$, the solution could be worth only 2 points ($= 70\%$ of 3, rounded).
Solved Problem

3. A shuffle of two strings $X$ and $Y$ is formed by interspersing the characters into a new string, keeping the characters of $X$ and $Y$ in the same order. For example, the string BANANAANANAS is a shuffle of the strings BANANA and ANANAS in several different ways.

Similarly, the strings PRODGYRNAMAMMIINC and DYPRONGARMAMMICING are both shuffles of the strings DYNAMIC and PROGRAMMING:

(a) Given three strings $A[1..m]$, $B[1..n]$, and $C[1..m+n]$, describe and analyze an algorithm to determine whether $C$ is a shuffle of $A$ and $B$.

**Solution:** We define a boolean function $Shuf(i, j)$, which is True if and only if the prefix $C[1..i+j]$ is a shuffle of the prefixes $A[1..i]$ and $B[1..j]$. We need to compute $Shuf(m, n)$. The function $Shuf$ satisfies the following recurrence:

$$\begin{align*}
Shuf(i, j) &= \begin{cases} 
    \text{True} & \text{if } i = j = 0 \\
    Shuf(0, j-1) \land (B[j] = C[j]) & \text{if } i = 0 \text{ and } j > 0 \\
    Shuf(i-1, 0) \land (A[i] = C[i]) & \text{if } i > 0 \text{ and } j = 0 \\
    (Shuf(i-1, j) \land (A[i] = C[i+j])) \\
    \quad \lor (Shuf(i, j-1) \land (B[j] = C[i+j])) & \text{otherwise}
\end{cases}
\end{align*}$$

We can memoize this function into a two-dimensional array $Shuf[0..m][0..n]$. Each array entry $Shuf[i, j]$ depends only on the entries immediately below and immediately to the right: $Shuf[i-1, j]$ and $Shuf[i, j-1]$. Thus, we can fill the array in standard row-major order.

```python
IsSHUFFLE?(A[1..m], B[1..n], C[1..m+n]):
    Shuf[0, 0] ← True
    for j ← 1 to n
        Shuf[0, j] ← Shuf[0, j-1] \land (B[j] = C[j])
    for i ← 1 to m
        Shuf[i, 0] ← Shuf[i-1, 0] \land (A[i] = C[i])
    for j ← 1 to n
        Shuf[i, j] ← False
        if A[i] = C[i+j]
            Shuf[i, j] ← Shuf[i-1, j]
        if B[i] = C[i+j]
            Shuf[i, j] ← Shuf[i, j-1]
        Shuf[i, j] ← Shuf[i, j] \lor Shuf[i, j-1]
    return Shuf[m, n]
```

The algorithm runs in $O(mn)$ time.
(b) Given three strings $A[1..m]$, $B[1..n]$, and $C[1..m+n]$, describe and analyze an algorithm to determine the number of different ways that $A$ and $B$ can be shuffled to obtain $C$.

**Solution:** Let $\#Shuf(i, j)$ denote the number of different ways that the prefixes $A[1..i]$ and $B[1..j]$ can be shuffled to obtain the prefix $C[1..i+j]$. We need to compute $\#Shuf(m, n)$.

The $\#Shuf$ function satisfies the following recurrence. Here I am using Iverson bracket notation to convert booleans to integers: For any proposition $P$, the expression $[P]$ is equal to 1 if $P$ is true and 0 if $P$ is false.

$$\#Shuf(i, j) = \begin{cases} 
1 & \text{if } i = j = 0 \\
\#Shuf(0, j-1) \cdot [B[j] = C[j]] & \text{if } i = 0 \text{ and } j > 0 \\
\#Shuf(i-1, 0) \cdot [A[i] = C[i]] & \text{if } i > 0 \text{ and } j = 0 \\
\#Shuf(i-1, j) \cdot [A[i] = C[i]] \\
+ \#Shuf(i-1, j-1) \cdot [B[j] = C[j]] & \text{otherwise}
\end{cases}$$

We can memoize this function into a two-dimensional array $\#Shuf[0..m][0..n]$. As in part (a), we can fill the array in standard row-major order.

```plaintext
NUMSHUFFLES(A[1..m], B[1..n], C[1..m+n]):
    #Shuf[0,0] ← 1
    for j ← 1 to n
        #Shuf[0,j] ← 0
        if (B[j] = C[j])
            #Shuf[0,j] ← #Shuf[0,j-1]
    for i ← 1 to n
        #Shuf[0,j] ← 0
        if (A[i] = B[i])
            #Shuf[0,j] ← #Shuf[i-1,0]
    for j ← 1 to n
        #Shuf[i,j] ← 0
        if (A[i] = C[i+j])
            #Shuf[i,j] ← #Shuf[i-1,j]
        if (B[i] = C[i+j])
            #Shuf[i,j] ← #Shuf[i,j] + #Shuf[i,j-1]
    return Shuf[m,n]
```

The algorithm runs in $O(mn)$ time. ■

**Rubric:** 5 points, standard dynamic programming rubric. 3 points for a slower polynomial-time algorithm; scale partial credit accordingly.
1. Every year, as part of its annual meeting, the Antarctic Snail Lovers of Upper Glacierville hold a Round Table Mating Race. Several high-quality breeding snails are placed at the edge of a round table. The snails are numbered in order around the table from 1 to \( n \). During the race, each snail wanders around the table, leaving a trail of slime behind it. The snails have been specially trained never to fall off the edge of the table or to cross a slime trail, even their own. If two snails meet, they are declared a breeding pair, removed from the table, and whisked away to a romantic hole in the ground to make little baby snails. Note that some snails may never find a mate, even if the race goes on forever.

![Diagram of a round table with numbered snails]

The end of a typical Antarctic SLUG race. Snails 6 and 8 never find mates.


For every pair of snails, the Antarctic SLUG race organizers have posted a monetary reward, to be paid to the owners if that pair of snails meets during the Mating Race. Specifically, there is a two-dimensional array \( M[1..n, 1..n] \) posted on the wall behind the Round Table, where \( M[i, j] = M[j, i] \) is the reward to be paid if snails \( i \) and \( j \) meet. Rewards may be positive, negative, or zero.

Describe and analyze an algorithm to compute the maximum total reward that the organizers could be forced to pay, given the array \( M \) as input.
2. Suppose you are given a NFA $M = (\{0, 1\}, Q, s, A, \delta)$ without $\epsilon$-transitions and a binary string $w \in \{0, 1\}^*$. Describe and analyze an efficient algorithm to determine whether $M$ accepts $w$. Concretely, the input NFA $M$ is represented as follows:

- $Q = \{1, 2, \ldots, k\}$ for some integer $k$.
- The start state $s$ is state 1.
- Accepting states are represented by a boolean array $Acc[1..k]$, where $Acc[q] = \text{TRUE}$ if and only if $q \in A$.
- The transition function $\delta$ is represented by a boolean array $inDelta[1..k, 0..1, 1..k]$, where $inDelta[p, a, q] = \text{TRUE}$ if and only if $q \in \delta(p, a)$.

Your input consists of the integer $k$, the array $Acc[1..k]$, the array $inDelta[1..k, 0..1, 1..k]$, and the input string $w[1..n]$. Your algorithm should return $\text{TRUE}$ if $M$ accepts $w$, and $\text{FALSE}$ if $M$ does not accept $w$. Report the running time of your algorithm as a function of $k$ (the number of states in $M$) and $n$ (the length of $w$). [Hint: Do not convert $M$ to a DFA!!]
Solved Problems

3. A string \( w \) of parentheses \( ( \) and \( ) \) and brackets \( [ \) and \( ] \) is balanced if and only if \( w \) is generated by the following context-free grammar:

\[
S \rightarrow \varepsilon \mid (S) \mid [S] \mid SS
\]

For example, the string \( w = ([()][()][])[()()]() \) is balanced, because \( w = xy \), where

\[
x = [()][]() \quad \text{and} \quad y = [()()]().
\]

Describe and analyze an algorithm to compute the length of a longest balanced subsequence of a given string of parentheses and brackets. Your input is an array \( A[1..n] \), where \( A[i] \in \{ (, ), [ , ] \} \) for every index \( i \).

**Solution:** Suppose \( A[1..n] \) is the input string. For all indices \( i \) and \( k \), let \( LBS(i, k) \) denote the length of the longest balanced subsequence of the substring \( A[i..k] \). We need to compute \( LBS(1, n) \). This function obeys the following recurrence:

\[
LBS(i, j) = \begin{cases} 
0 & \text{if } i \geq k \\
\max \left\{ \max_{j=1}^{k-1} (LBS(i, j) + LBS(j + 1, k)) \right\} & \text{if } A[i] \sim A[k] \\
\max_{j=1}^{k-1} (LBS(i, j) + LBS(j + 1, k)) & \text{otherwise}
\end{cases}
\]

Here \( A[i] \sim A[k] \) indicates that \( A[i] \) is a left delimiter and \( A[k] \) is the corresponding right delimiter: Either \( A[i] = ( \) and \( A[k] = ) \), or \( A[i] = [ \) and \( A[k] = ] \).

We can memoize this function into a two-dimensional array \( LBS[1..n, 1..n] \). Because each entry \( LBS[i, j] \) depends only on entries in later rows or earlier columns (or both), we can evaluate this array row-by-row from bottom up in the outer loop, scanning each row from left to right in the inner loop. The resulting algorithm runs in \( O(n^3) \) time.

**LongestBalancedSubsequence(A[1..n]):**

for \( i \leftarrow n \) down to 1

\( LBS[i, i] \leftarrow 0 \)

for \( k \leftarrow i + 1 \) to \( n \)

if \( A[i] \sim A[k] \)

\( LBS[i, k] \leftarrow LBS[i + 1, k - 1] + 2 \)

else

\( LBS[i, k] \leftarrow 0 \)

for \( j \leftarrow i \) to \( k - 1 \)

\( LBS[i, k] \leftarrow \max \{ LBS[i, k], LBS[i, j] + LBS[j + 1, k] \} \)

return \( LBS[1, n] \)

**Rubric:** 10 points, standard dynamic programming rubric
4. Oh, no! You’ve just been appointed as the new organizer of Giggle, Inc.’s annual mandatory holiday party! The employees at Giggle are organized into a strict hierarchy, that is, a tree with the company president at the root. The all-knowing oracles in Human Resources have assigned a real number to each employee measuring how “fun” the employee is. In order to keep things social, there is one restriction on the guest list: An employee cannot attend the party if their immediate supervisor is also present. On the other hand, the president of the company must attend the party, even though she has a negative fun rating; it’s her company, after all.

Describe an algorithm that makes a guest list for the party that maximizes the sum of the “fun” ratings of the guests. The input to your algorithm is a rooted tree $T$ describing the company hierarchy, where each node $v$ has a field $v.fun$ storing the “fun” rating of the corresponding employee.

**Solution (two functions):** We define two functions over the nodes of $T$.

- $MaxFunYes(v)$ is the maximum total “fun” of a legal party among the descendants of $v$, where $v$ is definitely invited.
- $MaxFunNo(v)$ is the maximum total “fun” of a legal party among the descendants of $v$, where $v$ is definitely not invited.

We need to compute $MaxFunYes(root)$. These two functions obey the following mutual recurrences:

$$MaxFunYes(v) = v.fun + \sum_{\text{children } w \text{ of } v} MaxFunNo(w)$$

$$MaxFunNo(v) = \max_{\text{children } w \text{ of } v} \{MaxFunYes(w), MaxFunNo(w)\}$$

(These recurrences do not require separate base cases, because $\sum \emptyset = 0$.) We can memoize these functions by adding two additional fields $v.yes$ and $v.no$ to each node $v$ in the tree. The values at each node depend only on the values at its children, so we can compute all $2n$ values using a postorder traversal of $T$.

```c
BESTParty(T):
    ComputeMaxFun(T.root)
    return T.root.yes
```

```c
ComputeMaxFun(v):
    v.yes ← v.fun
    v.no ← 0
    for all children w of v
        ComputeMaxFun(w)
        v.yes ← v.yes + w.no
        v.no ← v.no + max{w.yes, w.no}
```

(Yes, this is still dynamic programming; we’re only traversing the tree recursively because that’s the most natural way to traverse trees!) The algorithm spends $O(1)$ time at each node, and therefore runs in $O(n)$ time altogether. ■

---

* A naïve recursive implementation would run in $O(\phi^n)$ time in the worst case, where $\phi = (1 + \sqrt{5})/2 \approx 1.618$ is the golden ratio. The worst-case tree is a path—every non-leaf node has exactly one child.
Solution (one function): For each node $v$ in the input tree $T$, let $\text{MaxFun}(v)$ denote the maximum total “fun” of a legal party among the descendants of $v$, where $v$ may or may not be invited.

The president of the company must be invited, so none of the president’s “children” in $T$ can be invited. Thus, the value we need to compute is

$$\text{root.fun} + \sum_{\text{grandchildren } w \text{ of } \text{root}} \text{MaxFun}(w).$$

The function $\text{MaxFun}$ obeys the following recurrence:

$$\text{MaxFun}(v) = \max \left\{ v.\text{fun} + \sum_{\text{grandchildren } x \text{ of } v} \text{MaxFun}(x) \middle| \sum_{\text{children } w \text{ of } v} \text{MaxFun}(w) \right\}$$

(This recurrence does not require a separate base case, because $\sum \emptyset = 0$.) We can memoize this function by adding an additional field $v.\text{maxFun}$ to each node $v$ in the tree. The value at each node depends only on the values at its children and grandchildren, so we can compute all values using a postorder traversal of $T$.

```
\text{BESTParty}(T):}
\begin{align*}
\text{COMPUTEMaxFun}(T.\text{root}) \\
\text{party} & \leftarrow T.\text{root}.\text{fun} \\
\text{for all children } w \text{ of } T.\text{root} \\
\text{for all children } x \text{ of } w \\
\text{party} & \leftarrow \text{party} + x.\text{maxFun} \\
\text{return } \text{party}
\end{align*}
```

```
\text{COMPUTEMaxFun}(v):}
\begin{align*}
\text{yes} & \leftarrow v.\text{fun} \\
\text{no} & \leftarrow 0 \\
\text{for all children } w \text{ of } v \\
\text{COMPUTEMaxFun}(w) \\
\text{no} & \leftarrow \text{no} + w.\text{maxFun} \\
\text{for all children } x \text{ of } w \\
\text{yes} & \leftarrow \text{yes} + x.\text{maxFun} \\
v.\text{maxFun} & \leftarrow \max\{\text{yes}, \text{no}\}
\end{align*}
```

(Yes, this is still dynamic programming; we’re only traversing the tree recursively because that’s the most natural way to traverse trees!\textsuperscript{a})

The algorithm spends $O(1)$ time at each node (because each node has exactly one parent and one grandparent) and therefore runs in $O(n)$ time altogether. ■

\textsuperscript{a}Like the previous solution, a direct recursive implementation would run in $O(\phi^n)$ time in the worst case, where $\phi = (1 + \sqrt{5})/2 \approx 1.618$ is the golden ratio.

Rubric: 10 points: standard dynamic programming rubric. These are not the only correct solutions.
1. **Racettrack** (also known by several other names, including Graph Racers and Vector Rally) is a two-player paper-and-pencil racing game that Jeff played on the bus in 5th grade.\(^1\) The game is played with a track drawn on a sheet of graph paper. The players alternately choose a sequence of grid points that represent the motion of a car around the track, subject to certain constraints explained below.

Each car has a *position* and a *velocity*, both with integer \(x\) - and \(y\)-coordinates. A subset of grid squares is marked as the *starting area*, and another subset is marked as the *finishing area*. The initial position of each car is chosen by the player somewhere in the starting area; the initial velocity of each car is always \((0, 0)\). At each step, the player optionally increments or decrements either or both coordinates of the car's velocity; in other words, each component of the velocity can change by at most 1 in a single step. The car's new position is then determined by adding the new velocity to the car's previous position. The new position must be inside the track; otherwise, the car crashes and that player loses the race.\(^2\) The race ends when the first car reaches a position inside the finishing area.

Suppose the racetrack is represented by an \(n \times n\) array of bits, where each 0 bit represents a grid point inside the track, each 1 bit represents a grid point outside the track, the “starting area” is the first column, and the “finishing area” is the last column.

Describe and analyze an algorithm to find the minimum number of steps required to move a car from the starting line to the finish line of a given racetrack. [Hint: Build a graph. No, not that graph, a different one. What are the vertices? What are the edges? What problem is this?]

---

\(^1\)The actual game is a bit more complicated than the version described here. See [http://harmmade.com/vectorracer/](http://harmmade.com/vectorracer/) for an excellent online version.

\(^2\)However, it is not necessary for the line between the old position and the new position to lie entirely within the track. Sometimes Speed Racer has to push the A button.
2. Jeff likes to go on a long bike ride every Sunday, but because he is lazy, he absolutely refuses to ever ride into the wind.

Jeff has encoded a map of all bike-safe roads in Champaign-Urbana into an undirected graph $G = (V, E)$ whose vertices represent intersections and sharp corners, and whose edges represent straight road segments. Jeff’s home is represented in $G$ by a special vertex $s$. Every edge of $G$ is labeled with its length and orientation.

(a) One Sunday the weather forecast predicts wind from due north all day long, which means Jeff can only ride along each road segment in the direction that tends south. Describe and analyze an algorithm to determine the longest total distance Jeff can ride, without ever riding into the wind, before he has to call his wife to come pick him up in the car.

(b) The following Sunday’s weather forecast predicts wind from due north in the morning, followed by wind from due west in the afternoon. Describe and analyze an algorithm to find the longest total distance Jeff can ride if he starts at home, rides out to some destination in the morning, eats lunch at noon (while the wind shifts), and then rides home in the afternoon, all without ever riding into the wind.

In both cases, your input consists of the graph $G$ and the start vertex $s$. Despite overpowering evidence to the contrary, assume that Jeff can ride infinitely fast, and that no roads in Champaign-Urbana are oriented exactly north-south or exactly east-west.

For example, suppose Jeff has the graph $G$ shown below. On the first Sunday, Jeff can ride from $s$ to $w$ along the path shown on the left, including the red edge from $v$ to $w$. On the second Sunday, Jeff can ride from $s$ to $v$ along the green path on the left in the morning, and then from $v$ back to $s$ along the green path on the right in the afternoon; however, he cannot ride to $w$, because every path from $w$ to $s$ requires riding into the wind at least once, and Jeff’s wife is tired of driving out to the middle of nowhere to rescue him.
3. This problem is intended as a practice run for future homeworks, the second midterm, the final exam. **Each student must submit individually.**

   On the course Gradescope site, you will find an assignment called “Homework 8.3”. Do not open this Gradescope assignment until you have the following items:

   • Two blank white sheets of paper. (In particular, *not* lined notebook paper.)
   • A pen with dark ink, preferably blue or black. (In particular, *not* a pencil.)
   • A fully-charged and working cell phone with a scanning app installed. (Gradescope recommends Scannable for iOS devices and Genius Scan for Android devices.)
   • A well-lit environment for scanning.

   The assignment will ask you to write/draw something, scan the paper, convert your scan to a PDF file, and upload the PDF to Gradescope. (Gradescope will automatically assign pages of your uploaded PDF to corresponding subproblems.)

   Alternatively, you can write/draw on a tablet and a note-taking app, export your note as a PDF file, upload the PDF to Gradescope.

   **Once you open the Gradescope assignment, you will have 15 minutes to complete the submission process.**

   The precise content to be written/drawn will be revealed in the Gradescope assignment. (Don't worry, we won't ask for anything technical. The actual writing/drawing should take less than 60 seconds.) If you are not used to your scanning app, we strongly recommend practicing the entire scanning process before starting the assignment.

   **Rubric:** 10 points = 1 for using blank white paper + 2 for using a dark pen + 2 for submitting a scan instead of a raw photo + 3 for a *good* scan (in focus, high contrast, properly aligned, no keystone effect, no shadows, no background) + 2 for following content instructions. Yes, this actually counts.
Rubrics

**Standard rubric for graph reduction problems.** For problems out of 10 points:

+ 1 for correct vertices, *including English explanation for each vertex*
+ 1 for correct edges
  - $\frac{1}{2}$ for forgetting “directed” if the graph is directed
+ 1 for stating the correct problem (For the solved problem below: “shortest path in $G$ from $(0, 0, 0)$ to any target vertex”)
  - “Breadth-first search” is not a problem; it’s an algorithm!
+ 1 for correctly applying the correct algorithm. (For the solved problem below, “breadth-first search from $(0, 0, 0)$ and then examine every target vertex”)
  - $\frac{1}{2}$ for using a slower or more specific algorithm than necessary
+ 1 for time analysis in terms of the input parameters.
+ 5 for other details of the reduction
  - If your graph is constructed by naive brute force, you do not need to describe the construction algorithm. In this case, points for vertices, edges, problem, algorithm, and running time are all doubled.
  - Otherwise, apply the appropriate rubric to the construction algorithm. For example, for an algorithm that uses dynamic programming to build the graph quickly, apply the standard dynamic programming rubric.

Solved Problem

4. Professor McClane takes you out to a lake and hands you three empty jars. Each jar holds a positive integer number of gallons; the capacities of the three jars may or may not be different. The professor then demands that you put exactly $k$ gallons of water into one of the jars (which one doesn't matter), for some integer $k$, using only the following operations:

(a) Fill a jar with water from the lake until the jar is full.
(b) Empty a jar of water by pouring water into the lake.
(c) Pour water from one jar to another, until either the first jar is empty or the second jar is full, whichever happens first.

For example, suppose your jars hold 6, 10, and 15 gallons. Then you can put 13 gallons of water into the third jar in six steps:

• Fill the third jar from the lake.
• Fill the first jar from the third jar. (Now the third jar holds 9 gallons.)
• Empty the first jar into the lake.
• Fill the second jar from the lake.
• Fill the first jar from the second jar. (Now the second jar holds 4 gallons.)
• Empty the second jar into the third jar.

Describe and analyze an efficient algorithm that either finds the smallest number of operations that leave exactly $k$ gallons in any jar, or reports correctly that obtaining exactly $k$ gallons of water is impossible. Your input consists of the capacities of the three jars and the positive integer $k$. For example, given the four numbers 6, 10, 15, and 13 as input, your algorithm should return the number 6 (the length of the sequence of operations listed above).
Solution: Let $A, B, C$ denote the capacities of the three jars. We reduce the problem to breadth-first search in a directed graph $G = (V, E)$ defined as follows:

- $V = \{(a, b, c) \mid 0 \leq a \leq A$ and $0 \leq b \leq B$ and $0 \leq c \leq C\}$. Each vertex corresponds to a possible configuration of water in the three jars. There are $(A+1)(B+1)(C+1) = O(ABC)$ vertices altogether.
- $G$ contains a directed edge $(a, b, c)\to(a', b', c')$ whenever it is possible to move from the first configuration to the second in one step. Specifically, $G$ contains an edge from $(a, b, c)$ to each of the following vertices (except those already equal to $(a, b, c)$):
  - $(0, b, c)$ and $(a, 0, c)$ and $(a, b, 0)$ — dumping a jar into the lake
  - $(a, b, c)$ and $(a, B, c)$ and $(a, B, B)$ — filling a jar from the lake
  - $(0, a + b, c)$ if $a + b \leq B$
    - $(a + b - B, b, c)$ if $a + b \geq B$ — pouring from jar 1 into jar 2
  - $(0, a + b, c)$ if $a + b \leq B$
    - $(a + b - B, b, c)$ if $a + b \geq B$ — pouring from jar 1 into jar 3
  - $(a, a + b - A, c)$ if $a + b \geq A$
    - $(a, a + b - A, c)$ if $a + b \leq A$ — pouring from jar 2 into jar 1
  - $(a, 0, b + c)$ if $b + c \leq C$
    - $(a, b + c - C, C)$ if $b + c \geq C$ — pouring from jar 2 into jar 3
  - $(a + c, b, 0)$ if $a + c \leq A$
    - $(a + c, b, 0)$ if $a + c \geq A$ — pouring from jar 3 into jar 1
  - $(a, b + c, 0)$ if $b + c \leq B$
    - $(a, b + c, 0)$ if $b + c \geq B$ — pouring from jar 3 into jar 2

Because each vertex has at most 12 outgoing edges, there are at most $12(A+1) \times (B+1)(C+1) = O(ABC)$ edges altogether.

To solve the jars problem, we need to find the shortest path in $G$ from the start vertex $(0, 0, 0)$ to any target vertex of the form $(k, \cdot, \cdot)$ or $(\cdot, k, \cdot)$ or $(\cdot, \cdot, k)$. We can compute this shortest path by calling breadth-first search starting at $(0, 0, 0)$, and then examining every target vertex by brute force. If BFS does not visit any target vertex, we report that no legal sequence of moves exists. Otherwise, we find the target vertex closest to $(0, 0, 0)$ and trace its parent pointers back to $(0, 0, 0)$ to determine the shortest sequence of moves. The resulting algorithm runs in $O(V + E) = O(ABC)$ time.

We can make this algorithm faster by observing that every move leaves at least one jar either empty or full. Thus, we only need vertices $(a, b, c)$ where either $a = 0$ or $b = 0$ or $c = 0$ or $a = A$ or $b = B$ or $c = C$; no other vertices are reachable from $(0, 0, 0)$. The number of non-redundant vertices and edges is $O(AB + BC + AC)$. Thus, if we only construct and search the relevant portion of $G$, the algorithm runs in $O(AB + BC + AC)$ time.
**Rubric:** 10 points: standard graph reduction rubric

- Brute force construction is fine.
  - 1 for calling Dijkstra instead of BFS
- max 8 points for $O(ABC)$ time; scale partial credit.
1. Morty needs to retrieve a stabilized plumbus from the Clackspire Labyrinth. He must enter the labyrinth using Rick’s interdimensional portal gun, traverse the Labyrinth to a plumbus, then take that plumbus through the Labyrinth to a fleeb to be stabilized, and finally take the stabilized plumbus back to the original portal to return home. Plumbuses are stabilized by fleeb juice, which any fleeb will release immediately after being removed from its fleebhole. An unstabilized plumbus will explode if it is carried more than 137 flinks from its original storage unit. The Clackspire Labyrinth smells like farts, so Morty wants to spend as little time there as possible.

Rick has given Morty a detailed map of the Clackspire Labyrinth, which consist of a directed graph \( G = (V, E) \) with non-negative edge weights (indicating distance in flinks), along with two disjoint subsets \( P \subset V \) and \( F \subset V \), indicating the plumbus storage units and fleebholes, respectively. Morty needs to identify a start vertex \( s \), a plumbus storage unit \( p \in P \), and a fleebhole \( f \in F \), such that the shortest-path distance from \( p \) to \( f \) is at most 137 flinks long, and the length of the shortest walk \( s \dashv p \dashv f \dashv s \) is as short as possible.

Describe and analyze an algorithm to solve Morty’s problem. You can assume that it is in fact possible for Morty to succeed. As usual, do not assume that edge weights are integers.

2. You are planning a hiking trip in Jasper National Park in British Columbia over winter break. You have a complete map of the park’s trails, which indicates that hikers on certain trails have a higher chance of encountering a sasquatch. All visitors to the park are required to purchase a canister of sasquatch repellent. You can safely traverse a high-risk trail segment only by completely using up a full canister of sasquatch repellent. The park rangers have helpfully installed several refilling stations around the park, where you can refill empty canisters at no cost. The canisters themselves are expensive and heavy, so you can only carry one. The trails are narrow, so each trail segment allows traffic in only one direction.

You have converted the trail map into a directed graph \( G = (V, E) \), whose vertices represent trail intersections, and whose edges represent trail segments. A subset \( R \subseteq V \) of the vertices indicate the locations of the Repellent Refilling stations, and a subset \( H \subseteq E \) of the edges are marked as High-risk. Each edge \( e \) is labeled with the length \( \ell(e) \) of the corresponding trail segment. Your campsite appears on the map as a particular vertex \( s \in V \), and the visitor center is another vertex \( t \in V \).

(a) Describe and analyze an algorithm that finds the shortest safe hike from your campsite \( s \) to the visitor center \( t \). Assume there is a refill station at your campsite, and another refill station at the visitor center.

(b) Describe and analyze an algorithm to decide if you can safely hike from any refill station any other refill station. In other words, for every pair of vertices \( u \) and \( v \) in \( R \), is there a safe hike from \( u \) to \( v \)?
Solved Problem

3. Although we typically speak of “the” shortest path from one vertex to another, a single graph could contain several minimum-length paths with the same endpoints.

Four (of many) equal-length shortest paths.

Describe and analyze an algorithm to compute the number of shortest paths from a source vertex \( s \) to a target vertex \( t \) in an arbitrary directed graph \( G \) with weighted edges. Assume that all edge weights are positive and that any necessary arithmetic operations can be performed in \( O(1) \) time each.

[Hint: Compute shortest path distances from \( s \) to every other vertex. Throw away all edges that cannot be part of a shortest path from \( s \) to another vertex. What’s left?]

Solution: We start by computing shortest-path distances \( \text{dist}(v) \) from \( s \) to \( v \), for every vertex \( v \), using Dijkstra’s algorithm. Call an edge \( u \rightarrow v \) tight if \( \text{dist}(u) + w(u \rightarrow v) = \text{dist}(v) \). Every edge in a shortest path from \( s \) to \( t \) must be tight. Conversely, every path from \( s \) to \( t \) that uses only tight edges has total length \( \text{dist}(t) \) and is therefore a shortest path!

Let \( H \) be the subgraph of all tight edges in \( G \). We can easily construct \( H \) in \( O(V + E) \) time. Because all edge weights are positive, \( H \) is a directed acyclic graph. It remains only to count the number of paths from \( s \) to \( t \) in \( H \).

For any vertex \( v \), let \( \text{NumPaths}(v) \) denote the number of paths in \( H \) from \( v \) to \( t \); we need to compute \( \text{NumPaths}(s) \). This function satisfies the following simple recurrence:

\[
\text{NumPaths}(v) = \begin{cases} 
1 & \text{if } v = t \\
\sum_{w \rightarrow v} \text{NumPaths}(w) & \text{otherwise}
\end{cases}
\]

In particular, if \( v \) is a sink but \( v \neq t \) (and thus there are no paths from \( v \) to \( t \)), this recurrence correctly gives us \( \text{NumPaths}(v) = \sum \emptyset = 0 \).

We can memoize this function into the graph itself, storing each value \( \text{NumPaths}(v) \) at the corresponding vertex \( v \). Since each subproblem depends only on its successors in \( H \), we can compute \( \text{NumPaths}(v) \) for all vertices \( v \) by considering the vertices in reverse topological order, or equivalently, by performing a depth-first search of \( H \) starting at \( s \). The resulting algorithm runs in \( O(V + E) \) time.

The overall running time of the algorithm is dominated by Dijkstra’s algorithm in the preprocessing phase, which runs in \( O(E \log V) \) time. ■
Rubric: 10 points = 5 points for reduction to counting paths in a dag (standard graph reduction rubric) + 5 points for the path-counting algorithm (standard dynamic programming rubric)
1. Suppose we are given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ with the same set of vertices $V = \{1, 2, \ldots, n\}$. You are given the following problem: find the smallest subset $S \subseteq V$ of vertices whose deletion leaves identical subgraphs $G_1 \setminus S = G_2 \setminus S$. For example, given the graphs below, the smallest subset has size 4.

Provide a polynomial-time reduction for this problem from any one of the following three problems:

- **MaxIndependentSet**: $\text{MaxIndependentSet}(G, m)$ returns 1 if the size of the largest independent set in graph $G$ is $m$, otherwise returns 0.

- **MaxClique**: $\text{MaxClique}(G, m)$ returns 1 if the size of the largest clique in $G$ is $m$, otherwise returns 0.

- **MinVertexCover**: $\text{MinVertexCover}(G, m)$ returns 1 if the size of the smallest vertex cover in $G$ is $m$, otherwise returns 0.

*Hint: There exists a reduction to all three problems; you may pick whichever one is most convenient for you.*
2. This problem asks you to develop polynomial-time algorithms for two (apparently) minor variants of 3Sat.

   (a) The input to 2Sat is a boolean formula $\Phi$ in conjunctive normal form, with exactly two literals per clause, and the 2Sat problem asks whether there is an assignment to the variables of $\Phi$ such that every clause contains at least one True literal.

   Describe a polynomial-time algorithm for 2Sat. [Hint: This problem is strongly connected to topics covered earlier in the semester.]

   (b) The input to Majority3Sat is a boolean formula $\Phi$ in conjunctive normal form, with exactly three literals per clause. Majority3Sat asks whether there is an assignment to the variables of $\Phi$ such that every clause contains at least two True literals.

   Describe and analyze a polynomial-time reduction from Majority3Sat to 2Sat. Don’t forget to prove that your reduction is correct.

   (c) Combining parts (a) and (b) gives us an algorithm for Majority3Sat. What is the running time of this algorithm?
Solved Problem

3. Consider the following solitaire game. The puzzle consists of an \( n \times m \) grid of squares, where each square may be empty, occupied by a red stone, or occupied by a blue stone. The goal of the puzzle is to remove some of the given stones so that the remaining stones satisfy two conditions:

(1) Every row contains at least one stone.

(2) No column contains stones of both colors.

For some initial configurations of stones, reaching this goal is impossible; see the example below.

Prove that it is NP-hard to determine, given an initial configuration of red and blue stones, whether this puzzle can be solved.

A solvable puzzle and one of its many solutions. An unsolvable puzzle.

Solution: We show that this puzzle is NP-hard by describing a reduction from 3SAT.

Let \( \Phi \) be a 3CNF boolean formula with \( m \) variables and \( n \) clauses. We transform this formula into a puzzle configuration in polynomial time as follows. The size of the board is \( n \times m \). The stones are placed as follows, for all indices \( i \) and \( j \):

- If the variable \( x_j \) appears in the \( i \)th clause of \( \Phi \), we place a blue stone at \((i, j)\).
- If the negated variable \( \overline{x}_j \) appears in the \( i \)th clause of \( \Phi \), we place a red stone at \((i, j)\).
- Otherwise, we leave cell \((i, j)\) blank.

We claim that this puzzle has a solution if and only if \( \Phi \) is satisfiable. This claim immediately implies that solving the puzzle is NP-hard. We prove our claim as follows:

\[\implies\] First, suppose \( \Phi \) is satisfiable; consider an arbitrary satisfying assignment. For each index \( j \), remove stones from column \( j \) according to the value assigned to \( x_j \):

- If \( x_j = \text{TRUE} \), remove all red stones from column \( j \).
- If \( x_j = \text{FALSE} \), remove all blue stones from column \( j \).

In other words, remove precisely the stones that correspond to \( \text{FALSE} \) literals. Because every variable appears in at least one clause, each column now contains stones of only one color (if any). On the other hand, each clause of \( \Phi \) must contain at least one \( \text{TRUE} \) literal, and thus each row still contains at least one stone. We conclude that the puzzle is satisfiable.
On the other hand, suppose the puzzle is solvable; consider an arbitrary solution. For each index $j$, assign a value to $x_j$ depending on the colors of stones left in column $j$:

- If column $j$ contains blue stones, set $x_j = \text{TRUE}$.
- If column $j$ contains red stones, set $x_j = \text{FALSE}$.
- If column $j$ is empty, set $x_j$ arbitrarily.

In other words, assign values to the variables so that the literals corresponding to the remaining stones are all TRUE. Each row still has at least one stone, so each clause of $\Phi$ contains at least one TRUE literal, so this assignment makes $\Phi = \text{TRUE}$. We conclude that $\Phi$ is satisfiable.

This reduction clearly requires only polynomial time.

---

**Rubric (Standard polynomial-time reduction rubric):** 10 points =

+ 3 points for the reduction itself
  - For an NP-hardness proof, the reduction must be from a known NP-hard problem. You can use any of the NP-hard problems listed in the lecture notes (except the one you are trying to prove NP-hard, of course). See the list on the next page.

+ 3 points for the “if” proof of correctness
+ 3 points for the “only if” proof of correctness
+ 1 point for writing “polynomial time”

- An incorrect polynomial-time reduction that still satisfies half of the correctness proof is worth at most 4/10.
- A reduction in the wrong direction is worth 0/10.
1. (a) A quasi-satisfying assignment for a 3CNF boolean formula $\Phi$ is an assignment of truth values to the variables such that at most one clause in $\Phi$ does not contain a true literal.

Prove that it is NP-hard to determine whether a given 3CNF boolean formula has a quasi-satisfying assignment.

(b) A near-clique in a graph $G = (V, E)$ is a subset of vertices $S \subseteq V$ where adding a single edge between two vertices in $S$ results in the set $S$ becoming a clique.

Prove that it is NP-hard to find the size of the largest near-clique in a graph $G = (V, E)$.

2. A wye is an undirected graph that looks like the capital letter Y. More formally, a wye consists of three paths of equal length with one common endpoint, called the hub.

Prove that the following problem is NP-hard: Given an undirected graph $G$, what is the largest wye that is a subgraph of $G$? The three paths of the wye must not share any vertices except the hub, and they must have exactly the same length.
Solved Problem

3. A double-Hamiltonian tour in an undirected graph $G$ is a closed walk that visits every vertex in $G$ exactly twice. Prove that it is NP-hard to decide whether a given graph $G$ has a double-Hamiltonian tour.

![Graph](image.png)

This graph contains the double-Hamiltonian tour $a\to b\to d\to g\to e\to b\to d\to c\to f\to a\to c\to f\to g\to e\to a$.

Solution: We prove the problem is NP-hard with a reduction from the standard Hamiltonian cycle problem. Let $G$ be an arbitrary undirected graph. We construct a new graph $H$ by attaching a small gadget to every vertex of $G$. Specifically, for each vertex $v$, we add two vertices $v^\flat$ and $v^\sharp$, along with three edges $vv^\flat$, $vv^\sharp$, and $v^\flat v^\sharp$.

A vertex in $G$, and the corresponding vertex gadget in $H$.

I claim that $G$ has a Hamiltonian cycle if and only if $H$ has a double-Hamiltonian tour.

$\implies$ Suppose $G$ has a Hamiltonian cycle $v_1\to v_2\to \cdots \to v_n\to v_1$. We can construct a double-Hamiltonian tour of $H$ by replacing each vertex $v_i$ with the following walk:

$\cdots \to v_i \to v_i^\flat \to v_i^\sharp \to v_i^\flat \to v_i^\sharp \to v_i^\flat \to \cdots$

$\iff$ Conversely, suppose $H$ has a double-Hamiltonian tour $D$. Consider any vertex $v$ in the original graph $G$; the tour $D$ must visit $v$ exactly twice. Those two visits split $D$ into two closed walks, each of which visits $v$ exactly once. Any walk from $v^\flat$ or $v^\sharp$ to any other vertex in $H$ must pass through $v$. Thus, one of the two closed walks visits only the vertices $v$, $v^\flat$, and $v^\sharp$. Thus, if we simply remove the vertices in $H \setminus G$ from $D$, we obtain a closed walk in $G$ that visits every vertex in $G$ once.

Given any graph $G$, we can clearly construct the corresponding graph $H$ in polynomial time.

With more effort, we can construct a graph $H$ that contains a double-Hamiltonian tour that traverses each edge of $H$ at most once if and only if $G$ contains a Hamiltonian cycle. For each vertex $v$ in $G$ we attach a more complex gadget containing five vertices and eleven edges, as shown on the next page.
A vertex in $G$, and the corresponding modified vertex gadget in $H$.

**Rubric:** 10 points, standard polynomial-time reduction rubric. This is not the only correct solution.

**Non-solution (self-loops):** We attempt to prove the problem is NP-hard with a reduction from the Hamiltonian cycle problem. Let $G$ be an arbitrary undirected graph. We construct a new graph $H$ by attaching a self-loop every vertex of $G$. Given any graph $G$, we can clearly construct the corresponding graph $H$ in polynomial time.

Suppose $G$ has a Hamiltonian cycle $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n \rightarrow v_1$. We can construct a double-Hamiltonian tour of $H$ by alternating between edges of the Hamiltonian cycle and self-loops:

$$v_1 \rightarrow v_1 \rightarrow v_2 \rightarrow v_2 \rightarrow v_3 \rightarrow \cdots \rightarrow v_n \rightarrow v_n \rightarrow v_1.$$

Unfortunately, if $H$ has a double-Hamiltonian tour, we **cannot** conclude that $G$ has a Hamiltonian cycle, because we cannot guarantee that a double-Hamiltonian tour in $H$ uses **any** self-loops. The graph $G$ shown below is a counterexample; it has a double-Hamiltonian tour (even before adding self-loops!) but no Hamiltonian cycle.

This graph has a double-Hamiltonian tour.
Some useful NP-hard problems. You are welcome to use any of these in your own NP-hardness proofs, except of course for the specific problem you are trying to prove NP-hard.

**CIRCUITSat:** Given a boolean circuit, are there any input values that make the circuit output True?

**3Sat:** Given a boolean formula in conjunctive normal form, with exactly three distinct literals per clause, does the formula have a satisfying assignment?

**MaxIndependentSet:** Given an undirected graph $G$, what is the size of the largest subset of vertices in $G$ that have no edges among them?

**MaxClique:** Given an undirected graph $G$, what is the size of the largest complete subgraph of $G$?

**MinVertexCover:** Given an undirected graph $G$, what is the size of the smallest subset of vertices that touch every edge in $G$?

**MinSetCover:** Given a collection of subsets $S_1, S_2, \ldots, S_m$ of a set $S$, what is the size of the smallest subcollection whose union is $S$?

**MinHittingSet:** Given a collection of subsets $S_1, S_2, \ldots, S_m$ of a set $S$, what is the size of the smallest subset of $S$ that intersects every subset $S_i$?

**3Color:** Given an undirected graph $G$, can its vertices be colored with three colors, so that every edge touches vertices with two different colors?

**HamiltonianPath:** Given graph $G$ (either directed or undirected), is there a path in $G$ that visits every vertex exactly once?

**HamiltonianCycle:** Given a graph $G$ (either directed or undirected), is there a cycle in $G$ that visits every vertex exactly once?

**TravelingSalesman:** Given a graph $G$ (either directed or undirected) with weighted edges, what is the minimum total weight of any Hamiltonian path/cycle in $G$?

**LongestPath:** Given a graph $G$ (either directed or undirected, possibly with weighted edges), what is the length of the longest simple path in $G$?

**SteinerTree:** Given an undirected graph $G$ with some of the vertices marked, what is the minimum number of edges in a subtree of $G$ that contains every marked vertex?

**SubsetSum:** Given a set $X$ of positive integers and an integer $k$, does $X$ have a subset whose elements sum to $k$?

**Partition:** Given a set $X$ of positive integers, can $X$ be partitioned into two subsets with the same sum?

**3Partition:** Given a set $X$ of $3n$ positive integers, can $X$ be partitioned into $n$ three-element subsets, all with the same sum?

**IntegerLinearProgramming:** Given a matrix $A \in \mathbb{Z}^{n \times d}$ and two vectors $b \in \mathbb{Z}^n$ and $c \in \mathbb{Z}^d$, compute $\max \{ c \cdot x \mid Ax \leq b, x \geq 0, x \in \mathbb{Z}^d \}$.

**FeasibleILP:** Given a matrix $A \in \mathbb{Z}^{n \times d}$ and a vector $b \in \mathbb{Z}^n$, determine whether the set of feasible integer points $\max \{ x \in \mathbb{Z}^d \mid Ax \leq b, x \geq 0 \}$ is empty.

**Draughts:** Given an $n \times n$ international draughts configuration, what is the largest number of pieces that can (and therefore must) be captured in a single move?

**SuperMarioBrothers:** Given an $n \times n$ Super Mario Brothers level, can Mario reach the castle?
This homework is not for submission. However, we are planning to ask a few (true/false, multiple-choice, or short-answer) questions about undecidability on the final exam, so we still strongly recommend treating these questions as regular homework. Solutions will be released next Monday.

1. Let $\langle M \rangle$ denote the encoding of a Turing machine $M$ (or if you prefer, the Python source code for the executable code $M$). Recall that $w^R$ denotes the reversal of string $w$. Prove that the following language is undecidable.

$$\text{SELFREVACCEPT} := \{ \langle M \rangle \mid M \text{ accepts the string } \langle M \rangle^R \}$$

Note that Rice’s theorem does not apply to this language.

2. Let $M$ be a Turing machine, let $w$ be a string, and let $s$ be an integer. We say that $M$ accepts $w$ in space $s$ if, given $w$ as input, $M$ accesses at most the first $s$ cells on its tape and eventually accepts. (If you prefer to think in terms of programs instead of Turing machines, “space” is how much memory your program needs to run correctly.)

Prove that the following language is undecidable:

$$\text{SOMESQUARESPACE} = \{ \langle M \rangle \mid M \text{ accepts at least one string } w \text{ in space } |w|^2 \}$$

Note that Rice’s theorem does not apply to this language.

[Hint: The only thing you actually need to know about Turing machines for this problem is that they consume a resource called “space”.

3. Prove that the following language is undecidable:

$$\text{PICKY} = \{ \langle M \rangle \mid M \text{ accepts at least one input string and } M \text{ rejects at least one input string} \}$$

Note that Rice’s theorem does not apply to this language.
For each statement below, check “Yes” if the statement is *ALWAYS* true and “No” otherwise, and give a *brief* explanation of your answer.

(a) Every integer in the empty set is prime.

Yes  No

(b) The language \( \{ 0^m 1^n \mid m + n \leq 374 \} \) is regular.

Yes  No

(c) The language \( \{ 0^m 1^n \mid m - n \leq 374 \} \) is regular.

Yes  No

(d) For all languages \( L \), the language \( L^* \) is regular.

Yes  No

(e) For all languages \( L \), the language \( L^* \) is infinite.

Yes  No

(f) For all languages \( L \subset \Sigma^* \), if \( L \) can be represented by a regular expression, then \( \Sigma^* \setminus L \) is recognized by a DFA.

Yes  No

(g) For all languages \( L \) and \( L' \), if \( L \cap L' = \emptyset \) and \( L' \) is not regular, then \( L \) is regular.

Yes  No

(h) Every regular language is recognized by a DFA with exactly one accepting state.

Yes  No

(i) Every regular language is recognized by an NFA with exactly one accepting state.

Yes  No

(j) Every language is either regular or context-free.

Yes  No
For each of the following languages over the alphabet $\Sigma = \{0, 1\}$, either prove that the language is regular or prove that the language is not regular. Exactly one of these two languages is regular. Both of these languages contain the string $00110100000110100$.

1. $\{0^n w^0 | w \in \Sigma^+ \text{ and } n > 0\}$

2. $\{w^0 w^n | w \in \Sigma^+ \text{ and } n > 0\}$
The parity of a bit-string $w$ is $0$ if $w$ has an even number of $1$s, and $1$ if $w$ has an odd number of $1$s. For example:

$$parity(\epsilon) = 0 \quad parity(0010100) = 0 \quad parity(00101110100) = 1$$

(a) Give a self-contained, formal, recursive definition of the parity function. (In particular, do not refer to $\#$ or other functions defined in class.)

(b) Let $L$ be an arbitrary regular language. Prove that the language $\text{OddParity}(L) := \{w \in L \mid \text{parity}(w) = 1\}$ is also regular.

(c) Let $L$ be an arbitrary regular language. Prove that the language $\text{AddParity}(L) := \{\text{parity}(w) \cdot w \mid w \in L\}$ is also regular.

[Hint: Yes, you have enough room.]
For each of the following languages $L$, give a regular expression that represents $L$ and describe a DFA that recognizes $L$. You do not need to prove that your answers are correct.

(a) All strings in $(0 + 1)^*$ that do not contain the substring $0110$.

(b) All strings in $0^*10^*$ whose length is a multiple of 3.
For any string $w \in \{0, 1\}^*$, let $\text{obliviate}(w)$ denote the string obtained from $w$ by removing every 1. For example:

$$\text{obliviate}(\epsilon) = \epsilon$$
$$\text{obliviate}(000000) = 000000$$
$$\text{obliviate}(111111) = \epsilon$$
$$\text{obliviate}(01001101) = 00000$$

Let $L$ be an arbitrary regular language.

1. **Prove** that the language $\text{OBLIVIATE}(L) = \{\text{obliviate}(w) \mid w \in L\}$ is regular.

2. **Prove** that the language $\text{UNOBLIVIATE}(L) = \{w \in \{0, 1\}^* \mid \text{obliviate}(w) \in L\}$ is regular.
Directions

• Don’t panic!

• If you brought anything except your writing implements, your hand-written double-sided 8½" × 11" cheat sheet, please put it away for the duration of the exam. In particular, please turn off and put away all medically unnecessary electronic devices.

• The exam has five numbered questions.

• Write your answers on blank white paper. Please start your solution to each numbered question on a new sheet of paper.

• You have 150 minutes to write, scan, and submit your solutions. The exam is designed to take at most 120 minutes to complete. We are providing 30 minutes of slack to scan and submit in case of unforeseen technology issues.

• If you are ready to scan your solutions before 9:15pm, send a private message to the host (“Ready to scan”) and wait for confirmation before leaving the Zoom call.

• Please scan all paper that you used during the exam — first your solutions, in the correct order, then your cheat sheet (if any), and finally any scratch paper.

• Proofs are required for full credit if and only if we explicitly ask for them, using the word prove in bold italics. In particular, if we ask you to show that a language is regular, you can provide a regular expression, DFA, NFA, or boolean combination without justification. Similarly, if we ask you to give a DFA or NFA, you to not have to name or describe the states.

• Finally, if something goes seriously wrong, send email to jeffe@illinois.edu as soon as possible explaining the situation. If you have already finished the exam but cannot submit to Gradescope for some reason, include a complete scan of your exam in your email. If you are in the middle of the exam, send Jeff email, finish the exam (if you can) within the time limit, and then send a second email with your completed exam.
1. For each of the following languages over the alphabet $\Sigma = \{0, 1\}$, either prove that the language is regular (by constructing an appropriate DFA, NFA, or regular expression) or prove that the language is not regular (by constructing an infinite fooling set and proving that the set you construct is indeed a fooling set for that language).

   (a) $\{0^p1^q0^r \mid r = p + q\}$
   (b) $\{0^p1^q0^r \mid r = p + q \mod 2\}$
   [Hint: First think about the language $\{0^p1^q \mid q = p \mod 2\}$]

2. Let $L$ be any regular language over the alphabet $\Sigma = \{0, 1\}$.
   Let $\text{take2skip2}(w)$ be a function that takes an input string $w$ and returns the subsequence of symbols at positions $1, 2, 5, 6, 9, 10, \ldots 4i + 1, 4i + 2, \ldots$ in $w$. In other words, $\text{take2skip2}(w)$ takes the first two symbols of $w$, skip the next two, takes the next two, skips the next two, and so on. For example:

   $\text{take2skip2}(1) = 1$
   $\text{take2skip2}(0101) = 01$
   $\text{take2skip2}(010011110001) = 0111001$

   Choose exactly one of the following languages, and prove that your chosen language is regular. (In fact, both languages are regular, but we only want a proof for one of them.) Don't forget to tell us which language you've chosen!

   (a) $L_1 = \{w \in \Sigma^+ \mid \text{take2skip2}(w) \in L\}$.
   (b) $L_2 = \{\text{take2skip2}(w) \mid w \in L\}$.

3. Prove that the following languages are not regular by building an infinite fooling set for each of them. For each language, prove that the set you constructed is indeed a fooling set.

   (a) $\{0^p1^q0^r \mid r > 0 \quad \text{and} \quad q \mod r = 0 \quad \text{and} \quad p \mod r = 0\}$
   (b) $\{0^p1^q \mid q > 0 \quad \text{and} \quad p = q^q\}$

4. Consider the following recursive function:

   $\text{MINGLE}(w, z) := \begin{cases} 
   z & \text{if } w = \epsilon \\
   \text{MINGLE}(x, az) & \text{if } w = a \cdot x \text{ for some symbol } a \text{ and string } x
   \end{cases}$

   For example, $\text{MINGLE}(01, 10) = \text{MINGLE}(1, 0100) = \text{MINGLE}(e, 101001) = 101001$.

   (a) Prove that $|\text{MINGLE}(w, z)| = 2|w| + |z|$ for all strings $w$ and $z$.
   (b) Prove that $\text{MINGLE}(w, z \cdot z^R) = (\text{MINGLE}(w, z \cdot z^R))^R$ for all strings $w$ and $z$.

   (There's one more question on the next page)
5. For each statement below, write “Yes” if the statement is always true and write “No” otherwise, and give a brief (one short sentence) explanation of your answer. Read these statements very carefully—small details matter!

(a) If $L$ is a regular language over the alphabet $\{0, 1\}$, then $\{w1w \mid w \in L\}$ is also regular.

(b) If $L$ is a regular language over the alphabet $\{0, 1\}$, then $\{x1y \mid x, y \in L\}$ is also regular.

(c) The context-free grammar $S \rightarrow 0S1 | 1S0 | SS | 01 | 10$ generates the language $(0^+1)^+$. 

(d) Every regular expression that does not contain a Kleene star (or Kleene plus) represents a finite language.

(e) Let $L_1$ be a finite language and $L_2$ be an arbitrary language. Then $L_1 \cap L_2$ is regular.

(f) Let $L_1$ be a finite language and $L_2$ be an arbitrary language. Then $L_1 \cup L_2$ is regular.

(g) The regular expression $(00 + 01 + 10 + 11)^*$ represents the language of all strings over $\{0, 1\}$ of even length.

(h) The $\epsilon$-reach of any state in an NFA contains the state itself.

(i) The language $L = \emptyset^*$ over the alphabet $\Sigma = \{0, 1\}$ has a fooling set of size 2.

(j) Suppose we define an $\epsilon$-DFA to be a DFA that can additionally make $\epsilon$-transitions. Any language that can be recognized by an $\epsilon$-DFA can also be recognized by a DFA that does not make any $\epsilon$-transitions.
Directions

• Don’t panic!

• If you brought anything except your writing implements, your hand-written double-sided 8½” × 11” cheat sheet, please put it away for the duration of the exam. In particular, please turn off and put away all medically unnecessary electronic devices.

• The exam has five numbered questions.

• Write your answers on blank white paper. Please start your solution to each numbered question on a new sheet of paper.

• You have 150 minutes to write, scan, and submit your solutions. The exam is designed to take at most 120 minutes to complete. We are providing 30 minutes of slack to scan and submit in case of unforeseen technology issues.

• If you are ready to scan your solutions before 9:15pm, send a private message to the host (“Ready to scan”) and wait for confirmation before leaving the Zoom call.

• Please scan all paper that you used during the exam — first your solutions, in the correct order, then your cheat sheet (if any), and finally any scratch paper.

• Proofs are required for full credit if and only if we explicitly ask for them, using the word prove in bold italics. In particular, if we ask you to show that a language is regular, you can provide a regular expression, DFA, NFA, or boolean combination without justification. Similarly, if we ask you to give a DFA or NFA, you to not have to name or describe the states.

• Finally, if something goes seriously wrong, send email to jeffe@illinois.edu as soon as possible explaining the situation. If you have already finished the exam but cannot submit to Gradescope for some reason, include a complete scan of your exam in your email. If you are in the middle of the exam, send Jeff email, finish the exam (if you can) within the time limit, and then send a second email with your completed exam.
1. For each of the following languages over the alphabet $\Sigma = \{0, 1\}$, either prove that the language is regular (by constructing an appropriate DFA, NFA, or regular expression) or prove that the language is not regular (by constructing an infinite fooling set and proving that the set you construct is indeed a fooling set for that language).

(a) $\{0^p 1^q \epsilon \mid p = (q + r) \mod 2\}$
(b) $\{0^p 1^q \epsilon \mid p = q + r\}$

2. Let $L$ be any regular language over the alphabet $\Sigma = \{0, 1\}$.

Let $\text{compress}(w)$ be a function that takes a string $w$ as input, and returns the string formed by compressing every run of $0$s in $w$ by half. Specifically, every run of $2n$ $0$s is compressed to length $n$, and every run of $2n + 1$ $0$s is compressed to length $n + 1$. For example:

\[
\begin{align*}
\text{compress}(00000110001) &= 00011001 \\
\text{compress}(11000010) &= 110010 \\
\text{compress}(11111) &= 11111
\end{align*}
\]

Choose exactly one of the following languages, and prove that your chosen language is regular. (In fact, both languages are regular, but we only want a proof for one of them.)

Don't forget to tell us which language you've chosen!

(a) $\{w \in \Sigma^* \mid \text{compress}(w) \in L\}$
(b) $\{\text{compress}(w) \mid w \in L\}$

3. Recall that the greatest common divisor of two positive integers $p$ and $q$, written $\gcd(p, q)$, is the largest positive integer $r$ that divides both $p$ and $q$. For example, $\gcd(21, 15) = 3$ and $\gcd(3, 74) = 1$.

Prove that the following languages are not regular by building an infinite fooling set for each of them. For each language, prove that the set you constructed is indeed a fooling set.

(a) $\{0^p 1^q \epsilon \mid p > 0 \text{ and } q > 0 \text{ and } r = \gcd(p, q)\}$
(b) $\{0^p 1^pq \mid p > 0 \text{ and } q > 0\}$

4. Consider the following recursive function, $\text{RO}$ (short for remove-ones) that operates on any string $w \in \Sigma^*$, where $\Sigma = \{0, 1\}$:

\[
\text{RO}(w) := \begin{cases} 
\epsilon & \text{if } w = \epsilon \\
0 \cdot \text{RO}(x) & \text{if } w = 0 \cdot x \text{ for some string } x \\
\text{RO}(x) & \text{if } w = 1 \cdot x \text{ for some string } x
\end{cases}
\]

(a) Prove that $|\text{RO}(w)| \leq |w|$ for all strings $w$.
(b) Prove that $\text{RO}(\text{RO}(w)) = \text{RO}(w)$ for all strings $w$.

(There's one more question on the next page)
5. For each statement below, write “Yes” if the statement is always true and write “No” otherwise, and give a brief (one short sentence) explanation of your answer. Read these statements very carefully—small details matter!

(a) \(\{0^n1^n \mid n > 0\}\) is the only infinite fooling set for the language \(\{0^n1^n \mid n > 0\}\).
(b) \(\{0^n1^n \mid n > 0\}\) is a context-free language.
(c) The context-free grammar \(S \rightarrow 00S \mid 11S \mid 01\) generates the language \(0^n1^n\).
(d) Any language that can be decided by an NFA with \(\epsilon\)-transitions can also be decided by an NFA without \(\epsilon\)-transitions.
(e) For any string \(w \in (0 + 1)^*\), let \(w^C\) denote the string obtained by flipping every 0 in \(w\) to 1, and every 1 in \(w\) to 0.
   If \(L\) is a regular language over the alphabet \(\{0, 1\}\), then \(\{ww^C \mid w \in L\}\) is also regular.
(f) For any string \(w \in (0 + 1)^*\), let \(w^C\) denote the string obtained by flipping every 0 in \(w\) to 1, and every 1 in \(w\) to 0.
   If \(L\) is a regular language over the alphabet \(\{0, 1\}\), then \(\{xy^C \mid x, y \in L\}\) is also regular.
(g) The \(\epsilon\)-reach of any state in an NFA contains the state itself.
(h) Let \(L_1, L_2\) be two regular languages. The language \((L_1 + L_2)^*\) is also regular.
(i) The regular expression \((00 + 11)^*\) represents the language of all strings over \(\{0, 1\}\) of even length.
(j) The language \(\{0^{2p} \mid p \text{ is prime}\}\) is regular.
Clearly indicate the following structures in the directed graph below, or write NONE if the indicated structure does not exist. Don’t be subtle; to indicate a collection of edges, draw a heavy black line along the entire length of each edge.

(a) A depth-first tree rooted at \( x \).

(b) A breadth-first tree rooted at \( y \).

(c) A shortest-path tree rooted at \( z \).

(d) The shortest directed cycle.
A vertex $v$ in a (weakly) connected graph $G$ is called a cut vertex if the subgraph $G - v$ is disconnected. For example, the following graph has three cut vertices, which are shaded in the figure.

Suppose you are given a (weakly) connected dag $G$ with one source and one sink. Describe and analyze an algorithm that returns TRUE if $G$ has a cut vertex and FALSE otherwise.
You decide to take your next hiking trip in Jellystone National Park. You have a map of the park’s trails that lists all the scenic views in the park, but also warns that certain trail segments have a high risk of bear encounters. To make the hike worthwhile, you want to see at least three scenic views. You also don’t want to get eaten by a bear, so you are willing to hike along at most one high-bear-risk segment. Because the trails are narrow, each trail segment allows traffic in only one direction.

Your friend has converted the map into a directed graph $G = (V, E)$, where $V$ is the set of intersections and $E$ is the set of trail segments. A subset $S$ of the edges are marked as Scenic; another subset $B$ of the edges are marked as high-Bear-risk. You may assume that $S \cap B = \emptyset$. Each segment $e \in E$ is also labeled with a positive length $\ell(e)$ in miles. Your campsite appears on the map as a particular vertex $s \in V$, and the visitor center is another vertex $t \in V$.

Describe and analyze an algorithm to compute the shortest hike from your campsite $s$ to the visitor center $t$ that includes at least three scenic trail segments and at most one high-bear-risk trail segment. You may assume such a hike exists.
During a family reunion over Thanksgiving break, your ultra-competitive thirteen-year-old nephew Elmo challenges you to a card game. At the beginning of the game, Elmo deals a long row of cards. Each card shows a number of points, which could be positive, negative, or zero. After the cards are dealt, you and Elmo alternate taking either the leftmost card or the rightmost card from the row, until all the cards are gone. The player that collects the most points is the winner.

For example, if the initial card values are \([4, 6, 1, 2]\), the game might proceed as follows:

- You take the 4 on the left, leaving \([6, 1, 2]\).
- Elmo takes the 6 on the left, leaving \([1, 2]\).
- You take the 2 on the right, leaving \([1]\).
- Elmo takes the last 1, ending the game.
- You took \(4 + 2 = 6\) points, and Elmo took \(6 + 1 = 7\) points, so Elmo wins!

Describe and analyze an algorithm to determine, given the initial sequence of cards, the maximum number of points that you can collect playing against a *perfect* opponent. Assume that Elmo generously lets you move first.
For this problem, a *subtree* of a binary tree means any connected subgraph. A binary tree is *complete* if every internal node has two children, and every leaf has exactly the same depth.

Describe and analyze a recursive algorithm to compute the *largest complete subtree* of a given binary tree. Your algorithm should return both the root and the depth of this subtree. For example, given the following tree $T$ as input, your algorithm should return the left child of the root of $T$ and the integer 2.
Directions

• Don’t panic!

• If you brought anything except your writing implements, your hand-written double-sided 8½” × 11” cheat sheet, please put it away for the duration of the exam. In particular, please turn off and put away all medically unnecessary electronic devices.

• We strongly recommend reading the entire exam before trying to solve anything. If you think a question is unclear or ambiguous, please ask for clarification as soon as possible.

• The exam has five numbered questions, each worth 10 points. (Subproblems are not necessarily worth the same number of points.)

• Write your answers on blank white paper using a dark pen. Please start your solution to each numbered question on a new sheet of paper.

• You have 120 minutes to write your solutions, after which you have 30 minutes to scan your solutions, convert your scan to a PDF file, and upload your PDF file to Gradescope.

• If you are ready to scan your solutions before 9:00pm, send a private message to the host of your Zoom call (“Ready to scan”) and wait for confirmation before leaving the Zoom call.

• Gradescope will only accept PDF submissions. Please do not scan your cheat sheets or scratch paper. Please make sure your solution to each numbered problem starts on a new page of your PDF file. Low-quality scans will be penalized.

• Proofs are required for full credit if and only if we explicitly ask for them, using the word prove in bold italics.

• Finally, if something goes seriously wrong, send email to jeffe@illinois.edu as soon as possible explaining the situation. If you have already finished the exam but cannot submit to Gradescope for some reason, include a complete scan of your exam as a PDF file in your email. If you are in the middle of the exam, send Jeff email, continue working until the time limit, and then send a second email with your completed exam as a PDF file. Please do not email raw photos.
1. Short answers:

(a) Solve the recurrence \( T(n) = 2T(n/3) + O(n). \)
(b) Solve the recurrence \( T(n) = 2T(n/7) + O(n). \)
(c) Solve the recurrence \( T(n) = 2T(n/4) + O(n). \)

(d) Draw a connected undirected graph \( G \) with at most ten vertices, such that every vertex has degree at least 2, and no spanning tree of \( G \) is a path.
(e) Draw a directed acyclic graph with at most ten vertices, exactly one source, exactly one sink, and more than one topological order.

(f) Describe an appropriate memoization structure and evaluation order for the following (meaningless) recurrence, and give the running time of the resulting iterative algorithm to compute \( \text{Pibby}(1, n) \). (Assume all array accesses are legal.)

\[
\text{Pibby}(i, k) = \begin{cases} 
0 & \text{if } i > k \\
A[i] & \text{if } i = k \\
\max \left\{ \text{Pibby}(i + 2, k), \text{Pibby}(i + 1, k - 1), \text{Pibby}(i, k - 2) \right\} & \text{otherwise}
\end{cases}
\]

2. Your company has two offices, one in San Francisco and the other in New York. Each week you decide whether you want to work in the San Francisco office or in the New York office. Depending on the week, your company makes more money by having you work at one office or the other. You are given a schedule of the profits you can earn at each office for the next \( n \) weeks. You'd obviously prefer to work each week in the location with higher profit, but there’s a catch: Flying from one city to the other costs \$1000. Your task is to design a travel schedule for the next \( n \) weeks that yields the maximum total profit, assuming you start in San Francisco.

For example: suppose you are given the following schedule:

<table>
<thead>
<tr>
<th></th>
<th>SF</th>
<th>$800</th>
<th>$200</th>
<th>$500</th>
<th>$400</th>
<th>$1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>NY</td>
<td>$300</td>
<td>$900</td>
<td>$700</td>
<td>$2000</td>
<td>$200</td>
<td></td>
</tr>
</tbody>
</table>

If you spend the first week in San Francisco, the next three weeks in New York, and the last week in San Francisco, your total profit for those five weeks is \$800 - \$1000 + \$900 + \$700 + \$2000 - \$1000 + \$1200 = \$3600.

(a) **Prove** that the obvious greedy strategy (each week, fly to the city with more profit) does not always yield the maximum total profit.

(b) Describe and analyze an algorithm to compute the maximum total profit you can earn, assuming you start in San Francisco. The input to your algorithm is a pair of arrays \( NY[1 .. n] \) and \( SF[1 .. n] \), containing the profits in each city for each week.
3. Suppose you are given a directed graph \( G = (V, E) \), whose vertices are either red, green, or blue. Edges in \( G \) do not have weights, and \( G \) is not necessarily a dag. The **remoteness** of a vertex \( v \) is the maximum of three shortest-path lengths:

- The length of a shortest path to \( v \) from the closest red vertex
- The length of a shortest path to \( v \) from the closest blue vertex
- The length of a shortest path to \( v \) from the closest green vertex

In particular, if \( v \) is not reachable from vertices of all three colors, then \( v \) is infinitely remote.

Describe and analyze an algorithm to find a vertex of \( G \) whose remoteness is smallest.

4. Suppose you are given an array \( A[1..n] \) of integers such that \( A[i] + A[i+1] \) is even for exactly one index \( i \). In other words, the elements of \( A \) alternate between even and odd, except for exactly one adjacent pair that are either both even or both odd.

Describe and analyze an efficient algorithm to find the unique index \( i \) such that \( A[i] + A[i+1] \) is even. For example, given the following array as input, your algorithm should return the integer 6, because \( A[6] + A[7] = 88 + 62 \) is even. (Cells containing even integers are shaded blue.)

```
17 | 40 | 23 | 72 | 39 | 88 | 62 | 13 | 40 | 53 | 92 | 21 | 10 | 73 | 68
```

5. A **zigzag walk** in a directed graph \( G \) is a sequence of vertices connected by edges in \( G \), but the edges alternately point forward and backward along the sequence. Specifically, the first edge points forward, the second edge points backward, and so on. The **length** of a zigzag walk is the sum of the weights of its edges, both forward and backward.

For example, the following graph contains the zigzag walk \( a \rightarrow b \leftarrow d \rightarrow f \rightarrow c \rightarrow e \). Assuming every edge in the graph has weight 1, this zigzag walk has length 5.

```

Suppose you are given a directed graph \( G \) with non-negatively weighted edges, along with two vertices \( s \) and \( t \). Describe and analyze an algorithm to find the shortest zigzag walk from \( s \) to \( t \) in \( G \).
Directions:

- Don’t panic!

- If you brought anything except your writing implements, your hand-written double-sided 8½” × 11” cheat sheet, please put it away for the duration of the exam. In particular, please turn off and put away all medically unnecessary electronic devices.

- We strongly recommend reading the entire exam before trying to solve anything. If you think a question is unclear or ambiguous, please ask for clarification as soon as possible.

- The exam has five numbered questions, each worth 10 points. (Subproblems are not necessarily worth the same number of points.)

- Write your answers on blank white paper using a dark pen. Please start your solution to each numbered question on a new sheet of paper.

- You have 120 minutes to write your solutions, after which you have 30 minutes to scan your solutions, convert your scan to a PDF file, and upload your PDF file to Gradescope.

- If you are ready to scan your solutions before 9:00pm, send a private message to the host of your Zoom call (“Ready to scan”) and wait for confirmation before leaving the Zoom call.

- Gradescope will only accept PDF submissions. Please do not scan your cheat sheets or scratch paper. Please make sure your solution to each numbered problem starts on a new page of your PDF file. Low-quality scans will be penalized.

- Proofs are required for full credit if and only if we explicitly ask for them, using the word prove in bold italics.

- Finally, if something goes seriously wrong, send email to jeffe@illinois.edu as soon as possible explaining the situation. If you have already finished the exam but cannot submit to Gradescope for some reason, include a complete scan of your exam as a PDF file in your email. If you are in the middle of the exam, send Jeff email, continue working until the time limit, and then send a second email with your completed exam as a PDF file. Please do not email raw photos.
1. Short answers:
   
   (a) Solve the recurrence $T(n) = 3T(n/2) + O(n^2)$.  
   
   (b) Solve the recurrence $T(n) = 7T(n/2) + O(n^2)$.  
   
   (c) Solve the recurrence $T(n) = 4T(n/2) + O(n^2)$.  
   
   (d) Draw a directed acyclic graph with at most ten vertices, exactly one source, exactly one sink, and more than one topological order.  
   
   (e) Draw a directed graph with at most ten vertices, with distinct edge weights, that has more than one shortest path from some vertex $s$ to some other vertex $t$.  
   
   (f) Describe an appropriate memoization structure and evaluation order for the following (meaningless) recurrence, and give the running time of the resulting iterative algorithm to compute $Huh(1,n)$.

   $$Huh(i,k) = \begin{cases} 
   0 & \text{if } i > n \text{ or } k < 0 \\
   \min \left\{ Huh(i+1,k-2), Huh(i+2,k-1) \right\} + A[i,k] & \text{if } A[i,k] \text{ is even} \\
   \max \left\{ Huh(i+1,k-2), Huh(i+2,k-1) \right\} - A[i,k] & \text{if } A[i,k] \text{ is odd}
   \end{cases}$$

2. **Quadhopper** is a solitaire game played on a row of $n$ squares. Each square contains four positive integers. The player begins by placing a token on the leftmost square. On each move, the player chooses one of the numbers on the token's current square, and then moves the token that number of squares to the right. The game ends when the token moves past the rightmost square. The object of the game is to make as many moves as possible before the game ends.

   ![A quadhopper puzzle that allows six moves. (This is not the longest legal sequence of moves.)](image)

   (a) **Prove** that the obvious greedy strategy (always choose the smallest number) does not give the largest possible number of moves for every quadhopper puzzle.

   (b) Describe and analyze an efficient algorithm to find the largest possible number of legal moves for a given quadhopper puzzle.
3. Suppose you are given a directed graph $G = (V, E)$, each of whose vertices is either red, green, or blue. Edges in $G$ do not have weights, and $G$ is not necessarily a dag.

Describe and analyze an algorithm to find a shortest path in $G$ that contains at least one vertex of each color. (In particular, your algorithm must choose the best start and end vertices for the path.)

4. Your grandmother dies and leaves you her treasured collection of $n$ radioactive Beanie Babies. Her will reveals that one of the Beanie Babies is a rare specimen worth 374 million dollars, but all the others are worthless. All of the Beanie Babies are equally radioactive, except for the valuable Beanie Baby, which is either slightly more or slightly less radioactive, but you don’t know which. Otherwise, as far as you can tell, the Beanie Babies are all identical.

You have access to a state-of-the-art Radiation Comparator at your job. The Comparator has two chambers. You can place any two disjoint sets of Beanie Babies in Comparator’s two chambers; the Comparator will then indicate which subset emits more radiation, or that the two subsets are equally radioactive. (Two subsets are equally radioactive if and only if they contain the same number of Beanie Babies, and they are all worthless.) The Comparator is slow and consumes a lot of power, and you really aren’t supposed to use it for personal projects, so you really want to use it as few times as possible.

Describe an efficient algorithm to identify the valuable Beanie Baby. How many times does your algorithm use the Comparator in the worst case, as a function of $n$?

5. Ronnie and Hyde are a professional robber duo who plan to rob a house in the Leverwood neighborhood of Sham-Poobanana. They have managed to obtain a map of the neighborhood in the form of a directed graph $G$, whose vertices represent houses, whose edges represent one-way streets.

- One vertex $s$ represents the house that Ronnie and Hyde plan to rob.
- A set $X$ of special vertices designate eXits from the neighborhood.
- Each directed edge $u \rightarrow v$ has a non-negative weight $w(u \rightarrow v)$, indicating the time required to drive directly from house $u$ to house $v$.
- Thanks to Leverwood’s extensive network of traffic cameras, speeding or driving backwards along any one-way street would mean certain capture.

Describe and analyze an algorithm to compute the shortest time needed to exit the neighborhood, starting at house $s$. The input to your algorithm is the directed graph $G = (V, E)$, with clearly marked subset of exit vertices $X \subseteq V$, and non-negative weights $w(u \rightarrow v)$ for every edge $u \rightarrow v$. 

2
Directions

• Don’t panic!

• If you brought anything except your writing implements, your two hand-written double-sided 8½" × 11" cheat sheets, please put it away for the duration of the exam. In particular, please turn off and put away all medically unnecessary electronic devices.

• We strongly recommend reading the entire exam before trying to solve anything. If you think a question is unclear or ambiguous, please ask for clarification as soon as possible.

• The exam has six numbered questions, each worth 10 points. (Subproblems are not necessarily worth the same number of points.)

• You have 150 minutes to write your solutions, after which you have 30 minutes to scan your solutions, convert your scan to a PDF file, and upload your PDF file to Gradescope. (Both of these times are extended if you have time accommodations through DRES.)

• Proofs are required for full credit if and only if we explicitly ask for them, using the word prove in bold italics.

• Write your answers on blank white paper using a dark pen. Please start your solution to each numbered question on a new sheet of paper.

• If you are ready to scan your solutions and there are more than 15 minutes of writing time remaining, send a private message to the host of your Zoom call (“Ready to scan”) and wait for confirmation before leaving the Zoom call.

• Gradescope will only accept PDF submissions. Please do not scan your cheat sheets or scratch paper. Please make sure your solution to each numbered problem starts on a new page of your PDF file.

• Finally, if something goes seriously wrong, send email to jeffe@illinois.edu as soon as possible explaining the situation. If you have already finished the exam but cannot submit to Gradescope for some reason, include a complete scan of your exam as a PDF file in your email. If you are in the middle of the exam, send Jeff email, continue working until the time limit, and then send a second email with your completed exam as a PDF file. Please do not email raw photos.
Some useful NP-hard problems. You are welcome to use any of these in your own NP-hardness proofs, except of course for the specific problem you are trying to prove NP-hard.

**CircuitSat:** Given a boolean circuit, are there any input values that make the circuit output True?

**3Sat:** Given a boolean formula in conjunctive normal form, with exactly three distinct literals per clause, does the formula have a satisfying assignment?

**MaxIndependentSet:** Given an undirected graph $G$, what is the size of the largest subset of vertices in $G$ that have no edges among them?

**MaxClique:** Given an undirected graph $G$, what is the size of the largest complete subgraph of $G$?

**MinVertexCover:** Given an undirected graph $G$, what is the size of the smallest subset of vertices that touch every edge in $G$?

**MinSetCover:** Given a collection of subsets $S_1, S_2, \ldots, S_m$ of a set $S$, what is the size of the smallest subcollection whose union is $S$?

**MinHittingSet:** Given a collection of subsets $S_1, S_2, \ldots, S_m$ of a set $S$, what is the size of the smallest subset of $S$ that intersects every subset $S_i$?

**3Color:** Given an undirected graph $G$, can its vertices be colored with three colors, so that every edge touches vertices with two different colors?

**HamiltonianPath:** Given graph $G$ (either directed or undirected), is there a path in $G$ that visits every vertex exactly once?

**HamiltonianCycle:** Given a graph $G$ (either directed or undirected), is there a cycle in $G$ that visits every vertex exactly once?

**TravelingSalesman:** Given a graph $G$ (either directed or undirected) with weighted edges, what is the minimum total weight of any Hamiltonian path/cycle in $G$?

**LongestPath:** Given a graph $G$ (either directed or undirected, possibly with weighted edges), what is the length of the longest simple path in $G$?

**SteinerTree:** Given an undirected graph $G$ with some of the vertices marked, what is the minimum number of edges in a subtree of $G$ that contains every marked vertex?

**SubsetSum:** Given a set $X$ of positive integers and an integer $k$, does $X$ have a subset whose elements sum to $k$?

**Partition:** Given a set $X$ of positive integers, can $X$ be partitioned into two subsets with the same sum?

**3Partition:** Given a set $X$ of $3n$ positive integers, can $X$ be partitioned into $n$ three-element subsets, all with the same sum?

**IntegerLinearProgramming:** Given a matrix $A \in \mathbb{Z}^{n \times d}$ and two vectors $b \in \mathbb{Z}^n$ and $c \in \mathbb{Z}^d$, compute $\max\{c \cdot x \mid Ax \leq b, x \geq 0, x \in \mathbb{Z}^d\}$.

**FeasibleILP:** Given a matrix $A \in \mathbb{Z}^{n \times d}$ and a vector $b \in \mathbb{Z}^n$, determine whether the set of feasible integer points $\max\{x \in \mathbb{Z}^d \mid Ax \leq b, x \geq 0\}$ is empty.

**Draughts:** Given an $n \times n$ international draughts configuration, what is the largest number of pieces that can (and therefore must) be captured in a single move?

**SteamedHams:** Aurora borealis? At this time of year, at this time of day, in this part of the country, localized entirely within your kitchen? May I see it?
1. For each statement below, write “YES” if the statement is always true and “NO” otherwise, and give a brief (at most one short sentence) explanation of your answer. Assume $P \neq NP$. If there is any other ambiguity or uncertainty about an answer, write “NO”. For example:

- $x + y = 5$
  **NO** — Suppose $x = 3$ and $y = 4$.
- 3SAT can be solved in polynomial time.
  **NO** — 3SAT is NP-hard.
- If $P = NP$ then Jeff is the Queen of England.
  **YES** — The hypothesis is false, so the implication is true.

Read each statement very carefully; some of these are deliberately subtle!

---

Which of the following statements are true?

(a) The solution to the recurrence $T(n) = 4T(n/2) + O(n^2)$ is $T(n) = O(n^2)$.
(b) The solution to the recurrence $T(n) = 2T(n/4) + O(n^2)$ is $T(n) = O(n^2)$.
(c) Every directed acyclic graph contains at least one sink.
(d) Given any undirected graph $G$, we can compute a spanning tree of $G$ in $O(V + E)$ time using whatever-first search.
(e) Suppose we want to iteratively evaluate the following recurrence:

$$What(i, j) = \begin{cases} 
0 & \text{if } i > n \text{ or } j < 0 \\
\max \left\{ \begin{array}{ll}
What(i, j-1) \\
What(i+1, j) \\
A[i] \cdot A[j] + What(i+1, j-1) 
\end{array} \right\} & \text{otherwise}
\end{cases}$$

We can fill the array $What[0..n, 0..n]$ in $O(n^2)$ time, by decreasing $i$ in the outer loop and decreasing $j$ in the inner loop.

---

Which of the following statements are true for at least one language $L \subseteq \{0, 1\}^*$?

(f) $L^* = (L^*)^*$
(g) $L$ is decidable, but $L^*$ is undecidable.
(h) $L$ is neither regular nor NP-hard.
(i) $L$ is in P, and $L$ has an infinite fooling set.
(j) The language $\{\langle M \rangle \mid M \text{ accepts } L\}$ is undecidable.
2. For each statement below, write “YES” if the statement is always true and “NO” otherwise, and give a brief (at most one short sentence) explanation of your answer. Assume \( P \neq \text{NP} \). If there is any other ambiguity or uncertainty about an answer, write “NO”.

Read each statement very carefully; some of these are deliberately tricky!

(Please remember to start your answers to this problem on a new page. Yes, this is really just a continuation of problem 1; we split it into two problems to make grading easier.)

Consider the following pair of languages:

- \( \text{ACYCLIC} := \{ \text{undirected graph } G \mid G \text{ contains no cycles} \} \)
- \( \text{HALFIND} := \{ \text{undirected graph } G = (V, E) \mid G \text{ has an independent set of size } |V|/2 \} \)

(For concreteness, assume that in both of these languages, graphs are represented by their adjacency matrices.) The language \( \text{HALFIND} \) is actually NP-hard; you do not need to prove that fact.

Which of the following statements are true, assuming \( P \neq \text{NP} \)?

(a) \( \text{ACYCLIC} \) is NP-hard.

(b) \( \text{HALFIND} \setminus \text{ACYCLIC} \in \text{P} \)
   (Recall that \( X \setminus Y \) is the subset of elements of \( X \) that are not in \( Y \).)

(c) \( \text{HALFIND} \) is decidable.

(d) A polynomial-time reduction from \( \text{HALFIND} \) to \( \text{ACYCLIC} \) would imply \( P=\text{NP} \).

(e) A polynomial-time reduction from \( \text{ACYCLIC} \) to \( \text{HALFIND} \) would imply \( P=\text{NP} \).

Suppose there is a polynomial-time reduction from some language \( A \) over the alphabet \( \{0, 1\} \) to some other language \( B \) over the alphabet \( \{0, 1\} \). Which of the following statements are true, assuming \( P \neq \text{NP} \)?

(f) \( A \) is a subset of \( B \).

(g) If \( B \in \text{P} \), then \( A \in \text{P} \).

(h) If \( B \) is NP-hard, then \( A \) is NP-hard.

(i) If \( B \) is decidable, then \( A \) is decidable.

(j) If \( B \) is regular, then \( A \) is decidable.
3. Suppose you are asked to tile a $2 \times n$ grid of squares with dominos (1 $\times$ 2 rectangles). Each domino must cover exactly two grid squares, either horizontally or vertically, and each grid square must be covered by exactly one domino.

Each grid square is worth some number of points, which could be positive, negative, or zero. The value of a domino tiling is the sum of the points in squares covered by vertical dominos, minus the sum of the points in squares covered by horizontal dominos.

Describe and analyze an efficient algorithm to compute the largest possible value of a domino tiling of a given $2 \times n$ grid. Your input is an array $Points[1..2, 1..n]$ of point values.

As an example, here are three domino tilings of the same $2 \times 6$ grid, along with their values. The third tiling is optimal; no other tiling of this grid has larger value. Thus, given this $2 \times 6$ grid as input, your algorithm should return the integer 16.

![Examples of domino tilings](image)

4. Submit a solution to exactly one of the following problems. Don’t forget to tell us which problem you’ve chosen!

(a) Let $\Phi$ be a boolean formula in conjunctive normal form, with exactly three literals per clause (or in other words, an instance of 3Sat). Prove that it is NP-hard to decide whether $\Phi$ has a satisfying assignment in which exactly half of the variables are TRUE.

(b) Let $G = (V, E)$ be an arbitrary undirected graph. Recall that a proper 3-coloring of $G$ assigns each vertex of $G$ one of three colors—red, blue, or green—so that every edge in $G$ has endpoints with different colors. Prove that it is NP-hard to decide whether $G$ has a proper 3-coloring in which exactly half of the vertices are red.

(In fact, both of these problems are NP-hard, but we only want a proof for one of them.)

5. Suppose you are given a height map of a mountain, in the form of an $n \times n$ grid of evenly spaced points, each labeled with an elevation value. You can safely hike directly from any point to any neighbor immediately north, south, east, or west, but only if the elevations of those two points differ by at most $\Delta$. (The value of $\Delta$ depends on your hiking experience and your physical condition.)

Describe and analyze an algorithm to determine the longest hike from some point $s$ to some other point $t$, where the hike consists of an uphill climb (where elevations must increase at each step) followed by a downhill climb (where elevations must decrease at each step). Your input consists of an array $Elevation[1..n, 1..n]$ of elevation values, the starting point $s$, the target point $t$, and the parameter $\Delta$. 

6. Recall that a run in a string \( w \in \{0, 1\}^* \) is a maximal substring of \( w \) whose characters are all equal. For example, the string \( 00011111110000 \) is the concatenation of three runs:

\[
00011111110000 = 000 \cdot 1111111 \cdot 0000
\]

(a) Let \( L_a \) denote the set of all strings in \( \{0, 1\}^* \) where every 0 is followed immediately by at least one 1.

For example, \( L_a \) contains the strings 010111 and 1111 and the empty string \( \epsilon \), but does not contain either 001100 or 1111110.

- Describe a DFA or NFA that accepts \( L_a \) and
- Give a regular expression that describes \( L_a \).

(You do not need to prove that your answers are correct.)

(b) Let \( L_b \) denote the set of all strings in \( \{0, 1\}^* \) whose run lengths are increasing; that is, every run except the last is followed immediately by a longer run.

For example, \( L_b \) contains the strings 0110001111 and 1100000 and 000 and the empty string \( \epsilon \), but does not contain either 000111 or 100011.

Prove that \( L_b \) is not a regular language.
Directions

- Don’t panic!

- If you brought anything except your writing implements, your two hand-written double-sided 8½" × 11" cheat sheets, please put it away for the duration of the exam. In particular, please turn off and put away all medically unnecessary electronic devices.

- We strongly recommend reading the entire exam before trying to solve anything. If you think a question is unclear or ambiguous, please ask for clarification as soon as possible.

- The exam has six numbered questions, each worth 10 points. (Subproblems are not necessarily worth the same number of points.)

- You have 150 minutes to write your solutions, after which you have 30 minutes to scan your solutions, convert your scan to a PDF file, and upload your PDF file to Gradescope. (Both of these times are extended if you have time accommodations through DRES.)

- Proofs are required for full credit if and only if we explicitly ask for them, using the word prove in bold italics.

- Write your answers on blank white paper using a dark pen. Please start your solution to each numbered question on a new sheet of paper.

- If you are ready to scan your solutions and there are more than 15 minutes of writing time, send a private message to the host of your Zoom call (“Ready to scan”) and wait for confirmation before leaving the Zoom call.

- Gradescope will only accept PDF submissions. Please do not scan your cheat sheets or scratch paper. Please make sure your solution to each numbered problem starts on a new page of your PDF file.

- Finally, if something goes seriously wrong, send email to jeffe@illinois.edu as soon as possible explaining the situation. If you have already finished the exam but cannot submit to Gradescope for some reason, include a complete scan of your exam as a PDF file in your email. If you are in the middle of the exam, send Jeff email, continue working until the time limit, and then send a second email with your completed exam as a PDF file. Please do not email raw photos.
Some useful NP-hard problems. You are welcome to use any of these in your own NP-hardness proofs, except of course for the specific problem you are trying to prove NP-hard.

CircuitSat: Given a boolean circuit, are there any input values that make the circuit output True?

3Sat: Given a boolean formula in conjunctive normal form, with exactly three distinct literals per clause, does the formula have a satisfying assignment?

MaxIndependentSet: Given an undirected graph $G$, what is the size of the largest subset of vertices in $G$ that have no edges among them?

MaxClique: Given an undirected graph $G$, what is the size of the largest complete subgraph of $G$?

MinVertexCover: Given an undirected graph $G$, what is the size of the smallest subset of vertices that touch every edge in $G$?

MinSetCover: Given a collection of subsets $S_1, S_2, \ldots, S_m$ of a set $S$, what is the size of the smallest subcollection whose union is $S$?

MinHittingSet: Given a collection of subsets $S_1, S_2, \ldots, S_m$ of a set $S$, what is the size of the smallest subset of $S$ that intersects every subset $S_i$?

3Color: Given an undirected graph $G$, can its vertices be colored with three colors, so that every edge touches vertices with two different colors?

HamiltonianPath: Given graph $G$ (either directed or undirected), is there a path in $G$ that visits every vertex exactly once?

HamiltonianCycle: Given a graph $G$ (either directed or undirected), is there a cycle in $G$ that visits every vertex exactly once?

TravelingSalesman: Given a graph $G$ (either directed or undirected) with weighted edges, what is the minimum total weight of any Hamiltonian path/cycle in $G$?

LongestPath: Given a graph $G$ (either directed or undirected, possibly with weighted edges), what is the length of the longest simple path in $G$?

SteinerTree: Given an undirected graph $G$ with some of the vertices marked, what is the minimum number of edges in a subtree of $G$ that contains every marked vertex?

SubsetSum: Given a set $X$ of positive integers and an integer $k$, does $X$ have a subset whose elements sum to $k$?

Partition: Given a set $X$ of positive integers, can $X$ be partitioned into two subsets with the same sum?

3Partition: Given a set $X$ of $3n$ positive integers, can $X$ be partitioned into $n$ three-element subsets, all with the same sum?

IntegerLinearProgramming: Given a matrix $A \in \mathbb{Z}^{n \times d}$ and two vectors $b \in \mathbb{Z}^n$ and $c \in \mathbb{Z}^d$, compute \( \max \{ c \cdot x \mid Ax \leq b, x \geq 0, x \in \mathbb{Z}^d \} \).

FeasibleILP: Given a matrix $A \in \mathbb{Z}^{n \times d}$ and a vector $b \in \mathbb{Z}^n$, determine whether the set of feasible integer points \( \max \{ x \in \mathbb{Z}^d \mid Ax \leq b, x \geq 0 \} \) is empty.

Draughts: Given an $n \times n$ international draughts configuration, what is the largest number of pieces that can (and therefore must) be captured in a single move?

SteamedHams: Aurora borealis? At this time of year, at this time of day, in this part of the country, localized entirely within your kitchen? May I see it?
1. For each statement below, write “YES” if the statement is always true and “NO” otherwise, and give a brief (at most one short sentence) explanation of your answer. Assume \( P \neq NP \).
If there is any other ambiguity or uncertainty about an answer, write “NO”. For example:

- \( x + y = 5 \)
  
  NO — Suppose \( x = 3 \) and \( y = 4 \).

- 3SAT can be solved in polynomial time.
  
  NO — 3SAT is NP-hard.

- If \( P = NP \) then Jeff is the Queen of England.
  
  YES — The hypothesis is false, so the implication is true.

Read each statement very carefully; some of these are deliberately subtle!

Which of the following statements are true?

(a) The solution to the recurrence \( T(n) = 2T(n/4) + O(n^2) \) is \( T(n) = O(n^2) \).

(b) The solution to the recurrence \( T(n) = 4T(n/2) + O(n^2) \) is \( T(n) = O(n^2) \).

(c) For every directed graph \( G \), if \( G \) has at least one source, then \( G \) has at least one sink.

(d) Given any undirected graph \( G \), we can compute a spanning tree of \( G \) in \( O(V + E) \) time using whatever-first search.

(e) Suppose we want to iteratively evaluate the following recurrence:

\[
\begin{align*}
\text{What}(i, j) &= \begin{cases} 
0 & \text{if } i < 0 \text{ or } j < 0 \\
\max \left\{ \text{What}(i, j - 1), \text{What}(i - 1, j) \right\} & \text{otherwise}
\end{cases} \\
&+ A[i] \cdot A[j] + \text{What}(i - 1, j - 1)
\end{align*}
\]

We can fill the array \( \text{What}[0..n, 0..n] \) in \( O(n^2) \) time, by decreasing \( i \) in the outer loop and decreasing \( j \) in the inner loop.

Which of the following statements are true for all languages \( L \subseteq \{0, 1\}^* \)?

(f) \( L^* = (L^*)^* \)

(g) If \( L \) is decidable, then \( L^* \) is decidable.

(h) \( L \) is either regular or NP-hard.

(i) If \( L \) is undecidable, then \( L \) has an infinite fooling set.

(j) The language \( \{\langle M \rangle \mid M \text{ decides } L \} \) is undecidable.
2. For each statement below, write “YES” if the statement is always true and “NO” otherwise, and give a brief (at most one short sentence) explanation of your answer. Assume \( P \neq NP \). If there is any other ambiguity or uncertainty about an answer, write “NO”.

Read each statement very carefully; some of these are deliberately tricky!

(Please remember to start your answers to this problem on a new page. Yes, this is really just a continuation of problem 1; we split it into two problems to make grading easier.)

Consider the following pair of languages:

- \( \text{DirHamPath} := \{ G \mid G \text{ is a directed graph with a Hamiltonian path} \} \)
- \( \text{Acyclic} := \{ G \mid G \text{ is a directed acyclic graph} \} \)

(For concreteness, assume that in both of these languages, graphs are represented by their adjacency matrices.) Which of the following statements are true, assuming \( P \neq NP \)?

(a) \( \text{Acyclic} \in \text{NP} \)

(b) \( \text{Acyclic} \cap \text{DirHamPath} \in \text{P} \)

(c) \( \text{DirHamPath} \) is decidable.

(d) A polynomial-time reduction from \( \text{DirHamPath} \) to \( \text{Acyclic} \) would imply \( P=NP \).

(e) A polynomial-time reduction from \( \text{Acyclic} \) to \( \text{DirHamPath} \) would imply \( P=NP \).

Suppose there is a polynomial-time reduction from some language \( A \subseteq \{0,1\} \) reduces to some other language \( B \subseteq \{0,1\} \). Which of the following statements are true, assuming \( P \neq NP \)?

(f) \( A \subseteq B \).

(g) There is an algorithm to transform any Python program that solves \( B \) in polynomial time into a Python program that solves \( A \) in polynomial time.

(h) If \( A \) is NP-hard then \( B \) is NP-hard.

(i) If \( A \) is decidable then \( B \) is decidable.

(j) If a Turing machine \( M \) accepts \( B \), the same Turing machine \( M \) also accepts \( A \).
3. Aladdin and Badroulbadour are playing a cooperative game. Each player has an array of positive integers, arranged in a row of squares from left to right. Each player has a token, which starts at the leftmost square of their row; their goal is to move both tokens to the rightmost squares.

On each turn, both players move their tokens in the same direction, either left or right. The distance each token travels is equal to the number under that token at the beginning of the turn. For example, if a token starts on a square labeled 5, then it moves either five squares to the right or five squares to the left. If either token moves past either end of its row, then both players immediately lose.

For example, if Aladdin and Badroulbadour are given the arrays

\[
A = \begin{bmatrix} 7 & 5 & 4 & 1 & 2 & 3 & 3 & 1 & 4 & 2 \end{bmatrix} \\
B = \begin{bmatrix} 5 & 1 & 2 & 4 & 7 & 3 & 5 & 2 & 4 & 6 & 3 & 1 \end{bmatrix}
\]

they can win the game by moving right, left, left, right, right, left, right. On the other hand, if they are given the arrays

\[
A = \begin{bmatrix} 2 & 3 & 5 & 1 & 3 \end{bmatrix} \\
B = \begin{bmatrix} 3 & 4 & 1 & 2 & 1 \end{bmatrix}
\]

they cannot win the game. (The first move must be to the right; then Aladdin’s token moves out of bounds on the second turn.)

Describe and analyze an algorithm to determine whether Aladdin and Badroulbadour can solve their puzzle, given the input arrays \(A[1..n]\) and \(B[1..n]\).

4. Submit a solution to exactly one of the following problems. Don’t forget to tell us which problem you’ve chosen!

(a) Let \(G = (V, E)\) be an arbitrary undirected graph. A subset \(S \subseteq V\) of vertices is mostly independent if less than half the vertices of \(S\) have a neighbor that is also in \(S\). Prove that finding the largest mostly independent set in \(G\) is NP-hard.

(b) Let \(G = (V, E)\) be an arbitrary directed graph with colored edges. A rainbow Hamiltonian cycle in \(G\) is a cycle that visits every vertex of \(G\) exactly one, in which no pair of consecutive edges have the same color. Prove that it is NP-hard to decide whether \(G\) has a rainbow Hamiltonian cycle.

(In fact, both of these problems are NP-hard, but we only want a proof for one of them.)
5. Suppose we are given an \( n \)-digit integer \( X \). Repeatedly remove one digit from either end of \( X \) (your choice) until no digits are left. The square-depth of \( X \) is the maximum number of perfect squares that you can see during this process. For example, the number 32492 has square-depth 3, by the following sequence of removals:

\[
32492 \rightarrow 324 \rightarrow 24 \rightarrow 4 \rightarrow \varepsilon.
\]

Describe and analyze an algorithm to compute the square-depth of a given integer \( X \), represented as an array \( X[1..n] \) of \( n \) decimal digits. Assume you have access to a subroutine IsSquare that determines whether a given \( k \)-digit number (represented by an array of digits) is a perfect square \( \text{in } O(k^2) \) time.

6. Recall that a run in a string \( w \in \{0,1\}^* \) is a maximal substring of \( w \) whose characters are all equal. For example, the string 00011111110000 is the concatenation of three runs:

\[
00011111110000 = 000 \cdot 1111111 \cdot 0000
\]

(a) Let \( L_a \) denote the set of all strings in \( \{0,1\}^* \) in which every run of 1s has even length and every run of 0s has odd length.

- Describe a DFA or NFA that accepts \( L_a \) and
- Give a regular expression that describes \( L_a \).

(You do not need to prove that your answers are correct.)

(b) Let \( L_b \) denote the set of all strings in \( \{0,1\}^* \) in which every run of 0s is immediately followed by a longer run of 1s. Prove that \( L_b \) is not a regular language.

Both of these languages contain the strings 0111100011 and 110001111 and 111111 and the empty string \( \varepsilon \), but neither language contains 000111 or 100011 or 0000.
This homework tests your familiarity with prerequisite material: designing, describing, and analyzing elementary algorithms; fundamental graph problems and algorithms; and especially facility with recursion and induction. Notes on most of this prerequisite material are available on the course web page.

Each student must submit individual solutions for this homework. For all future homeworks, groups of up to three students will be allowed to submit joint solutions.

Submit your solutions electronically on Gradescope as PDF files.

- Submit a separate PDF file for each numbered problem.
- You can find a \LaTeX solution template on the course web site; please use it if you plan to typeset your homework.
- If you plan to submit scanned handwritten solutions, please use dark ink (not pencil) on blank white printer paper (not notebook or graph paper), and use a high-quality scanner or scanning app to create a high-quality PDF for submission (not a raw cell-phone photo). We reserve the right to reject submissions that are difficult to read.

Some important course policies

- You may use any source at your disposal—paper, electronic, or human—but you must cite every source that you use, and you must write everything yourself in your own words. See the academic integrity policies on the course web site for more details.

- Avoid the Deadly Sins! There are a few common writing (and thinking) practices that will be automatically penalized on every homework or exam problem. We’re not just trying to be scary control freaks; history strongly suggests that people who commit these sins are more likely to make other serious mistakes as well. We’re trying to break bad habits that seriously impede mastery of the course material.

  - Always give complete solutions, not just examples.
  - Every algorithm requires an English specification.
  - Never use weak induction. Weak induction should die in a fire.

See the course web site for more information.

If you have any questions about these policies, please don’t hesitate to ask in class, in office hours, or online.
1. The Tower of Hanoi is a relatively recent descendant of a much older mechanical puzzle known as the Baguenaudier, Chinese rings, Cardano’s rings, Meleda, Patience, Tiring Irons, Prisoner’s Lock, Spin-Out, and many other names. This puzzle was already well known in both China and Europe by the 16th century. The Italian mathematician Luca Pacioli described the 7-ring puzzle and its solution in his unpublished treatise *De Viribus Quantitatis*, written around 1500ce;¹ only a few years later, the Ming-dynasty poet Yang Shen described the 9-ring puzzle as “a toy for women and children.”

A drawing of a 7-ring Baguenaudier, from *Récréations Mathématiques* by Édouard Lucas (1891)

The Baguenaudier puzzle has many physical forms, but it typically consists of a long metal loop and several rings, which are connected to a solid base by movable rods. The loop is initially threaded through the rings as shown in the figure above; the goal of the puzzle is to remove the loop.

More abstractly, we can model the puzzle as a sequence of bits, one for each ring, where the $i$th bit is 1 if the loop passes through the $i$th ring and 0 otherwise. Following tradition, we will index both the rings and the corresponding bits from right to left, as shown in the figure above. The puzzle allows two legal moves:

- Flip the rightmost bit.
- Flip the bit just to the left of the rightmost 1.

(The second move is impossible if the rightmost $n - 1$ bits are all 0s.)

The goal of the puzzle is to transform a string of $n$ 1s into a string of $n$ 0s. For example, the following sequence of 21 moves solves the 5-ring puzzle:

```
11111 → 11110 → 11010 → 11011 → 21001 → 11000 → 50100
           100001 → 20111 → 00110 → 30111 → 10110 → 20110 → 10100 → 40010
```

(a) Describe an algorithm to solve the Baguenaudier puzzle. Your input is the number of rings $n$; your algorithm should print a sequence of moves that solves the $n$-ring puzzle. For example, given the integer 5 as input, your algorithm should print the sequence 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1.

(b) *Exactly* how many moves does your algorithm perform, as a function of $n$? Prove your answer is correct.

(c) *Extra credit* Call a sequence of moves reduced if no move is the inverse of the previous move. Prove that for each non-negative integer $n$, there is exactly one reduced sequence of moves that solves the $n$-ring Baguenaudier puzzle.

¹*De Viribus Quantitatis* [On the Powers of Numbers] is an important early work on recreational mathematics and perhaps the oldest surviving treatise on magic. Pacioli is better known for *Summa de Arithmetica*, a near-complete encyclopedia of late 15th-century mathematics, which included the first description of double-entry bookkeeping.
2. Prince Hutterdink and Princess Bumpercup are celebrating their recent marriage by inviting all the dukes and duchesses in the kingdom to sample the castle’s celebrated wine cellars. Just before they drinking begins, the happy couple learns that exactly one of their $n$ bottles of wine has been laced with iocaine powder, one of the deadliest poisons known to man.

Hutterdink and Bumpercup employ several Royal Tasters who have built up an immunity to iocaine powder. (Strangely, every Royal Taster is named Roberts.) If a Taster consumes any amount of iocaine, no matter how small, they quickly become extremely ill, or as the Royal Miracle Workers optimistically put it, only mostly dead. Anyone else who consumes iocaine quickly becomes all dead.

To test a set $S$ of wine bottles, a Taster mixes one drop of wine from each bottle in $S$ and consumes the resulting mixture. They will become mostly dead if and only if one of the bottles in $S$ is poisoned. Each Taster must be paid 1000 guilders for each test they perform, so Hutterdink and Bumpercup want to use as few tests as possible. On the other hand, mostly dead Tasters require months to recover, and the party is tomorrow!

(a) Suppose there is an unlimited supply of Tasters. Describe an algorithm to find the poisoned bottle using at most $O(\log n)$ tests. (This is best possible in the worst case.)

(b) Now suppose there is only one Taster. Argue that $\Omega(n)$ tests are required in the worst case to find the poisoned bottle.

(c) Now suppose there are two Tasters. Describe an algorithm that allows them to find the poisoned bottle using only $O(\sqrt{n})$ tests.

(d) Finally, describe an algorithm to identify the poisoned bottle when there are $k$ tasters. Report the number of tests that your algorithm uses as a function of both $n$ and $k$.

3. At the start of the semester, the faculty and staff the See-Bull Center for Skeptical Media Consumption throw a welcome party for new and returning students. Every person who attended the party was given at least one rubber duck to keep in their office as a memento.

When new graduate student Mariadne Inotaur arrives at the See-Bull Center the next day and asks for her rubber duck, she is told that all the rubber ducks are gone. Infuriated, Mariadne decides to return that night and steal as many ducks as she can.

Some doors inside See-Bull are locked; each locked door requires a key card to open. There are six types of key cards, corresponding to different research groups that work in the building—Applesauce, Blarney, Claptrap, Drivel, Eyewash, and Flapdoodle. Each locked door can be unlocked by exactly one type of key card. Mariadne doesn’t initially have any key cards, so if she wants to open a Flapdoodle door, for example, she must first find a Flapdoodle key card.

Mariadne has a complete map of See-Bull, modeled as a simple undirected graph $G = (V, E)$. The vertices $V$ correspond to interior spaces (rooms, hallways, stairwells, and so on), plus one special vertex $s$ for the outside world. Each vertex is labeled with the number of rubber ducks and the types of key cards (if any) in the corresponding space; there are no rubber ducks or key cards outside. The edges $E$ correspond to doors between spaces. Each edge is labeled with a bit indicating whether the corresponding door is locked, and if so, the type of key card that unlocks it.

Describe and analyze an algorithm to determine the maximum number of rubber ducks that Mariadne can steal, assuming she starts outside, with no rubber ducks or key cards.
1. Suppose we are given a bit string $B[1..n]$. A triple of indices $1 \leq i < j < k \leq n$ is called a **well-spaced triple** if $B[i] = B[j] = B[k] = 1$ and $k - j = j - i$.

   (a) Describe a brute-force algorithm to determine whether $B$ has a well-spaced triple in $O(n^2)$ time.

   (b) Describe an algorithm to determine whether $B$ has a well-spaced triple in $O(n \log n)$ time. [Hint: FFT!]

   (c) Describe an algorithm to determine the number of well-spaced triples in $B$ in $O(n \log n)$ time.

2. This problem explores different algorithms for computing the factorial function $n! = 1 \cdot 2 \cdot 3 \cdots n$. This may seem like a weird question; the obvious algorithm uses $n$ multiplications, and thus runs in $O(n)$ time. Right?

   Well, actually, no. The inequalities $(n/2)^{n/2} < n! < n^n$ imply that the exact binary representation of $n!$ has length $\Theta(n \log n)$. So the number of multiplications is not a good estimate of the actual time required to compute $n!$; we also need to account for the time for those multiplications.

   (a) Recall that the standard lattice algorithm that you learned in elementary school multiplies any $n$-bit integer and any $m$-bit integer in $O(mn)$ time. Describe and analyze a variant of Karatsuba’s algorithm that multiplies any $n$-bit integer and any $m$-bit integer, for any $n \geq m$, in $O(n \cdot m^{\log_2 3 - 1}) = O(n \cdot m^{0.58496})$ time.

   (b) Consider the following classical algorithm for computing the factorial $n!$ of a non-negative integer $n$:

   ```python
   FACTORIAL(n):
   fact ← 1
   for i ← 1 to n
       fact ← fact \cdot i  \quad (\ast)
   return fact
   ```

   Analyze the running time of FACTORIAL($n$) using different algorithms for the multiplication in line ($\ast$):

   i. Lattice multiplication

   ii. Your variant of Karatsuba’s algorithm from part (a)
(c) The following divide-and-conquer algorithm also computes the factorial function, but using a different grouping of the multiplications. The subroutine FALLING computes the falling power function \( n^m = n(n-1)(n-2) \cdots (n-m+1) = n!/(n-m)! = \binom{n}{m} \cdot m! \):

\[
\text{FALLING}(n, m): \\
\quad \text{if } m = 0 \\
\quad \quad \text{return } 1 \\
\quad \text{else if } m = 1 \\
\quad \quad \text{return } n \\
\quad \text{else} \\
\quad \quad \text{return } \text{FALLING}(n, \lfloor m/2 \rfloor) \cdot \text{FALLING}(n - \lfloor m/2 \rfloor, \lceil m/2 \rceil)
\]

\[
\text{FASTERFACTORIAL}(n): \\
\quad \text{return } \text{FALLING}(n, n)
\]

Analyze the running time of FASTERFACTORIAL\((n)\) using different algorithms for the multiplication in the last line of FALLING:

i. Lattice multiplication

ii. Your variant of Karatsuba’s algorithm from part (a)

(For simplicity, assume \( n \) is a power of 2 and ignore the floors and ceilings.)

3. Your new boss at the Dixon Ticonderoga Pencil Factory asks you to design an algorithm to solve the following problem. Suppose you are given \( N \) pencils, each with one of \( c \) different colors, and a non-negative integer \( k \). **How many different ways are there to choose a set of \( k \) pencils?** Two pencil sets are considered identical if they contain the same number of pencils of each color.

For example, suppose you have two red pencils, four green pencils, and one blue pencil. Then you can form exactly five different two-pencil sets (RR, RG, RB, GG, GB), exactly six different four-pencil sets (RRGG, RRGB, RGGG, RGGB, GGGG, GGGB), and exactly three different six-pencil sets (RRGGGG, RRGGGB, RGGGGB).

Describe an algorithm to solve this problem, and analyze its running time. Your input is an array \( \text{Pencils}[1 \ldots c] \) and an integer \( k \), where \( \text{Pencils}[i] \) stores the number of pencils with color \( i \). Your output is a single non-negative integer. For example, given the input \( \text{Pencils} = [2, 4, 1] \) and \( k = 2 \), your algorithm should return the integer 5.

For full credit, report the running time of your algorithm as a function of the parameters \( N \) (the total number of pencils), \( c \) (the number of colors), and \( k \) (the size of the target pencil sets). Assume that \( k \ll c \ll N \), but do not assume that any of these parameters is a constant. **Assume for this problem that all arithmetic operations take \( O(1) \) time.**

**Hint:**

\[
\frac{(1 + x + x^2)(1 + x + x^2 + x^3 + x^4)}{2 \text{ red pencils}} \cdot \frac{(1 + x)}{4 \text{ green pencils}} \cdot (1 + x) = 1 + 3x + 5x^2 + 6x^3 + 6x^4 + 5x^5 + 3x^6 + 1
\]

\(5\) 2-pencil sets  \(6\) 4-pencil sets  \(3\) 6-pencil sets
I. (a) Recall that a palindrome is any string that is exactly the same as its reversal, like I or DEED or RACECAR or AMANAPLANACATACANALPANAMA. Describe and analyze an algorithm to find the length of the longest subsequence of a given string that is also a palindrome.

For example, given the string MAHDYMNICPROGRAMESHOYOUHEM as input, your algorithm should return 11, which is the length of the longest palindrome subsequence MHYMRORMYH.

(b) Similarly, a repeater is any string whose first half and second half are identical, like MEME or MURMUR or HOTSHOTS or SHABUSHABU. Describe and analyze an algorithm to find the length of the longest subsequence of a given string that is also a repeater.

For example, given the string AINTNOLIKEEMYANASMEAPYTHEYHO as input, your algorithm should return 20, which is the length of the longest repeater subsequence ANTPARTYEYANTPARTYEY.

2. Describe and analyze an efficient algorithm to solve the following one-dimensional clustering problem. Given an unsorted array Data[1..n] of real numbers, we want to cluster this data into k clusters, each represented by an interval of indices and a real value, so that the maximum error between any data point and its cluster value is minimized.

More concretely, your algorithm should return an unsorted array Val[1..k] of real numbers and a sorted array Brk[0..k] of integer breakpoints such that Brk[0] = 0 and Brk[k] = n. For each index i, the i-th interval covers items Brk[i−1] + 1 through Brk[i] in the input data, and the value of the i-th interval is Val[i]. The output values Val[i] are not necessarily elements of the input array. Your algorithm should compute arrays B and V that minimize the maximum absolute difference between any data point and the value of the unique interval that covers it:

\[ Error(Data, Brk, Val) = \max \left\{ |Data[i] - Val[j]| \mid Brk[j-1] < i \leq Brk[j] \right\} \]

We can visualize both the input data and the output approximation using bar charts, as shown in the figure below; the double arrow shows the error for this approximation.
3. You’ve been hired to store a sequence of \( n \) books on shelves in a library, using as little vertical space as possible. The horizontal order of the books is fixed by the cataloging system and cannot be changed; each shelf must store a contiguous interval of the given sequence of books. You can adjust the height of each shelf to match the tallest book on that shelf; in particular, you can change the height of any empty shelf to zero.

You are given two arrays \( H[1..n] \) and \( W[1..n] \), where \( H[i] \) and \( W[i] \) are respectively the height and width of the \( i \)th book. Each shelf has the same fixed length \( L \). Each book as width at most \( L \), so every book fits on a shelf. The total width of all books on each shelf cannot exceed \( L \). Your task is to shelve the books so that the sum of the heights of the shelves is as small as possible.

(a) There is a natural greedy algorithm, which actually yields an optimal solution when all books have the same height: If \( n > 0 \), pack as many books as possible onto the first shelf, and then recursively shelve the remaining books.

Show that this greedy algorithm does not yield an optimal solution if the books can have different heights. [Hint: There is a small counterexample.]

(b) Describe and analyze an efficient algorithm to assign books to shelves to minimize the total height of the shelves.
Standard dynamic programming rubric. 10 points =

• 3 points for a clear and correct English description of the recursive function you are trying to evaluate. (Otherwise, we don’t even know what you’re trying to do.)
  – 1 for naming the function “OPT” or “DP” or any single letter.
  – No credit if the description is inconsistent with the recurrence.
  – No credit if the description does not explicitly describe how the function value depends on the named input parameters.
  – No credit if the description refers to internal states of the eventual dynamic programming algorithm, like “the current index” or “the best score so far”. The function must have a well-defined value that depends only on its input parameters (and constant global variables).
  – An English explanation of the recurrence or algorithm does not qualify. We want a description of what your function returns, not (here) an explanation of how that value is computed.

• 4 points for a correct recurrence, described either using mathematical notation or as pseudocode for a recursive algorithm.
  + 1 for base case(s). —½ for one minor bug, like a typo or an off-by-one error.
  + 3 for recursive case(s). —1 for each minor bug, like a typo or an off-by-one error.
  – 2 for greedy optimizations without proof, even if they are correct.
  – **No credit for the rest of the problem if the recursive case(s) are incorrect.**

• 3 points for iterative details
  + 1 for describing (or sketching) an appropriate memoization data structure
  + 1 for describing (or sketching) a correct evaluation order; a clear picture is usually sufficient.
    If you use nested for loops, be sure to specify the nesting order.
  + 1 for correct time analysis. (It is not necessary to state a space bound.)

• For problems that ask for an algorithm that computes an optimal structure—such as a subset, partition, subsequence, or tree—an algorithm that computes only the value or cost of the optimal structure is sufficient for full credit, unless the problem specifically says otherwise.

• **Iterative pseudocode is not required for full credit.** If your solution includes iterative pseudocode, you do not need to separately describe the recurrence, memoization structure, or evaluation order. However, you do still need and English description of the underlying recursive function (or equivalently, the contents of the memoization structure). **Perfectly correct iterative pseudocode, with no explanation or time analysis, is worth at most 6 points out of 10.**

• Partial credit for incomplete solutions depends on the running time of the best possible completion (up to the target running time). For example, consider a solution that contains only a clear English description of a function, with no recurrence or iterative details.
  – If the described function can be developed into an algorithm with the target running time, the solution is worth 3 points.
  – If the described function leads to an algorithm that is slower than the target time by a factor of $n$, the solution could be worth only 2 points ($= 70\%$ of 3, rounded).
  – If the described function cannot lead to a polynomial-time algorithm, it could be worth 1 or even 0 points.
1. Huckleberry Sawyer needs to get his fence painted. His fence consists of a row of \( n \) wooden slats, all initially unpainted. He has been given a target color for each slat.

Huck refuses to do any painting himself. Instead, each day he can hire one of his friends to paint any contiguous subset of slats a single color, for the uncomfortably high price of one nickel. Huck has really good paint, so he doesn’t care if the same slat gets painted multiple times, as long as the last coat of paint on each slat matches its target color.

Describe and analyze an algorithm that determines, given an array of target colors \( C[1..n] \) as input, the minimum number of nickels that Huck must spend to have his fence completely painted.

For example, if \( n = 9 \) and Huck’s target color sequence is red, green, blue, green, red, green, blue, green, red, then your algorithm should return the integer 5. There are at least two different ways that Huck can get his fence painted by spending only five nickels:

[Hint: You need to prove that there is always an optimal plan with a certain structure.]
2. Let $T$ be an arbitrary tree—a connected undirected graph with no cycles—each of whose edges has some positive weight. Describe and analyze an algorithm to cover the vertices of $T$ with disjoint paths whose total length is as large as possible. (As usual, the length of a path is the sum of the weights of its edges.) Each vertex of $T$ must lie on exactly one of the paths.

The following figure shows a tree covered by seven disjoint paths, three of which have length zero.

![Tree with disjoint paths]

3. Suppose we are given a directed acyclic graph $G$ with labeled vertices. Every path in $G$ has a label, which is a string obtained by concatenating the labels of its vertices in order. Recall that a palindrome is a string that is equal to its reversal.

Describe and analyze an algorithm to find the length of the longest palindrome that is the label of a path in $G$. For example, given the graph below, your algorithm should return the integer 6, which is the length of the palindrome HANNAH.
Standard dynamic programming rubric. 10 points =

• 3 points for a clear and correct English description of the recursive function you are trying to evaluate. (Otherwise, we don’t even know what you’re trying to do.)
  – 1 for naming the function “OPT” or “DP” or any single letter.
  – No credit if the description is inconsistent with the recurrence.
  – No credit if the description does not explicitly describe how the function value depends on the named input parameters.
  – No credit if the description refers to internal states of the eventual dynamic programming algorithm, like “the current index” or “the best score so far”. The function must have a well-defined value that depends only on its input parameters (and constant global variables).
  – An English explanation of the recurrence or algorithm does not qualify. We want a description of what your function returns, not (here) an explanation of how that value is computed.

• 4 points for a correct recurrence, described either using mathematical notation or as pseudocode for a recursive algorithm.
  + 1 for base case(s). —½ for one minor bug, like a typo or an off-by-one error.
  + 3 for recursive case(s). —1 for each minor bug, like a typo or an off-by-one error.
  – 2 for greedy optimizations without proof, even if they are correct.
  – **No credit for the rest of the problem if the recursive case(s) are incorrect.**

• 3 points for iterative details
  + 1 for describing (or sketching) an appropriate memoization data structure
  + 1 for describing (or sketching) a correct evaluation order; a clear picture is usually sufficient.
    If you use nested for loops, be sure to specify the nesting order.
  + 1 for correct time analysis. (It is not necessary to state a space bound.)

• For problems that ask for an algorithm that computes an optimal structure—such as a subset, partition, subsequence, or tree—an algorithm that computes only the value or cost of the optimal structure is sufficient for full credit, unless the problem specifically says otherwise.

• **Iterative pseudocode is not required for full credit.** If your solution includes iterative pseudocode, you do not need to separately describe the recurrence, memoization structure, or evaluation order. However, you **do** still need and English description of the underlying recursive function (or equivalently, the contents of the memoization structure). **Perfectly correct iterative pseudocode, with no explanation or time analysis, is worth at most 6 points out of 10.**

• Partial credit for incomplete solutions depends on the running time of the best possible completion (up to the target running time). For example, consider a solution that contains only a clear English description of a function, with no recurrence or iterative details.
  – If the described function can be developed into an algorithm with the target running time, the solution is worth 3 points.
  – If the described function leads to an algorithm that is slower than the target time by a factor of \( n \), the solution could be worth only 2 points \((= 70\% \ of \ 3, \ rounded)\).
  – If the described function cannot lead to a polynomial-time algorithm, it could be worth 1 or even 0 points.
Unless a problem specifically states otherwise, you may assume a function `RANDOM` that takes a positive integer \( k \) as input and returns an integer chosen uniformly and independently at random from \( \{1, 2, \ldots, k\} \) in \( O(1) \) time. For example, to flip a fair coin, you could call `RANDOM(2)`.

0. **[Warmup only. Do not submit solutions!]**

After sending his loyal friends Rosencrantz and Guildenstern off to Norway, Hamlet decides to amuse himself by repeatedly flipping a fair coin until the sequence of flips satisfies some condition. For each of the following conditions, compute the exact expected number of flips until that condition is met.

(a) Hamlet flips heads.
(b) Hamlet flips both heads and tails (in different flips, of course).
(c) Hamlet flips heads twice.
(d) Hamlet flips heads twice in a row.
(e) Hamlet flips heads followed immediately by tails.
(f) Hamlet flips more heads than tails.
(g) Hamlet flips the same number of heads and tails.
(h) Hamlet flips the same positive number of heads and tails.
(i) Hamlet flips more than twice as many heads as tails.

*Hint: Be careful! If you’re relying on intuition instead of a proof, you’re probably wrong.*

1. Consider the following non-standard algorithm for randomly shuffling a deck of \( n \) cards, initially numbered in order from 1 on the top to \( n \) on the bottom. At each step, we remove the top card from the deck and **insert** it randomly back into in the deck, choosing one of the \( n \) possible positions uniformly at random. The algorithm ends immediately after we pick up card \( n - 1 \) and insert it randomly into the deck.

(a) Prove that this algorithm uniformly shuffles the deck, meaning each permutation of the deck has equal probability. *Hint: Prove that at all times, the cards below card \( n - 1 \) are uniformly shuffled.*

(b) What is the exact expected number of steps executed by the algorithm? *Hint: Split the algorithm into phases that end when card \( n - 1 \) changes position.*
2. Suppose we are given a two-dimensional array \( M[1..n, 1..n] \) in which every row and every column is sorted in increasing order and no two elements are equal.

(a) Describe and analyze an algorithm to solve the following problem in \( O(n) \) time: Given indices \( i, j, i', j' \) as input, compute the number of elements of \( M \) larger than \( M[i, j] \) and smaller than \( M[i', j'] \).

(b) Describe and analyze an algorithm to solve the following problem in \( O(n) \) time: Given indices \( i, j, i', j' \) as input, return an element of \( M \) chosen uniformly at random from the elements larger than \( M[i, j] \) and smaller than \( M[i', j'] \). Assume the requested range is always non-empty.

(c) Describe and analyze a randomized algorithm to compute the median element of \( M \) in \( O(n \log n) \) expected time.

(The algorithm for part (c) can be used as a subroutine to solve HW2.2 in \( O(n \log^2 n) \) expected time!)

3. Death knocks on your door one cold blustery morning and challenges you to a game. Death knows that you are an algorithms student, so instead of the traditional game of chess, Death presents you with a complete binary tree with \( 4^n \) leaves, each colored either black or white. There is a token at the root of the tree. To play the game, you and Death will take turns moving the token from its current node to one of its children. The game will end after \( 2n \) moves, when the token lands on a leaf. If the final leaf is black, you die; if it’s white, you will live forever. You move first, so Death gets the last turn.

You can decide whether it’s worth playing or not as follows. Imagine that the nodes at even levels (where it’s your turn) are OR gates, the nodes at odd levels (where it’s Death’s turn) are AND gates. Each gate gets its input from its children and passes its output to its parent. White and black stand for TRUE and FALSE. If the output at the top of the tree is TRUE, then you can win and live forever! If the output at the top of the tree is FALSE, you should challenge Death to a game of Twister instead.

(a) Describe and analyze a deterministic algorithm to determine whether or not you can win. [Hint: This is easy!]

(b) Unfortunately, Death won’t give you enough time to look at every node in the tree. Describe a randomized algorithm that determines whether you can win in \( O(3^n) \) expected time. [Hint: Consider the case \( n = 1 \).]
* (c) [Extra credit] Describe and analyze a randomized algorithm that determines whether you can win in $O(c^n)$ expected time, for some constant $c < 3$. [Hint: You may not need to change your algorithm from part (b) at all!]
Unless a problem specifically states otherwise, you may assume a function `Random` that takes a positive integer $k$ as input and returns an integer chosen uniformly and independently at random from $\{1, 2, \ldots, k\}$ in $O(1)$ time. For example, to flip a fair coin, you could call `Random(2)`.

1. Consider a random walk on a path with vertices numbered $1, 2, \ldots, n$ from left to right. At each step, we flip a coin to decide which direction to walk, moving one step left or one step right with equal probability. The random walk ends when we fall off one end of the path, either by moving left from vertex $1$ or by moving right from vertex $n$.

   (a) Prove that if we start at vertex $1$, the probability that the walk ends by falling off the right end of the path is exactly $\frac{1}{n+1}$.

   (b) Prove that if we start at vertex $k$, the probability that the walk ends by falling off the right end of the path is exactly $\frac{k}{n+1}$.

   (c) Prove that if we start at vertex $1$, the expected number of steps before the random walk ends is exactly $n$.

   (d) What is the exact expected length of the random walk if we start at vertex $k$, as a function of $n$ and $k$? Prove your result is correct. (For partial credit, give a tight $\Theta$-bound for the case $k = \frac{n+1}{2}$, assuming $n$ is odd.)

   [Hint: Trust the recursion fairy. Yes, “see part (b)” is worth full credit for part (a), but only if your solution to part (b) is correct. Same for parts (c) and (d).]

2. **Tabulation hashing** uses tables of random numbers to compute hash values. Suppose $|\mathcal{U}| = 2^w \times 2^w$ and $m = 2^\ell$, so the items being hashed are pairs of $w$-bit strings (or $2w$-bit strings broken in half) and hash values are $\ell$-bit strings.

   Let $A[0..2^w - 1]$ and $B[0..2^w - 1]$ be arrays of independent random $\ell$-bit strings, and define the hash function $h_{A,B} : \mathcal{U} \rightarrow [m]$ by setting
   
   $$h_{A,B}(x, y) := A[x] \oplus B[y]$$

   where $\oplus$ denotes bit-wise exclusive-or. Let $\mathcal{H}$ denote the set of all possible functions $h_{A,B}$. Filling the arrays $A$ and $B$ with independent random bits is equivalent to choosing a hash function $h_{A,B} \in \mathcal{H}$ uniformly at random.

   (a) Prove that $\mathcal{H}$ is 2-uniform.

   (b) Prove that $\mathcal{H}$ is 3-uniform. [Hint: Solve part (a) first.]

   (c) Prove that $\mathcal{H}$ is not 4-uniform.

   [Hint: Yes, “see part (b)” is worth full credit for (a), if your part (b) solution is correct.]
3. Suppose we are given a coin that may or may not be biased, and we would like to compute an accurate estimate of the probability of heads. Specifically, if the actual unknown probability of heads is $p$, we would like to compute an estimate $\hat{p}$ such that

$$\Pr[|\hat{p} - p| > \varepsilon] < \delta$$

where $\varepsilon$ is a given accuracy or error parameter, and $\delta$ is a given confidence parameter.

The following algorithm is a natural first attempt; here FLIP() returns the result of an independent flip of the unknown coin.

```
MEANESTIMATE(\varepsilon):
  count ← 0
  for i ← 1 to N
    if FLIP() = Heads
      count ← count + 1
  return count/N
```

(a) Let $\hat{p}$ denote the estimate returned by MEANESTIMATE($\varepsilon$). Prove that $E[\hat{p}] = p$.

(b) Prove that if we set $N = \lceil \alpha / \varepsilon^2 \rceil$ for some appropriate constant $\alpha$, then we have $\Pr[|\hat{p} - p| > \varepsilon] < 1/4$. [Hint: Use Chebyshev’s inequality.]

(c) We can increase the previous estimator’s confidence by running it multiple times, independently, and returning the median of the resulting estimates.

```
MEDIANOFMEANESTIMATE(\delta, \varepsilon):
  for j ← 1 to K
    estimate[j] ← MEANESTIMATE(\varepsilon)
  return Median(estimate[1 .. K])
```

Let $p^*$ denote the estimate returned by MEDIANOFMEANESTIMATE($\delta, \varepsilon$). Prove that if we set $N = \lceil \alpha / \varepsilon^2 \rceil$ (inside MEANESTIMATE) and $K = \lceil \beta \ln(1/\delta) \rceil$, for some appropriate constants $\alpha$ and $\beta$, then $\Pr[|p^* - p| > \varepsilon] < \delta$. [Hint: Use Chernoff bounds.]
1. Describe and analyze an efficient algorithm to find strings in labeled rooted trees. Your input consists of a pattern string $P[1..m]$ and a rooted text tree $T$ with $n$ nodes, each labeled with a single character. Nodes in $T$ can have any number of children. A path in $T$ is called a downward path if every node on the path is a child (in $T$) of the previous node in the path. Your goal is to determine whether there is a downward path in $T$ whose sequence of labels matches the string $P$.

For example, the string SEARCH is the label of a downward path in the tree shown below, but the strings HCRAES and SMEAR is not.

![Tree Diagram]

2. A fugue (pronounced “fyoog”) is a highly structured style of musical composition that was popular in the 17th and 18th centuries. A fugue begins with an initial melody, called the subject, that is repeated several times throughout the piece.

Suppose we want to design an algorithm to detect the subject of a fugue. We will assume a very simple representation as an array $F[1..n]$ of integers, each representing a note in the fugue as the number of half-steps above or below middle C. (We are deliberately ignoring all other musical aspects of real-life fugues, like multiple voices, timing, rests, volume, and timbre.)

(a) Describe an algorithm to find the length of the longest prefix of $F$ that reappears later as a substring of $F$. The prefix and its later repetition must not overlap.

(b) In many fugues, later occurrences of the subject are transposed, meaning they are all shifted up or down by a common value. For example, the subject $(3, 1, 4, 1, 5, 9, 2)$ might be transposed transposed down two half-steps to $(1, -1, 2, -1, 3, 7, 0)$.

Describe an algorithm to find the length of the longest prefix of $F$ that reappears later, possibly transposed, as a substring of $F$. Again, the prefix and its later repetition must not overlap.
For example, if the input array is

\[3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 1, 4, 1, -1, 2, -1, 3, 7, 0, 1, 4, 2\]

then your first algorithm should return 4, and your second algorithm should return 7.

3. There is no question 3!
1. Suppose you are given a directed graph $G = (V, E)$, two vertices $s$ and $t$, a capacity function $c : E \rightarrow \mathbb{R}^+$, and a second function $f : E \rightarrow \mathbb{R}$.

   (a) Describe and analyze an efficient algorithm to determine whether $f$ is a maximum $(s, t)$-flow in $G$.

   (b) Describe and analyze an efficient algorithm to determine whether $f$ is the unique maximum $(s, t)$-flow in $G$.

   Do not assume anything about the function $f$.

2. Suppose you are given a flow network $G$ with integer edge capacities and an integer maximum flow $f^*$ in $G$. Describe algorithms for the following operations:

   (a) $\text{INCREMENT}(e)$: Increase the capacity of edge $e$ by 1 and update the maximum flow.

   (b) $\text{DECREMENT}(e)$: Decrease the capacity of edge $e$ by 1 and update the maximum flow.

   Both algorithms should modify $f^*$ so that it is still a maximum flow, but more quickly than recomputing a maximum flow from scratch.

3. Let $G$ be a flow network with integer edge capacities. An edge in $G$ is upper-binding if increasing its capacity by 1 also increases the value of the maximum flow in $G$. Similarly, an edge is lower-binding if decreasing its capacity by 1 also decreases the value of the maximum flow in $G$.

   (a) Does every network $G$ have at least one upper-binding edge? Prove your answer is correct.

   (b) Does every network $G$ have at least one lower-binding edge? Prove your answer is correct.

   (c) Describe an algorithm to find all upper-binding edges in $G$, given both $G$ and a maximum flow in $G$ as input, in $O(E)$ time.

   (d) Describe an algorithm to find all lower-binding edges in $G$, given both $G$ and a maximum flow in $G$ as input, in $O(VE)$ time.
**Standard graph-reduction rubric.** For problems solved by reduction to a standard graph algorithm covered either in class or in a prerequisite class (for example: shortest paths, topological sort, minimum spanning trees, maximum flows, bipartite maximum matching, vertex-disjoint paths, ...).

Maximum 10 points =

+ 3 for constructing the correct graph.
  + 1 for correct vertices
  + 1 for correct edges
  − ½ for forgetting “directed” if the graph is directed
  + 1 for correct data associated with vertices and/or edges—for example, weights, lengths, capacities, costs, demands, and/or labels—if any
    ◦ The vertices, edges, and associated data (if any) must be described as explicit functions of the input data.
    ◦ For most problems, the graph can be constructed in linear time by brute force; in this common case, no explicit description of the construction algorithm is required. If achieving the target running time requires a more complex algorithm, that algorithm will graded out of 5 points using the appropriate standard rubric, and all other points are cut in half.
  + 3 for explicitly relating the given problem to a specific problem involving the constructed graph. For example: “The minimum number of moves is equal to the length of the shortest path in G from (0, 0, 0) to any vertex of the form (k, ·, ·) or (·, k, ·) or (·, ·, k).” or “Each path from s to t represents a valid choice of class, room, time, and proctor for one final exam; thus, we need to construct a path decomposition of a maximum (s, t)-flow in G.”
    − No points for just writing (for example) “shortest path” or “reachability” or “matching”. Shortest path in which graph, from which vertex to which other vertex? How does that shortest path relate to the original problem?
    − No points for only naming the algorithm, not the problem. “Breadth-first search” is not a problem!
  + 2 for correctly applying the correct black-box algorithm to solve the stated problem. (For example, “Perform a single breadth-first search in H from (0, 0, 0) and then examine every target vertex.” or “We compute the maximum flow using Ford-Fulkerson, and then decompose the flow into paths as described in the textbook.”)
    − 1 for using a slower or more specific algorithm than necessary, for example, breadth- or depth-first search instead of whatever-first search, or Dijkstra’s algorithm instead of breadth-first search.
    − 1 for explaining an algorithm from lecture or the textbook instead of just invoking it as a black box.
  + 2 for time analysis in terms of the input parameters (not just the number of vertices and edges of the constructed graph).

An extremely common mistake for this type of problem is to attempt to modify a standard algorithm and apply that modification to the input data, instead of modifying the input data and invoking a standard algorithm as a black box. This strategy can work in principle, but it is much harder to do it correctly, and it is terrible software engineering practice. Clearly correct solutions using this strategy will be given full credit, but partial credit will be given only sparingly.
1. The Autocratic Party is gearing up their fund-raising campaign for the 2024 election. Party leaders have already chosen their slate of candidates for president and vice-president, as well as various governors, senators, representatives, city council members, school board members, judges, and dog-catchers. For each candidate, the party leaders have determined how much money they must spend on that candidate’s campaign to guarantee their election. The party is soliciting donations from each of its members. Each voter has declared the total amount of money they are willing to give each candidate between now and the election. (Each voter pledges different amounts to different candidates. For example, everyone is happy to donate to the presidential candidate, but most voters in New York will not donate anything to the candidate for Trash Commissioner of Los Angeles.) Federal election law limits each person’s total political contributions to $100 per day.

Describe and analyze an algorithm to compute a donation schedule, describing how much money each voter should send to each candidate on each day, that guarantees that every candidate gets enough money to win their election. (Party members will of course follow their given schedule perfectly.) The schedule must obey both Federal laws and individual voters’ budget constraints. If no such schedule exists, your algorithm should report that fact.

Assume there are $n$ candidates, $p$ party members, and $d$ days until the election. The input to your algorithm is a pair of arrays $Win[1..n]$ and $Limit[1..p, 1..n]$, where $Win[i]$ is the amount of money candidate $i$ needs to win, and $Limit[i, j]$ is the total amount party member $i$ is willing to donate to candidate $j$.

Your algorithm should return an array $Donate[1..p, 1..n, 1..d]$, where $Donate[i, j, k]$ is the amount of money party member $i$ should donate to candidate $j$ on day $k$.

2. A $k$-orientation of an undirected graph $G$ is an assignment of directions to the edges of $G$ so that every vertex of $G$ has at most $k$ incoming edges. For example, the figure below shows a 2-orientation of the graph of the cube.
Describe and analyze an algorithm that determines the smallest value of \( k \) such that \( G \) has a \( k \)-orientation, given the undirected graph \( G \) as input. Equivalently, your algorithm should find an orientation of the edges of \( G \) such that the maximum in-degree is as small as possible. For example, given the cube graph as input, your algorithm should return the integer 2.

3. Let \( G = (L \sqcup R, E) \) be a bipartite graph, whose left vertices \( L \) are indexed \( \ell_1, \ell_2, \ldots, \ell_n \) and whose right vertices are indexed \( r_1, r_2, \ldots, r_n \). A matching \( M \) in \( G \) is non-crossing if, for every pair of edges \( \ell_i r_j \) and \( \ell_i' r_j' \) in \( M \), we have \( i < i' \) if and only if \( j < j' \). If we place the vertices of \( G \) in index order along two vertical lines and draw the edges of \( G \) as straight line segments, a matching is non-crossing if its edges do not intersect.

Describe and analyze an algorithm to find the smallest number of disjoint non-crossing matchings \( M_1, M_2, \ldots, M_k \) such that each edge in \( G \) lies in exactly one matching \( M_i \).

[Hint: How would you compute the largest non-crossing matching in \( G \)?]

![Decomposing a bipartite graph into non-crossing matchings.](image)

4. [just for practice, not for submission] Suppose we are given a chessboard with certain squares removed, represented as a two-dimensional boolean array \( A[1..n, 1..n] \). Describe and analyze efficient algorithms to place as many chess pieces of a given type onto the board as possible, so that no two pieces attack each other. A piece can be placed on the square in row \( i \) and column \( j \) if and only if \( A[i, j] = \text{TRUE} \). Specifically:

(a) Describe an algorithm to places as many rooks on the board as possible. A rook on square \( (i, j) \) attacks every square in the same row or column; that is, every square of the form \( (i, k) \) or \( (k, j) \).

(b) Describe an algorithm to places as many bishops on the board as possible. A bishop on square \( (i, j) \) attacks every square on the same diagonal or back-diagonal; that is, every square of the form \( (i + k, j + k) \) or \( (i + k, j - k) \).

*(c)* Describe an algorithm to places as many knights on the board as possible. A knight on square \( (i, j) \) attacks the eight squares \( (i \pm 1, j \pm 2) \) and \( (i \pm 2, j \pm 1) \).

*(d)* Prove that placing as many queens on the board as possible is NP-hard. A queen attacks like either a rook or a bishop; that is, it attacks every square on the same row, column, diagonal, or back-diagonal.

Examples of (a), (b), and (c) are shown on the next page.
From left to right: Rooks, bishops, and knights.
1. Every year, Professor Dumbledore assigns the instructors at Hogwarts to various faculty committees. There are $n$ faculty members and $c$ committees. Each committee member has submitted a list of their prices for serving on each committee; each price could be positive, negative, zero, or even infinite. For example, Professor Snape might declare that he would serve on the Student Recruiting Committee for 1000 Galleons, that he would pay 10000 Galleons to serve on the Defense Against the Dark Arts Course Revision Committee, and that he would not serve on the Muggle Relations committee for any price.

Conversely, Dumbledore knows how many instructors are needed for each committee, and he has compiled a list of instructors who would be suitable members for each committee. (For example: “Dark Arts Revision: 5 members, anyone but Snape.”) If Dumbledore assigns an instructor to a committee, he must pay that instructor’s price from the Hogwarts treasury.

Dumbledore needs to assign instructors to committees so that (1) each committee is full, (2) only suitable and willing instructors are assigned to each committee, (3) no instructor is assigned to more than three committees, and (4) the total cost of the assignment is as small as possible. Describe and analyze an efficient algorithm that either solves Dumbledore’s problem, or correctly reports that there is no valid assignment whose total cost is finite.

2. Suppose we are given a sequence of $n$ linear inequalities of the form $a_i x + b_i y \leq c_i$. Collectively, these $n$ inequalities describe a convex polygon $P$ in the plane.

(a) Describe a linear program whose solution describes the largest square with horizontal and vertical sides that lies entirely inside $P$.

(b) Describe a linear program whose solution describes the largest circle that lies entirely inside $P$. 
3. Alex and Bo are playing **Undercut**. Each player puts their right hand behind their back and raises some number of fingers; then both players reveal their right hands simultaneously. Thus, each player independently chooses an integer from 0 to 5.\(^1\) If the two numbers do not differ by 1, each player adds their own number to their score. However, if the two numbers differ by 1, then the player with the lower number adds both numbers to their score, and the other player gets nothing. Both players want to maximize their score and minimize their opponent’s score.

Because Alex and Bo only care about the difference between their scores, we can reformulate the problem as follows. If Alex chooses the number \(i\) and Bo chooses the number \(j\), then Alex gets \(M_{ij}\) points, where \(M\) is the following \(6 \times 6\) matrix:

\[
M = \begin{pmatrix}
0 & 1 & -2 & -3 & -4 & -5 \\
-1 & 0 & 3 & -2 & -3 & -4 \\
2 & -3 & 0 & 5 & -2 & -3 \\
3 & 2 & -5 & 0 & 7 & -2 \\
4 & 3 & 2 & -7 & 0 & 9 \\
5 & 4 & 3 & 2 & -9 & 0 \\
\end{pmatrix}
\]

(In this formulation, Bo’s score is always zero.) Alex wants to maximize Alex’s score; Bo wants to minimize it.

Neither player has a good deterministic strategy; for example, if Alex always plays 4, then Bo should always play 3. Exhausted from trying to out-double-think each other,\(^2\) they both decide to adopt randomized strategies. These strategies can be described by two vectors \(a = (a_0, a_1, a_2, a_3, a_4, a_5)^\top\) and \(b = (b_0, b_1, b_2, b_3, b_4, b_5)^\top\), where \(a_i\) is the probability that Alex chooses \(i\), and \(b_j\) is the probability that Bo chooses \(j\). Because Alex and Bo’s random choices are independent, Alex’s expected score is \(a^\top M b = \sum_{i=0}^{5} \sum_{j=0}^{5} a_i M_{ij} b_j\).

(a) Suppose Bo somehow learns Alex’s strategy vector \(a\). Describe a linear program whose solution is Bo’s best possible strategy vector.

(b) What is the dual of your linear program from part (b)?

(c) So what is Bo’s optimal strategy, as a function of the vector \(a\)? And what is Alex’s resulting expected score? (You should be able to answer this part even without answering parts (a) and (b).)

(d) Now suppose that Alex knows that Bo will discover Alex’s strategy vector before they actually start playing. Describe a linear program whose solution is Alex’s best possible strategy vector.

(e) What is the dual of your linear program from part (d)?

(f) **Extra credit**: So what is Alex’s optimal Undercut strategy, if Alex knows that Bo will know that strategy?

(g) **Extra credit**: If Bo knows that Alex is going to use their optimal strategy from part (f), what is Bo’s optimal Undercut strategy?

Please express your answers to parts (a)–(e) in terms of arbitrary \(n \times n\) payoff matrices \(M\), instead of this specific example. You may find a computer helpful for parts (f) and (g).

---

\(^1\)In Hofstadter’s original game, players were not allowed to choose 0 for some reason.

\(^2\)“They were both poisoned. I’ve spent the last several years building up an immunity to iocaine powder.”
1. Alex and Bo are playing another game with even more complex rules. Each player independently chooses an integer between 0 and \( n \), then both players simultaneously reveal their choices, and finally they get points based on those choices.

Chris and Dylan are watching the game, but they don’t really understand the scoring rules, so instead, they decide to place bets on the sum of Alex and Bo’s choices. They both somehow know the probabilities that Alex and Bo use, and they want to figure out the probability of each possible sum.

Suppose Chris and Dylan are given a pair of arrays \( A[0..n] \) and \( B[0..n] \), where \( A[i] \) is the probability that Alex chooses \( i \), and \( B[j] \) is the probability that Bo chooses \( j \). Describe and analyze an algorithm that computes an array \( P[0..2n] \), where \( P[k] \) is the probability that the sum of Alex and Bo’s choices is equal to \( k \).

2. Suppose you are given a rooted tree \( T \), where every edge \( e \) has two associated values: a non-negative length \( \ell(e) \) and a cost \( \$ (e) \) (which could be positive, negative, or zero). Your goal is to add a non-negative stretch \( s(e) \geq 0 \) to the length of every edge \( e \) in \( T \), subject to the following conditions:

- Every root-to-leaf path \( \pi \) in \( T \) has the same total stretched length \( \sum_{e \in \pi} (\ell(e) + s(e)) \)
- The total weighted stretch \( \sum_e s(e) \cdot \$ (e) \) is as small as possible.

(a) Describe an instance of this problem with no optimal solution.
(b) Give a concise linear programming formulation of this problem.
(c) Suppose that for the given tree \( T \) and the given lengths and costs, the optimal solution to this problem is unique. Prove that in the optimal solution, \( s(e) = 0 \) for every edge on some longest root-to-leaf path in \( T \). In other words, prove that the optimally stretched tree has the same depth as the input tree. [Hint: What is a basis in your linear program? When is a basis feasible?]
(d) Describe and analyze a self-contained algorithm that solves this problem in (explicit) polynomial time. Your algorithm should either compute the minimum total weighted stretch, or report correctly that the total weighted stretch can be made arbitrarily negative.
3. An Euler tour in a directed graph $G$ is a closed walk (starting and ending at the same vertex) that traverses every edge in $G$ exactly once; a directed graph is Eulerian if it has an Euler tour. Euler tours are named after Leonhard Euler, who was the first person to systematically study them, starting with the Bridges of Königsberg puzzle.

(a) Prove that a directed graph $G$ with no isolated vertices is Eulerian if and only if (1) $G$ is strongly connected—for any two vertices $u$ and $v$, there is a directed walk in $G$ from $u$ to $v$ and a directed walk in $G$ from $v$ to $u$—and (2) the in-degree of each vertex of $G$ is equal to its out-degree. [Hint: Flow decomposition!]

(b) Suppose that we are given a strongly connected directed graph $G$ with no isolated vertices that is not Eulerian, and we want to make $G$ Eulerian by duplicating existing edges. Each edge $e$ has a duplication cost $\varepsilon(e) \geq 0$. We are allowed to add as many copies of an existing edge $e$ as we like, but we must pay $\varepsilon(e)$ for each new copy. On the other hand, if $G$ does not already have an edge from vertex $u$ to vertex $v$, we cannot add a new edge from $u$ to $v$.

Describe an algorithm that computes the minimum-cost set of edge-duplications that makes $G$ Eulerian.

Making a directed cube graph Eulerian.

4. Reservoir sampling is a method for choosing an item uniformly at random from an arbitrarily long stream of data; for example, the sequence of packets that pass through a router, or the sequence of IP addresses that access a given web page. Like all data stream algorithms, this algorithm must process each item in the stream quickly, using very little memory.

```python
GETONESAMPLE(stream S):
    \ell \leftarrow 0
    while S is not done
        x \leftarrow next item in S
        \ell \leftarrow \ell + 1
        if RANDOM(\ell) = 1
            sample \leftarrow x  (\star)
    return sample
```

At the end of the algorithm, the variable $\ell$ stores the length of the input stream $S$; this number is not known to the algorithm in advance. If $S$ is empty, the output of the algorithm is (correctly!) undefined.

In the following problems, $S$ denotes a stream of (unknown) length $n$. 
(a) Prove that the item returned by \texttt{GetOneSample}(S) is chosen uniformly at random from \( S \).

(b) What is the \textit{exact} expected number of times that \texttt{GetOneSample}(S) executes line (⋆)?

(c) What is the \textit{exact} expected value of \( \ell \) when \texttt{GetOneSample}(S) executes line (⋆) for the \textit{last} time?

(d) What is the \textit{exact} expected value of \( \ell \) when either \texttt{GetOneSample}(S) executes line (⋆) for the \textit{second} time (or the algorithm ends, whichever happens first)?

(e) Describe and analyze an algorithm that returns a subset of \( k \) distinct items chosen uniformly at random from a data stream of length at least \( k \). The integer \( k \) is given as part of the input to your algorithm. Prove that your algorithm is correct.

For example, if \( k = 2 \) and the stream contains the sequence \( \langle \clubsuit, \heartsuit, \diamondsuit, \spadesuit \rangle \), the algorithm would return the subset \( \{ \diamondsuit, \spadesuit \} \) with probability \( \frac{1}{6} \).

5. Suppose you are given a directed acyclic graph \( G \) with a single source vertex \( s \). Describe an algorithm to determine whether \( G \) contains a \textit{spanning binary tree}. Your algorithm is looking for a spanning tree \( T \) of \( G \), such that every vertex in \( G \) has at most two outgoing edges in \( T \) and every vertex of \( G \) except \( s \) has exactly one incoming edge in \( T \).

For example, given the dag on the left below as input, your algorithm should \text{\textsc{false}}, because the largest binary subtree excludes one of the vertices.

![DAG](image)

6. Suppose you are given an arbitrary directed graph \( G = (V, E) \) with arbitrary edge weights \( \ell : E \to \mathbb{R} \). Each edge in \( G \) is colored either red, white, or blue to indicate how you are permitted to modify its weight:

- You may increase, but not decrease, the length of any red edge.
- You may decrease, but not increase, the length of any blue edge.
- You may not change the length of any black edge.

The \textit{cycle nullification} problem asks whether it is possible to modify the edge weights—subject to these color constraints—so that every cycle in \( G \) has length 0. Both the given weights and the new weights of the individual edges can be positive, negative, or zero. To keep the following problems simple, assume that \( G \) is strongly connected.

(a) Describe a linear program that is feasible if and only if it is possible to make every cycle in \( G \) have length 0. [\textit{Hint: Pick an arbitrary vertex \( s \), and let \text{\texttt{dist}}(v) denote the length of every walk from \( s \) to \( v \).}]

(b) Construct the dual of the linear program from part (a). [\textit{Hint: Choose a convenient objective function for your primal LP.}]

3
(c) Give a self-contained description of the combinatorial problem encoded by the dual linear program from part (b). Do not use the words “linear”, “program”, or “dual”. Yes, you have seen this problem before.

(d) Describe and analyze a self-contained algorithm to determine in $O(EV)$ time whether it is possible to make every cycle in $G$ have length 0, using your dual formulation from part (c). Do not use the words “linear”, “program”, or “dual”. 
1. For any positive integer $n$, the $n$th **Fibonacci string** $F_n$ is defined recursively as follows, where $x \cdot y$ denotes the concatenation of strings $x$ and $y$:

\[
F_1 := 0 \\
F_2 := 1 \\
F_n := F_{n-1} \cdot F_{n-2} \quad \text{for all } n \geq 3
\]

For example, $F_3 = 10$ and $F_4 = 101$.

(a) What is $F_8$?

(b) **Prove** that every Fibonacci string except $F_1$ starts with 1.

(c) **Prove** that no Fibonacci string contains the substring 000.
More formally, suppose you are given a rooted tree $T$, representing the Twitbook company hierarchy. You need to label each vertex of $T$ with an integer 1, 2, or 3, such that every node has a different label from its parent. The cost of a labeling is the number of vertices that have smaller labels than their parents. Describe and analyze an algorithm to compute the minimum cost of any labeling of the given tree $T$.

For example, the following figure shows a tree labeling with cost 9; the nine bold nodes have smaller labels than their parents. (This is not the optimal labeling for this tree.)
2. Let $G$ be a directed graph, where every vertex $v$ has an associated height $h(v)$, and for every edge $u \to v$ we have the inequality $h(u) > h(v)$. Assume all heights are distinct. The span of a path from $u$ to $v$ is the height difference $h(u) - h(v)$.

Describe and analyze an algorithm to find the minimum span of a path in $G$ with at least $k$ edges. Your input consists of the graph $G$, the vertex heights $h(\cdot)$, and the integer $k$. Report the running time of your algorithm as a function of $V$, $E$, and $k$.

For example, given the following labeled graph and the integer $k = 3$ as input, your algorithm should return the integer 4, which is the span of the path $8 \to 7 \to 6 \to 4$. 

![Graph Image]
1. For any two sets $X$ and $Y$ of integers, the Minkowski sum $X + Y$ is the set of all pairwise sums $\{x + y \mid x \in X, y \in Y\}$.

(a) Describe an analyze an algorithm to compute the number of elements in $X + Y$ in $O(n^2 \log n)$ time, where $n = |X| + |Y|$. [Hint: The answer is not always $|X| \cdot |Y|$.

(b) Describe and analyze an algorithm to compute the number of elements in $X + Y$ in $O(M \log M)$ time, where $M$ is the largest absolute value of any element of $X \cup Y$.}
3. Suppose you are given two sorted arrays $A[1..n]$ and $B[1..n]$ containing distinct integers. Describe a fast algorithm to find the median (meaning the $n$th smallest element) of the union $A \cup B$. For example, given the input

$A[1..8] = [0, 1, 6, 9, 12, 13, 18, 20]$ \quad $B[1..8] = [2, 4, 5, 8, 17, 19, 21, 23]$

your algorithm should return the integer 9. [Hint: What can you learn by comparing one element of $A$ with one element of $B$?]
2. You and your eight-year-old nephew Elmo decide to play a simple card game. At the beginning of the game, the cards are dealt face up in a long row. Each card is worth a different number of points. After all the cards are dealt, you and Elmo take turns removing either the leftmost or rightmost card from the row, until all the cards are gone. At each turn, you can decide which of the two cards to take. The winner of the game is the player that has collected the most points when the game ends.

Having never taken an algorithms class, Elmo follows the obvious greedy strategy—when it’s his turn, Elmo always takes the card with the higher point value. Your task is to find a strategy that will beat Elmo whenever possible. (It might seem mean to beat up on a little kid like this, but Elmo absolutely hates it when grown-ups let him win.)

(a) Prove that you should not also use the greedy strategy. That is, show that there is a game that you can win, but only if you do not follow the same greedy strategy as Elmo.

(b) Describe and analyze an algorithm to determine, given the initial sequence of cards, the maximum number of points that you can collect playing against Elmo.
1. Suppose we are given an array \( A[1..n] \) of \( n \) distinct integers, which could be positive, negative, or zero, sorted in increasing order.
   
   (a) Describe a fast algorithm that either computes an index \( i \) such that \( A[i] = i \) or correctly reports that no such index exists.
   
   (b) Suppose we know in advance that \( A[1] > 0 \). Describe an even faster algorithm that either computes an index \( i \) such that \( A[i] = i \) or correctly reports that no such index exists.

2. Suppose we are given a binary tree \( T \) with weighted edges; each edge weight could be positive, negative, or zero. A subset \( M \) of edges of \( T \) is called a matching if every vertex of \( T \) is incident to at most one edge in \( M \).

   Describe and analyze an algorithm to find a matching in \( T \) with maximum total weight.

   For example, given the binary tree shown below, your algorithm should return the integer 21, which is the total weight of the indicated matching.

\[
\begin{array}{c}
  \text{Questions 3 and 4 are on the back.}
\end{array}
\]
3. The Hamming distance between two bit strings is the number of positions where the strings have different bits. For example, the Hamming distance between the strings $01101001$ and $11010001$ is $4$.

Suppose we are given two bit strings $P[1..m]$ (the “pattern”) and $T[1..n]$ (the “text”), where $m \leq n$. Describe and analyze an algorithm to find the minimum Hamming distance between $P$ and a substring of $T$ of length $m$. For full credit, your algorithm should run in $O(n \log n)$ time.

For example, if $P = 1100101$ and $T = 111111010100000$, your algorithm should return $1$, which is the Hamming distance between $P$ and the substring $1110101$ of $T$:

$111111010100000$

$1101010$

[Hint: Consider $0$s and $1$s separately.]

4. The StupidScript language includes a binary operator @ that computes the average of its two arguments. For example, the StupidScript code `print(3 @ 6)` would print $4.5$, because $(3 + 6)/2 = 4.5$.

Expressions like $4 @ 7 @ 3$ that use the @ operator more than once yield different results when they are evaluated in different orders:

$$(4 @ 7) @ 3 = 5.5 @ 3 = 4.25 \quad \text{but} \quad 4 @ (7 @ 3) = 4 @ 5 = 4.5$$

Here is a larger example:

$$(((8 @ 6) @ 7) @ 3) @ (0 @ 9) = 4.5$$
$$((8 @ 6) @ (7 @ 5)) @ ((3 @ 0) @ 9) = 5.875$$
$$(8 @ (6 @ (7 @ (5 @ (3 @ 0))))) @ 9 = 7.890625$$

Describe and analyze an algorithm to compute, given a sequence of integers separated by @ signs, the smallest possible value the expression can take by adding parentheses. Your input is an array $A[1..n]$ listing the sequence of integers.

For example, if your input sequence is $[4, 7, 3]$, your algorithm should return $4.25$, and if your input sequence is $[8, 6, 7, 5, 3, 0, 9]$, your algorithm should return $4.5$. Assume all arithmetic operations (including @) can be performed exactly in $O(1)$ time.
1. Recall that a family $\mathcal{H}$ of hash functions is **universal** if $\Pr_{h \in \mathcal{H}}[h(x) = h(y)] \leq 1/m$ for all distinct items $x \neq y$, where $m$ is the size of the hash table. For any fixed hash function $h$, a **collision** is an unordered pair of distinct items $x \neq y$ such that $h(x) = h(y)$.

Suppose we hash a set of $n$ items into a table of size $m = 2n$, using a hash function $h$ chosen uniformly at random from some universal family. Assume $\sqrt{n}$ is an integer.

(a) **Prove** that the expected number of collisions is at most $n/4$.

(b) **Prove** that the probability that there are at least $n/2$ collisions is at most $1/2$.

(c) **Prove** that the probability that any subset of more than $\sqrt{n}$ items all hash to the same address is at most $1/2$. [Hint: Use part (b).]

(d) Now suppose we choose $h$ at random from a **4-uniform** family of hash functions, which means for all distinct items $w, x, y, z$ and all addresses $i, j, k, l$, we have

$$\Pr_{h \in \mathcal{H}}[h(w) = i \land h(x) = j \land h(y) = k \land h(z) = l] = \frac{1}{m^4}.$$ 

**Prove** that the probability that any subset of more than $\sqrt{n}$ items all hash to the same address is at most $O(1/n)$.

[Hint: All four statements have short elementary proofs via tail inequalities.]

2. The Island of Sodor is home to an extensive rail network. Recently, several cases of a deadly contagious disease have been reported in the village of Ffarquhar. The controller of the Sodor railway plans to close certain railway stations to prevent the disease from spreading to Tidmouth, his home town. No trains can pass through a closed station. To minimize expense (and public notice), he wants to close as few stations as possible. However, he doesn’t want to close the Ffarquhar station, because that would expose him to the disease, and he really doesn’t want to close the Tidmouth station, because then he couldn’t visit his favorite pub in Tidmouth.

The Sodor rail network is represented by an undirected graph, with a vertex for each station and an edge for each rail connection between two stations. Two special vertices $f$ and $t$ represent the stations in Ffarquhar and Tidmouth. Describe and analyze an algorithm to find the minimum number of stations other than $f$ and $t$ that must be closed to block all rail travel from Ffarquhar to Tidmouth.

For example, given the following input graph, your algorithm should return the integer 2.
3. Let $T$ be a treap with $n$ vertices.

(a) What is the exact expected number of leaves in $T$?
(b) What is the exact expected number of nodes in $T$ that have two children?
(c) What is the exact expected number of nodes in $T$ that have exactly one child?

You do not need to prove that your answers are correct. [Hint: What is the probability that the node with the $k$th smallest search key has no children, one child, or two children?]

4. A cyclic shift of a string $A[1..n]$ is any string formed from $A$ by moving a prefix of $A$ to the end, or equivalently, moving a suffix of $A$ to the beginning. For example, the strings $RA!ABRACADAB$ and $DABRA!ABRACADA$ and $ABRACADABRA!$ are all cyclic shifts of the string $ABRACADABRA!$.

(a) Describe and analyze an algorithm to determine, given two strings $A[1..m]$ and $B[1..n]$ with $m \leq n$, whether $A$ is a substring of some cyclic shift of $B$.
(b) Describe a fast algorithm to determine, given two strings $A[1..m]$ and $B[1..n]$ with $m \leq n$, whether $A$ is a substring of some cyclic shift of $B$. 


Some Useful Inequalities

Suppose $X$ is the sum of random indicator variables $X_1, X_2, \ldots, X_n$.
For each index $i$, let $p_i = \Pr[X_i = 1] = E[X_i]$, and let $\mu = \sum_i p_i = E[X]$.

- **Markov’s Inequality:**
  
  \[
  \Pr[X \geq x] \leq \frac{\mu}{x} \quad \text{for all } x > 0, \text{ and therefore…}
  \]
  \[
  \Pr[X \geq (1 + \delta)\mu] \leq \frac{1}{1 + \delta} \quad \text{for all } \delta > 0
  \]

- **Chebyshev’s Inequality:** If the variables $X_i$ are pairwise independent, then…
  
  \[
  \Pr[(X - \mu)^2 \geq z] < \frac{\mu}{z} \quad \text{for all } z > 0, \text{ and therefore…}
  \]
  \[
  \Pr[X \geq (1 + \delta)\mu] < \frac{1}{\delta^2\mu} \quad \text{for all } \delta > 0
  \]
  \[
  \Pr[X \leq (1 - \delta)\mu] < \frac{1}{\delta^2\mu} \quad \text{for all } \delta > 0
  \]

- **Higher Moment Inequalities:** If the variables $X_i$ are $2k$-wise independent, then…
  
  \[
  \Pr[(X - \mu)^{2k} \geq z] = O\left(\frac{\mu^k}{z}\right) \quad \text{for all } z > 0, \text{ and therefore…}
  \]
  \[
  \Pr[X \geq (1 + \delta)\mu] = O\left(\frac{1}{\delta^{2k}\mu^k}\right) \quad \text{for all } \delta > 0
  \]
  \[
  \Pr[X \leq (1 - \delta)\mu] = O\left(\frac{1}{\delta^{2k}\mu^k}\right) \quad \text{for all } \delta > 0
  \]

- **Chernoff’s Inequality:** If the variables $X_i$ are fully independent, then…
  
  \[
  \Pr[X \geq x] \leq e^{x-\mu} \left(\frac{\mu}{x}\right)^x \quad \text{for all } x \geq \mu, \text{ and therefore…}
  \]
  \[
  \Pr[X \geq (1 + \delta)\mu] \leq e^{-\delta^3\mu/3} \quad \text{for all } 0 < \delta < 1
  \]
  \[
  \Pr[X \leq (1 - \delta)\mu] \leq e^{-\delta^2\mu/2} \quad \text{for all } 0 < \delta < 1
  \]

- **The World’s Most Useful Inequality:** $1 + x \leq e^x$ for all $x$
- **The World’s Most Useful Limit:** $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$

Hashing Properties

$\mathcal{H}$ is a set of functions from some universe $\mathcal{U}$ to $[m] = \{0, 1, 2, \ldots, m-1\}$.

- **Universal:** $\Pr_{h \in \mathcal{H}}[h(x) = h(y)] \leq \frac{1}{m}$ for all distinct items $x \neq y$
- **Near-universal:** $\Pr_{h \in \mathcal{H}}[h(x) = h(y)] \leq O\left(\frac{1}{m}\right)$ for all distinct items $x \neq y$
- **Strongly universal:** $\Pr_{h \in \mathcal{H}}[h(x) = i \text{ and } h(y) = j] = \frac{1}{m^2}$ for all distinct $x \neq y$ and all $i$ and $j$
- **2-uniform:** Same as strongly universal.
- **Ideal Random:** Fiction.
1. A line of \( n \) students and teachers is waiting to board the Hogwarts Express, which has exactly \( n \) seats, each one assigned to a different passenger. The first passenger in line is Professor Dumbledore, who has forgotten his assigned seat. When the professor boards the train, he chooses a seat uniformly at random and sits there.

The remaining \( n-1 \) passengers then board the train one at a time. When each passenger boards, if Dumbledore is sitting in their assigned seat, he apologetically chooses a different unoccupied seat, again uniformly at random, and moves to sit there. The next passenger boards only after the previous passenger and Dumbledore are seated. After all \( n \) passengers have boarded, everyone is in their assigned seat, including Dumbledore.

(a) What is the exact probability that Dumbledore never moves after choosing his first seat?

(b) What is the exact probability that the \( k \)th passenger has to ask Dumbledore to move? 
   [Hint: Consider the special cases \( k = 2 \) and \( k = n \), in particular when \( n = 3 \).]

(c) What is the exact expected number of times Dumbledore changes seats?

2. Part (c) of this problem was removed from the exam, because the intended solution was incorrect. Everybody received full credit for that part.

Two strings are almost equal if one can be transformed into the other by inserting, deleting, or changing at most one character. More concisely, two strings are almost equal if their edit distance is at most 1. For example, HEEDLESS is almost equal to HEADLESS, and HUNTED is almost equal to HAUNTED.

A string \( P \) is an almost-substring of another string \( T \) if \( P \) is almost equal to a substring of \( T \). For example, KMP is an almost-substring of STICKPREFIXESTOSUFFIXES, and POOKA and SCALY and SCARS and TOONS are all almost-substrings of SPOOKYSCARYSKELETONS.

Describe and efficient analyze algorithms for each of the following problems. The input to each problem is a pair of strings \( P[1..m] \) and \( T[1..n] \).

(a) For each index \( i \), find the longest prefix of \( P \) ending at \( T[i] \).

(b) For each index \( i \), find the longest suffix of \( P \) starting at \( T[i] \).

(c) Determine whether \( P \) is an almost-substring of \( T \).

[Questions 4 and 5 are on the back of this page.]
4. Every Halloween, hundreds of ghosts rise from their graves and haunt the houses of Sham-Poobanana. This is not as straightforward as it sounds, for two reasons. First, each ghost can only haunt houses where they spent significant time when they were alive. Second, at most one ghost can haunt each house. There are $n$ ghosts and $m$ houses.

(a) Describe and analyze an efficient algorithm that either assigns each ghost a distinct house that they can haunt, or correctly reports that such an assignment is impossible. Your input is a two-dimensional boolean array $CanHaunt[1..n, 1..m]$, where $CanHaunt[i, j] = \text{True}$ if and only if ghost $i$ can haunt house $j$.

(b) Oh, no! Beetlejuice broke into the main office and assigned each ghost to a house they can't haunt! Halloween is ruined! Stay-Puft proposes the following strategy to fix everyone's assignments. At exactly midnight, each ghost will give their assigned house to another ghost that actually wants it. For example, suppose

- Agnes was assigned house A, but she can only haunt houses C and D.
- Banquo was assigned house B, but he can only haunt houses A and C.
- Casper was assigned house C, but he can only haunt houses A and D.
- Daayan was assigned house D, but she can only haunt houses B and C.

The ghosts can fix their assignment as follows: Agnes gives house A to Banquo; Banquo gives house B to Daayan; Casper gives house C to Agnes, and Daayan gives house D to Casper.

Describe and analyze an efficient algorithm to compute an exchange that results in a valid assignment of ghosts to houses. The input to your algorithm is the Boolean array $CanHaunt$ from part (a) and a second array $Haunt[1..n]$, where $Haunt[i]$ is the index of the house originally assigned to ghost $i$. The correct output is an array $GiveTo[1..n]$, where $GiveTo[i] = j$ means ghost $i$ should give their house to ghost $j$.

You can assume that $CanHaunt[i, Haunt[i]] = \text{False}$ for every index $i$ (that is, no ghost can haunt their assigned house) and that a valid exchange exists. Assume also that $m = n$.

5. Your friends are organizing a board game party, and because they admire your personal dice collection, they ask you to bring dice. You choose several beautiful, perfectly-balanced, six-sided dice to bring to the party. Unfortunately, by the time you arrive, the other guests have already chosen a game (“Let’s Summon Demons”) that requires 20-sided dice! So now you get to improvise.

(a) Describe an algorithm to simulate one roll of a fair 20-sided die using independent rolls of a fair 6-sided die and no other source of randomness. Equivalently, describe an implementation of $\text{Random}(20)$, whose only source of randomness is an implementation of $\text{Random}(6)$.

(b) What is the exact expected number of 6-sided-die rolls (or calls to $\text{Random}(6)$) executed by your algorithm?

(c) Derive an upper bound on the probability that your algorithm requires more than $N$ rolls. Express your answer as a function of $N$.

(d) Estimate the smallest number $N$ such that the probability that your algorithm requires more than $N$ rolls is less than $\delta$. Express your answer as a function of $\delta$. 


1. [Spring 2020] Let $S$ be an arbitrary set of $n$ points in the plane with distinct $x$- and $y$-coordinates. A point $p$ in $S$ is **Pareto-optimal** if no other point in $S$ is both above and to the right of $p$. The **staircase** of $S$ is the set of all points in the plane (not just in $S$) that have at least one point in $S$ both above and to the right. All Pareto-optimal points lie on the boundary of the staircase.

A set of points in the plane and its staircase (shaded), with Pareto-optimal points in black.

(a) Describe and analyze an algorithm that computes the number of Pareto-optimal points in $S$ in $O(n \log n)$ time. For example, given the points on the left in the figure above, your algorithm should return the number 5.

(b) Suppose each point in $S$ is chosen independently and uniformly at random from the unit square $[0, 1] \times [0, 1]$. What is the **exact** expected number of Pareto-optimal points in $S$? [Hint: What is the probability that the leftmost point in $S$ is Pareto-optimal?]
2. [Spring 2016] Your eight-year-old cousin Elmo decides to teach his favorite new card game to his baby sister Daisy. At the beginning of the game, \( n \) cards are dealt face up in a long row. Each card is worth some number of points, which may be positive, negative, or zero. Then Elmo and Daisy take turns removing either the leftmost or rightmost card from the row, until all the cards are gone. At each turn, each player can decide which of the two cards to take. When the game ends, the player that has collected the most points wins.

Daisy isn’t old enough to get this whole “strategy” thing; she’s just happy to play with her big brother. When it’s her turn, she takes the either leftmost card or the rightmost card, each with probability \( 1/2 \).

Elmo, on the other hand, really wants to win. Having never taken an algorithms class, he follows the obvious greedy strategy—when it’s his turn, Elmo always takes the card with the higher point value.

Describe and analyze an algorithm to determine Elmo’s expected score, given the initial sequence of \( n \) cards as input. Assume Elmo moves first, and that no two cards have the same value.

For example, suppose the initial cards have values 1, 4, 8, 2. Elmo takes the 2, because it’s larger than 1. Then Daisy takes either 1 or 8 with equal probability. If Daisy takes the 1, then Elmo takes the 8; if Daisy takes the 8, then Elmo takes the 4. Thus, Elmo’s expected score is \( 2 + (8 + 4)/2 = 8 \).
3. **[Spring 2016]** Suppose we are given a set of \( n \) rectangular boxes, each specified by their height, width, and depth in centimeters. All three dimensions of each box lie strictly between 10cm and 20cm, and all \( 3n \) dimensions are distinct. As you might expect, one box can be nested inside another if the first box can be rotated so that it is smaller in every dimension than the second box. Boxes can be nested recursively, but two boxes cannot be nested side-by-side inside a third box. A box is visible if it is not nested inside another box.

Describe and analyze an algorithm to nest the boxes, so that the number of visible boxes is as small as possible.
4. \textbf{[Spring 2016, Spring 2020]} An $n \times n$ grid is an undirected graph with $n^2$ vertices organized into $n$ rows and $n$ columns. Every vertex is connected to the nearest vertex (if any) above, below, to the right, and to the left.

Suppose $m$ distinct vertices in the $n \times n$ grid are marked as \textit{terminals}. The \textbf{escape problem} asks whether there are $m$ vertex-disjoint paths in the grid that connect the terminals to any $m$ distinct boundary vertices. Describe and analyze an efficient algorithm to solve the escape problem.

For example, given the input on the left below, your algorithm should return \textit{True}.\[\text{Input } \rightarrow \text{Output}\]
5. Suppose we are given a set $R$ of $n$ red points, a set $G$ of $n$ green points, and a set $B$ of $n$ blue points; each point is given as a pair $(x, y)$ of real numbers. We call these sets separable if there is a pair of parallel lines $y = ax + b$ and $y = ax + b'$ such that (1) all red points are below both lines, (2) all blue points are above both lines, and (3) all green points are between the lines.

(a) Describe a linear program that is feasible if and only if the point sets $G, B, R$ are separable.

(b) Describe a linear program whose solution describes a pair of parallel lines that separates $G, B, R$ whose vertical distance is as small as possible. (Here you can assume that $G, B, R$ are separable.)

[Hint: Don’t try to solve these problems; just describe the linear programs.]
6. Suppose we are given two binary trees—a smaller pattern tree $P$ with $m$ vertices, and a larger text tree $T$ with $n$ vertices. Describe and analyze an algorithm to determine whether $T$ contains a rooted subtree (a vertex and all of its descendants) that is identical to $P$.

There is no actual data stored in the vertices of $P$ and $T$; these are not binary search trees or heaps. We are only trying to match the shape of the trees.

For example, in the figure below, the middle tree $T$ contains a rooted subtree identical to $P$, but the right tree $T'$ does not.
During an unprecedented dos-equis-virus outbreak, the local emergency call center receives calls from \( n \) people who each need to be airlifted to one of \( k \) local hospitals. Each patient must be flown to a hospital within 20 miles of their home; however, we do not want to overload any single hospital.

Describe an algorithm that assigns each patient to a hospital while keeping the maximum number of people flown to any single hospital as small as possible. Your input is an array \( D[1..n, 1..k] \), where \( D[i, j] \) is the distance in miles from patient \( i \)'s home to hospital \( j \). Analyze your algorithm as a function of \( n \) (the number of patients) and \( k \) (the number of hospitals).

Let \( G = (V, E) \) be an arbitrary dag with a unique source \( s \) and a unique sink \( t \). Suppose we compute a random walk from \( s \) to \( t \), where at each node \( v \) (except \( t \)), we choose an outgoing edge \( v \rightarrow w \) uniformly at random to determine the successor of \( v \).

For example, in the following four-node graph, there are four walks from \( s \) to \( t \), which are chosen with the indicated probabilities:

(a) Describe and analyze an algorithm to compute, for every vertex \( v \), the probability that the random walk visits \( v \). For example, in the graph shown above, a random walk visits the source \( s \) with probability 1, the bottom vertex \( u \) with probability 1/3, the top vertex \( v \) with probability 1/2, and the sink \( t \) with probability 1.

(b) Describe and analyze an algorithm to compute the expected number of edges in the random walk. For example, given the graph shown above, your algorithm should return the number \( 2 \cdot 1/3 + 1 \cdot 1/3 + 3 \cdot 1/6 + 2 \cdot 1/6 = 11/6 \).

Assume all relevant arithmetic operations can be performed exactly in \( O(1) \) time.
2. Consider the following randomized version of mergesort. The input is an unsorted array $A[1..n]$ of distinct numbers. Except in the base case, each element $A[i]$ is assigned to one of the two recursive subproblems according to a fair independent coin flip. The $\text{MERGE}$ subroutine takes two sorted arrays as input and returns a single sorted array, containing the elements of both input arrays, in linear time.

The $\text{RandomizedMergeSort}(A[1..n])$ algorithm is:

\[
\begin{aligned}
\text{if } n &\leq 1 \\
& \text{return } A \\
\ell &\leftarrow 0; \ r \leftarrow 0 \\
\text{for } i &\leftarrow 1 \text{ to } n \\
& \text{with probability } 1/2 \\
& \ell \leftarrow \ell + 1 \\
& L[\ell] \leftarrow A[i] \\
& \text{else} \\
& r \leftarrow r + 1 \\
& R[r] \leftarrow A[i] \\
L &\leftarrow \text{RandomizedMergeSort}(L[1..\ell]) \\
R &\leftarrow \text{RandomizedMergeSort}(R[1..r]) \\
\text{return Merge}(L, R)
\end{aligned}
\]

(a) Fix two arbitrary indices $i \neq j$. What is the probability that $A[i]$ and $A[j]$ appear in the same recursive subproblem (either $L$ or $R$)?

(b) What is the probability that $A[i]$ and $A[j]$ appear in the same subproblem for more than $k$ levels of recursion?

(c) What is the expected number of pairs of items that appear in the same subproblem for more than $k$ levels of recursion?

(d) Give an upper bound on the probability that at least one pair of items appear in the same subproblem for more than $k$ levels of recursion. Equivalently, upper bound the probability that the recursion tree of $\text{RandomizedMergeSort}$ has depth greater than $k$.

(e) For what value of $k$ is the probability in part (d) at most $1/n$?

(f) Prove that $\text{RandomizedMergeSort}$ runs in $O(n \log n)$ time with probability at least $1 - 1/n$.

4. Suppose we are given a target string $T[1..n]$ and an list of $k$ fragment strings $F_1[1..m_1]$, $F_2[1..m_2], \ldots, F_k[1..m_k]$. Describe and analyze an algorithm to find the shortest sequence of fragment strings $F_i$ whose concatenation is the target string $T$. You can assume that such a sequence exists. The same fragment $F_i$ can be used multiple times. Express the running time of your algorithm in terms of the parameters $n$, $k$, and $m = \sum_i m_i$.

For example, suppose we are given the target string $T = \text{ABRAcadabra}$ and the fragment strings $F_1 = A$, $F_2 = \text{ABRA}$, $F_3 = \text{ARC}$, $F_4 = \text{BRAC}$, $F_5 = \text{CAD}$, $F_6 = \text{DAB}$, and $F_7 = \text{RA}$. Then $T$ can be decomposed into fragments in two different ways:

\[
\begin{aligned}
\text{ABRA} \cdot \text{CAD} \cdot \text{ABRA} &= F_2 \cdot F_5 \cdot F_2 \\
A \cdot \text{BRAC} \cdot A \cdot \text{DAB} \cdot \text{RA} &= F_1 \cdot F_4 \cdot F_1 \cdot F_6 \cdot F_7.
\end{aligned}
\]

Your algorithm should return the integer 3, which is the length of the shorter decomposition.
5. Suppose we are given a standard flow network $G = (V, E)$, with a source vertex $s$, a target vertex $t$, and capacities $c(e) \geq 0$ for every edge $e$. Suppose each edge in $G$ also has a color. A flow $f$ in $G$ is color-consistent if $f(e) = f(e')$ for every pair of edges $e$ and $e'$ that have the same color. The maximum color-consistent flow problem asks for a color-consistent flow with maximum value. The standard maximum flow problem is the special case where every edge has a different color.

As an example, consider the colored flow network shown below left. The three thick edges in the middle (forming a Z) all have the same color (“red”); the other four edges have distinct colors. Every edge has capacity 1. The unique maximum color-consistent flow in this network, shown below right, has value $1\frac{1}{2}$.

![Diagram of colored flow network]

Describe a linear program whose solution is the maximum color-restricted flow in $G$. [Hint: Modify the standard linear program for maximum flow. Don’t try to actually compute this flow.]

6. Suppose we need to distribute a message to all the nodes in a given binary tree. Initially, only the root node knows the message. In a single round, each node that knows the message is allowed (but not required) to forward it to at most one of its children. Describe and analyze an algorithm to compute the minimum number of rounds required for the message to be delivered to all nodes in the tree.

For example, given the tree below as input, your algorithm should return the integer 5.

![Diagram of binary tree with message distribution]

A message being distributed through a binary tree in five rounds.
Submit your written solutions electronically to Gradescope as PDF files. Submit a separate PDF file for each numbered problem. If you plan to typeset your solutions, you are welcome to use the \LaTeX solution template on the course web site. If you must submit scanned handwritten solutions, please use a black pen on blank white paper and a high-quality scanner app (or an actual scanner).

Groups of up to three people can submit joint solutions on Gradescope. Exactly one student in each group should upload the solution and indicate their other group members.

You may use any source at your disposal—paper, electronic, or human—but you must cite every source that you use, you must write everything yourself in your own words, and you are responsible for any errors in the sources you use. See the academic integrity policies on the course web site for more details.

Written homework is normally due every Tuesday at 9pm. In addition, guided problem sets on PrairieLearn are normally due every Monday at 9pm; each student must do these individually. In particular, Guided Problem Set 1 is due Monday, August 28!

Both guided problem sets and homework may be submitted up to 24 hours late for 50% partial credit, or for full credit with an approved extension. See the grading policies on the course web site for more details.

Each homework will include at least one fully solved problem, similar to that week’s assigned problems, together with the rubric we would use to grade this problem if it appeared in an actual homework or exam. These model solutions show our recommendations for structure, presentation, and level of detail in your homework solutions. (Obviously, the actual content of your solutions won’t match the model solutions, because your problems are different!) Homeworks may also include additional practice problems.

Standard grading rubrics for many problem types can be found on the course web page. For example, the problems in this week’s homework will be graded using the standard induction rubric. (Weak induction makes the baby Jesus cry.)

See the course web site for more information.

If you have any questions about these policies, please don’t hesitate to ask in class, in office hours, or on Piazza.

---

1Yes, including ChatGPT.
2Yes, including ChatGPT.
3Yes, including ChatGPT.
1. Consider the following recursively defined function:

\[
stutter(w) := \begin{cases} 
\varepsilon & \text{if } w = \varepsilon \\
ax \cdot stutter(x) & \text{if } w = ax 
\end{cases}
\]

For example, \(stutter(\text{MISSISSIPPI}) = \text{MMIISSSSIISSSSIIPPPPII}\).

(a) Prove that \(|stutter(w)| = 2|w|\) for every string \(w\).

(b) Prove that \(stutter(x \cdot y) = stutter(x) \cdot stutter(y)\) for all strings \(x\) and \(y\).

(c) Practice only. Do not submit solutions.

The reversal \(w^R\) of a string \(w\) is defined recursively as follows:

\[
w^R := \begin{cases} 
\varepsilon & \text{if } w = \varepsilon \\
x^R \cdot a & \text{if } w = ax 
\end{cases}
\]

For example, \(\text{MISSIPPIPI}^R = \text{IPPIPISSIM}\).

Prove that \(stutter(w)^R = stutter(w^R)\) for every string \(w\).

You may freely use any result proved in lecture, in lab, or in the lecture notes. Otherwise your proofs must be formal and self-contained. In particular, your proofs must invoke the formal recursive definitions of string length and concatenation (and for part (c), reversal).
2. For each positive integer $n$, we define two strings $p_n$ and $v_n$, respectively called the $n$th Piṅgala string and the $n$th Virahāṇka string. Piṅgala strings are defined by the following recurrence:

$$p_n = \begin{cases} 
1 & \text{if } n = 1 \\
0 & \text{if } n = 2 \\
p_{n-2} \cdot p_{n-1} & \text{otherwise}
\end{cases}$$

For example:

$$p_7 = 10010010.$$ 

Virahāṇka strings are defined more indirectly as

$$v_n = \begin{cases} 
1 & \text{if } n = 1 \\
\text{grow}(v_{n-1}) & \text{otherwise}
\end{cases}$$

where the string function grow is defined as follows:

$$\text{grow}(w) = \begin{cases} 
e & \text{if } w = \epsilon \\
0 \cdot \text{grow}(x) & \text{if } w = 1x \\
10 \cdot \text{grow}(x) & \text{if } w = 0x
\end{cases}$$

For example:

$$\text{grow}(01010010) = 10 \cdot 0 \cdot 10 \cdot 0 \cdot 10 \cdot 0 \cdot 10 \cdot 0 = 10010010010010$$

Finally, recall that the Fibonacci numbers are defined recursively as follows:

$$F_n = \begin{cases} 
0 & \text{if } n = 0 \\
1 & \text{if } n = 1 \\
F_{n-1} + F_{n-2} & \text{otherwise}
\end{cases}$$

(a) Prove that $|p_n| = F_n$ for all $n \geq 1$.
(b) Prove that $\text{grow}(w \cdot z) = \text{grow}(w) \cdot \text{grow}(z)$ for all strings $w$ and $z$.
(c) Prove that $p_n = v_n$ for all $n \geq 1$. [Hint: Careful!]
(d) Practice only. Do not submit solutions.

Prove that $|v_n| = F_n$ for all $n \geq 1$.

As in problem 1, you may freely use any result that proved in lecture, in lab, or in the lecture notes. Otherwise your proofs must be formal and self-contained. In particular, your proofs must invoke the formal recursive definitions of the strings $p_n$ and $v_n$, the grow function, and the Fibonacci numbers $F_n$. 
3. Practice only. Do not submit solutions.

For each non-negative integer \( n \), we recursively define two binary trees \( P_n \) and \( V_n \), called the \( n \)th Pingala tree and the \( n \)th Virahānka tree, respectively.

- \( P_0 \) and \( V_0 \) are empty trees, with no nodes.
- \( P_1 \) and \( V_1 \) each consist of a single node.
- For any integer \( n \geq 2 \), the tree \( P_n \) consists of a root with two subtrees; the left subtree is a copy of \( P_{n-1} \), and the right subtree is a copy of \( P_{n-2} \).
- For any integer \( n \geq 2 \), the tree \( L_n \) is obtained from \( L_{n-1} \) by attaching a new right child to every leaf and attaching a new left child to every node that has only a right child.

The following figure shows the recursive construction of these two trees when \( n = 7 \).

![Diagram of trees](image)

Recall that the Fibonacci numbers are defined recursively as follows:

\[
F_n = \begin{cases} 
0 & \text{if } n = 0 \\
1 & \text{if } n = 1 \\
F_{n-1} + F_{n-2} & \text{otherwise}
\end{cases}
\]

(a) Prove that the tree \( P_n \) has exactly \( F_n \) leaves.
(b) Prove that the tree \( V_n \) has exactly \( F_n \) leaves.
  [Hint: You need to prove a stronger result.]
(c) Prove that the trees \( P_n \) and \( V_n \) are identical, for all \( n \geq 0 \).
  [Hint: The hardest part of this proof is developing the right language/notation.]

As in problem 1, you may freely use any result that proved in lecture, in lab, or in the lecture notes. Otherwise your proofs must be formal and self-contained. In particular, your proofs must invoke the formal recursive definitions of the trees \( P_n \) and \( V_n \) and the Fibonacci numbers \( F_n \).
Solved Problems

3. For any string $w \in \{0, 1\}^*$, let $\text{swap}(w)$ denote the string obtained from $w$ by swapping the first and second symbols, the third and fourth symbols, and so on. For example:

$$\text{swap}(101100101) = 011001011.$$ 

The $\text{swap}$ function can be formally defined as follows:

$$\text{swap}(w) := \begin{cases} 
\epsilon & \text{if } w = \epsilon \\
w & \text{if } w = 0 \text{ or } w = 1 \\
ba \cdot \text{swap}(x) & \text{if } w = abx \text{ for some } a, b \in \{0, 1\} \text{ and } x \in \{0, 1\}^* 
\end{cases}$$

(a) Prove that $|\text{swap}(w)| = |w|$ for every string $w$.

Solution: Let $w$ be an arbitrary string.

Assume $|\text{swap}(x)| = |x|$ for every string $x$ that is shorter than $w$.

There are three cases to consider (mirroring the definition of $\text{swap}$):

- If $w = \epsilon$, then
  $$|\text{swap}(w)| = |\text{swap}(\epsilon)| \quad \text{because } w = \epsilon$$
  $$= |\epsilon| \quad \text{by definition of } \text{swap}$$
  $$= |w| \quad \text{because } w = \epsilon$$

- If $w = 0$ or $w = 1$, then
  $$|\text{swap}(w)| = |w| \quad \text{by definition of } \text{swap}$$

- Finally, if $w = abx$ for some $a, b \in \{0, 1\}$ and $x \in \{0, 1\}^*$, then
  $$|\text{swap}(w)| = |\text{swap}(abx)| \quad \text{because } w = abx$$
  $$= |ba \cdot \text{swap}(x)| \quad \text{by definition of } \text{swap}$$
  $$= |ba| + |\text{swap}(x)| \quad \text{because } |y \cdot z| = |y| + |z|$$
  $$= |ba| + |x| \quad \text{by the induction hypothesis}$$
  $$= 2 + |x| \quad \text{by definition of } |\cdot|$$
  $$= |ab| + |x| \quad \text{by definition of } |\cdot|$$
  $$= |ab \cdot x| \quad \text{because } |y \cdot z| = |y| + |z|$$
  $$= |abx| \quad \text{by definition of } \cdot$$
  $$= |w| \quad \text{because } w = abx$$

In all cases, we conclude that $|\text{swap}(w)| = |w|$.

Rubric: 5 points: Standard induction rubric (scaled). This is more detail than necessary for full credit.
(b) Prove that \( \text{swap}(\text{swap}(w)) = w \) for every string \( w \).

**Solution:** Let \( w \) be an arbitrary string.

Assume \( \text{swap}(\text{swap}(x)) = x \) for every string \( x \) that is shorter than \( w \).

There are three cases to consider (mirroring the definition of \( \text{swap} \)):

- If \( w = \epsilon \), then
  \[
  \text{swap}(\text{swap}(w)) = \text{swap}(\text{swap}(\epsilon)) = \text{swap}(\epsilon) = \epsilon = w
  \]
  because \( w = \epsilon \).

- If \( w = 0 \) or \( w = 1 \), then
  \[
  \text{swap}(\text{swap}(w)) = \text{swap}(w) = w
  \]
  by definition of \( \text{swap} \).

- Finally, if \( w = abx \) for some \( a, b \in \{0, 1\} \) and \( x \in \{0, 1\}^* \), then
  \[
  \text{swap}(\text{swap}(w)) = \text{swap}(\text{swap}(abx)) = \text{swap}(ba \cdot \text{swap}(x)) = \text{swap}(ba \cdot z) = \text{swap}(baz) = ab \cdot \text{swap}(z) = ab \cdot \text{swap}(\text{swap}(x)) = ab \cdot x = abx = w
  \]
  by the induction hypothesis.

In all cases, we conclude that \( \text{swap}(\text{swap}(w)) = w \).

**Rubric:** 5 points: Standard induction rubric (scaled). This is more detail than necessary for full credit.
4. The reversal $w^R$ of a string $w$ is defined recursively as follows:

$$w^R := \begin{cases} 
\epsilon & \text{if } w = \epsilon \\
x^R \cdot a & \text{if } w = a \cdot x 
\end{cases}$$

A palindrome is any string that is equal to its reversal, like AMANAPLANACANALPANAMA, RACECAR, POOP, I, and the empty string.

(a) Give a recursive definition of a palindrome over the alphabet $\Sigma$.

**Solution:** A string $w \in \Sigma^*$ is a palindrome if and only if either

- $w = \epsilon$, or
- $w = a$ for some symbol $a \in \Sigma$, or
- $w = axa$ for some symbol $a \in \Sigma$ and some palindrome $x \in \Sigma^*$.

**Rubric:** 2 points = $\frac{1}{2}$ for each base case + 1 for the recursive case. No credit for the rest of the problem unless this part is correct.

(b) Prove $w = w^R$ for every palindrome $w$ (according to your recursive definition).

You may assume the following facts about all strings $x$, $y$, and $z$:

- Reversal reversal: $(x^R)^R = x$
- Concatenation reversal: $(x \cdot y)^R = y^R \cdot x^R$
- Right cancellation: If $x \cdot z = y \cdot z$, then $x = y$.

**Solution:** Let $w$ be an arbitrary palindrome. Assume that $x = x^R$ for every palindrome $x$ such that $|x| < |w|$. There are three cases to consider (mirroring the definition of “palindrome”): 

- If $w = \epsilon$, then $w^R = \epsilon$ by definition, so $w = w^R$.
- If $w = a$ for some symbol $a \in \Sigma$, then $w^R = a$ by definition, so $w = w^R$.
- Finally, if $w = axa$ for some symbol $a \in \Sigma$ and some palindrome $x \in P$, then

$$w^R = (a \cdot x \cdot a)^R = (x \cdot a)^R \cdot a = a^R \cdot x^R \cdot a = a \cdot x^R \cdot a = a \cdot x \cdot a = w$$

because $w = axa$

In all three cases, we conclude that $w = w^R$.

**Rubric:** 4 points: standard induction rubric (scaled)
(c) Prove that every string $w$ such that $w = w^R$ is a palindrome (according to your recursive definition).

Again, you may assume the following facts about all strings $x$, $y$, and $z$:

- Reversal reversal: $(x^R)^R = x$
- Concatenation reversal: $(x \cdot y)^R = y^R \cdot x^R$
- Right cancellation: If $x \cdot z = y \cdot z$, then $x = y$.

Solution: Let $w$ be an arbitrary string such that $w = w^R$.

Assume that every string $x$ such that $|x| < |w|$ and $x = x^R$ is a palindrome.

There are three cases to consider (mirroring the definition of “palindrome”):

- If $w = \epsilon$, then $w$ is a palindrome by definition.
- If $w = a$ for some symbol $a \in \Sigma$, then $w$ is a palindrome by definition.
- Otherwise, we have $w = ax$ for some symbol $a$ and some non-empty string $x$.

The definition of reversal implies that $w^R = (ax)^R = x^Ra$. Because $x$ is non-empty, its reversal $x^R$ is also non-empty. Thus, $x^R = by$ for some symbol $b$ and some string $y$.

It follows that $w^R = bya$, and therefore $w = (w^R)^R = (bya)^R = a^Ryb$.

(At this point, we need to prove that $a = b$ and that $y$ is a palindrome.)

Our assumption that $w = w^R$ implies that $bya = a^Ryb$.

The recursive definition of string equality immediately implies $a = b$.

Because $a = b$, we have $w = a^Ry^R$ and $w^R = aya$.

The recursive definition of string equality implies $y^R = y$.

Right cancellation implies $y^R = y$.

The inductive hypothesis now implies that $y$ is a palindrome.

We conclude that $w$ is a palindrome by definition.

In all three cases, we conclude that $w$ is a palindrome. ■

Rubric: 4 points: standard induction rubric (scaled).
5. Let $L \subseteq \{0,1\}^*$ be the language defined recursively as follows:

- The empty string $\varepsilon$ is in $L$.
- For any string $x \in L$, the strings $0101x$ and $1010x$ are also in $L$.
- For all strings $x$ and $y$ such that $xy \in L$, the strings $x00y$ and $x11y$ are also in $L$.
  (In other words, inserting two consecutive $0$s or two consecutive $1$s anywhere in a string in $L$ yields another string in $L$.)
- These are the only strings in $L$.

Let $EE$ denote the set of all strings $w \in \{0,1\}^*$ such that $#(0,w)$ and $#(1,w)$ are both even.

In the following proofs, you may freely use any result proved in lecture, in lab, in the lecture notes, or earlier in your homework. Otherwise your proofs must be formal and self-contained; in particular, they must invoke the formal recursive definitions of $# $ and $L$.

(a) Prove that $L \subseteq EE$.

**Solution:** Let $w$ be an arbitrary string in $L$. We need to prove that $#(0,w)$ and $#(1,w)$ are both even. Here I will prove only that $#(0,w)$ is even; the proof that $#(1,w)$ is even is symmetric.

Assume for every string $x \in L$ such that $|x| < |w|$ that $#(0,x)$ is even.

There are several cases to consider, mirroring the definition of $L$.

- Suppose $w = \varepsilon$. Then $#(0,w) = 0$, and 0 is even.
- Suppose $w = 0101x$ or $w = 1010x$ for some string $x \in L$. The definition of $# $ (applied four times) implies $#(0,w) = $#(0,x) + 2$. The inductive hypothesis implies $#(0,x)$ is even. We conclude that $#(0,w)$ is even.
- Suppose $w = x00y$ for some strings $x$ and $y$ such that $xy \in L$. Then

$$
#(0,w) = #(0,x00y) \\
= #(0,x) + #(0,00) + #(0,y) \\
= #(0,x) + #(0,y) + #(0,00) \\
= #(0,x,y) + 2
$$

The induction hypothesis implies $#(0,x,y)$ is even. We conclude that $#(0,w) = #(0,x,y) + 2$ is also even.

- Finally, suppose $w = x11y$ for some strings $x$ and $y$ such that $xy \in L$. Then

$$
#(0,w) = #(0,x11y) \\
= #(0,x) + #(0,11) + #(0,y) \\
= #(0,x) + #(0,y) \\
= #(0,x,y)
$$

The induction hypothesis implies $#(0,w) = #(0,x,y)$ is even.
In all cases, we have shown that \( \#(0,w) \) is even. Symmetric arguments imply that \( \#(1,w) \) is even. We conclude that \( w \in EE \).

**Rubric:** 5 points: standard induction rubric (scaled). Yes, this is enough detail for \( \#(1,w) \). If explicit proofs are given for both \( \#(0,w) \) and \( \#(1,w) \), grade them independently, each for 2½ points.

(b) Prove that \( EE \subseteq L \).

**Solution:** Let \( w \) be an arbitrary string in \( EE \). We need to prove that \( w \in L \).
Assume that for every string \( x \in EE \) such that \( |x| < |w| \), we have \( x \in L \).

There are four (overlapping) cases to consider, depending on the first four symbols in \( w \).

- Suppose \( |w| < 4 \). Then \( w \) must be one of the strings \( \varepsilon, \ 00, \ \text{or} \ 11 \); brute force inspection implies that every other string of length at most 3 (\( 0, 1, 01, 10, 000, 001, 010, 011, 100, 101, 110, 111 \)) has an odd number of 0s or an odd number of 1s (or both). All three strings \( \varepsilon \), \( 00 \), and \( 11 \) are in \( L \). In all other cases, we can assume that \( |w| \geq 4 \), so the “first four symbols of \( w \)” are well-defined.

- Suppose the first four symbols of \( w \) are \( 0000 \) or \( 0011 \) or \( 0100 \) or \( 1000 \) or \( 1001 \) or \( 1100 \). Then \( w = x00y \) for some (possibly empty) strings \( x \) and \( y \). Arguments in part (a) imply that \( \#(0,xy) = \#(0,w) - 2 \) and \( \#(1,xy) = \#(1,w) \) are both even. Thus \( xy \in EE \) by definition of \( EE \). So the induction hypothesis implies \( xy \in L \). We conclude that \( w = x00y \in L \) by definition of \( L \).

- Suppose the first four symbols of \( w \) are \( 0011 \) or \( 0110 \) or \( 0111 \) or \( 1011 \) or \( 1100 \) or \( 1101 \) or \( 1110 \) or \( 1111 \).\) After swapping 0s and 1s, the argument in the previous case implies that \( w \in L \).

- Finally, suppose the first four symbols of \( w \) are \( 0101 \) or \( 1010 \); in other words, suppose \( w = 0101x \) or \( w = 1010x \) for some (possibly empty) string \( x \). Then \( \#(0,x) = \#(0,w) - 2 \) and \( \#(1,x) = \#(1,w) - 2 \) are both even, so \( x \in EE \) by definition. The induction hypothesis implies \( x \in L \). We conclude that \( w \in L \) by definition of \( L \).

Each of the 16 possible choices for the first four symbols of \( w \) is considered in at least one of the last three cases.

In all cases, we conclude that \( w \in L \).

**Rubric:** 5 points: standard induction rubric (scaled). This is not the only correct proof. This is not the only correct way to express this particular case analysis.
1. For each of the following languages over the alphabet $\{0, 1\}^*$, describe an equivalent regular expression, and briefly explain why your regular expression is correct. There are infinitely many correct answers for each language.

   (a) All strings in $1^*01^*$ whose length is a multiple of 3.
   (b) All strings that begin with the prefix $001$, end with the suffix $100$, and contain an odd number of 1s.
   (c) All strings that contain both $0011$ and $1100$ as substrings.
   (d) All strings that contain the substring $01$ an odd number of times.
   (e) $\{0^a1^b0^c \mid a \geq 0 \text{ and } b \geq 0 \text{ and } c \geq 0 \text{ and } a \equiv b + c \text{ (mod 2)}\}$.

2. For each of the following languages over the alphabet $\Sigma = \{0, 1\}$, describe a DFA that accepts the language, and briefly describe the purpose of each state. You can describe your DFA using a drawing, or using formal mathematical notation, or using a product construction; see the standard DFA rubric.

   (a) All strings in $1^*01^*$ whose length is a multiple of 3.
   (b) All strings that represent a multiple of 5 in base 3. For example, this language contains the string $10100$, because $10100_3 = 90_{10}$ is a multiple of 5. (Yes, base 3 allows the digits $0$, $1$, and $2$, but your input string will never contain a $2$.)
   (c) All strings containing the substring $0101010$. (The required substring is $p_6 = v_6$ from Homework 1.)
   (d) All strings whose ninth-to-last symbol is $0$, or equivalently, the set

   \[
   \{ x0z \mid x \in \Sigma^* \text{ and } z \in \Sigma^8 \}.
   \]

   (e) All strings $w$ such that $(\#(0, w) \text{ mod } 3) + (\#(1, w) \text{ mod } 7) = (|w| \text{ mod } 4)$.

   [Hint: Don’t try to draw the last two.]
This question asks about strings over the set of pairs of bits, which we will write vertically. Let $\Sigma_2$ denote the set of all bit-pairs:

$$\Sigma_2 = \{\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}\}$$

We can interpret any string $w$ of bit-pairs as a $2 \times |w|$ matrix of bits; each row of this matrix is the binary representation of some non-negative integer, possibly with leading 0s. Let $hi(w)$ and $lo(w)$ respectively denote the numerical values of the top and bottom row of this matrix. For example, $hi(\epsilon) = lo(\epsilon) = 0$, and if $w = \begin{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}\} = \begin{bmatrix} 0011 \\ 0101 \end{bmatrix}$ then $hi(w) = 3$ and $lo(w) = 5$.

(a) Describe a DFA that accepts the language $L_{+1} = \{w \in \Sigma_2^* | hi(w) = lo(w) + 1\}$.

For example, $w = \begin{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}\} = \begin{bmatrix} 1100 \\ 1011 \end{bmatrix} \in L_{+1}$, because $hi(w) = 12$ and $lo(w) = 11$.

(b) Describe a regular expression for $L_{+1}$.

(c) Describe a DFA that accepts the language $L_{\times3} = \{w \in \Sigma_2^* | hi(w) = 3 \cdot lo(w)\}$.

For example, $w = \begin{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}\} = \begin{bmatrix} 1001 \\ 0011 \end{bmatrix} \in L_{\times3}$, because $hi(w) = 9$ and $lo(w) = 3$.

(d) Describe a regular expression for $L_{\times3}$.

(e) Describe a DFA that accepts the language $L_{\times3/2} = \{w \in \Sigma_2^* | 2 \cdot hi(w) = 3 \cdot lo(w)\}$.

For example, $w = \begin{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}\} = \begin{bmatrix} 1001 \\ 0110 \end{bmatrix} \in L_{\times3/2}$, because $hi(w) = 9$ and $lo(w) = 6$.

(Don’t bother with the regular expression for this one.)
Solved problem

4. **C comments** are the set of strings over alphabet $\Sigma = \{*, /, A, \diamond, \downarrow\}$ that form a proper comment in the C program language and its descendants, like C++, and Java. Here $\downarrow$ represents the newline character, $\diamond$ represents any other whitespace character (like the space and tab characters), and $A$ represents any non-whitespace character other than $*$ or $/$.  

There are two types of C comments:

- **Line comments**: Strings of the form `// ... $\downarrow$

- **Block comments**: Strings of the form `/* ... */`

Following the C99 standard, we explicitly disallow **nesting** comments of the same type. A line comment starts with `//` and ends at the first `$\downarrow$` after the opening `//`. A block comment starts with `/*` and ends at the first `*/` completely after the opening `/*`; in particular, every block comment has at least two `*`s. For example, each of the following strings is a valid C comment:

```plaintext
//***
//0//0\downarrow
//0//0\downarrow0*/
//0//0\downarrow*/
```

On the other hand, none of the following strings is a valid C comment:

```plaintext
/*
//0//0\downarrow
//0//0\downarrow*/
```

(Questions about C comments start on the next page.)

---

1The actual C commenting syntax is considerably more complex than described here, because of character and string literals.

- The opening `/*` or `//` of a comment must not be inside a string literal ("...") or a (multi-)character literal (‘...’).
- The opening double-quote of a string literal must not be inside a character literal (‘”’) or a comment.
- The closing double-quote of a string literal must not be escaped (\")
- The opening single-quote of a character literal must not be inside a string literal ("...’...”) or a comment.
- The closing single-quote of a character literal must not be escaped (‘’)
- A backslash escapes the next symbol if and only if it is not itself escaped (\") or inside a comment.

For example, the string "/s\\"*/s"*/s"*/s/" is a valid string literal (representing the 5-character string /s\\*/s/, which is itself a valid block comment!) followed immediately by a valid block comment. **For this homework question, just pretend that the characters ‘, “, and \ don’t exist.**

Commenting in C++ is even more complicated, thanks to the addition of raw string literals. Don’t ask.

Some C and C++ compilers do support nested block comments, in violation of the language specification. A few other languages, like OCaml, explicitly allow nesting block comments.
(a) Describe a regular expression for the set of all C comments.

Solution:

\[
//((/ + * + A + \diamond)^* \downarrow + */ (/ + A + \diamond + \downarrow + **(A + \diamond + \downarrow))^* \downarrow)^* */
\]

The first subexpression matches all line comments, and the second subexpression matches all block comments. Within a block comment, we can freely use any symbol other than \(*\), but any run of \(*\)s must be followed by a character in \((A + \diamond + \downarrow)\) or by the closing slash of the comment.

Rubric: Standard regular expression rubric. This is not the only correct solution.

(b) Describe a regular expression for the set of all strings composed entirely of blanks (\(\diamond\)), newlines (\(\downarrow\)), and C comments.

Solution:

\[
(\diamond + \downarrow + //((/ + * + A + \diamond)^* \downarrow + */ (/ + A + \diamond + \downarrow + **(A + \diamond + \downarrow))^* \downarrow)^* \downarrow)^*
\]

This regular expression has the form \(((\text{whitespace}) + (\text{comment}))^*\), where \(\langle\text{whitespace}\rangle\) is the regular expression \(\diamond + \downarrow\) and \(\langle\text{comment}\rangle\) is the regular expression from part (a).

Rubric: Standard regular expression rubric. This is not the only correct solution.
(c) Describe a DFA that accepts the set of all C comments.

Solution: The following eight-state DFA recognizes the language of C comments. All missing transitions lead to a hidden reject state.

The states are labeled mnemonically as follows:
- \( s \) — We have not read anything.
- \( / \) — We just read the initial \(/

/\.

- \( // \) — We are reading a line comment.
- \( L \) — We have just read a complete line comment.
- \( /* \) — We are reading a block comment, and we did not just read a \( * \) after the opening \(/\).
- \( /** \) — We are reading a block comment, and we just read a \( * \) after the opening \(/\).
- \( B \) — We have just read a complete block comment.

Rubric: Standard DFA design rubric. This is not the only correct solution, or even the simplest correct solution. (We don’t need two distinct accepting states.)
(d) Describe a DFA that accepts the set of all strings composed entirely of blanks (⋄), newlines (↲), and C comments.

**Solution:** By merging the accepting states of the previous DFA with the start state and adding white-space transitions at the start state, we obtain the following six-state DFA. Again, all missing transitions lead to a hidden reject state.

The states are labeled mnemonically as follows:

- **s** — We are between comments.
- **/** — We just read the initial / of a comment.
- **//$** — We are reading a line comment.
- **/*/ — We are reading a block comment, and we did not just read a * after the opening /*.
- **/** — We are reading a block comment, and we just read a * after the opening /*.

**Rubric:** Standard DFA design rubric. This is not the only correct solution, but it is the simplest correct solution.
5. Recall that the reversal $w^R$ of a string $w$ is defined recursively as follows:

$$w^R := \begin{cases} 
\epsilon & \text{if } w = \epsilon \\
x^R \cdot a & \text{if } w = a \cdot x
\end{cases}$$

The reversal $L^R$ of any language $L$ is the set of reversals of all strings in $L$:

$$L^R := \{w^R \mid w \in L\}.$$ 

Prove that the reversal of every regular language is regular.

**Solution:** Let $r$ be an arbitrary regular expression. We want to derive a regular expression $r'$ such that $L(r') = L(r)^R$.

Assume for every regular expression $s$ smaller than $r$ that there is a regular expression $s'$ such that $L(s') = L(s)^R$.

There are five cases to consider (mirroring the definition of regular expressions).

(a) If $r = \emptyset$, then we set $r' = \emptyset$, so that

$$L(r)^R = L(\emptyset)^R$$

because $r = \emptyset$

$$= \emptyset^R$$

because $L(\emptyset) = \emptyset$

$$= \emptyset$$

because $\emptyset^R = \emptyset$

$$= L(\emptyset)$$

because $L(\emptyset) = \emptyset$

$$= L(r')$$

because $r = \emptyset$

(b) If $r = w$ for some string $w \in \Sigma^*$, then we set $r' := w^R$, so that

$$L(r)^R = L(w)^R$$

because $r = w$

$$= \{w\}^R$$

because $L(\langle\text{string}\rangle) = \{\langle\text{string}\rangle\}$

$$= \{w^R\}$$

by definition of $L^R$

$$= L(w^R)$$

because $L(\langle\text{string}\rangle) = \{\langle\text{string}\rangle\}$

$$= L(r')$$

because $r = w^R$

(c) Suppose $r = s^*$ for some regular expression $s$. The inductive hypothesis implies a regular expressions $s'$ such that $L(s') = L(s)^R$. Let $r' = (s')^*$; then we have

$$L(r)^R = L(s^*)^R$$

because $r = s^*$

$$= (L(s)^*)^R$$

by definition of $^*$

$$= (L(s^R))^R$$

because $(L^R)^* = (L^*)^R$

$$= (L(s')^*)$$

by definition of $s'$

$$= L((s')^*)$$

by definition of $^*$

$$= L(r')$$

by definition of $r'$

(d) Suppose $r = s + t$ for some regular expressions $s$ and $t$. The inductive hypothesis implies regular expressions $s'$ and $t'$ such that $L(s') = L(s)^R$ and $L(t') = L(t)^R$. 


Set \( r' := s' + t' \); then we have

\[
L(r)R = L(s + t)R \quad \text{because } r = s + t
\]

\[
= (L(s) \cup L(t))^R \quad \text{by definition of } +
\]

\[
= \{w^R \mid w \in (L(s) \cup L(t))\} \quad \text{by definition of } L^R
\]

\[
= \{w^R \mid w \in L(s) \text{ or } w \cup L(t)\} \quad \text{by definition of } \cup
\]

\[
= \{w^R \mid w \in L(s)\} \cup \{w^R \mid w \cup L(t)\} \quad \text{by definition of } \cup
\]

\[
= L(s)^R \cup L(t)^R \quad \text{by definition of } L^R
\]

\[
= L(s') \cup L(t') \quad \text{by definition of } s' \text{ and } t'
\]

\[
= L(s' + t') \quad \text{by definition of } +
\]

\[
= L(r') \quad \text{by definition of } r'
\]

(e) Suppose \( r = s \cdot t \) for some regular expressions \( s \) and \( t \). The inductive hypothesis implies regular expressions \( s' \) and \( t' \) such that \( L(s') = L(s)^R \) and \( L(t') = L(t)^R \). Set \( r' = t' \cdot s' \); then we have

\[
L(r)R = L(st)^R \quad \text{because } r = s + t
\]

\[
= (L(s) \cdot L(t))^R \quad \text{by definition of } \cdot
\]

\[
= \{(x \cdot y)^R \mid x \in L(s) \text{ and } y \in L(t)\} \quad \text{by definition of } \cdot
\]

\[
= \{y^R \cdot x^R \mid x \in L(s) \text{ and } y \in L(t)\} \quad \text{concatenation reversal}
\]

\[
= \{y' \cdot x' \mid x' \in L(s'^R) \text{ and } y' \in L(t'^R)\} \quad \text{by definition of } L^R
\]

\[
= \{y' \cdot x' \mid x' \in L(s') \text{ and } y' \in L(t')\} \quad \text{by definition of } s' \text{ and } t'
\]

\[
= L(t') \cdot L(s') \quad \text{by definition of } \cdot
\]

\[
= L(t' \cdot s') \quad \text{by definition of } \cdot
\]

\[
= L(r') \quad \text{by definition of } r'
\]

In all five cases, we have found a regular expression \( r' \) such that \( L(r') = L(r)^R \). It follows that \( L(r)^R \) is regular.

\[\blacksquare\]

**Rubric:** Standard induction rubric!!
1. Prove that the following languages over the alphabet $\Sigma = \{0, 1\}$ are not regular.

(a) $\{0^a10^b10^c \mid 2b = a + c\}$.

(b) The set of all palindromes in $\Sigma^*$ whose lengths are divisible by 7.

(c) $\{1^m0^n \mid m + n > 0 \text{ and } \gcd(m, n) = 1\}$

Here $\gcd(m, n)$ denotes the greatest common divisor of $m$ and $n$: the largest integer $d$ such that both $m/d$ and $n/d$ are integers. In particular, $\gcd(1, n) = 1$ and $\gcd(0, n) = n$ for every positive integer $n$.

2. For each of the following languages over the alphabet $\Sigma = \{0, 1\}$, either prove that the language is regular (by constructing an appropriate DFA, NFA, or regular expression) or prove that the language is not regular (by constructing an infinite fooling set). Recall that $\Sigma^+$ denotes the set of all nonempty strings over $\Sigma$.

(a) Strings in which the substrings $01$ and $10$ appear the same number of times. For example, $110011 \in L$ because both substrings appear once, but $0100011 \notin L$.

(b) Strings in which the substrings $00$ and $11$ appear the same number of times. For example, $110011 \in L$ because both substrings appear twice, but $0100011 \notin L$.

(c) $\{xyxy \mid x, y \in \Sigma^+\}$

(d) $\{xyyz \mid x, y, z \in \Sigma^+\}$

[Hint: Exactly two of these languages are regular.]
A Moore machine is a variant of a finite-state automaton that produces output; Moore machines are sometimes called finite-state transducers. For purposes of this problem, a Moore machine formally consists of six components:

- A finite set Σ called the input alphabet
- A finite set Γ called the output alphabet
- A finite set Q whose elements are called states
- A start state s ∈ Q
- A transition function δ : Q × Σ → Q
- An output function ω : Q → Γ

More intuitively, a Moore machine is a graph with a special start vertex, where every node (state) has one outgoing edge labeled with each symbol from the input alphabet, and each node (state) is additionally labeled with a symbol from the output alphabet.

The Moore machine reads an input string w ∈ Σ* one symbol at a time. For each symbol, the machine changes its state according to the transition function δ, and then outputs the symbol ω(q), where q is the new state. Formally, we recursively define a transducer function ω* : Q × Σ* → Γ* as follows:

\[
\omega^*(q, w) = \begin{cases} 
\varepsilon & \text{if } w = \varepsilon \\
\omega(\delta(q, a)) \cdot \omega^*(\delta(q, a), x) & \text{if } w = ax
\end{cases}
\]

Given input string w ∈ Σ*, the machine outputs the string ω*(s, w) ∈ Γ*. The output language L*(M) of a Moore machine M is the set of all strings that the machine can output:

\[L^*(M) := \{ \omega^*(s, w) \mid w \in \Sigma^* \}\]

(a) Let M be an arbitrary Moore machine. Prove that L*(M) is a regular language.

(b) Let M be an arbitrary Moore machine whose input alphabet Σ and output alphabet Γ are identical. Prove that the language

\[L^= (M) = \{ w \in \Sigma^* \mid w = \omega^*(s, w) \}\]

is regular. L^= (M) consists of all strings w such that M outputs w when given input w; these are also called fixed points for the transducer function ω*.

[Hint: These problems are easier than they look!]
Solved problems

4. For each of the following languages, either prove that the language is regular (by constructing an appropriate DFA, NFA, or regular expression) or prove that the language is not regular (by constructing an infinite fooling set).

Recall that a palindrome is a string that equals its own reversal: \( w = w^R \). Every string of length 0 or 1 is a palindrome.

(a) Strings in \((\{0,1\} + \{2\})^*\) in which no prefix of length at least 2 is a palindrome.

**Solution:** Regular. \( \varepsilon + 01^* + 10^* \). Call this language \( L_a \).

Let \( w \) be an arbitrary non-empty string in \((\{0,1\} + \{2\})^*\). Without loss of generality, assume \( w = 0x \) for some string \( x \). There are two cases to consider.

- If \( x \) contains a \( 0 \), then we can write \( w = 01^n0y \) for some integer \( n \) and some string \( y \). The prefix \( 01^n0 \) is a palindrome of length at least 2. Thus, \( w \notin L_a \).
- Otherwise, \( x \in 1^* \). Every non-empty prefix of \( w \) is equal to \( 01^n \) for some non-negative integer \( n \leq |x| \). Every palindrome that starts with 0 also ends with 0, so the only palindrome prefixes of \( w \) are \( \varepsilon \) and \( 0 \), both of which have length less than 2. Thus, \( w \in L_a \).

We conclude that \( 0x \in L_a \) if and only if \( x \in 1^* \). A similar argument implies that \( 1x \in L_a \) if and only if \( x \in 0^* \). Finally, trivially, \( \varepsilon \in L_a \).

**Rubric:** 2½ points = ½ for “regular” + 1 for regular expression + 1 for justification. This is more detail than necessary for full credit.

(b) Strings in \((\{0,1\} + \{2\})^*\) in which no prefix of length at least 2 is a palindrome.

**Solution:** Not regular. Call this language \( L_b \).

Consider the set \( F = (012)^+ \).

Let \( x \) and \( y \) be arbitrary distinct strings in \( F \).

Then \( x = (012)^i \) and \( y = (012)^j \) for some positive integers \( i \neq j \).

Without loss of generality, assume \( i < j \).

Let \( z \) be the suffix \( (210)^j \).

- \( xz = (012)^i(210)^j \) is a palindrome of length \( 6i \geq 2 \), so \( xz \notin L_b \).
- \( yz = (012)^i(210)^j \) has no palindrome prefixes except \( \varepsilon \) and \( 0 \), because \( i < j \), so \( yz \in L_b \).

Thus, \( z \) is a distinguishing suffix for \( x \) and \( y \).

We conclude that \( F \) is a fooling set for \( L_b \).

Because \( F \) is infinite, \( L_b \) cannot be regular.

**Rubric:** 2½ points = ½ for “not regular” + 2 for fooling set proof (standard rubric, scaled).
(c) Strings in \((0 + 1)^*\) in which no prefix of length at least 3 is a palindrome.

**Solution: Not regular.** Call this language \(L_c\).

Consider the set \(F = (001101)^*\).

Let \(x\) and \(y\) be arbitrary distinct strings in \(F\). Then \(x = (001101)^i\) and \(y = (001101)^j\) for some positive integers \(i \neq j\).

Without loss of generality, assume \(i < j\).

Let \(z\) be the suffix \((101100)^i\).

- \(xz = (001101)^i(101100)^i\) is a palindrome of length \(12i \geq 2\), so \(xz \notin L_b\).
- \(yz = (001101)^j(101100)^i\) has no palindrome prefixes except \(\epsilon\) and 0 and 00, because \(i < j\), so \(yz \in L_b\).

Thus, \(z\) is a distinguishing suffix for \(x\) and \(y\).

We conclude that \(F\) is a fooling set for \(L_c\).

Because \(F\) is infinite, \(L_c\) cannot be regular. ■

**Rubric:** 2½ points = ½ for “not regular” + 2 for fooling set proof (standard rubric, scaled).

(d) Strings in \((0 + 1)^*\) in which no substring of length at least 3 is a palindrome.

**Solution: Regular.** Call this language \(L_d\).

Every palindrome of length at least 3 contains a palindrome substring of length 3 or 4. Thus, the complement language \(L_d^c\) is described by the regular expression

\[
(0 + 1)^* (00 + 01 + 10 + 11 + 001 + 011 + 100 + 110 + 0011 + 1100) (0 + 1)^*
\]

Thus, \(L_d^c\) is regular, so its complement \(L_d\) is also regular. ■

**Solution: Regular.** Call this language \(L_d\).

In fact, \(L_d\) is finite! Appending either 0 or 1 to any of the underlined strings creates a palindrome suffix of length 3 or 4.

\[
\epsilon + 0 + 1 + 00 + 01 + 10 + 11 + 001 + 011 + 100 + 110 + 0011 + 1100
\]

**Rubric:** 2½ points = ½ for “regular” + 2 for proof:
- 1 for expression for \(L_d^c\) + 1 for applying closure
- 1 for regular expression + 1 for justification
1. Recall the following string functions from Homework 1:

\[
\text{stutter}(w) := \begin{cases} 
\varepsilon & \text{if } w = \varepsilon \\
\text{aa} \cdot \text{stutter}(x) & \text{if } w = ax
\end{cases}
\]

\[
\text{grow}(w) := \begin{cases} 
\varepsilon & \text{if } w = \varepsilon \\
0 \cdot \text{grow}(x) & \text{if } w = 1x \\
10 \cdot \text{grow}(x) & \text{if } w = 0x
\end{cases}
\]

For example, \(\text{stutter}(1001) = 1100011\), and \(\text{grow}(1001) = 0 \cdot 10 \cdot 10 \cdot 0 = 010100\).

Let \(L\) be an arbitrary regular language over the alphabet \(\Sigma = \{0, 1\}\). Prove that the following languages are also regular.

(a) \(\text{STUTTER}(L) = \{\text{stutter}(w) \mid w \in L\}\)
(b) \(\text{UNSTUTTER}(L) = \{w \mid \text{stutter}(w) \in L\}\)
(c) \(\text{GROW}(L) = \{\text{grow}(w) \mid w \in L\}\)
(d) \(\text{UNGROW}(L) = \{w \mid \text{grow}(w) \in L\}\)

2. Give context-free grammars for the following languages, and clearly explain how they work and the set of strings generated by each nonterminal. Grammars with unclear or missing explanations may receive little or no credit. On the other hand, we do not want formal proofs of correctness.

(a) \(\{0^a1b10^c \mid b = 2a + 2c\}\).
(b) \(\{0^a1b10^c \mid 2b = a + c\}\).
(c) The set of all palindromes in \(\Sigma^*\) whose lengths are divisible by 7.

* (d) Practice only. Do not submit solutions.

Strings in which the substrings \(00\) and \(11\) appear the same number of times. For example, \(1100011 \in L\) because both substrings appear twice, but \(0100011 \notin L\).

Yes, you’ve seen most of these languages before.
3. **Practice only. Do not submit solutions.**

Let $L_1$ and $L_2$ be arbitrary regular languages over the alphabet $\Sigma = \{0, 1\}$. Prove that the following languages are also regular.

(a) $\text{Faro}(L_1, L_2) := \{ \text{faro}(x, z) \mid x \in L_1 \text{ and } z \in L_2 \text{ with } |x| = |z| \}$, where

$$\text{faro}(x, z) := \begin{cases}  & \text{if } x = \varepsilon \\ z & \\ a \cdot \text{faro}(z, y) & \text{if } x = ay \end{cases}$$

For example, $\text{faro}(0011, 0101) = 0000001111$ and $\text{Faro}(0^*, 1^*) = (01)^*$. 

(b) $\text{Shuffles}(L_1, L_2) := \bigcup_{w \in L_1, y \in L_2} \text{shuffles}(w, y)$, where $\text{shuffles}(w, y)$ is the set of all strings obtained by shuffling $w$ and $y$, or equivalently, all strings in which $w$ and $y$ are complementary subsequences. Formally:

$$\text{shuffles}(w, y) = \begin{cases} \{y\} & \text{if } w = \varepsilon \\ \{w\} & \text{if } y = \varepsilon \\ \{a\} \cdot \text{shuffles}(x, y) \cup \{b\} \cdot \text{shuffles}(w, z) & \text{if } w = ax \text{ and } y = bz \end{cases}$$

For example, $\text{shuffles}(001, 1) = \{001, 0101, 101, 0110, 1001, 1010, 1100\}$ and $\text{shuffles}(00, 11) = \{0011, 0101, 0110, 1001, 1010, 1100\}$. Finally, $\text{Shuffles}(0^*, 1^*) = (0 + 1)^*$. 

Both of these names are taken from methods of mixing a deck of playing cards. A **shuffle** divides the deck into two smaller stacks, and then interleaves those two stacks arbitrarily. A **Faro shuffle** or **perfect shuffle** divides the pack of cards exactly in half, and then interleaves them perfectly; the final deck alternates between cards from one half and cards from the other half. Faro shuffles are the basis of several card tricks.
Solved problems

4. (a) Fix an arbitrary regular language $L$. Prove that the language $\text{half}(L) := \{w \mid ww \in L\}$ is also regular.

Solution: Let $M = (\Sigma, Q, s, A, \delta)$ be an arbitrary DFA that accepts $L$. We define a new NFA $M' = (\Sigma, Q', s', A', \delta')$ with $\epsilon$-transitions that accepts $\text{half}(L)$, as follows:

- $Q' = (Q \times Q \times Q) \cup \{s'\}$
  - $s'$ is an explicit state in $Q'$
- $A' = \{(h, h, q) \mid h \in Q \text{ and } q \in A\}$
- $\delta'(s', \epsilon) = \{(s, h, h) \mid h \in Q\}$
- $\delta'(s', a) = \emptyset$
- $\delta'((p, h, q), \epsilon) = \emptyset$
- $\delta'((p, h, q), a) = \{(\delta(p, a), h, \delta(q, a))\}$

$M'$ reads its input string $w$ and simulates $M$ reading the input string $ww$. Specifically, $M'$ simultaneously simulates two copies of $M$, one reading the left half of $ww$ starting at the usual start state $s$, and the other reading the right half of $ww$ starting at some intermediate state $h$.

- The new start state $s'$ non-deterministically guesses the “halfway” state $h = \delta^*(s, w)$ without reading any input; this is the only non-determinism in $M'$.
- State $(p, h, q)$ means the following:
  - The left copy of $M$ (which started at state $s$) is now in state $p$.
  - The initial guess for the halfway state is $h$.
  - The right copy of $M$ (which started at state $h$) is now in state $q$.
- $M'$ accepts if and only if the left copy of $M$ ends at state $h$ (so the initial non-deterministic guess $h = \delta^*(s, w)$ was correct) and the right copy of $M$ ends in an accepting state.

Solution (smartass): A complete solution is given in the lecture notes.

Rubric: 5 points: standard language transformation rubric (scaled). Yes, the smartass solution would be worth full credit.
(b) Describe a regular language $L$ such that the language $\text{double}(L) := \{ww \mid w \in L\}$ is not regular. Prove your answer is correct.

**Solution:** Consider the regular language $L = \emptyset^*1$.

Expanding the regular expression lets us rewrite $L = \emptyset^n1 \mid n \geq 0$. It follows that $\text{double}(L) = \emptyset^n1\emptyset^n1 \mid n \geq 0$. I claim that this language is not regular.

Let $x$ and $y$ be arbitrary distinct strings in $L$.
Then $x = \emptyset^i1$ and $y = \emptyset^j1$ for some integers $i \neq j$.

Then $x$ is a distinguishing suffix of these two strings, because
- $xx \in \text{double}(L)$ by definition, but
- $yx = \emptyset^i1\emptyset^j1 \notin \text{double}(L)$ because $i \neq j$.

We conclude that $L$ is a fooling set for $\text{double}(L)$.

Because $L$ is infinite, $\text{double}(L)$ cannot be regular. ■

**Solution:** Consider the regular language $L = \Sigma^* = (\emptyset + 1)^*$.

I claim that the language $\text{double}(\Sigma^*) = \{ww \mid w \in \Sigma^*\}$ is not regular.

Let $F$ be the infinite language $01^*0$.

Let $x$ and $y$ be arbitrary distinct strings in $F$.
Then $x = 01^i0$ and $y = 01^j0$ for some integers $i \neq j$.

The string $z = 1^i$ is a distinguishing suffix of these two strings, because
- $xz = 01^i01^i = ww$ where $w = 01^i$, so $xz \in \text{double}(\Sigma^*)$, but
- $yx = 01^j01^i \notin \text{double}(\Sigma^*)$ because $i \neq j$.

We conclude that $F$ is a fooling set for $\text{double}(\Sigma^*)$.
Because $F$ is infinite, $\text{double}(\Sigma^*)$ cannot be regular. ■

**Rubric:** 5 points:
- 2 points for describing a regular language $L$ such that $\text{double}(L)$ is not regular.
- 3 point for the fooling set proof (standard fooling set rubric, scaled and rounded)

These are not the only correct solutions. These are not the only fooling sets for these languages.
5. Give context-free grammars for the following languages over the alphabet $\Sigma = \{0, 1\}$. Clearly explain how they work and the set of strings generated by each nonterminal. Grammars with unclear or missing explanations may receive little or no credit; on the other hand, we do not want formal proofs of correctness.

(a) In any string, a run is a maximal non-empty substring of identical symbols. For example, the string $011100011001 = 0^31^40^21^1$ consists of six runs.

Let $L_a$ be the set of all strings in $\Sigma^*$ that contain two runs of $0$s of equal length. For example, $L_a$ contains the strings $01101111$ and $01001011100010$ (because each of those strings contains more than one run of $0$s of length $1$) but $L_a$ does not contain the strings $000110011011$ and $00000000111$.

Solution:

$$S \rightarrow ACB$$ strings with two blocks of $0$s of same length

$$A \rightarrow \epsilon | X1$$ empty or ends with $1$

$$B \rightarrow \epsilon | 1X$$ empty or starts with $1$

$$C \rightarrow 0C0 | 0D0$$ $0^n y 0^n$, where $y$ starts and ends with $1$

$$D \rightarrow 1 | 1X1$$ starts and ends with $1$

$$X \rightarrow \epsilon | 1X | 0X$$ all strings: $(0 + 1)^*$

Every string in $L$ has the form $x0^ny0^nz$, where $x$ is either empty or ends with $1$, $y$ starts and ends with $1$, and $z$ is either empty or begins with $1$. Nonterminal $A$ generates the prefix $x$; non-terminal $B$ generates the suffix $z$; nonterminal $C$ generates the matching runs of $0$s, and nonterminal $D$ generates the interior string $y$.

The same decomposition can be expressed more compactly as follows:

$$S \rightarrow B | B1A | A1B | A1B1A$$ strings with two blocks of $0$s of same length

$$A \rightarrow 1A | 0A | \epsilon$$ all strings: $(0 + 1)^*$

$$B \rightarrow 0B0 | 010 | 01A10$$ $0^n y 0^n$, where $y$ starts and ends with $1$

Rubric: 5 points = 3 for clearly correct grammar + 2 for clear explanation. These are not the only correct solutions.
(b) \( L_b = \{ w \in \Sigma^* | w \text{ is not a palindrome} \} \).

**Solution:**

\[
S \rightarrow \varepsilon S \varepsilon | \varepsilon S 1 | 1 S \varepsilon | 1 S 1 | A \\
A \rightarrow \varepsilon B 1 | 1 B \varepsilon \\
B \rightarrow \varepsilon B | 1 B | \varepsilon
\]

These rules generate non-palindromes: start and ends with different symbols, and all strings.

Every non-palindrome \( w \) can be decomposed as either \( w = x \varepsilon y 1 x^R \) or \( w = x 1 y \varepsilon x^R \), for some substrings \( x, y, z \) such that \( |x| = |z| \). Non-terminal \( S \) generates the prefix \( x \) and matching-length suffix \( z \); non-terminal \( A \) generates the distinct symbols, and non-terminal \( B \) generates the interior substring \( y \).

---

**Rubric:** 5 points = 3 for clearly correct grammar + 2 for clear explanation. These are not the only correct solutions.
1. In the lab on Wednesday, you'll see an algorithm that finds a local minimum in a one-dimensional array in $O(\log n)$ time. This question asks you to consider two higher-dimensional versions of this problem.

(a) Suppose we are given a two-dimensional array $A[1..n, 1..n]$ of distinct integers. An array element $A[i, j]$ is called a local minimum if it is smaller than its four immediate neighbors:

$A[i, j] < \min \{A[i - 1, j], A[i + 1, j], A[i, j - 1], A[i, j + 1]\}$

To avoid edge cases, we assume all cells in row 1, row $n$, column 1, and column $n$ have value $+\infty$.

Describe and analyze an algorithm to find a local minimum in $A$ as quickly as possible. (Remember that faster algorithms are worth more points, but only if they are correct.)

[Hint: Suppose $A[i, j]$ is the smallest element in row $i$. If $A[i, j]$ is smaller than both of its vertical neighbors $A[i - 1, j]$ and $A[i + 1, j]$, we are clearly done. But what if $A[i, j] > A[i + 1, j]$?

[Hint: This problem is more subtle than it appears at first glance; many published solutions for this problem on the internet are incorrect. The main issue is that a local minimum in a rectangular subarray is not necessarily a local minimum in the original array. Design a recursive algorithm for the following more general problem: Given a two-dimensional array that contains a local minimum whose value is less than the value of every border cell, find such a local minimum.]

(b) Now suppose we are given a three-dimensional array $A[1..n, 1..n, 1..n]$ of distinct integers. An array element $A[i, j, k]$ is called a local minimum if it is smaller than its six immediate neighbors:

$A[i, j] < \min \left\{ \begin{array}{c} A[i - 1, j, k], A[i + 1, j, k], \\ A[i, j - 1, k], A[i, j + 1, k], \\ A[i, j, k - 1], A[i, j, k + 1] \end{array} \right\}$

To avoid edge cases, we assume all cells on the boundary of the array have value $+\infty$.

Describe and analyze an algorithm to find a local minimum in $A$ as quickly as possible.

(Remember that faster algorithms are worth more points, but only if they are correct.)
2. Suppose we have \( n \) points scattered inside a two-dimensional box. A \( kd \)-tree recursively subdivides the points as follows. First we split the box into two smaller boxes with a \textit{vertical} line, then we split each of those boxes with \textit{horizontal} lines, and so on, always alternating between horizontal and vertical splits. Each time we split a box, the splitting line partitions the rest of the interior points \textit{as evenly as possible} by passing through a median point in the interior of the box (\textit{not} on its boundary). If a box doesn’t contain any points, we don’t split it any more; these final empty boxes are called \textit{cells}.

(a) How many cells does the \( kd \)-tree have, as a function of \( n \)? Prove that your answer is correct.

(b) In the worst case, \textit{exactly} how many cells can a horizontal line cross, as a function of \( n \)? Prove that your answer is correct. Assume that \( n = 2^k - 1 \) for some integer \( k \). \textit{[Hint: There is more than one function \( f \) such that \( f(15) = 4 \).]}

(c) Suppose we have \( n \) points stored in a \( kd \)-tree. Describe and analyze an algorithm that counts the number of points above a given horizontal line (such as the dashed line in the figure) as quickly as possible. \textit{[Hint: Use part (b).]}

I should have specified that the following information is stored in each internal node \( v \) in the \( kd \)-tree:

- \( v.x \) and \( v.y \): The coordinates of the point defining the cut at \( v \)
- \( v.dir \in \{ \text{vertical, horizontal} \} \): The direction of the cut at \( v \).
- \( v.left \) and \( v.right \): The children of \( v \) if \( v.dir = \text{vertical} \)
- \( v.up \) and \( v.down \): The children of \( v \) if \( v.dir = \text{horizontal} \)
- \( v.size \): the number of points = cuts in the subtree rooted at \( v \).

Instead I allowed arbitrary information to be computed in preprocessing; that freedom allows a much simpler and more efficient query algorithm!

(d) Describe and analyze an efficient algorithm that counts, given a \( kd \)-tree storing \( n \) points, the number of points that lie inside a given rectangle \( R \) with horizontal and vertical sides. \textit{[Hint: Use part (c).]}

Assume that all \( x \)-coordinates and \( y \)-coordinates are distinct; that is, no two points lie on the same horizontal line or the same vertical line, no point lies on the query line in part (c), and no point lies on the boundary of the query rectangle in part (d).
3. **Practice only. Do not submit solutions.**

The following variant of the infamous StoogeSort algorithm\(^1\) was discovered by the British actor Patrick Troughton during rehearsals for the 20th anniversary *Doctor Who* special “The Five Doctors”.\(^2\)

```plaintext
WHO_SORT(A[1..n]):
    if n < 13
        sort A by brute force
    else
        k = ⌈n/5⌉
        WHO_SORT(A[1..3k]) (Hartnell)
        WHO_SORT(A[2k+1..n]) (Troughton)
        WHO_SORT(A[1..3k]) (Pertwee)
        WHO_SORT(A[k+1..4k]) (Davison)
```

(a) Prove by induction that WHO_SORT correctly sorts its input. [**Hint: Where can the smallest k elements be?**]

(b) Would WHO_SORT still sort correctly if we replaced “if n < 13” with “if n < 4”? Justify your answer.

(c) Would WHO_SORT still sort correctly if we replaced “k = ⌈n/5⌉” with “k = ⌊n/5⌋”? Justify your answer.

(d) What is the running time of WHO_SORT? (Set up a running-time recurrence and then solve it, ignoring the floors and ceilings.)

(e) Forty years later, 15th Doctor Ncuti Gatwa discovered the following optimization to WHO_SORT, which uses the standard MERGE subroutine from mergesort, which merges two sorted arrays into one sorted array.

```plaintext
NU WHO_SORT(A[1..n]):
    if n < 13
        sort A by brute force
    else
        k = ⌈n/5⌉
        NU WHO_SORT(A[1..3k]) (Grant)
        NU WHO_SORT(A[2k+1..n]) (Whittaker)
        MERGE(A[1..2k], A[2k+1..4k]) (Tennant)
```

What is the running time of NU WHO_SORT?

---

\(^1\)https://en.wikipedia.org/wiki/Stooge_sort

\(^2\)Tom Baker, the fourth Doctor, declined to return for the reunion; hence, only four Doctors appeared in “The Five Doctors”. (Well, okay, technically the BBC used excerpts of the unfinished episode “Shada” to include Baker, but he wasn’t really there—to the extent that any fictional character in a television show about a time traveling wizard arguing with several other versions of himself about immortality can be said to be “really” “there”.)
Solved problems

4. Suppose we are given two sets of \( n \) points, one set \( \{p_1, p_2, \ldots, p_n\} \) on the line \( y = 0 \) and the other set \( \{q_1, q_2, \ldots, q_n\} \) on the line \( y = 1 \). Consider the \( n \) line segments connecting each point \( p_i \) to the corresponding point \( q_i \). Describe and analyze a divide-and-conquer algorithm to determine how many pairs of these line segments intersect, in \( O(n \log n) \) time. See the example below.

![Diagram of line segments connecting points on parallel lines]

Seven segments with endpoints on parallel lines, with 11 intersecting pairs.

Your input consists of two arrays \( P[1..n] \) and \( Q[1..n] \) of \( x \)-coordinates; you may assume that all \( 2n \) of these numbers are distinct. No proof of correctness is necessary, but you should justify the running time.

Solution: We begin by sorting the array \( P[1..n] \) and permuting the array \( Q[1..n] \) to maintain correspondence between endpoints, in \( O(n \log n) \) time. Then for any indices \( i < j \), segments \( i \) and \( j \) intersect if and only if \( Q[i] > Q[j] \). Thus, our goal is to compute the number of pairs of indices \( i < j \) such that \( Q[i] > Q[j] \). Such a pair is called an inversion.

We count the number of inversions in \( Q \) using the following extension of mergesort; as a side effect, this algorithm also sorts \( Q \). If \( n < 100 \), we use brute force in \( O(1) \) time. Otherwise:

- Color the elements in the Left half \( Q[1..n/2] \) blue.
- Color the elements in the Right half \( Q[n/2+1..n] \) red.
- Recursively count inversions in (and sort) the blue subarray \( Q[1..n/2] \).
- Recursively count inversions in (and sort) the red subarray \( Q[n/2+1..n] \).
- Count red/blue inversions as follows:
  - Merge the sorted subarrays \( Q[1..n/2] \) and \( Q[n/2+1..n] \), maintaining the element colors.
  - For each blue element \( Q[i] \) of the now-sorted array \( Q[1..n] \), count the number of smaller red elements \( Q[j] \).

The last substep can be performed in \( O(n) \) time using a simple for-loop:
**CountRedBlue**($A[1..n]$):

```
count ← 0
total ← 0
for i ← 1 to n
    if $A[i]$ is red
        count ← count + 1
    else
        total ← total + count
return total
```

**Merge** and **CountRedBlue** each run in $O(n)$ time. Thus, the running time of our inversion-counting algorithm obeys the mergesort recurrence $T(n) = 2T(n/2) + O(n)$. (We can safely ignore the floors and ceilings in the recursive arguments.) We conclude that the overall running time of our algorithm is $O(n \log n)$, as required.

**Rubric:** This is enough for full credit.

In fact, we can execute the third merge-and-count step directly by modifying the **Merge** algorithm, without any need for “colors”. Here changes to the standard **Merge** algorithm are indicated in red.

**MergeAndCount**($A[1..n], m$):

```
i ← 1; j ← m + 1; count ← 0; total ← 0
for k ← 1 to n
    if $j > n$
        $B[k] ← A[i]; i ← i + 1; total ← total + count$
    else if $i > m$
        $B[k] ← A[j]; j ← j + 1; count ← count + 1$
    else if $A[i] < A[j]$
        $B[k] ← A[i]; i ← i + 1; total ← total + count$
    else
        $B[k] ← A[j]; j ← j + 1; count ← count + 1$
for k ← 1 to n
    $A[k] ← B[k]$
return total
```

We can further optimize **MergeAndCount** by observing that **count** is always equal to $j - m - 1$, so we don’t need an additional variable. (Proof: Initially, $j = m + 1$ and **count** = 0, and we always increment $j$ and **count** together.)
**MergeAndCount2**

```plaintext
MergeAndCount2(A[1..n], m):
i ← 1; j ← m + 1; total ← 0
for k ← 1 to n
  if j > n
    B[k] ← A[i]; i ← i + 1; total ← total + j - m - 1
  else if i > m
    B[k] ← A[j]; j ← j + 1
  else if A[i] < A[j]
    B[k] ← A[i]; i ← i + 1; total ← total + j - m - 1
  else
    B[k] ← A[j]; j ← j + 1
for k ← 1 to n
  A[k] ← B[k]
return total
```

**Rubric:**

- 10 points = 2 for base case + 2 for divide (split and recurse) + 4 for conquer (merge and count) + 2 for time analysis. This is neither the only way to correctly describe this algorithm nor the only correct \(O(n \log n)\)-time algorithm. No proof of correctness is required.
- Max 3 points for a correct \(O(n^2)\)-time algorithm.

Notice that each boxed algorithm is preceded by a clear English description of the task that algorithm performs—not how the algorithm works, but the relationship between its input and its output. **Each English description is worth 25% of the credit for that algorithm** (rounding to the nearest half-point). For example, the **CountRedBlue** algorithm is worth 4 points ("conquer"); the English description alone ("For each blue element \(Q[i]\) of the now-sorted array \(Q[1..n]\), count the number of smaller red elements \(Q[j]\).") is worth 1 point.

**MERGEAndCOUNT2** still runs in \(O(n)\) time, so the overall running time is still \(O(n \log n)\), as required.
1. Satya is in charge of establishing a new testing center for the Standardized Awesomeness Test (SAT), and found an old conference hall that is perfect. The conference hall has \( n \) rooms of various sizes along a single long hallway, numbered in order from 1 through \( n \). Satya knows exactly how many students fit into each room, and he wants to use a subset of the rooms to host as many students as possible for testing.

Unfortunately, there have been several incidents of students cheating at other testing centers by tapping secret codes through walls. To prevent this type of cheating, Satya can use two adjacent rooms only if he demolishes the wall between them. The city’s chief architect has determined that demolishing the walls on both sides of the same room would threaten the building’s structural integrity. For this reason, Satya can never host students in three consecutive rooms.

Describe an efficient algorithm that computes the largest number of students that Satya can host for testing without using three consecutive rooms. The input to your algorithm is an array \( S[1 .. n] \), where each \( S[i] \) is the (non-negative integer) number of students that can fit in room \( i \).

2. As a typical overworked college student, you occasionally pull all-nighters to get more work done. Painful experience has taught you that the longer you stay awake, the less productive you are.

Suppose there are \( n \) days left in the semester. For each of the next \( n \) days, you can either stay awake and work, or you can sleep. You have an array \( \text{Score}[1 .. n] \), where \( \text{Score}[i] \) is the (always positive) number of points you will earn on day \( i \) if you are awake and well-rested.

However, staying awake for several days in a row has a price: Each consecutive day you stay awake cuts the quality of your work in half. Thus, if you are awake on day \( i \), and you most recently slept on day \( i - k \), then you will actually earn \( \text{Score}[i]/2^{k-1} \) points on day \( i \). (You’ve already decided to sleep on day 0.)

For example, suppose \( n = 6 \) and \( \text{Score} = \{3, 7, 4, 3, 9, 1\} \).

- If you work on all six days, you will earn \( 3 + \frac{7}{2} + \frac{4}{4} + \frac{3}{8} + \frac{9}{16} + \frac{1}{32} = 8.46875 \) points.
- If you work only on days 1, 3, and 5, you will earn \( 3 + 4 + 9 = 16 \) points.
- If you work only on days 2, 3, 5, and 6, you will earn \( 7 + \frac{4}{2} + 9 + \frac{1}{2} = 18.5 \) points.

Design and analyze an algorithm that computes the maximum number of points you can earn, given the array \( \text{Score}[1 .. n] \) as input. For example, given the input array \( \{3, 7, 4, 3, 9, 1\} \), your algorithm should return the number 18.5.

\textbf{VERY IMPORTANT: Do not actually do this in real life!}
3. Practice only. Do not submit solutions.

(a) Any string can be decomposed into a sequence of palindromes. For example, the string **BUBBASEESABANANA** (“Bubba sees a banana.”) can be broken into palindromes in the following ways (and 65 others):

```
BUB • BASEESAB • ANANA
B • U • BB • ASEESA • B • ANANA
BUB • B • A • SEES • ABA • N • ANA
B • U • BB • A • S • EE • S • A • B • A • NAN • A
B • U • B • B • A • S • E • E • S • A • B • A • N • A • N • A
```

Describe and analyze an efficient algorithm to find the smallest number of palindromes that make up a given input string. For example, given the input string **BUBBASEESABANANA**, your algorithm should return **3**.

(b) A **metapalindrome** is a decomposition of a string into a sequence of palindromes, such that the sequence of palindrome lengths is itself a palindrome. For example, the string **BOBSMAMASEESAUKULELE** (“Bob’s mama sees a ukulele”) has the following metapalindromes (among others):

```
BOB • S • MAM • ASEESA • UKU • L • ELE
B • O • B • S • M • A • M • A • S • E • E • S • A • U • K • U • L • E • L • E
```

The length sequences of these metapalindromes are (3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) and (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1); notice that both of these sequences are themselves palindromes.

Describe and analyze an efficient algorithm to find the smallest number of palindromes in any metapalindrome for a given string. For example, given the input string **BOBSMAMASEESAUKULELE**, your algorithm should return **7**.
Solved Problems

3. A shuffle of two strings $X$ and $Y$ is formed by interspersing the characters into a new string, keeping the characters of $X$ and $Y$ in the same order. For example, the string BANANAANANAS is a shuffle of the strings BANANA and ANANAS in several different ways.

Similarly, the strings PROGYNRAMAMMIINC and DYPRONGARMAMMICING are both shuffles of the strings DYNAMIC and PROGRAMMING:

(a) Given three strings $A[1..m]$, $B[1..n]$, and $C[1..m+n]$, describe and analyze an algorithm to determine whether $C$ is a shuffle of $A$ and $B$.

Solution: We define a boolean function $Shuf(i, j)$, which is TRUE if and only if the prefix $C[1..i+j]$ is a shuffle of the prefixes $A[1..i]$ and $B[1..j]$. We need to compute $Shuf(m, n)$. The function $Shuf$ satisfies the following recurrence:

$$
Shuf(i, j) = \begin{cases} 
    \text{TRUE} & \text{if } i = j = 0 \\
    Shuf(0, j-1) \land (B[j] = C[j]) & \text{if } i = 0 \text{ and } j > 0 \\
    Shuf(i-1, 0) \land (A[i] = C[i]) & \text{if } i > 0 \text{ and } j = 0 \\
    (Shuf(i-1, j) \land (A[i] = C[i+j])) \\
    \vee (Shuf(i, j-1) \land (B[j] = C[i+j])) & \text{otherwise}
\end{cases}
$$

We can memoize this function into a two-dimensional array $Shuf[0..m][0..n]$. Each array entry $Shuf[i, j]$ depends only on the entries immediately above and immediately to the left: $Shuf[i-1, j]$ and $Shuf[i, j-1]$. Thus, we can fill the array in standard row-major order in $O(mn)$ time.

Solution: The following algorithm runs in $O(mn)$ time.

```python
IsSHUFFLE?(A[1..m], B[1..n], C[1..m+n]):
    Shuf[0, 0] \leftarrow \text{TRUE}
    for j \leftarrow 1 \text{ to } n
        Shuf[0, j] \leftarrow Shuf[0, j-1] \land (B[j] = C[j])
    for i \leftarrow 1 \text{ to } n
        Shuf[i, 0] \leftarrow Shuf[i-1, 0] \land (A[i] = B[i])
        for j \leftarrow 1 \text{ to } n
            Shuf[i, j] \leftarrow \text{FALSE}
            if A[i] = C[i+j]
                Shuf[i, j] \leftarrow Shuf[i-1, j]
            if B[i] = C[i+j]
                Shuf[i, j] \leftarrow Shuf[i, j] \lor Shuf[i, j-1]
        return Shuf[m, n]
```

Here $Shuf(i, j) = \text{TRUE}$ if and only if the prefix $C[1..i+j]$ is a shuffle of the
prefixes $A[1 .. i]$ and $B[1 .. j]$. ■

**Rubric:** 5 points, standard dynamic programming rubric. Each of these solutions is separately worth full credit. These are not the only correct solutions. —½ for reporting running time as $O(n^2)$. 3 points for a slower polynomial-time algorithm; scale partial credit accordingly.

(b) Given three strings $A[1 .. m]$, $B[1 .. n]$, and $C[1 .. m + n]$, describe and analyze an algorithm to determine the number of different ways that $A$ and $B$ can be shuffled to obtain $C$.

**Solution:** Let $\#\text{Shuf}(i, j)$ denote the number of different ways that the prefixes $A[1 .. i]$ and $B[1 .. j]$ can be shuffled to obtain the prefix $C[1 .. i + j]$. We need to compute $\#\text{Shuf}(m, n)$.

The $\#\text{Shuf}$ function satisfies the following recurrence. Here I am using Iverson bracket notation to convert booleans to integers: For any proposition $P$, the expression $[P]$ is equal to 1 if $P$ is true and 0 if $P$ is false.

$$\#\text{Shuf}(i, j) = \begin{cases} 
1 & \text{if } i = j = 0 \\
\#\text{Shuf}(0, j - 1) \cdot [B[j] = C[j]] & \text{if } i = 0 \text{ and } j > 0 \\
\#\text{Shuf}(i - 1, 0) \cdot [A[i] = C[i]] & \text{if } i > 0 \text{ and } j = 0 \\
(\#\text{Shuf}(i - 1, j) \cdot [A[i] = C[i]]) + (\#\text{Shuf}(i, j - 1) \cdot [B[j] = C[j]]) & \text{otherwise}
\end{cases}$$

We can memoize this function into a two-dimensional array $\#\text{Shuf}[0..m][0..n]$. As in part (a), we can fill this array in standard row-major order in $O(mn)$ time.

**Solution:** The following algorithm runs in $O(mn)$ time:

```plaintext
NUMSHUFFLES(A[1..m], B[1..n], C[1..m+n]):
#Shuf(0, 0) ← 1
for j ← 1 to n
    #Shuf(0, j) ← 0
    if (B[j] = C[j])
        #Shuf(0, j) ← #Shuf(0, j - 1)
for i ← 1 to n
    #Shuf(0, j) ← 0
    if (A[i] = B[i])
        #Shuf(0, j) ← #Shuf(i - 1, 0)
for j ← 1 to n
    #Shuf(i, j) ← 0
    if A[i] = C[i + j]
        #Shuf(i, j) ← #Shuf(i, j - 1)
    if B[i] = C[i + j]
        #Shuf(i, j) ← #Shuf(i, j) + #Shuf(i, j - 1)
return Shuf(m, n)
```
Here $\text{#Shuf}[i, j]$ stores the number of different ways that the prefixes $A[1..i]$ and $B[1..j]$ can be shuffled to obtain the prefix $C[1..i+j]$.

Rubric: 5 points, standard dynamic programming rubric. Again, each of these solutions is separately worth full credit. These are not the only correct solutions. $-\frac{1}{2}$ for reporting running time as $O(n^2)$. 3 points for a slower polynomial-time algorithm; scale partial credit accordingly.
1. The City Council of Sham-Poobanana needs to partition Purple Street into voting districts. A total of \( n \) people live on Purple Street, at consecutive addresses 1, 2, \ldots, \( n \). Each voting district must be a contiguous interval of addresses \( i, i+1, \ldots, j \) for some \( 1 \leq i < j \leq n \). By law, each Purple Street address must lie in exactly one district, and the number of addresses in each district must be between \( k \) and \( 2k \), where \( k \) is a positive integer parameter.

Every election in Sham-Poobanana is between two rival factions: Oceania and Eurasia. A majority of the current City Council are from Oceania, so they consider a district to be \textit{good} if more than half the residents of that district voted for Oceania in the previous election. Naturally, the City Council has complete voting records for all \( n \) residents.

For example, the figure below shows a legal partition of 22 addresses (of which 9 are good and 13 are bad) into 4 good districts and 3 bad districts, where \( k = 2 \) (so each district contains either 2, 3, or 4 addresses). Each \( \text{o} \) indicates a vote for Oceania, and each \( \text{x} \) indicates a vote for Eurasia.

Describe an algorithm to find the largest possible number of \textit{good} districts in a legal partition. Your input consists of the integer \( k \) and a boolean array \text{GoodVote}[1..n] indicating which residents previously voted for Oceania (\text{TRUE}) or Eurasia (\text{FALSE}). You can assume that a legal partition exists. Analyze the running time of your algorithm in terms of the parameters \( n \) and \( k \). (In particular, do \textit{not} assume that \( k \) is a constant.)
The StupidScript language includes a binary operator @ that computes the average of its two arguments. For example, the StupidScript code `print(3 @ 6)` would print 4.5, because (3 + 6)/2 = 4.5.

Expressions like 3 @ 7 @ 4 that use the @ operator more than once yield different results when they are evaluated in different orders:

\[(3 @ 7) @ 4 = 5 @ 4 = 4.5 \quad \text{but} \quad 3 @ (7 @ 4) = 3 @ 5.5 = 4.25\]

Here is a larger example:

\[
(((8 @ 6) @ 7) @ 5) @ 3) @ (0 @ 9) = 4.5 \\
((8 @ 6) @ (7 @ 5)) @ ((3 @ 0) @ 9) = 5.875 \\
(8 @ (6 @ (7 @ (5 @ (3 @ 0)))))) @ 9 = 7.890625
\]

Your goal for this problem is to describe and analyze an algorithm to compute, given a sequence of integers separated by @ signs, the largest possible value the expression can take by adding parentheses. Your input is an array \(A[1..n]\) listing the sequence of integers.

For example, if your input sequence is \([3, 7, 4]\), your algorithm should return 4.5, and if your input sequence is \([8, 6, 7, 5, 3, 0, 9]\), your algorithm should return 7.890625. Assume all arithmetic operations (including @) can be performed exactly in \(O(1)\) time.

(a) Tommy Tutone suggests the following natural greedy algorithm: Merge the adjacent pair of numbers with the smallest average (breaking ties arbitrarily), replace them with their average, and recurse. For example:

\[
\begin{align*}
8 & @ 6 & @ 7 & @ 5 & @ 3 & @ 0 & @ 9 \\
8 & @ 6 & @ 7 & @ 5 & @ 1.5 & @ 9 \\
8 & @ 6 & @ 7 & @ 3.25 & @ 9 \\
8 & @ 6 & @ 5.125 & @ 9 \\
8 & @ 5.5625 & @ 9 \\
6.78125 & @ 9 \\
7.890625
\end{align*}
\]

Tommy reasons that with an efficient priority queue, this algorithm will run in \(O(n \log n)\) time, which is way faster than any dynamic programming algorithm.

Prove that Tommy’s algorithm is incorrect, by describing a specific input array and proving that his algorithm does not yield the largest possible value for that array.

(b) Describe and analyze a correct algorithm for this problem. Poor, poor Tommy.
3. **Practice only. Do not submit solutions.**

Suppose we need to broadcast a message to all the nodes in a rooted binary tree. Initially, only the root node knows the message. In a single round, any node that knows the message can forward it to at most one of its children. See the figure below for an example.

Design an algorithm to compute the minimum number of rounds required to broadcast the message to every node.

A message being distributed through a binary tree in five rounds.
Solved problems

3. A string \( w \) of parentheses ( and ) and brackets [ and ] is balanced if and only if \( w \) is generated by the following context-free grammar:

\[
S \rightarrow \epsilon \mid (S) \mid [S] \mid SS
\]

For example, the string \( w = ([()]) ([()]) ([()]) ([()]) \) is balanced, because \( w = xy \), where \( x = ([()]) ([()]) \) and \( y = ([()]) ([()]) \).

Describe and analyze an algorithm to compute the length of a longest balanced subsequence of a given string of parentheses and brackets. Your input is an array \( A[1..n] \), where \( A[i] \in \{ (, ), [ , ] \} \) for every index \( i \).

**Solution:** Suppose \( A[1..n] \) is the input string. For all indices \( i \) and \( k \), let \( LBS(i, k) \) denote the length of the longest balanced subsequence of the substring \( A[i..k] \). We need to compute \( LBS(1, n) \). This function obeys the following recurrence:

\[
LBS(i, k) = \begin{cases} 
0 & \text{if } i \geq k \\
\max \left\{ \begin{array}{ll}
2 + LBS(i + 1, k - 1) & \text{if } A[i] \sim A[k] \\
\max_{j=1}^{k-1} \left( LBS(i, j) + LBS(j + 1, k) \right) & \text{otherwise}
\end{array} \right. 
\end{cases}
\]

Here \( A[i] \sim A[k] \) indicates that \( A[i] \) is a left delimiter and \( A[k] \) is the corresponding right delimiter: Either \( A[i] = ( \) and \( A[k] = ) \), or \( A[i] = [ \) and \( A[k] = ] \).

We can memoize this function into a two-dimensional array \( LBS[1..n, 1..n] \). Because each entry \( LBS[i, k] \) depends only on entries in later rows or earlier columns (or both), we can fill this array row-by-row from bottom up (decreasing \( i \)) in the outer loop, scanning each row from left to right (increasing \( k \)) in the inner loop.

We can compute each entry \( LBS[i, k] \) in \( O(n) \) time, so the resulting algorithm runs in \( O(n^3) \) time.

**Solution (pseudocode):** The following algorithm runs in \( O(n^3) \) time:

```pseudocode
FUNCTION LONGESTBALANCEDSUBSEQUENCE(A[1..n]):
    FOR i ← n DOWN TO 1
        LBS[i, i] ← 0
        FOR k ← i + 1 TO n
            IF (A[i] = ( and A[k] = ) \) or (A[i] = [ and A[k] = ])
                LBS[i, k] ← LBS[i + 1, k - 1] + 2
            ELSE
                LBS[i, k] ← 0
            END IF
            FOR j ← i TO k - 1
                LBS[i, k] ← MAX(LBS[i, k], LBS[i, j] + LBS[j + 1, k])
            END FOR
        END FOR
    END FOR
    RETURN LBS[1, n]
END FUNCTION
```
Here $LBS[i, k]$ stores the length of the longest balanced subsequence of the substring $A[i..k]$.

**Rubric:** 10 points, standard dynamic programming rubric. Yes, each of these solutions is independently worth full credit.
4. Oh, no! You’ve just been appointed as the new organizer of Giggle, Inc.’s annual mandatory holiday party! The employees at Giggle are organized into a strict hierarchy, that is, a tree with the company president at the root. The all-knowing oracles in Human Resources have assigned a real number to each employee measuring how “fun” the employee is. In order to keep things social, there is one restriction on the guest list: An employee cannot attend the party if their immediate supervisor is also present. On the other hand, the president of the company must attend the party, even though she has a negative fun rating; it’s her company, after all.

Describe an algorithm that makes a guest list for the party that maximizes the sum of the “fun” ratings of the guests. The input to your algorithm is a rooted tree $T$ describing the company hierarchy, where each node $v$ has a field $v.fun$ storing the “fun” rating of the corresponding employee.

Solution (two functions): We define two functions over the nodes of $T$.

- $MaxFunYes(v)$ is the maximum total “fun” of a legal party among the descendants of $v$, where $v$ is definitely invited.
- $MaxFunNo(v)$ is the maximum total “fun” of a legal party among the descendants of $v$, where $v$ is definitely not invited.

We need to compute $MaxFunYes(root)$. These two functions obey the following mutual recurrences:

$$MaxFunYes(v) = v.fun + \sum_{\text{children } w \text{ of } v} MaxFunNo(w)$$

$$MaxFunNo(v) = \sum_{\text{children } w \text{ of } v} \max\{MaxFunYes(w), MaxFunNo(w)\}$$

These recurrences do not require separate base cases, because $\sum \emptyset = 0$.\(^6\)

We can memoize these functions by adding two additional fields $v.yes$ and $v.no$ to each node $v$ in the tree. The values at each node depend only on the values at its children, so we can compute all $2n$ values using a postorder traversal of $T$.

The resulting algorithm spends $O(1)$ time at each node of $T$, and therefore runs in $O(n)$ time.\(^\Box\)

\(^6\)A naïve recursive implementation of these recurrences would run in $O(\phi^n)$ time in the worst case, where $\phi = (1 + \sqrt{5})/2 \approx 1.618$ is the golden ratio. The worst case occurs when $T$ is a single path.

Solution (two functions, pseudocode): The following algorithm runs in $O(n)$ time.

```
BESTPARTY(T):
  COMPUTEMAXFUN(T.root)
  return T.root.yes

COMPUTEMAXFUN(v):
  v.yes <- v.fun
  v.no <- 0
  for all children w of v
    COMPUTEMAXFUN(w)
    v.yes <- v.yes + w.no
    v.no <- v.no + max{w.yes, w.no}
```
We are storing two pieces of information in each node \( v \) of the tree:

- \( v.\text{yes} \) is the maximum total “fun” of a legal party among the descendants of \( v \), assuming \( v \) is invited.
- \( v.\text{no} \) is the maximum total “fun” of a legal party among the descendants of \( v \), assuming \( v \) is not invited.

(Yes, this is still dynamic programming; we’re only traversing the tree recursively in \texttt{ComputeMaxFun} because that’s the most natural way to traverse trees!)

**Solution (one function):** For each node \( v \) in the input tree \( T \), let \( \text{MaxFun}(v) \) denote the maximum total “fun” of a legal party among the descendants of \( v \), where \( v \) may or may not be invited.

The president of the company must be invited, so none of the president’s “children” in \( T \) can be invited. Thus, the value we need to compute is

\[
\text{root.\text{fun}} + \sum_{\text{grandchildren } w \text{ of root}} \text{MaxFun}(w).
\]

The function \( \text{MaxFun} \) obeys the following recurrence:

\[
\text{MaxFun}(v) = \max \left\{ v.\text{fun} + \sum_{\text{grandchildren } x \text{ of } v} \text{MaxFun}(x) \right\} \sum_{\text{children } w \text{ of } v} \text{MaxFun}(w)\right\}
\]

(This recurrence does not require a separate base case, because \( \sum \emptyset = 0 \).) We can memoize this function by adding an additional field \( v.\text{maxFun} \) to each node \( v \) in the tree. The value at each node depends only on the values at its children and grandchildren, so we can compute all values using a postorder traversal of \( T \).

The algorithm spends \( O(1) \) time at each node (because each node has exactly one parent and one grandparent) and therefore runs in \( O(n) \) time altogether.

**Solution (one function, pseudocode):**

```
\textbf{BESTPARTY}(T):
\texttt{COMPUTEMAXFUN}(T.\text{root})
\text{party} \leftarrow T.\text{root.\text{fun}}
\text{for all children } w \text{ of } T.\text{root}
\text{for all children } x \text{ of } w
\text{party} \leftarrow \text{party} + x.\text{maxFun}
\text{return party}
```

```
\textbf{COMPUTEMAXFUN}(v):
\text{yes} \leftarrow v.\text{fun}
\text{no} \leftarrow 0
\text{for all children } w \text{ of } v
\text{\texttt{COMPUTEMAXFUN}(w)}
\text{no} \leftarrow \text{no} + w.\text{maxFun}
\text{for all children } x \text{ of } w
\text{\text{yes} \leftarrow yes + x.\text{maxFun}}
\text{v.\text{maxFun}} \leftarrow \max\{\text{yes, no}\}
```

Here \( v.\text{maxFun} \) stores the maximum total “fun” of a legal party among the descendants of \( v \), where \( v \) may or may not be invited.
Each value $v.maxFun$ is read at most three times during the algorithm's execution: Once in $\text{ComputeMaxFun}(v.parent)$, and once in $\text{ComputeMaxFun}(v.parent.parent)$, and at most once in the non-recursive part of $\text{BestParty}$. Thus, the entire algorithm runs in $O(n)$ time.

**Rubric:** 10 points: standard dynamic programming rubric. These are not the only correct solutions. Yes, each of these solutions is independently worth full credit.
1. A six-sided die (plural dice) is a cube with each side marked with a different number of dots (called pips) from 1 to 6. On a standard die, numbers on opposite sides always add up to 7.

A rolling die maze is a puzzle involving a standard six-sided die and a grid of squares. You should imagine the grid lying on a table; the die always rests on and exactly covers one square of the grid. In a single step, you can roll the die 90 degrees around one of its bottom edges, moving it to an adjacent square one step north, south, east, or west.

Some squares in the grid may be blocked; the die can never rest on a blocked square. Other squares may be labeled with a number; whenever the die rests on a labeled square, the number on the top face of the die must equal the label. Squares that are neither labeled nor marked are called free. You may not roll the die off the edges of the grid. A rolling die maze is solvable if it is possible to place a die on the lower left square and roll it to the upper right square under these constraints.

Figure 1. Rolling a (right-handed) die

Figure 2 shows five rolling die mazes. The first two mazes are solvable using any standard die. Specifically, the first maze can be solved by placing the die on the lower left square with 1 on the top face, and then rolling the die east, north, north, east; the second maze can be solved in 12 moves. The third maze is only solvable using a right-handed die, where faces 1, 2, 3 appear in counterclockwise order around a common corner.\(^1\) The last two mazes cannot be solved even with non-standard dice.

![Figure 2. Five rolling die mazes.](image)

Describe and analyze an algorithm that determines whether a given rolling die maze can be solved with a right-handed standard die. Your input is a two-dimensional array \( \text{Label}[1..n, 1..n] \), where each entry \( \text{Label}[i, j] \) stores the label of the square in the \( i \)th row and \( j \)th column, where 0 means the square is free and \(-1\) means the square is blocked.

[Hint: You have some freedom in how to place the initial die. There are rolling die mazes that can be solved only if the initial placement is chosen correctly. Describe your solution in high-level language; don’t get bogged down in grungy case analysis.]

\(^1\)Right-handed dice are more common in the Western hemisphere; left-handed dice are more common in east Asia.
2. The Cheery Hells neighborhood of Sham-Poobanana runs a popular and well-regulated Halloween celebration, attended by thousands of costumed children from all across Poobanana County. To regulate the flood of costumed children, the Cheery Hells Neighborhood Association has designated a walking direction for each stretch of sidewalk.

After paying the $25 entrance fee, each child receives a map of the neighborhood, in the form of a directed graph $G$, whose vertices represent houses. Each edge $v \rightarrow w$ indicates that one can walk directly from house $v$ to house $w$ following the designated sidewalk directions. (Anyone caught walking backward along a sidewalk will be ejected from Cheery Hells, without their candy. No refunds.) A special vertex $s$ designates the entrance to Cheery Hells. Children can visit houses as many times as they like, but biometric scanners at every house ensure that each child receives candy only at their first visit to each house.

The children of Cheery Hells have published a secret web site listing the amount of candy that each house in Cheery Hells will give to each visitor.

Describe and analyze an algorithm to compute the maximum amount of candy that a single child can obtain in a walk through Cheery Hells, starting at the entrance node $s$. The input to your algorithm is the directed graph $G$, along with a non-negative integer $v.\text{candy}$ for each vertex $v$, describing the amount of candy the corresponding house gives to each first-time visitor.

[Hint: Think about two special cases first: (1) Cheery Hells is strongly connected, and (2) Cheery Hells is acyclic. Solving only these two special cases is worth half credit.]

3. Practice only. Do not submit solutions.

One of my daughter’s elementary-school math workbooks\(^2\) contains several puzzles of the following type:

Complete each angle maze below by tracing a path from Start to Finish that has only acute angles.

![Angle Maze 1](image1)

![Angle Maze 2](image2)

Describe and analyze an algorithm to solve arbitrary acute-angle mazes.

Your input is a connected undirected graph $G$, whose vertices are points in the plane and whose edges are straight line segments. Edges do not intersect, except at their common endpoints. For example, a drawing of the letter $X$ would have five vertices and four edges, and the first maze above has 18 vertices and 21 edges. You are also given two vertices Start and Finish.

Your algorithm should return `True` if $G$ contains a walk from Start to Finish that has only acute angles, and `False` otherwise. Formally, a walk through $G$ is valid if, for any two

consecutive edges $u \rightarrow v \rightarrow w$ in the walk, either $\angle uvw = \pi$ (straight) or $0 < \angle uvw < \pi/2$ (acute). Assume you have a subroutine that can determine in $O(1)$ time whether the angle between two given segments is straight, obtuse, right, or acute.

**Solved problem**

4. Professor McClane takes you out to a lake and hands you three empty jars. Each jar holds a positive integer number of gallons; the capacities of the three jars may or may not be different. The professor then demands that you put exactly $k$ gallons of water into one of the jars (which one doesn’t matter), for some integer $k$, using only the following operations:

   (a) Fill a jar with water from the lake until the jar is full.

   (b) Empty a jar of water by pouring water into the lake.

   (c) Pour water from one jar to another, until either the first jar is empty or the second jar is full, whichever happens first.

For example, suppose your jars hold 6, 10, and 15 gallons. Then you can put 13 gallons of water into the third jar in six steps:

- Fill the third jar from the lake.
- Fill the first jar from the third jar. (Now the third jar holds 9 gallons.)
- Empty the first jar into the lake.
- Fill the second jar from the lake.
- Fill the first jar from the second jar. (Now the second jar holds 4 gallons.)
- Empty the second jar into the third jar.

Describe and analyze an efficient algorithm that either finds the smallest number of operations that leave exactly $k$ gallons in any jar, or reports correctly that obtaining exactly $k$ gallons of water is impossible. Your input consists of the capacities of the three jars and the positive integer $k$. For example, given the four numbers 6, 10, 15, and 13 as input, your algorithm should return the number 6 (the length of the sequence of operations listed above).

**Solution:** Let $A, B, C$ denote the capacities of the three jars. We reduce the problem to breadth-first search in a directed graph $G = (V, E)$ defined as follows:

- $V = \{(a, b, c) \mid 0 \leq a \leq A \text{ and } 0 \leq b \leq B \text{ and } 0 \leq c \leq C\}$. Each vertex corresponds to a possible configuration of water in the three jars. There are $(A + 1)(B + 1)(C + 1) = O(ABC)$ vertices altogether.

- $G$ contains a directed edge $(a, b, c) \rightarrow (a', b', c')$ whenever it is possible to change the first configuration into the second in one step. Specifically, $G$ contains an edge from $(a, b, c)$ to each of the following vertices (except those already equal to $(a, b, c)$):
  - $(0, b, c)$ and $(a, 0, c)$ and $(a, b, 0)$ — dumping a jar into the lake
  - $(A, b, c)$ and $(a, B, c)$ and $(a, b, C)$ — filling a jar from the lake
\[
\begin{cases}
(0, a + b, c) & \text{if } a + b \leq B \\
(a + b - B, B, c) & \text{if } a + b \geq B 
\end{cases}
\] — pouring from jar 1 into jar 2

\[
\begin{cases}
(0, b, a + c) & \text{if } a + c \leq C \\
(a + c - C, b, C) & \text{if } a + c \geq C 
\end{cases}
\] — pouring from jar 1 into jar 3

\[
\begin{cases}
(a + b, 0, c) & \text{if } a + b \leq A \\
(A, a + b - A, c) & \text{if } a + b \geq A 
\end{cases}
\] — pouring from jar 2 into jar 1

\[
\begin{cases}
(a, 0, b + c) & \text{if } b + c \leq C \\
(a, b + c - C, C) & \text{if } b + c \geq C 
\end{cases}
\] — pouring from jar 2 into jar 3

\[
\begin{cases}
(a + c, b, 0) & \text{if } a + c \leq A \\
(A, b, a + c - A) & \text{if } a + c \geq A 
\end{cases}
\] — pouring from jar 3 into jar 1

\[
\begin{cases}
(a, b + c, 0) & \text{if } b + c \leq B \\
(a, B, b + c - B) & \text{if } b + c \geq B 
\end{cases}
\] — pouring from jar 3 into jar 2

Because each vertex has at most 12 outgoing edges, there are at most \(12(A + 1) \times (B + 1)(C + 1) = O(ABC)\) edges altogether.

To solve the jars problem, we need to find the shortest path in \(G\) from the start vertex \((0, 0, 0)\) to any target vertex of the form \((k, \cdot, \cdot)\) or \((\cdot, k, \cdot)\) or \((\cdot, \cdot, k)\).

We can compute this shortest path by calling breadth-first search starting at \((0, 0, 0)\), and then examining every target vertex by brute force. If BFS does not visit any target vertex, we report that no legal sequence of moves exists. Otherwise, we find the target vertex closest to \((0, 0, 0)\) and trace its parent pointers back to \((0, 0, 0)\) to determine the shortest sequence of moves. The resulting algorithm runs in \(O(V + E) = O(ABC)\) time.

We can speed up this algorithm by observing that every move leaves at least one jar either completely empty or completely full. Thus, we only need vertices \((a, b, c)\) where either \(a = 0\) or \(b = 0\) or \(c = 0\) or \(a = A\) or \(b = B\) or \(c = C\); no other vertices are reachable from \((0, 0, 0)\). The number of non-redundant vertices and edges is \(O(AB + BC + AC)\). Thus, if we only construct and search the relevant portion of \(G\), the algorithm runs in \(O(AB + BC + AC)\) time. ■

**Rubric:** 10 points: standard graph reduction rubric
- Brute force construction is fine.
- -1 for calling Dijkstra instead of BFS
- max 8 points for \(O(ABC)\) time; scale partial credit.
1. You are planning a hiking trip in Jasper National Park in British Columbia over winter break. You have a complete map of the park’s trails, which indicates that hikers on certain trails have a higher chance of encountering a sasquatch. All visitors to the park are required to purchase a canister of sasquatch repellent. You can safely traverse a high-risk trail segment only by completely using up a full canister. The park rangers have helpfully installed several refilling stations around the park, where you can refill empty canisters at no cost. The canisters themselves are expensive and heavy, so you can only carry one. The trails are narrow, so each trail segment allows traffic in only one direction.

You have converted the trail map into a directed graph \( G = (V, E) \), whose vertices represent trail intersections, and whose edges represent trail segments. A subset \( R \subseteq V \) of the vertices indicate the locations of the Repellent Refilling stations, and a subset \( H \subseteq E \) of the edges are marked as High-risk. Each edge \( e \) is labeled with the length \( \ell(e) \) of the corresponding trail segment. Your campsite appears on the map as a vertex \( s \in V \), and the visitor center is another vertex \( t \in V \).

(a) Describe and analyze an algorithm that finds the shortest safe hike from your campsite \( s \) to the visitor center \( t \). Assume there is a refill station at your campsite, and another refill station at the visitor center.

(b) Describe and analyze an algorithm to decide if you can safely hike from any refill station to any other refill station. In other words, for every pair of vertices \( u \) and \( v \) in \( R \), is there a safe hike from \( u \) to \( v \)?

2. You are driving through the back-country roads of Tenkucky, desperately trying to leave the state before the state’s annual Halloween Purge begins. Every road in the state is patrolled by a Driving Posse who will let you exercise your god-given right to drive as fast as you damn well please, provided you pay the appropriate speed tax. The faster you traverse any road, the more you have to pay. What’s the fastest way to escape the state?

You have an accurate map of the state, in the form of a directed graph \( G = (V, E) \), whose vertices \( V \) represent small towns and whose edges \( E \) represent one-lane dirt roads between towns.\(^1\) One vertex \( s \) is marked as your starting location; a subset \( X \subset V \) of vertices are marked as exits. Each edge \( e \) has an associated value \( \$e \) with the following interpretation.

- If you drive from one end of road \( e \) to the other in \( m \) minutes, for any positive real number \( m \), then you must pay road \( e \)'s Driving Posse a speed tax of \( \lceil \$e / m \rceil \) dollars.

\(^1\)Paved roads are far too expensive!
• Equivalently, if you pay road e’s Driving Posse a speed tax of $d$ dollars, for any positive integer $d$, you are allowed to drive the entire length of road $e$ in $(e)/d$ minutes, but no less.

In particular, any road you drive on at all will cost you at least one dollar. Anyone who violates this rule (for example, by running out of money) will be thrown in jail, which means almost certain death in the Purge.

The Driving Posses do not accept coins, credit cards, Venmo, Zelle, or any other mobile payment app—only cold hard American paper currency—and they do not give change. Fortunately, you are starting your journey with a pile of $D$ crisp new $1$ bills.

Describe and analyze an algorithm to compute the fastest possible driving route from $s$ to any exit node in $X$. The input to your algorithm consists of the map $G = (V, E)$, the start vertex $s$, the exit vertices $X$, and the positive integer $D$. Report the running time of your algorithm as a function of the parameters $V$, $E$, and $D$.

3. Practice only. Do not submit solutions.

After a grueling midterm at the See-Bull Center for Commuter Silence, you decide to take the bus home. Since you planned ahead, you have a schedule that lists the times and locations of every stop of every bus in Sham-Poobanana. Unfortunately, no single bus visits both the See-Bull Center and your home; you must change buses at least once. There are exactly $b$ different buses. Each bus starts at 12:00:01 AM, makes exactly $n$ stops, and finally stops running at 11:59:59 PM. Buses always run exactly on schedule, and you have an accurate watch. Finally, you are far too tired to walk between bus stops.

(a) Describe and analyze an algorithm to determine a sequence of bus rides that gets you home as early as possible. Your goal is to minimize your arrival time, not the time you spend traveling.

(b) Oh, no! The midterm was held on Halloween, and the streets are infested with zombies! Describe how to modify your algorithm from part (a) to minimize the total time you spend waiting at bus stops; you don’t care how late you get home or how much time you spend on buses. (Assume you can wait inside the See-Bull Center until your first bus is just about to leave.)

For both questions, your input consists of the exact time when the midterm ends See-Bull and two arrays $Time[1..b, 1..n]$ and $Stop[1..b, 1..n]$, where $Time[i, j]$ is the scheduled time of the $i$th bus’s $j$th stop, and $Stop[i, j]$ is the location of that stop. Report the running times of your algorithms as functions of the parameters $n$ and $b$. 
Solved Problems

4. Although we typically speak of “the” shortest path from one vertex to another, a single graph could contain several minimum-length paths with the same endpoints.

Describe and analyze an algorithm to compute the number of shortest paths from a source vertex \( s \) to a target vertex \( t \) in an arbitrary directed graph \( G \) with weighted edges. Assume that all edge weights are positive and that any necessary arithmetic operations can be performed in \( O(1) \) time each.

[Hint: Compute shortest path distances from \( s \) to every other vertex. Throw away all edges that cannot be part of a shortest path from \( s \) to another vertex. What’s left?]

Solution: We start by computing shortest-path distances \( \text{dist}(v) \) from \( s \) to \( v \), for every vertex \( v \), using Dijkstra’s algorithm. Call an edge \( u \rightarrow v \) tight if \( \text{dist}(u) + w(u \rightarrow v) = \text{dist}(v) \). Every edge in a shortest path from \( s \) to \( t \) must be tight. Conversely, every path from \( s \) to \( t \) that uses only tight edges has total length \( \text{dist}(t) \) and is therefore a shortest path!

Let \( H \) be the subgraph of all tight edges in \( G \). We can easily construct \( H \) in \( O(V + E) \) time. Because all edge weights are positive, \( H \) is a directed acyclic graph. It remains only to count the number of paths from \( s \) to \( t \) in \( H \).

For any vertex \( v \), let \( \text{NumPaths}(v) \) denote the number of paths in \( H \) from \( v \) to \( t \); we need to compute \( \text{NumPaths}(s) \). This function satisfies the following simple recurrence:

\[
\text{NumPaths}(v) = \begin{cases} 
1 & \text{if } v = t \\
\sum_{v \rightarrow w} \text{NumPaths}(w) & \text{otherwise}
\end{cases}
\]

In particular, if \( v \) is a sink but \( v \neq t \) (and thus there are no paths from \( v \) to \( t \)), this recurrence correctly gives us \( \text{NumPaths}(v) = \sum \emptyset = 0 \).

We can memoize this function into the graph itself, storing each value \( \text{NumPaths}(v) \) at the corresponding vertex \( v \). Since each subproblem depends only on its successors in \( H \), we can compute \( \text{NumPaths}(v) \) for all vertices \( v \) by considering the vertices in reverse topological order, or equivalently, by performing a depth-first search of \( H \) starting at \( s \). The resulting algorithm runs in \( O(V + E) \) time.

The overall running time of the algorithm is dominated by Dijkstra’s algorithm in the preprocessing phase, which runs in \( O(E \log V) \) time.
5. After moving to a new city, you decide to choose a walking route from your home to your new office. Your route must consist of an uphill path (for exercise) followed by a downhill path (to cool down), or just an uphill path, or just a downhill path. But you also want the shortest path that satisfies these conditions, so that you actually get to work on time.

Your input consists of an undirected graph $G$, whose vertices represent intersections and whose edges represent road segments, along with a start vertex $s$ and a target vertex $t$. Every vertex $v$ has a value $h(v)$, which is the height of that intersection above sea level, and each edge $uv$ has a value $\ell(uv)$, which is the length of that road segment.

(a) Describe and analyze an algorithm to find the shortest uphill–downhill walk from $s$ to $t$. Assume all vertex heights are distinct.

**Solution:** We define a new directed graph $G' = (V', E')$ as follows:

- $V' = \{v^\uparrow, v^\downarrow \mid V \in V\}$. Vertex $v^\uparrow$ indicates that we are at intersection $v$ moving uphill, and vertex $v^\downarrow$ indicates that we are at intersection $v$ moving downhill.
- $E'$ is the union of three sets:
  - Uphill edges: $\{u^\uparrow\to v^\downarrow \mid uv \in E \text{ and } h(u) < h(v)\}$. Each uphill edge $u^\uparrow\to v^\downarrow$ has weight $\ell(uv)$.
  - Downhill edges: $\{u^\downarrow\to v^\uparrow \mid uv \in E \text{ and } h(u) > h(v)\}$. Each downhill edge $u^\downarrow\to v^\uparrow$ has weight $\ell(uv)$.
  - Switch edges: $\{v^\uparrow\to v^\downarrow \mid v \in V\}$; each switch edge has weight 0.

We need to compute three shortest paths in this graph:

- The shortest path from $s^\uparrow$ to $t^\downarrow$ gives us the best uphill-then-downhill route.
- The shortest path from $s^\uparrow$ to $t^\uparrow$ gives us the best uphill-only route.
- The shortest path from $s^\downarrow$ to $t^\downarrow$ gives us the best downhill-only route.

$G'$ is a directed acyclic graph; we can get a topological ordering by listing the up vertices $v^\uparrow$, sorted by increasing height, followed by the down vertices $v^\downarrow$, sorted by decreasing height. Thus, we can compute the shortest path in $G'$ from any vertex to any other in $O(V' + E') = O(V + E)$ time by dynamic programming. (The algorithm is the same as the longest-path algorithm in the notes, except we use “min” instead of “max” in the recurrence, and define $\min \emptyset = \infty$.)

Our overall algorithm runs in $O(V + E)$ time.

**Rubric:** 10 points = 5 points for reduction to counting paths in a dag (standard graph reduction rubric) + 5 points for the path-counting algorithm (standard dynamic programming rubric). 5 points = 1 for vertices + 1 for edges + 1 for arguing $G'$ is a dag + 1 for algorithm + 1 for running time. This is not the only correct solution. Max 4 points for a correct reduction to Dijkstra's algorithm that runs in $O(E \log V)$ time.
(b) Suppose you discover that there is no path from \( s \) to \( t \) with the structure you want. Describe an algorithm to find a path from \( s \) to \( t \) that alternates between “uphill” and “downhill” subpaths as few times as possible, and has minimum length among all such paths. (There may be even shorter paths with more alternations, but you don’t care about them.) Again, assume all vertex heights are distinct.

Solution (Dijkstra, 5/5): Let \( L = 1 + \sum_{u \rightarrow v} \ell(u \rightarrow v) \). Define a new graph \( G' = (V', E') \) as follows:

- \( V' = \{ v^\uparrow, v^\downarrow \mid v \in V \} \cup \{ s, t \} \). Vertex \( v^\uparrow \) indicates that we are at intersection \( v \) moving uphill, and vertex \( v^\downarrow \) indicates that we are at intersection \( v \) moving downhill.
- \( E' \) contains four types of edges:
  - Uphill edges: \( \{ u^\uparrow \rightarrow v^\uparrow \mid uv \in E \text{ and } h(u) < h(v) \} \). Each uphill edge \( u^\uparrow \rightarrow v^\uparrow \) has weight \( \ell(uv) \).
  - Downhill edges: \( \{ u^\downarrow \rightarrow v^\downarrow \mid uv \in E \text{ and } h(u) > h(v) \} \). Each downhill edge \( u^\downarrow \rightarrow v^\downarrow \) has weight \( \ell(uv) \).
  - Switch edges: \( \{ v^\uparrow \rightarrow v^\downarrow \mid v \in V \} \cup \{ v^\downarrow \rightarrow v^\uparrow \mid v \in V \} \). Each switch edge has weight \( L \).
  - Start and end edges \( s \rightarrow s^\uparrow, s \rightarrow s^\downarrow, t^\downarrow \rightarrow t, \) and \( t^\uparrow \rightarrow t \), each with weight 0,

We need to compute the shortest path from \( s \) to \( t \) in \( G' \); the large weight \( L \) on the switch edges guarantees that this path with have the minimum number of switches, and the minimum length among all paths with that number of switches. Dijkstra’s algorithm finds this shortest path in \( O(E' \log V') = O(E \log V) \) time.

(Because \( G' \) includes switch edges in both directions, \( G' \) is not a dag, so we can’t use dynamic programming directly.)

Rubric: 5 points, standard graph-reduction rubric. This is not the only correct solution with running time \( O(E \log V) \).

Solution (clever, extra credit): Our algorithm works in two phases: First we determine the minimum number of switches required to reach every vertex, and then we compute the shortest path from \( s \) to \( t \) with the minimum number of switches. The first phase is can be solved in \( O(V + E) \) time by a modification of breadth-first search; the second by computing shortest paths in a dag.

For the first phase, we define a new graph \( G' = (V', E') \) as follows:

- \( V' = \{ v^\uparrow, v^\downarrow \mid v \in V \} \cup \{ s, t \} \). Vertex \( v^\uparrow \) indicates that we are at intersection \( v \) moving uphill, and vertex \( v^\downarrow \) indicates that we are at intersection \( v \) moving downhill.
- \( E' \) contains four types of edges:
  - Uphill edges: \( \{ u^\uparrow \rightarrow v^\uparrow \mid uv \in E \text{ and } h(u) < h(v) \} \). Each uphill edge has weight 0.
  - Downhill edges: \( \{ u^\downarrow \rightarrow v^\downarrow \mid uv \in E \text{ and } h(u) > h(v) \} \). Each downhill
edge has weight 0.
- Switch edges: \( \{v^\uparrow \rightarrow v^\downarrow \mid v \in V\} \cup \{v^\downarrow \rightarrow v^\uparrow \mid v \in V\}\). Each switch edge has weight 1.
- Start and end edges \( s \rightarrow s^\uparrow, s \rightarrow s^\downarrow, t'^\uparrow \rightarrow t, \text{ and } t^\downarrow \rightarrow t \), each with weight 0.

Now we compute the shortest path distance from \( s \) to \( t \) in \( G'' \), with respect to these new edge weights.

We could use Dijkstra’s algorithm in \( G' \). This phase of the algorithm runs in \( O(E \log V) \) time, but the structure of the graph supports a faster algorithm.

Intuitively, we break the shortest-path computation into phases, where in the \( k \)th phase, we mark all vertices at distance \( k \) from the source vertex \( s \). During the \( k \)th phase, we may also discover vertices at distance \( k+1 \), but no further. So instead of using a binary heap for the priority queue, it suffices to use two bags: one for vertices at distance \( k \), and one for vertices at distance \( k+1 \).

```plaintext
ZeroOneDijkstra(G, ℓ, s):

\[
\begin{align*}
& \quad s.dist \leftarrow 0 \\
& \quad \text{for all vertices } v \neq s \quad v.dist \leftarrow \infty \\
& \quad curr \leftarrow \text{new empty bag} \\
& \quad \text{add } s \text{ to } curr \\
& \quad \text{for } k \leftarrow 0 \text{ to } V \\
& \quad \quad next \leftarrow \text{new empty bag} \\
& \quad \quad \text{while } curr \text{ is not empty} \\
& \quad \quad \quad \text{take } v \text{ from } curr \quad \langle \langle v.dist = k \rangle \rangle \\
& \quad \quad \quad \quad \text{for all edges } v \rightarrow w \\
& \quad \quad \quad \quad \quad \text{if } w.dist > v.dist + \ell(v \rightarrow w) \\
& \quad \quad \quad \quad \quad \quad w.dist \leftarrow v.dist + \ell(v \rightarrow w) \\
& \quad \quad \quad \quad \quad \quad \text{if } \ell(v \rightarrow w) = 0 \\
& \quad \quad \quad \quad \quad \quad \quad \text{add } w \text{ to } curr \\
& \quad \quad \quad \quad \quad \quad \text{else } \langle \langle \ell(v \rightarrow w) = 1 \rangle \rangle \\
& \quad \quad \quad \quad \quad \quad \quad \text{add } w \text{ to } next \\
& \quad \quad \quad \quad \quad \quad curr \leftarrow next \\
\end{align*}
\]
```

This phase of the algorithm runs in \( O(V' + E') = O(V + E) \) time.

Once we have computed distances in \( G' \), we construct a second graph \( G'' = (V', E'') \) with the same vertices as \( G' \), but only a subset of the edges:

\[
E'' = \{ u' \rightarrow v' \in E' \mid u'.dist + \ell(u' \rightarrow v') = v'.dist \}
\]

Equivalently, an edge \( u' \rightarrow v' \) belongs to \( E'' \) if and only if that edge is part of at least one shortest path in \( G' \) from \( s \) to another vertex. It follows (by induction, of course), that every path in \( G'' \) from \( s \) to another vertex \( v' \) is a shortest path in \( G' \), and therefore a minimum-switch path in \( G \).

We also reassign the edge weights in \( G'' \). Specifically, we assign each uphill edge \( u^\uparrow \rightarrow v^\uparrow \) and downhill edge \( u^\downarrow \rightarrow v^\downarrow \) in \( G'' \) weight \( \ell(uv) \), and we assign every switch edge, start edge, and end edge weight 0. **Now we need to compute the shortest path from \( s \) to \( t \) in \( G'' \), with respect to these new edge weights.**
We can expand the definition of $E''$ in terms of the original input graph as follows:

$$E'' = \{ u \rightarrow v \uparrow \mid uv \in E \text{ and } h(u) < h(v) \text{ and } u^\uparrow.dist = v^\uparrow.dist \}$$

$$\cup \{ u \rightarrow v \downarrow \mid uv \in E \text{ and } h(u) > h(v) \text{ and } u^\downarrow.dist = v^\downarrow.dist \}$$

$$\cup \{ v \uparrow \rightarrow v \downarrow \mid v \in V \text{ and } v^\uparrow.dist < v^\downarrow.dist \}$$

$$\cup \{ v \downarrow \rightarrow v \uparrow \mid v \in V \text{ and } v^\downarrow.dist < v^\uparrow.dist \}$$

We can topologically sort $G''$ by first sorting the vertices by increasing $v'.dist$, and then within each subset of vertices with equal $v'.dist$, listing the up-vertices by increasing height, followed by the down vertices by decreasing height. It follows that $G''$ is a dag! Thus, we can compute shortest paths in $G''$ in $O(V'' + E'') = O(V + E)$ time, using the same dynamic programming algorithm that we used in part (a).

The overall algorithm runs in $O(V + E)$ time. ■

**Rubric:** max 10 points =

- 5 for computing minimum-switch paths = 1 for vertices + 1 for edges (including weights) + 2 for 0/1 shortest path algorithm + 1 for running time.
- 5 for computing shortest minimum-switch paths = 1 for vertices + 1 for edges (including weights) + 1 for proving dag + 1 for dynamic programming algorithm + 1 for running time.
1. This problem asks you to describe polynomial-time reductions between two closely related problems:

   - **SubsetSum**: Given a set $S$ of positive integers and a target integer $T$, is there a subset of $S$ whose sum is $T$?
   - **Partition**: Given a set $S$ of positive integers, is there a way to partition $S$ into two subsets $S_1$ and $S_2$ that have the same sum?

(a) Describe a polynomial-time reduction from **SubsetSum** to **Partition**.

(b) Describe a polynomial-time reduction from **Partition** to **SubsetSum**.

Don't forget to prove that your reductions are correct.

2. A subset $S$ of vertices in an undirected graph $G$ is called *triangle-free* if, for every triple of vertices $u, v, w \in S$, at least one of the three edges $uv, uw, vw$ is absent from $G$. Prove that finding the size of the largest triangle-free subset of vertices in a given undirected graph is NP-hard.

A triangle-free subset of 7 vertices and its induced edges. This is not the largest triangle-free subset in this graph.
Solved Problem

4. **RedBlue** is a puzzle that consists of an $n \times m$ grid of squares, where each square may be empty, occupied by a red stone, or occupied by a blue stone. The goal of the puzzle is to remove some of the given stones so that the remaining stones satisfy two conditions:

1. Every row contains at least one stone.
2. No column contains stones of both colors.

For some RedBlue puzzles, reaching this goal is impossible; see the example below.

Prove that it is NP-hard to determine whether a given RedBlue puzzle has a solution.

![A solvable RedBlue puzzle and one of its many solutions.](image1)

![An unsolvable RedBlue puzzle.](image2)

**Solution:** We show that RedBlue is NP-hard by describing a reduction from 3Sat.

Let $\Phi$ be a 3CNF boolean formula with $m$ variables and $n$ clauses. We transform this formula into a RedBlue instance $X$ in polynomial time as follows. The size of the board is $n \times m$. The stones are placed as follows, for all indices $i$ and $j$:

- If the variable $x_j$ appears in the $i$th clause of $\Phi$, we place a blue stone at $(i, j)$.
- If the negated variable $\overline{x_j}$ appears in the $i$th clause of $\Phi$, we place a red stone at $(i, j)$.
- Otherwise, we leave cell $(i, j)$ blank.

To prove that RedBlue is NP-hard, it suffices to prove the following claim:

$$
\Phi \text{ is satisfiable if and only if RedBlue puzzle } X \text{ is solvable.}
$$

$\implies$ First, suppose $\Phi$ is satisfiable; consider an arbitrary satisfying assignment. For each index $j$, remove stones from column $j$ according to the value assigned to $x_j$:

- If $x_j = \text{True}$, remove all red stones from column $j$.
- If $x_j = \text{False}$, remove all blue stones from column $j$.

In other words, remove precisely the stones that correspond to $\text{False}$ literals. Because every variable appears in at least one clause, each column now contains stones of only one color (if any). On the other hand, each clause of $\Phi$ must contain at least one $\text{True}$ literal, and thus each row still contains at least one stone. We conclude that RedBlue puzzle $X$ is solvable.
On the other hand, suppose RedBlue puzzle $X$ is solvable; consider an arbitrary solution. For each index $j$, assign a value to $x_j$ depending on the colors of stones left in column $j$:

- If column $j$ contains blue stones, set $x_j = \text{True}$.
- If column $j$ contains red stones, set $x_j = \text{False}$.
- If column $j$ is empty, set $x_j$ arbitrarily.

In other words, assign values to the variables so that the literals corresponding to the remaining stones are all True. Each row still has at least one stone, so each clause of $\Phi$ contains at least one True literal, so this assignment makes $\Phi = \text{True}$. We conclude that $\Phi$ is satisfiable.

This reduction clearly requires only polynomial time.

---

**Standard NP-hardness rubric.** 10 points =

+ 1 point for choosing a reasonable NP-hard problem $X$ to reduce from.
  - The Cook-Levin theorem implies that in principle one can prove NP-hardness by reduction from any NP-complete problem. What we’re looking for here is a problem where a simple and direct NP-hardness proof seems likely.
  - You can use any of the NP-hard problems listed on the next page or in the textbook (except the one you are trying to prove NP-hard, of course).

+ 2 points for a structurally sound polynomial-time reduction. Specifically, the reduction must:
  - take an arbitrary instance of the declared problem $X$ and nothing else as input,
  - transform that input into a corresponding instance of $Y$ (the problem we’re trying to prove NP-hard),
  - transform the output of the magic algorithm for $Y$ into a reasonable output for $X$, and
  - run in polynomial time.

(The output transformation is usually trivial.) This is strictly about the structure of the reduction algorithm, not about its correctness. **No credit for the rest of the problem if this is wrong.**

+ 2 points for a correct polynomial-time reduction. That is, assuming a black-box algorithm that solves $Y$ in polynomial time, the proposed reduction actually solves problem $X$ in polynomial time.

+ 2 points for the “if” proof of correctness. (Every good instance of $X$ is transformed into a good instance of $Y$.)

+ 2 points for the “only if” proof of correctness. (Every bad instance of $X$ is transformed into a bad instance of $Y$.)

+ 1 point for writing “polynomial time”

- An incorrect but structurally sound polynomial-time reduction that still satisfies half of the correctness proof is worth at most 6/10.

- A reduction in the wrong direction is worth at most 1/10.
Some useful NP-hard problems. You are welcome to use any of these in your own NP-hardness proofs, except of course for the specific problem you are trying to prove NP-hard.

**CircuitSat:** Given a boolean circuit, are there any input values that make the circuit output True?

**3Sat:** Given a boolean formula in conjunctive normal form, with exactly three distinct literals per clause, does the formula have a satisfying assignment?

**MaxIndependentSet:** Given an undirected graph $G$, what is the size of the largest subset of vertices in $G$ that have no edges among them?

**MaxClique:** Given an undirected graph $G$, what is the size of the largest complete subgraph of $G$?

**MinVertexCover:** Given an undirected graph $G$, what is the size of the smallest subset of vertices that touch every edge in $G$?

**MinSetCover:** Given a collection of subsets $S_1, S_2, \ldots, S_m$ of a set $S$, what is the size of the smallest subcollection whose union is $S$?

**MinHittingSet:** Given a collection of subsets $S_1, S_2, \ldots, S_m$ of a set $S$, what is the size of the smallest subset of $S$ that intersects every subset $S_i$?

**3Color:** Given an undirected graph $G$, can its vertices be colored with three colors, so that every edge touches vertices with two different colors?

**ChromaticNumber:** Given an undirected graph $G$, what is the minimum number of colors required to color its vertices, so that every edge touches vertices with two different colors?

**HamiltonianPath:** Given graph $G$ (either directed or undirected), is there a path in $G$ that visits every vertex exactly once?

**HamiltonianCycle:** Given a graph $G$ (either directed or undirected), is there a cycle in $G$ that visits every vertex exactly once?

**TravelingSalesman:** Given a graph $G$ (either directed or undirected) with weighted edges, what is the minimum total weight of any Hamiltonian path/cycle in $G$?

**LongestPath:** Given a graph $G$ (either directed or undirected, possibly with weighted edges), what is the length of the longest simple path in $G$?

**SteinerTree:** Given an undirected graph $G$ with some of the vertices marked, what is the minimum number of edges in a subtree of $G$ that contains every marked vertex?

**SubsetSum:** Given a set $X$ of positive integers and an integer $k$, does $X$ have a subset whose elements sum to $k$?

**Partition:** Given a set $X$ of positive integers, can $X$ be partitioned into two subsets with the same sum?

**3Partition:** Given a set $X$ of $3n$ positive integers, can $X$ be partitioned into $n$ three-element subsets, all with the same sum?

**IntegerLinearProgramming:** Given a matrix $A \in \mathbb{Z}^{n \times d}$ and two vectors $b \in \mathbb{Z}^n$ and $c \in \mathbb{Z}^d$, compute $\max\{c \cdot x | Ax \leq b, x \geq 0, x \in \mathbb{Z}^d\}$.

**FeasibleILP:** Given a matrix $A \in \mathbb{Z}^{n \times d}$ and a vector $b \in \mathbb{Z}^n$, determine whether the set of feasible integer points $\max\{x \in \mathbb{Z}^d | Ax \leq b, x \geq 0\}$ is empty.

**Draughts:** Given an $n \times n$ international draughts configuration, what is the largest number of pieces that can (and therefore must) be captured in a single move?

**SuperMarioBrothers:** Given an $n \times n$ Super Mario Brothers level, can Mario reach the castle?
1. A balloon of size $\ell$ is an undirected graph consisting of a (simple) cycle of length $\ell$ and a (simple) path of length $\ell$, where one endpoint of the path lies on the cycle, and otherwise the cycle and the path are disjoint. Every balloon of size $\ell$ has exactly $2\ell$ vertices and $2\ell$ edges. For example, the $4 \times 4$ grid graph shown below contains a balloon subgraph of size 8.

![Balloon Subgraph](image)

Prove that it is NP-hard to find the size of the the largest balloon subgraph of a given undirected graph.

2. Recall that a 3-coloring of a graph assigns each vertex one of three colors, say red, yellow, and blue. A 3-coloring is proper if every edge has endpoints with different colors. The 3Color problem asks, given an arbitrary undirected graph $G$, whether $G$ has a proper 3-coloring.

Call a 3-coloring of a graph $G$ slightly improper if each vertex has at most one neighbor with the same color. The SlightlyImproper3Color problem asks, given an arbitrary undirected graph $G$, whether $G$ has a slightly improper 3-coloring.

![Slightly Improper 3-Coloring](image)

(a) Consider the following attempt to prove that SlightlyImproper3Color is NP-hard, using a reduction from 3Color.

**Non-solution:** We reduce from 3Color. Given an arbitrary input graph $G$, we construct a new graph $H$ by attaching a clique of 4 vertices to every vertex of $G$. Specifically, for each vertex $v$ in $G$, the graph $H$ contains three new vertices $v_1, v_2, v_3$, along with edges $vv_1, vv_2, vv_3, v_1v_2, v_1v_3, v_2v_3$. I claim that
Suppose $G$ has a proper 3-coloring, using the colors red, yellow, and blue. Extend this color assignment to the vertices of $H$ by coloring each vertex $v_1$ red, each vertex $v_2$ yellow, and each vertex $v_3$ blue. With this assignment, each vertex of $H$ has at most one neighbor with the same color. Specifically, each vertex of $G$ has the same color as one of the vertices in its gadget, and the other two vertices in $v$’s gadget have no neighbors with the same color.

Now suppose $H$ has a slightly improper 3-coloring. Then $G$ must have a proper 3-coloring because...um...

Describe a graph $G$ that does not have a proper 3-coloring, such that the graph $H$ constructed by this reduction does have a slightly improper 3-coloring.

(b) Describe a small graph $X$ with the following property: In every slightly improper 3-coloring of $X$, every vertex of $X$ has exactly one neighbor with the same color.

(c) Describe a correct polynomial-time reduction from 3COLOR to SLIGHTLYIMPROPER-3COLOR. [Hint: Use your graph from part (b) as a gadget.] This reduction will prove that SLIGHTLYIMPROPER3COLOR is indeed NP-hard.
Solved Problem

3. A double-Hamiltonian tour in an undirected graph $G$ is a closed walk that visits every vertex in $G$ exactly twice. Prove that it is NP-hard to decide whether a given graph $G$ has a double-Hamiltonian tour.

This graph contains the double-Hamiltonian tour $a \rightarrow b \rightarrow d \rightarrow g \rightarrow e \rightarrow b \rightarrow d \rightarrow c \rightarrow f \rightarrow a \rightarrow c \rightarrow f \rightarrow g \rightarrow e \rightarrow a$.

Solution: We prove the problem is NP-hard with a reduction from the standard Hamiltonian cycle problem. Let $G$ be an arbitrary undirected graph. We construct a new graph $H$ by attaching a small gadget to every vertex of $G$. Specifically, for each vertex $v$, we add two vertices $v^\uparrow$ and $v^\downarrow$, along with three edges $vv^\uparrow$, $vv^\downarrow$, and $v^\uparrow v^\downarrow$.

A vertex in $G$ and the corresponding vertex gadget in $H$.

Now I claim that

$G$ has a Hamiltonian cycle if and only if $H$ has a double-Hamiltonian tour.

$\implies$ Suppose $G$ contains a Hamiltonian cycle $C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_n \rightarrow v_1$. We can construct a double-Hamiltonian tour of $H$ by replacing each vertex $v_i$ in $C$ with the following walk:

$\ldots \rightarrow v_i \rightarrow v_i^\uparrow \rightarrow v_i^\downarrow \rightarrow v_i^\uparrow \rightarrow v_i^\downarrow \rightarrow v_i \rightarrow \ldots$

$\iff$ Conversely, suppose $H$ has a double-Hamiltonian tour $D$. Consider any vertex $v$ in the original graph $G$; the tour $D$ must visit $v$ exactly twice. Those two visits split $D$ into two closed walks, each of which visits $v$ exactly once. Any walk from $v^\uparrow$ or $v^\downarrow$ to any other vertex in $H$ must pass through $v$. Thus, one of the two closed walks visits only the vertices $v$, $v^\uparrow$, and $v^\downarrow$. Thus, if we remove the vertices and edges in $H \setminus G$ from $D$, we obtain a closed walk in $G$ that visits every vertex in $G$ exactly once.

Given any graph $G$, we can clearly construct the corresponding graph $H$ in polynomial time by brute force.

With more effort, we can construct a graph $H$ that contains a double-Hamiltonian tour that traverses each edge of $H$ at most once if and only if $G$ contains a Hamiltonian
cycle. For each vertex $v$ in $G$ we attach a more complex gadget containing five vertices and eleven edges, as shown on the next page.

A vertex in $G$, and the corresponding modified vertex gadget in $H$.

Rubric: 10 points, standard polynomial-time reduction rubric. This is not the only correct solution.

Non-solution (self-loops): We attempt to prove the problem is NP-hard with a reduction from the Hamiltonian cycle problem. Let $G$ be an arbitrary undirected graph. We construct a new graph $H$ by attaching a self-loop every vertex of $G$. Given any graph $G$, we can clearly construct the corresponding graph $H$ in polynomial time.

Now I claim that

\[ G \text{ has a Hamiltonian cycle if and only if } H \text{ has a double-Hamiltonian tour.} \]

\[ \implies \] Suppose $G$ has a Hamiltonian cycle $v_1 \to v_2 \to \cdots \to v_n \to v_1$. We can construct a double-Hamiltonian tour of $H$ by alternating between edges of the Hamiltonian cycle and self-loops: $v_1 \to v_1 \to v_2 \to v_2 \to v_3 \to \cdots \to v_n \to v_n \to v_1$.

\[ \iff \] Um... Unfortunately, if $H$ has a double-Hamiltonian tour, we cannot conclude that $G$ has a Hamiltonian cycle, because we cannot guarantee that a double-Hamiltonian tour in $H$ uses any self-loops. The graph $G$ shown below is a counterexample; it has a double-Hamiltonian tour (even before adding self-loops!) but no Hamiltonian cycle.

This graph has a double-Hamiltonian tour.
**Some useful NP-hard problems.** You are welcome to use any of these in your own NP-hardness proofs, except of course for the specific problem you are trying to prove NP-hard.

**CircuitSat:** Given a boolean circuit, are there any input values that make the circuit output TRUE?

**3Sat:** Given a boolean formula in conjunctive normal form, with exactly three distinct literals per clause, does the formula have a satisfying assignment?

**MaxIndependentSet:** Given an undirected graph $G$, what is the size of the largest subset of vertices in $G$ that have no edges among them?

**MaxClique:** Given an undirected graph $G$, what is the size of the largest complete subgraph of $G$?

**MinVertexCover:** Given an undirected graph $G$, what is the size of the smallest subset of vertices that touch every edge in $G$?

**MinSetCover:** Given a collection of subsets $S_1, S_2, \ldots, S_m$ of a set $S$, what is the size of the smallest subcollection whose union is $S$?

**MinHittingSet:** Given a collection of subsets $S_1, S_2, \ldots, S_m$ of a set $S$, what is the size of the smallest subset of $S$ that intersects every subset $S_i$?

**3Color:** Given an undirected graph $G$, can its vertices be colored with three colors, so that every edge touches vertices with two different colors?

**ChromaticNumber:** Given an undirected graph $G$, what is the minimum number of colors required to color its vertices, so that every edge touches vertices with two different colors?

**HamiltonianPath:** Given graph $G$ (either directed or undirected), is there a path in $G$ that visits every vertex exactly once?

**HamiltonianCycle:** Given a graph $G$ (either directed or undirected), is there a cycle in $G$ that visits every vertex exactly once?

**TravelingSalesman:** Given a graph $G$ (either directed or undirected) with weighted edges, what is the minimum total weight of any Hamiltonian path/cycle in $G$?

**LongestPath:** Given a graph $G$ (either directed or undirected, possibly with weighted edges), what is the length of the longest simple path in $G$?

**SteinerTree:** Given an undirected graph $G$ with some of the vertices marked, what is the minimum number of edges in a subtree of $G$ that contains every marked vertex?

**SubsetSum:** Given a set $X$ of positive integers and an integer $k$, does $X$ have a subset whose elements sum to $k$?

**Partition:** Given a set $X$ of positive integers, can $X$ be partitioned into two subsets with the same sum?

**3Partition:** Given a set $X$ of $3n$ positive integers, can $X$ be partitioned into $n$ three-element subsets, all with the same sum?

**IntegerLinearProgramming:** Given a matrix $A \in \mathbb{Z}^{n \times d}$ and two vectors $b \in \mathbb{Z}^n$ and $c \in \mathbb{Z}^d$, compute $\max\{c \cdot x \mid Ax \leq b, x \geq 0, x \in \mathbb{Z}^d\}$.

**FeasibleILP:** Given a matrix $A \in \mathbb{Z}^{n \times d}$ and a vector $b \in \mathbb{Z}^n$, determine whether the set of feasible integer points $\max\{x \in \mathbb{Z}^d \mid Ax \leq b, x \geq 0\}$ is empty.

**Draughts:** Given an $n \times n$ international draughts configuration, what is the largest number of pieces that can (and therefore must) be captured in a single move?

**SuperMarioBrothers:** Given an $n \times n$ Super Mario Brothers level, can Mario reach the castle?
This homework is not for submission. However, we are planning to ask a few (true/false, multiple-choice, or short-answer) questions about undecidability on the final exam, so we still strongly recommend treating these questions as regular homework. Solutions will be released next Monday.

1. Let $\langle M \rangle$ denote the encoding of a Turing machine $M$ (or if you prefer, the Python source code for the executable code $M$). Recall that $w^R$ denotes the reversal of string $w$. Prove that the following language is undecidable.

$$ \text{SelfRevAccept} := \{ \langle M \rangle \mid M \text{ accepts the string } \langle M \rangle^R \} $$

Note that Rice’s theorem does not apply to this language.

2. Let $M$ be a Turing machine, let $w$ be a string, and let $s$ be an integer. We say that $M$ accepts $w$ in space $s$ if, given $w$ as input, $M$ accesses at most the first $s$ cells on its tape and eventually accepts. (If you prefer to think in terms of programs instead of Turing machines, “space” is how much memory your program needs to run correctly.)

Prove that the following language is undecidable:

$$ \text{SomeSquareSpace} = \{ \langle M \rangle \mid M \text{ accepts at least one string } w \text{ in space } |w|^2 \} $$

Note that Rice’s theorem does not apply to this language.

[Hint: The only thing you actually need to know about Turing machines for this problem is that they consume a resource called “space”.

3. Prove that the following language is undecidable:

$$ \text{Picky} = \left\{ \langle M \rangle \mid M \text{ accepts at least one input string and } M \text{ rejects at least one input string} \right\} $$

Note that Rice’s theorem does not apply to this language.
Solved Problem

4. Consider the language SometimesHalt = \{\langle M \rangle \mid M \text{ halts on at least one input string}\}.
Note that \langle M \rangle \in SometimesHalt does not imply that M accepts any strings; it is enough that M halts on (and possibly rejects) some string.

(a) Prove that SometimesHalt is undecidable.

**Solution (Rice):** Let \mathcal{L}' be the family of all non-empty languages. Let N be any Turing machine that never halts, so \text{Halt}(N) = \emptyset \notin \mathcal{L}'. Let Y be any Turing machine that always halts, so \text{Halt}(Y) = \Sigma^* \in \mathcal{L}'. Rice’s Halting Theorem immediately implies that SometimesHalt = \text{HaltIn}(\mathcal{L}') is undecidable. ■

**Solution (closure):** Let Encodings be the language of all Turing machine encodings (for some fixed universal Turing machine); this language is decidable. We immediately have Encodings = NeverHalt \cup SometimesHalt, or equivalently, NeverHalt = Encodings \setminus SometimesHalt.

The lectures notes include a proof that NeverHalt is undecidable. On the other hand, the existence of a universal Turing machine implies that Encodings is decidable. So Corollary 3(d) in the undecidability notes implies that SometimesHalt is undecidable. ■

**Solution (reduction from Halt):** We can reduce the standard halting problem to SometimesHalt as follows:

\[
\text{DecideHalt}(\langle M, w \rangle): \\
\text{Encode the following Turing machine } M': \\
\begin{align*}
M'(x): & \quad \text{(ignore } x) \\
& \quad \text{run } M \text{ on input } w \\
\end{align*}
\]

return DecideSometimesHalt(\langle M' \rangle)

We prove this reduction correct as follows:

\[\Rightarrow\] Suppose M halts on input w.
Then M' halts on every input string x.
So DecideSometimesHalt must accept the encoding \langle M' \rangle.
We conclude that DecideHalt correctly accepts the encoding \langle M, w \rangle.

\[\Leftarrow\] Suppose M does not halt on input w.
Then M' diverges on every input string x.
So DecideSometimesHalt must reject the encoding \langle M' \rangle.
We conclude that DecideHalt correctly rejects the encoding \langle M, w \rangle.
■
1. Let \( \text{compress0s}(w) \) be a function that takes a string \( w \) as input, and returns the string formed by compressing every run of \( 0 \)s in \( w \) by half. Specifically, every run of \( 2n \) \( 0 \)s is compressed to length \( n \), and every run of \( 2n + 1 \) \( 0 \)s is compressed to length \( n + 1 \). For example:

\[
\begin{align*}
\text{compress0s}(0000110001) &= 0011001 \\
\text{compress0s}(11000010) &= 110010 \\
\text{compress0s}(1111) &= 1111
\end{align*}
\]

Let \( L \) be an arbitrary regular language.

(a) **Prove** that \( \{ w \in \Sigma^* \mid \text{compress0s}(w) \in L \} \) is regular.

(b) **Prove** that \( \{ \text{compress0s}(w) \mid w \in L \} \) is regular.

2. For each of the following languages \( L \) over the alphabet \( \Sigma = \{0, 1\} \), describe a DFA that accepts \( L \) and give a regular expression that represents \( L \). You do not need to justify your answers.

(a) All strings in which at least one run has length divisible by 3.

(b) All strings that do not contain either \( 100 \) or \( 011 \) as a substring.

3. Consider the following recursive function \( \text{Bond} \), which doubles the length of any run of \( 0 \)s in its input string.

\[
\text{Bond}(w) := \begin{cases} 
\varepsilon & \text{if } w = \varepsilon \\
00 \cdot \text{Bond}(x) & \text{if } w = 0 \cdot x \text{ for some string } x \\
1 \cdot \text{Bond}(x) & \text{if } w = 1 \cdot x \text{ for some string } x
\end{cases}
\]

(a) **Prove** that \( |\text{Bond}(w)| \geq |w| \) for all strings \( w \).

(b) **Prove** that \( \text{Bond}(x \cdot y) = \text{Bond}(x) \cdot \text{Bond}(y) \) for all strings \( x \) and \( y \).

As usual, you can assume any result proved in class, in the lecture notes, in labs, or in homework solutions.
4. Let $L$ be the language $\{0^a1^b0^c \mid a = b \text{ or } a = c \text{ or } b = c\}$
   
   (a) **Prove** that $L$ is *not* a regular language.
   
   (b) Describe a context-free grammar for $L$.

5. For each statement below, check “True” if the statement is always true and check “False” otherwise, and give a brief (one short sentence) explanation of your answer. Read these statements very carefully—small details matter!

   (a) If $2+2=5$, then zero is odd.

   (b) $\{0^n1 \mid n > 0\}$ is the only infinite fooling set for the language $\{0^n10^n \mid n > 0\}$.

   (c) $\{0^n10^n \mid n > 0\}$ is a context-free language.

   (d) The context-free grammar $S \rightarrow 00S \mid S11 \mid 01$ generates the language $0^n1^n$.

   (e) Every regular language is recognized by a DFA with exactly one accepting state.

   (f) Any language that can be decided by an NFA with $\epsilon$-transitions can also be decided by an NFA without $\epsilon$-transitions.

   (g) If $L$ is a regular language over the alphabet $\{0,1\}$, then $\{xy^c \mid x,y \in L\}$ is also regular.

   (h) If $L$ is a regular language over the alphabet $\{0,1\}$, then $\{ww^c \mid w \in L\}$ is also regular.

   (i) The regular expression $(00 + 11)^*$ represents the language of all strings over $\{0,1\}$ of even length.

   (j) Let $L_1, L_2$ be two regular languages. The language $(L_1 + L_2)^*$ is also regular.
1. For each of the following languages $L$ over the alphabet $\Sigma = \{0, 1\}$, describe a DFA that accepts $L$ and give a regular expression that represents $L$. You do not need to justify your answers.

(a) All strings in which the number of runs is divisible by 3. (Recall that a run is a maximal non-empty substring where all symbols are equal.)

(b) All strings that do not contain the substring $0110$.

2. Let $\text{take2skip2}(w)$ be a function takes an input string $w$ and returns the subsequence of symbols at positions $1, 2, 5, 6, 9, 10, \ldots 4i + 1, 4i + 2, \ldots$ in $w$. In other words, $\text{take2skip2}(w)$ takes the first two symbols of $w$, skip the next two, takes the next two, skips the next two, and so on. For example:

\[
\begin{align*}
\text{take2skip2}(1) &= 1 \\
\text{take2skip2}(010) &= 01 \\
\text{take2skip2}(010011110001) &= 0111001
\end{align*}
\]

Let $L$ be an arbitrary regular language.

(a) **Prove** that the language $\{w \in \Sigma^n \mid \text{take2skip2}(w) \in L\}$ is regular.

(b) **Prove** that the language $\{\text{take2skip2}(w) \mid w \in L\}$ is regular.

3. Consider the following recursive function censor, which deletes all $1$s in its input string.

\[
\text{censor}(w) := \begin{cases} 
\epsilon & \text{if } w = \epsilon \\
\text{censor}(x) & \text{if } w = 0 \cdot x \text{ for some string } x \\
1 \cdot \text{censor}(x) & \text{if } w = 1 \cdot x \text{ for some string } x
\end{cases}
\]

(a) **Prove** that $|\text{censor}(w)| \leq |w|$ for all strings $w$.

(b) **Prove** that $\text{censor}(\text{censor}(w)) = \text{censor}(w)$ for all strings $w$.

As usual, you can assume any result proved in class, in the lecture notes, in labs, or in homework solutions.
4. Consider the language $L = \{0^a1^b \mid a > 2b \text{ or } 2a < b\}$

(a) **Prove** that $L$ is not a regular language.
(b) Describe a context-free grammar for $L$.

5. For each statement below, check “True” if the statement is always true and check “False” otherwise, and give a brief (one short sentence) explanation of your answer. Read these statements very carefully—small details matter!

(a) For every language $L$, the language $L^*$ is infinite.
(b) If a language $L$ is finite, the complement of $L$ is context-free.
(c) The language $\{0^{374n} \mid n \geq 374\}$ is regular.
(d) The language $\{wxw^R \mid w, x \in \Sigma^*\}$ is regular.
(e) The context-free grammar $S \rightarrow 0S1S \mid S1S0 \mid \varepsilon$ generates the set of all binary strings with the same number of 0s and 1s.
(f) Every regular language is recognized by a DFA with at least 374 states.
(g) If the languages $L$ and $L'$ are regular, their intersection $L \cap L'$ is also regular.
(h) If a language has an infinite fooling set, then it is context-free.
(i) Let $M$ be a **DFA** over the alphabet $\Sigma$. Let $M'$ be identical to $M$, except that accepting states in $M$ are non-accepting in $M'$ and vice versa. Each string in $\Sigma^*$ is accepted by exactly one of $M$ and $M'$.
(j) Let $M$ be an **NFA** over the alphabet $\Sigma$. Let $M'$ be identical to $M$, except that accepting states in $M$ are non-accepting in $M'$ and vice versa. Each string in $\Sigma^*$ is accepted by exactly one of $M$ and $M'$.
1. For each statement below, check “True” if the statement is always true and check “False” otherwise, and give a brief (one short sentence) explanation of your answer. Read these statements very carefully—small details matter!

(a) Every irregular language is infinite.
(b) The language \((0 + 1(01^*0)^*1)^*\) is context-free.
(c) Every subset of a regular language is regular.
(d) The language \(\{0^a1^b \mid a + b \text{ is divisible by 374}\}\) is regular.
(e) If language \(L\) is regular, then \(L\) has a finite fooling set.
(f) For every language \(L\), if for every string \(w \in L\) there is a DFA that accepts \(w\), then \(L\) is regular.
(g) If language \(L\) is accepted by an NFA with \(n\) states, then its complement \(\Sigma^* \setminus L\) is also accepted by an NFA with \(n\) states.
(h) \(0^*1^*\) is a fooling set for the language \(\{0^i1^j0^{i+j} \mid i, j \geq 0\}\).
(i) Every regular language is accepted by a DFA with an odd number of accepting states.
(j) The context-free grammar \(S \rightarrow 1T \mid T1 \mid \epsilon; T \rightarrow 0S \mid SS\) generates all strings in which the number of 0s equals the number of 1s.

2. Recall that a run in a string \(w\) is a maximal non-empty substring of \(w\) in which all symbols are equal. For example, the string \(01111110001000\) consists of five runs.

Let \(L\) be the set of all strings in \(\{0,1\}^*\) in which every run of 0s is followed immediately by a longer run of 1s. For example, the strings \(00011111011\) and \(1110110001111\) and \(11111\) are in \(L\), but the strings \(0000111\) and \(0111000000\) are not.

(a) \textbf{Prove} that \(L\) is \textit{not} a regular language.
(b) Describe a context-free grammar for \(L\).
3. For any string \( w \in \{0, 1\}^* \), let \( \text{sortpairs}(w) \) denote the string obtained by dividing \( w \) into pairs of symbols, sorting each pair into non-decreasing order, and leaving the last symbol if \( w \) has odd length. We can define \( \text{sortpairs} \) recursively as follows:

\[
\text{sortpairs}(w) := \begin{cases} 
  w & \text{if } w = \varepsilon \text{ or } w = 0 \text{ or } w = 1 \\
  01 \cdot \text{sortpairs}(x) & \text{if } w = 10x \text{ for some string } x \\
  ab \cdot \text{sortpairs}(x) & \text{if } w = abx \text{ for some string } x \text{ and bits } a, b \text{ where } ab \neq 10
\end{cases}
\]

For example,

\[
\text{sortpairs}(0010111011) = 001101011
\]

Recall that \( #(1,w) \) denotes the number 1s in the string \( w \). For example, \( #(1,\varepsilon) = 0 \) and \( #(1,00101100011) = 5 \).

(a) \textbf{Prove} that \( #(1,\text{sortpairs}(w)) = #(1,w) \) for every string \( w \).

(b) \textbf{Prove} that \( \text{sortpairs(\text{sortpairs}(w)) = \text{sortpairs}(w) } \) for every string \( w \).

As usual, you can assume any result proved in class, in the lecture notes, in labs, in lab solutions, or in homework solutions. In particular, you may use the fact that \( #(1,xy) = #(1,x) + #(1,y) \) for all strings \( x \) and \( y \).

4. Recall that a \textit{run} in a string \( w \) is a maximal non-empty substring of \( w \) in which all symbols are equal. For example, the string \( 01111100010000 \) consists of five runs.

For any string \( w \in \{0, 1\}^* \), let \( \text{compact}(w) \) denote the string obtained by replacing each run with a single symbol from that run. For example, \( \text{compact}(\varepsilon) = \varepsilon \) and

\[
\text{compact}(01111100010000) = 01010.
\]

Let \( L \) be an arbitrary regular language.

(a) \textbf{Prove} that the language \( \text{COMPACT}(L) = \{ \text{compact}(w) \mid w \in L \} \) is regular.

(b) \textbf{Prove} that the language \( \text{UNCOMPACT}(L) = \{ w \in \Sigma^* \mid \text{compact}(w) \in L \} \) is regular.

5. For each of the following languages \( L \) over the alphabet \( \Sigma = \{0, 1\} \), describe a DFA that accepts \( L \) and give a regular expression that represents \( L \). You do not need to justify your answers.

(a) Strings that do not contain the substring \( 01110 \).

(b) Strings that contain \textbf{at least one} odd-length run of 0s that is followed immediately by an even-length run of 1s.
1. For each statement below, check “Yes” if the statement is always true and check “No” otherwise, and give a brief (one short sentence) explanation of your answer. Read these statements very carefully—small details matter!

(a) Every infinite language is regular.
(b) The language \((0 + (01^*0)^+1)^*\) is not context-free.
(c) Every subset of an irregular language is irregular.
(d) The language \(\{0^a1^b \mid a - b \text{ is divisible by 374}\}\) is regular.
(e) If language \(L\) is not regular, then \(L\) has a finite fooling set.
(f) If there is a DFA that rejects every string in language \(L\), then \(L\) is regular.
(g) If language \(L\) is accepted by an DFA with \(n\) states, then its complement \(\Sigma^* \setminus L\) is also accepted by a DFA with \(n\) states.
(h) \(1^*0^*\) is a fooling set for the language \(\{1^i0^i1^j \mid i, j \geq 0\}\).
(i) Every regular language is accepted by a DFA with an odd number of accepting states.
(j) The context-free grammar \(S \to \epsilon \mid 0S1S \mid 1S0S\) generates all strings in which the number of \(0s\) equals the number of \(1s\).

2. For any string \(w\), let \(\text{cycleleft}(w)\) denote the string obtained by moving the first symbol of \(w\) (if any) to the end. More formally:

\[
\text{cycleleft}(w) = \begin{cases} 
\epsilon & \text{if } w = \epsilon \\
x \cdot a & \text{if } w = ax \text{ for some symbol } a \text{ and string } x
\end{cases}
\]

For example, \(\text{cycleleft}(001111) = 011110\).

Let \(L\) be an arbitrary regular language.

(a) Prove that \(\text{CYCLELEFT}(L) = \{\text{cycleleft}(w) \mid w \in L\}\) is a regular language.
(b) Prove that \(\text{CYCIRCLEIGHT}(L) = \{w \in \Sigma^* \mid \text{cycleleft}(w) \in L\}\) is a regular language.
3. For any string $w \in \{0, 1\}^*$, let $\text{squish}(w)$ denote the string obtained by dividing $w$ into pairs of symbols, replacing each pair with 0 if the symbols are equal and 1 otherwise, and keeping the last symbol if $w$ has odd length. We can define $\text{sortpairs}$ recursively as follows:

$$
\text{squish}(w) :=
\begin{cases} 
  w & \text{if } w = \epsilon \text{ or } w = 0 \text{ or } w = 1 \\
  0 \cdot \text{squish}(x) & \text{if } w = 00x \text{ or } w = 11x \text{ for some string } x \\
  1 \cdot \text{squish}(x) & \text{if } w = 01x \text{ or } w = 10x \text{ for some string } x
\end{cases}
$$

For example,

$$
\text{squish}(001101100111) = 010111
$$

(a) **Prove** that $\#(1, \text{squish}(w)) \leq \#(1, w)$ for every string $w$.

(b) **Prove** that $\#(1, \text{squish}(w))$ is even if and only if $\#(1, w)$ is even (or equivalently, that $\#(1, \text{squish}(w)) \mod 2 = \#(1, w) \mod 2$) for every string $w$.

As usual, you can assume any result proved in class, in the lecture notes, in labs, in lab solutions, or in homework solutions. In particular, you may use the fact that $\#(1, xy) = \#(1, x) + \#(1, y)$ for all strings $x$ and $y$.

4. Let $L$ be the set of all strings in $\{0, 1\}^*$ in which every run of 0s is followed immediately by a shorter run of 1s. For example, the strings $001100000111$ and $1110010000111$ and $11111$ are in $L$, but the strings $00011111$ and $00011000$ are not.

(a) **Prove** that $L$ is not a regular language.

(b) Describe a context-free grammar for $L$.

5. For each of the following languages $L$ over the alphabet $\Sigma = \{0, 1\}$, describe a DFA that accepts $L$ and give a regular expression that represents $L$. You do not need to justify your answers.

   (a) Strings that do not contain the subsequence $01110$.

   (b) Strings that contain at least two even-length runs of 1s.
1. Short answers:

(a) Solve the following recurrences:
\[ A(n) = 3A(n/2) + O(n^2) \]
\[ B(n) = 7B(n/2) + O(n^2) \]
\[ C(n) = 4C(n/2) + O(n^2) \]

(b) Draw a directed acyclic graph with at most ten vertices, exactly one source, exactly one sink, and more than one topological order.

(c) Draw a directed graph with at most ten vertices, with distinct positive edge weights, that has more than one shortest path from some vertex \( s \) to some other vertex \( t \).

(d) Describe an appropriate memoization structure and evaluation order for the following (meaningless) recurrence, and give the running time of the resulting iterative algorithm to compute \( Huh(1, n) \).

\[
Huh(i, k) = \begin{cases} 
0 & \text{if } i > n \text{ or } k < 0 \\
\min \left\{ Huh(i + 1, k - 2), Huh(i + 2, k - 1) \right\} + A[i, k] & \text{if } A[i, k] \text{ is even} \\
\max \left\{ Huh(i + 1, k - 2), Huh(i + 2, k - 1) \right\} - A[i, k] & \text{if } A[i, k] \text{ is odd}
\end{cases}
\]

2. You and your eight-year-old nephew Elmo decide to play a simple card game. At the beginning of the game, the cards are dealt face up in a long row. Each card is worth a different number of points, which could be positive, negative, or zero. After all the cards are dealt, you and Elmo take turns removing either the leftmost or rightmost card from the row, until all the cards are gone. At each turn, you can decide which of the two cards to take. The winner of the game is the player that has collected the most points when the game ends.

Having never taken an algorithms class, Elmo follows the obvious greedy strategy—when it’s his turn, Elmo always takes the card with the higher point value. Your task is to find a strategy that will beat Elmo whenever possible. (It might seem mean to beat up on a little kid like this, but Elmo absolutely hates it when grown-ups let him win.)

(a) **Prove** that you should not also use the greedy strategy. That is, show that there is a game that you can win, but only if you do not follow the same greedy strategy as Elmo. Assume Elmo plays first.

(b) Describe and analyze an algorithm to determine, given the initial sequence of cards, the maximum number of points that you can collect playing against Elmo.
3. Suppose you are given a directed graph $G = (V, E)$, whose vertices are either red, green, or blue. Edges in $G$ do not have weights, and $G$ is not necessarily a dag. The remoteness of a vertex $v$ is the maximum of three shortest-path lengths:

- The length of a shortest path to $v$ from the closest red vertex
- The length of a shortest path to $v$ from the closest blue vertex
- The length of a shortest path to $v$ from the closest green vertex

In particular, if $v$ is not reachable from vertices of all three colors, then $v$ is infinitely remote.

Describe and analyze an algorithm to find a vertex of $G$ with minimum remoteness.

4. Suppose you are given an array $A[1..n]$ of integers such that $A[i] + A[i + 1]$ is even for exactly one index $i$. In other words, the elements of $A$ alternate between even and odd, except for exactly one adjacent pair that are either both even or both odd.

Describe and analyze an efficient algorithm to find the unique index $i$ such that $A[i] + A[i + 1]$ is even. For example, given the following array as input, your algorithm should return the integer 6, because $A[6] + A[7] = 88 + 62$ is even. (Cells containing even integers are shaded blue.)

```
17 40 23 72 39 88 62 13 40 53 92 21 10 73 68
```

5. A zigzag walk in a directed graph $G$ is a sequence of vertices connected by edges in $G$, but the edges alternately point forward and backward along the sequence. Specifically, the first edge points forward, the second edge points backward, and so on. The length of a zigzag walk is the sum of the weights of its edges, both forward and backward.

For example, the following graph contains the zigzag walk $a \to b \to d \to f \leftarrow c \to e$. Assuming every edge in the graph has weight 1, this zigzag walk has length 5.

```
A -- B <- D -- E
   |     |   |
   |     v   |
   |         |
   v         v
D -- H -- G
   |   |   |
   |   v   |
   |       |
   v         v
D -- F -- G
```

Suppose you are given a directed graph $G$ with non-negatively weighted edges, along with two vertices $s$ and $t$. Describe and analyze an algorithm to find the shortest zigzag walk from $s$ to $t$ in $G$. 
1. Clearly indicate the following structures in the directed graph below, or write NONE if the indicated structure does not exist. Don’t be subtle; to indicate a collection of edges, draw a heavy black line along the entire length of each edge.

   a
   b
   c
   d
   e
   f
   g
   h
   i

   (a) A depth-first search tree rooted at vertex a.
   (b) A breadth-first tree rooted at vertex c.
   (c) The strong components of G. (Circle each strong component.)
   (d) Draw the strong-component graph of G.

2. Suppose we are given an n-digit integer X. Repeatedly remove one digit from either end of X (your choice) until no digits are left. The square-depth of X is the maximum number of perfect squares that you can see during this process. For example, the number 32492 has square-depth 3, by the following sequence of removals:

   \[ 32492 \rightarrow 57^2 \rightarrow 324 \rightarrow 18^2 \rightarrow 32 \rightarrow 24 \rightarrow 4^2 \rightarrow \varepsilon. \]

   Describe and analyze an algorithm to compute the square-depth of a given integer X, represented as an array \( X[1..n] \) of n decimal digits. Assume you have access to a subroutine ISQUARE that determines whether a given k-digit number (represented by an array of digits) is a perfect square in \( O(k^2) \) time.

3. Suppose you are given a directed graph \( G = (V,E) \), each of whose edges are colored red, green, or blue. Edges in G do not have weights, and G is not necessarily a dag. A rainbow walk is a walk in G that does not contain two consecutive edges with the same color.

   Describe and analyze an algorithm to find all vertices in G that are reachable from a given vertex s through a rainbow walk.
4. Suppose you are given $k$ sorted arrays $A_1[1..n], A_2[1..n], \ldots, A_k[1..n]$, all with the same length $n$. Describe an algorithm to merge the given arrays into a single sorted array. Analyze the running time of your algorithm as a function of $n$ and $k$.

5. After moving to a new city, you decide to walk from your home to your new office. To get a good daily workout, you want to reach the highest possible altitude during your walk (to maximize exercise), while keeping the total length of your walk below some threshold (to get to your office on time). Describe and analyze an algorithm to compute the best possible walking route.

Your input consists of an undirected graph $G$, where each vertex $v$ has a height $h(v)$ and each edge $e$ has a positive length $\ell(e)$, along with a start vertex $s$, a target vertex $t$, and a maximum length $L$. Your algorithm should return the maximum height reachable by a walk from $s$ to $t$ in $G$, whose total length is at most $L$. 
1. Short answers:

(a) Solve the following recurrences:

\[
\begin{align*}
A(n) &= A(5n/11) + O(\sqrt{n}) \\
B(n) &= 8B(n/2) + O(n^2) \\
C(n) &= C(n/2) + C(n/3) + C(n/6) + O(n)
\end{align*}
\]

(b) Describe an appropriate memoization structure and evaluation order for the following (meaningless) recurrences, and state the running time of the resulting iterative algorithm to compute the requested function value.

- Compute \(\text{Foo}(1, n)\) where

\[
\text{Foo}(i, k) = \begin{cases} 
0 & \text{if } i \geq k-1 \\
\max \left\{ \text{Foo}(i, j) + \text{Foo}(j, k) \mid i < j < k \right\} + \sum_{j=i}^{k} A[j] & \text{otherwise}
\end{cases}
\]

- Compute \(\text{Bar}(n, 1)\) where

\[
\text{Bar}(i, s) = \begin{cases} 
\infty & \text{if } i < 0 \text{ or } s > n \\
0 & \text{if } i = 0 \\
\min \left\{ \text{Bar}(i, 2s), X[i] \cdot s + \text{Bar}(i-s, s) \right\} & \text{otherwise}
\end{cases}
\]

2. Chandler is moving to Tulsa, Oklahoma, to start a new job, and he wants to plan a walk from home to work. He wants to continue his habit of buying a hot milkshake salted caramel latte from a local coffee shop and a paper from a local newsstand every morning. (Yes, an actual paper paper. Could he be any more retro?)

Chandler has a map of his new neighborhood in the form of an undirected graph \(G\), whose vertices represent intersections and whose edges represent roads between them. Every edge \(e\) has a positive length \(\ell(e)\). A subset of the vertices are marked as newsstands; another disjoint subset of vertices are marked as coffee shops. The graph has two special vertices \(s\) and \(t\), which represent Chandler’s home and work, respectively.

Describe an algorithm that computes the shortest route that Chandler can follow from home to work that visits both a coffee shop and a newsstand, or correctly reports that no such route exists (which means Chandler should move back to New York).
3. Recall that an arithmetic progression is any sequence of real numbers $x_1, x_2, \ldots, x_n$ such that $x_{i+1} - x_i = x_i - x_{i-1}$ for every index $2 \leq i \leq n - 1$.

Suppose we are given a sorted array $X[1..n]$ that contains an arithmetic sequence with one element deleted. Describe and analyze an algorithm to find the deleted element as quickly as possible. (If there are multiple correct answers, your algorithm can return any one of them.)

For example, given the input array $X = [2, 4, 8, 10, 12]$, your algorithm should return 6, and given the array $X = [21, 18, 15, 12]$, your algorithm should return either 9 or 24.

4. Ink-deck is a solitaire puzzle game played on a row of $n$ squares, each marked with either $+$ or $-$. Your goal is to move a token from a specified start square $s$ to a specified target square $t$ using a sequence of moves. Each move translates the token either left or right along the row to a new square. The length of a move is the distance that the token moves; for example, a move from square 5 to square 12 has length 7. Moves are subject to the following rules:

- The first move must have length 1.
- If the token is on a square marked $+$, your next move must be one square longer than your previous move.
- If the token is on a square marked $-$, your next move must be one square shorter than your previous move. (In particular, if your previous move had length 1, then you cannot move at all!)
- You are never allowed to move the token off either end of the row.

The following figure shows an example ink-deck puzzle, along with two solutions (which might not be optimal).

![An ink-deck puzzle with two nine-move solutions.](image)

(a) Describe an algorithm that either finds a solution with the minimum number of moves for a given ink-deck puzzle, or correctly reports that the given puzzle has no solution.

(b) Describe an algorithm that either finds a solution whose final move is as long as possible for a given ink-deck puzzle, or correctly reports that the given puzzle has no solution.

Your input to both algorithms consists of an array $ID[1..n]$, where $ID[i] \in \{-1, +1\}$ for each index $i$, along with two indices $1 \leq s \leq n$ and $1 \leq t \leq n$.

*Problem 5 is on the next page.*
5. Suppose you are given a string of symbols, representing a message in some foreign language that you do not understand, in an array \( T[1..n] \). You have access to a black-box subroutine \( \text{IsWord} \) that takes a string \( w \) as input and decides in \( O(|w|) \) time whether \( w \) is a word.

You eagerly implement and run the text-splitting algorithm we saw in class, only to discover that the given string cannot be split into words! Apparently, as a crude form of cryptography, the message has been corrupted by adding extra symbols between words.

So you decide instead to look for as many non-overlapping words in \( T \) as possible. A verbal subsequence of \( T \) is a sequence of non-overlapping substrings of \( T \), each of which is a word. The length of a verbal subsequence is the number of words it contains. Describe and analyze an algorithm to find the length of the longest verbal subsequence of a given string \( T \).

For example, suppose \( \text{IsWord}(w) \) returns \( \text{True} \) if and only if \( w \) is an English word with at least four letters. Then (\text{STUDY, MICE, TRAP, RAMEN}) and (\text{DYNAMIC, EXTRA, PROGRAM}) are verbal subsequences of the string \text{STUDYDYNAMICEXTRAPROGRAMEN}:

\[
\begin{align*}
\text{STUDY} & \text{NA MICE X TRAP ROG RAMEN} \\
\text{STUDY DYNAMIC EXTRA PROGRAM EN}
\end{align*}
\]

Given the input string \text{STUDYDYNAMICEXTRAPROGRAMEN}, your algorithm should return the integer 4, which is the length of the verbal subsequence (\text{STUDY, MICE, TRAP, RAMEN}).
You have 120 minutes to answer five questions.

Write your answers in the separate answer booklet.

Please return this question sheet and your cheat sheet with your answers.

1. (a) Solve the following recurrences:
   • \( A(n) = A(2n/3) + O(\sqrt{n}) \)
   • \( B(n) = 8B(n/4) + O(n^{3/2}) \)
   • \( C(n) = C(n/2) + C(n/3) + O(n) \)

   (b) Describe an appropriate memoization structure and evaluation order for the following (meaningless) recurrences, and state the running time of the resulting iterative algorithm to compute the requested function value.
   • Compute \( Pleb(n, 1) \) where
     \[
     Pleb(i, k) = \begin{cases} 
     i & \text{if } k \leq 0 \\
     k & \text{if } i > n \\
     \max \left\{ \begin{array}{c}
     i + k + Pleb(i - 1, k + 1) \\
     i + Pleb(i - 1, k) \\
     k + Pleb(i, k + 1)
     \end{array} \right. & \text{otherwise}
     \end{cases}
     \]
   • Compute \( Nom(1, n) \) where
     \[
     Nom(i, k) = \begin{cases} 
     0 & \text{if } k = i \\
     (X[k] - X[i]) + \min \left\{ \begin{array}{c}
     Nom(i, j) \\
     + Nom(j, k) \\
     i < j < k
     \end{array} \right. & \text{otherwise}
     \end{cases}
     \]

2. Suppose you are given a directed graph \( G \) in which every edge is either red or blue, and a subset of the vertices are marked as special. A walk in \( G \) is legal if color changes happen only at special vertices. That is, for any two consecutive edges \( u \to v \to w \) in a legal walk, if the edges \( u \to v \) and \( v \to w \) have different colors, the intermediate vertex \( v \) must be special.

   Describe and analyze an algorithm that either returns the length of the shortest legal walk in \( G \) from vertex \( s \) to vertex \( t \), or correctly reports that no such walk exists.

   For example, if you are given the following graph as input (where single arrows are “red” and double arrows are “blue”), with special vertices \( x \) and \( y \), your algorithm should return the integer 8, which is the length of the shortest legal walk \( s \to x \to a \to b \to x \to y \to b \to c \to t \). The shorter walk \( s \to a \to b \to c \to t \) is not legal, because vertex \( b \) is not special.

Problem 3 is on the back of this page.
3. **Ink-deck** is a solitaire puzzle game played on a row of $n$ squares, each marked with either + or −. Your goal is to move a token from a specified start square $s$ to a specified target square $t$ using a sequence of moves. Each move translates the token either left or right along the row to a new square. The **length** of a move is the distance that the token moves; for example, a move from square 5 to square 12 has length 7. Moves are subject to the following rules:

- The first move must have length 1.
- If the token is on a square marked +, your next move must be one square longer than your previous move.
- If the token is on a square marked −, your next move must be one square shorter than your previous move. (In particular, if your previous move had length 1, then you cannot move at all!)
- You are never allowed to move the token off either end of the row.

The following figure shows an example ink-deck puzzle, along with two solutions.

![An ink-deck puzzle with two solutions.](image)

(a) The **total length** of a solution is the sum of the lengths of the moves. For example, the top solution in the figure above has total length $1 + 2 + 3 + 4 + 3 + 4 + 5 + 4 + 3 = 29$, and the bottom solution has total length $1 + 2 + 3 + 4 + 3 + 4 + 3 + 2 + 1 = 23$.

Describe an algorithm that, given an ink-deck puzzle, either finds a solution whose total length is as small as possible, or correctly reports that there is no solution.

(b) The **maximum length** of a solution is length of its longest move. For example, the top solution above has maximum length 5, and the bottom solution has maximum length 4.

Describe an algorithm that, given an ink-deck puzzle, either finds a solution whose maximum length is as large as possible, or correctly reports that there is no solution.

Your input to both algorithms consists of an array $ID[1..n]$, where $ID[i] \in \{-1, +1\}$ for each index $i$, along with two indices $1 \leq s \leq n$ and $1 \leq t \leq n$.

*Problems 4 and 5 are on the next page.*
4. Recall that an arithmetic progression is any sequence of real numbers \( x_1, x_2, \ldots, x_n \) such that \( x_{i+1} - x_i = x_i - x_{i-1} \) for every index \( 2 \leq i \leq n - 1 \).

Suppose we are given a sorted array \( X[1..n] \) containing an arithmetic sequence with one element repeated once. Describe and analyze an algorithm to find the repeated element as quickly as possible.

For example, given the input array \( X = [2, 4, 6, 6, 8, 10, 12] \), your algorithm should return 6, and given the input array \( X = [1, 1, 1, 1] \), your algorithm should return 1.

5. Suppose you are given a string of symbols, representing a message in some foreign language that you do not understand, in an array \( T[1..n] \). You have access to a black-box subroutine \( \text{IsWord} \) that takes a string \( w \) as input and decides in \( O(|w|) \) time whether \( w \) is a word.

You eagerly implement and run the text-splitting algorithm we saw in class, only to discover that the given string cannot be split into words! Apparently, as a crude form of cryptography, the author of the message added extra symbols at the beginning and end.

Describe and analyze an algorithm to find the length of the longest substring of \( T \) that can be split into words.

For example, suppose \( \text{IsWord}(w) \) returns \( \text{True} \) if and only if \( w \) is an English word with at least four letters. Given the input string \( \text{STURDYNAMICEXTRAPROGRAMBLE} \), your algorithm should return the integer 19, which is the length of the substring \( \text{DYNAMICEXTRAPROGRAM} \), which can be split into the words \( \text{DYNAMIC} \), \( \text{EXTRA} \), and \( \text{PROGRAM} \):

\[
\text{STURDYNAMICEXTRAPROGRAMBLE}
\]

The words \( \text{STURDY} \), \( \text{MICE} \), \( \text{TRAP} \), and \( \text{RAMBLE} \) have larger total length 20, but there are gaps between them; so they can't be formed by splitting a substring of \( T \).
1. For each statement below, there are two boxes in the answer booklet labeled “Yes” and “No”. Check “Yes” if the statement is always true and “No” otherwise, and give a brief (at most one short sentence) explanation of your answer. Assume $P \neq NP$. If there is any other ambiguity or uncertainty about an answer, check “No”. For example:

- $x + y = 5$
  
  \begin{tabular}{l|l}
  Yes & No \end{tabular}

  Suppose $x = 3$ and $y = 4$.

- 3SAT can be solved in polynomial time.
  
  \begin{tabular}{l|l}
  Yes & No \end{tabular}

  3SAT is NP-hard.

- If $P = NP$ then Jeff is the Queen of England.
  
  \begin{tabular}{l|l}
  Yes & No \end{tabular}

  The hypothesis is false, so the implication is true.

Read each statement very carefully; some of these are deliberately subtle!

(a) Which of the following statements are true?

- The solution to the recurrence $T(n) = 8T(n/2) + O(n^2)$ is $T(n) = O(n^2)$.

- The solution to the recurrence $T(n) = 2T(n/8) + O(n^2)$ is $T(n) = O(n^2)$.

- Every directed acyclic graph contains at least one sink.

- Given any undirected graph $G$, we can compute a spanning tree of $G$ in $O(V + E)$ time using whatever-first search.

- Suppose $A[1..n]$ is an array of integers. Consider the following recursive function:

  $What(i, j) = \begin{cases} 
  0 & \text{if } i < 0 \text{ or } i > n \\
  0 & \text{if } j < 0 \text{ or } j > n \\
  \max \left\{ \begin{array}{l} 
  What(i, j - 1) \\
  What(i - 1, j) \\
  A[i] \cdot A[j] + What(i + 1, j + 1) 
  \end{array} \right\} & \text{otherwise}
  \end{cases}$

  We can memoize this function into an array $What[0..n, 0..n]$ in $O(n^2)$ time, by increasing $i$ in the outer loop and increasing $j$ in the inner loop.

Problem 1 continues onto the next page.
1. [continued]

(b) Which of the following statements are true for at least one language \( L \subseteq \{0, 1\}^* \)?

- \( L^* = (L^*)^* \)
- \( L \) is decidable, but \( L^* \) is undecidable.
- \( L \) is neither regular nor NP-hard.
- \( L \) is in P, and \( L \) has an infinite fooling set.
- The language \( \{\langle M \rangle \mid M \text{ accepts } L \} \) is undecidable.

(c) Consider the following pair of languages:

- \( \text{DirHamPath} := \{ G \mid G \text{ is a directed graph with a Hamiltonian path} \} \)
- \( \text{Acyclic} := \{ G \mid G \text{ is a directed acyclic graph} \} \)

(For concreteness, assume that in both of these languages, graphs are represented by their adjacency matrices.) Which of the following statements are true, assuming \( P \neq \text{NP} \)?

- \( \text{Acyclic} \in \text{NP} \)
- \( \text{Acyclic} \cap \text{DirHamPath} \in \text{P} \)
- \( \text{DirHamPath} \) is decidable.
- A polynomial-time reduction from \( \text{DirHamPath} \) to \( \text{Acyclic} \) would imply \( P=\text{NP} \).
- A polynomial-time reduction from \( \text{Acyclic} \) to \( \text{DirHamPath} \) would imply \( P=\text{NP} \).

(d) Suppose there is a polynomial-time reduction from some language \( A \) over the alphabet \( \{0, 1\} \) to some other language \( B \) over the alphabet \( \{0, 1\} \). Which of the following statements are always true, assuming \( P \neq \text{NP} \)?

- \( A \) is a subset of \( B \).
- If \( B \in \text{P} \), then \( A \in \text{P} \).
- If \( B \) is NP-hard, then \( A \) is NP-hard.
- If \( B \) is regular, then \( A \) is regular.
- If \( B \) is regular, then \( A \) is decidable.

2. Describe and analyze an algorithm to determine whether the language accepted by a given DFA is finite or infinite. You can assume the input alphabet of the DFA is \( \{0, 1\} \). [Hint: DFAs are directed graphs.]
3. Suppose you are asked to tile a $2 \times n$ grid of squares with dominos ($1 \times 2$ rectangles). Each domino must cover exactly two grid squares, either horizontally or vertically, and each grid square must be covered by exactly one domino.

Each grid square is worth some number of points, which could be positive, negative, or zero. The **value** of a domino tiling is the sum of the points in squares covered by vertical dominos, **minus** the sum of the points in squares covered by horizontal dominos.

Describe an algorithm to compute the largest possible value of a domino tiling of a given $2 \times n$ grid. Your input is an array `Points[1..2, 1..n]` of point values.

As an example, here are three domino tilings of the same $2 \times 6$ grid, along with their values. The third tiling is optimal; no other tiling of this grid has larger value. Thus, given this $2 \times 6$ grid as input, your algorithm should return the integer $16$.

4. Submit a solution to exactly one of the following problems. Don’t forget to tell us which problem you’ve chosen!

(a) Let $\Phi$ be a boolean formula in conjunctive normal form, with exactly three literals per clause (or in other words, an instance of 3Sat). **Prove** that it is NP-hard to decide whether $\Phi$ has a satisfying assignment in which exactly half of the variables are **True**.

(b) Let $G = (V, E)$ be an arbitrary directed graph whose edges have colors. A **rainbow Hamiltonian cycle** in $G$ is a cycle that visits every vertex of $G$ exactly once, in which no pair of consecutive edges have the same color. **Prove** that it is NP-hard to decide whether $G$ has a rainbow Hamiltonian cycle.

(In fact, both of these problems are NP-hard, but we only want a proof for one of them.)

5. Suppose you are given a height map of a mountain, in the form of an $n \times n$ grid of evenly spaced points, each labeled with an elevation value. You can safely hike directly from any point to any neighbor immediately north, south, east, or west, but only if the elevations of those two points differ by at most $\Delta$. (The value of $\Delta$ depends on your hiking experience and your physical condition.)

Describe and analyze an algorithm to determine the longest hike from some point $s$ to some other point $t$, where the hike consists of an uphill climb (where elevations must increase at each step) followed by a downhill climb (where elevations must decrease at each step). Your input consists of an array `Elevation[1..n, 1..n]` of elevation values, the starting point $s$, the target point $t$, and the parameter $\Delta$. 
6. Recall that a run in a string \( w \in \{0, 1\}^* \) is a maximal substring of \( w \) whose characters are all equal. For example, the string \( 0001111110000 \) is the concatenation of three runs:

\[
0001111110000 = 000 \cdot 111111 \cdot 0000
\]

(a) Let \( L_a \) denote the set of all strings in \( \{0, 1\}^* \) where every 0 is followed immediately by at least one 1.

For example, \( L_a \) contains the strings \( 010111 \) and \( 1111 \) and the empty string \( \epsilon \), but does not contain either \( 001100 \) or \( 111110 \).

- Describe a DFA or NFA that accepts \( L_a \) and
- Give a regular expression that describes \( L_a \).

(You do not need to prove that your answers are correct.)

(b) Let \( L_b \) denote the set of all strings in \( \{0, 1\}^* \) whose run lengths are increasing; that is, every run except the last is followed immediately by a longer run.

For example, \( L_b \) contains the strings \( 011001111 \) and \( 1100000 \) and \( 000 \) and the empty string \( \epsilon \), but does not contain either \( 000111 \) or \( 100011 \).

**Prove** that \( L_b \) is not a regular language.
1. Recall that a run in a string \( w \in \{0,1\}^* \) is a maximal substring of \( w \) whose characters are all equal. For example, the string \( 0001111110000 \) is the concatenation of three runs:

\[
0001111110000 = 000 \cdot 111111 \cdot 000
\]

(a) Let \( L_a \) denote the set of all non-empty strings in \( \{0,1\}^* \) where the length of the first run is equal to the number of runs. For example, \( L_a \) contains the strings 0 and 1100000 and 0001110, but does not contain 000111 or 100011 or the empty string \( \epsilon \) (because it has no first run).

**Prove** that \( L_a \) is not a regular language.

(b) Let \( L_b \) denote the set of all strings in \( \{0,1\}^* \) that contain an even number of odd-length runs. For example, \( L_b \) contains the strings 010111 and 1111 and the empty string \( \epsilon \), but does not contain either 0011100 or 11110.

- Describe a DFA or NFA that accepts \( L_b \) and
- Give a regular expression that describes \( L_b \).

(You do not need to prove that your answers are correct.)

2. Aladdin and Badroulbadour are playing a cooperative game. Each player has an array of positive integers, arranged in a row of squares from left to right. Each player has a token, which starts at the leftmost square of their row; their goal is to move both tokens onto the rightmost squares at the same time.

On each turn, both players move their tokens in the same direction, either left or right. The distance each token travels is equal to the number under that token at the beginning of the turn. For example, if a token starts on a square labeled 5, then it moves either five squares to the right or five squares to the left. If either token moves past either end of its row, then both players immediately lose.

For example, if Aladdin and Badroulbadour are given the arrays

\[
A : \begin{array}{ccccccccccc}
7 & 5 & 4 & 1 & 2 & 3 & 3 & 2 & 3 & 1 & 4 & 2 \\
\end{array}
\]

\[
B : \begin{array}{ccccccccccc}
5 & 1 & 2 & 4 & 7 & 3 & 5 & 2 & 4 & 6 & 3 & 1 \\
\end{array}
\]

they can win the game by moving right, left, left, right, right, left, right. On the other hand, if they are given the arrays

\[
A : \begin{array}{cccc}
2 & 3 & 5 & 1 & 3 \\
\end{array}
\]

\[
B : \begin{array}{cccc}
3 & 4 & 1 & 2 & 1 \\
\end{array}
\]

they cannot win the game. (The first move must be to the right; then Aladdin’s token moves out of bounds on the second turn.)

Describe and analyze an algorithm to determine whether Aladdin and Badroulbadour can solve their puzzle, given the input arrays \( A[1..n] \) and \( B[1..n] \).
3. Submit a solution to exactly one of the following problems. Don’t forget to tell us which problem you’ve chosen!

(a) Let $G = (V, E)$ be an arbitrary undirected graph. A subset $S \subseteq V$ of vertices is mostly independent if more than half the vertices of $S$ have no neighbors in $S$. Prove that finding the largest mostly independent set in $G$ is NP-hard.

(b) Prove that the following problem is NP-hard: Given an undirected graph $G$, find the largest integer $k$ such that $G$ contains two disjoint independent sets of size $k$.

(In fact, both of these problems are NP-hard, but we only want a proof for one of them.)

4. Recall that a palindrome is any string that is equal to its reversal, like REDIVIDER or POOP.

(a) Describe and analyze an algorithm to find the length of the longest subsequence of a given string that is a palindrome.

(b) A double palindrome is the concatenation of two non-empty palindromes, like REFEREE = REFER • EE or POOPREDIVIDER = POOP • REDIVIDER. Describe and analyze an algorithm to find the length of the longest subsequence of a given string that is a double palindrome. [Hint: Use your algorithm from part (a).]

For both algorithms, the input is an array $A[1..n]$, and the output is an integer. For example, given the input string MAYBEDYNAMICPROGRAMMING, your algorithm for part (a) should return 7 (for the subsequences NMRORMN and MAYBYAM, among others), and your algorithm for part (b) should return 12 (for the subsequence MAYBYAMIRORI).

5. You have a collection of $n$ lockboxes and $m$ gold keys. Each key unlocks at most one box. Without a matching key, the only way to open a box is to smash it with a hammer. Your baby brother has locked all your keys inside the boxes! Luckily, you know which keys (if any) are inside each box.

(a) Your baby brother has found the hammer and is eagerly eyeing one of the boxes. Describe and analyze an algorithm to determine if it is possible to retrieve all the keys without smashing any box except the one your brother has chosen.

(b) Describe and analyze an algorithm to compute the minimum number of boxes that must be smashed to retrieve all the keys.

Problem 6 begins on the next page.
6. For each statement below, there are two boxes in the answer booklet labeled “Yes” and “No”. Check “Yes” if the statement is always true and “No” otherwise, and give a brief (at most one short sentence) explanation of your answer. Assume $P \neq NP$. If there is any other ambiguity or uncertainty about an answer, check “No”. For example:

- $x + y = 5$
  - Yes
  - No
  - **Suppose $x = 3$ and $y = 4$.**

- 3SAT can be solved in polynomial time.
  - Yes
  - No
  - **3SAT is NP-hard.**

- If $P = NP$ then Jeff is the Queen of England.
  - Yes
  - No
  - **The hypothesis is false, so the implication is true.**

Read each statement very carefully; some of these are deliberately subtle!

(a) Which of the following statements are true for all languages $L \subseteq \{0, 1\}^*$?
  - $L^* = (L^*)^*$
  - If $L$ is decidable, then $L^*$ is decidable.
  - $L$ is either regular or NP-hard.
  - If $L$ is undecidable, then $L$ has an infinite fooling set.
  - The language $\{\langle M \rangle \mid M$ decides $L\}$ is undecidable.

(b) Which of the following statements are true?
  - The solution to the recurrence $T(n) = 4T(n/4) + O(n)$ is $T(n) = O(n \log n)$.
  - The solution to the recurrence $T(n) = 4T(n/4) + O(n^2)$ is $T(n) = O(n^2 \log n)$.
  - Every directed acyclic graph contains at most one source and at most one sink.
  - Depth-first search explores every path from the source vertex $s$ to every other vertex in the input graph.
  - Suppose $A[1..n]$ is an array of integers. Consider the following recursive function:

    $$\text{Huh}(i, j) = \begin{cases} 
    0 & \text{if } i < 0 \text{ or } j > n \\
    \max \left\{ Huh(i + 1, j), Huh(i, j - 1) \right\} & \text{otherwise} \\
    A[i] \cdot A[j] + Huh(i - 1, j + 1) & \text{otherwise}
    \end{cases}$$

  We can compute $\text{Huh}(n, 0)$ by memoizing this function into an array $\text{Huh}[0..n, 0..n]$ in $O(n^2)$ time, increasing $i$ in the outer loop and increasing $j$ in the inner loop.

*Problem 6 continues onto the next page.*
1. [continued]

(c) Suppose we want to prove that the following language is undecidable.

\[ \text{Muggle} := \{ \langle M \rangle \mid M \text{ accepts SCIENCE but rejects MAGIC} \} \]

Professor Potter, your instructor in Defense Against Models of Computation and Other Dark Arts, suggests a reduction from the standard halting language

\[ \text{Halt} := \{ ((M), w) \mid M \text{ halts on input } w \} . \]

Specifically, suppose there is a Turing machine \text{DetectoMuggletum} that decides \text{Muggle}. Professor Potter claims that the following algorithm decides \text{Halt}.

\[
\text{DecideHalt}(\langle M \rangle, w) :=
\begin{align*}
\text{RubberDuck}(x) : \\
\text{run } M \text{ on input } w \\
\langle \langle \text{ignore the output of } M \rangle \rangle \\
\text{if } x = \text{MAGIC} \\
\quad \text{return } \text{False} \\
\text{else} \\
\quad \text{return } \text{True} \\
\end{align*}
\]

\[ \text{return DetectoMuggletum(\langle \text{RubberDuck} \rangle) } \]

Which of the following statements must be true for all inputs \( \langle M \rangle \# w \)?

- If \( M \) accepts \( w \), then \text{RubberDuck} accepts \text{MAGIC}.
- If \( M \) diverges on \( w \), then \text{RubberDuck} rejects \text{MAGIC}.
- If \( M \) accepts \( w \), then \text{DetectoMuggletum} accepts \( \langle \text{RubberDuck} \rangle \).
- If \( M \) diverges on \( w \), then \text{DecideHalt} rejects \( \langle M, w \rangle \).
- \text{DecideHalt} decides the language \text{Halt}. (That is, Professor Potter’s reduction is actually correct.)

(d) Suppose there is a polynomial-time reduction from some language \( A \subseteq \{0,1\} \) reduces to some other language \( B \subseteq \{0,1\} \). Which of the following statements are true, assuming \( P \neq \text{NP} \)?

- \( A \cap B \neq \emptyset \).
- There is an algorithm to transform any Python program that solves \( B \) in polynomial time into a Python program that solves \( A \) in polynomial time.
- If \( B \) is NP-hard, then \( A \) is NP-hard.
- If \( B \) is decidable, then \( A \) is decidable.
- If a Turing machine \( M \) accepts every string in \( B \), the same Turing machine \( M \) also accepts every string in \( A \).
1. For each statement below, there are two boxes in the answer booklet labeled “Yes” and “No”. Check “Yes” if the statement is always true and “No” otherwise, and give a brief (at most one short sentence) explanation of your answer. Assume \( P \neq NP \). If there is any other ambiguity or uncertainty about an answer, check “No”. For example:

- \( x + y = 5 \)
  - Yes  
  - No  
  
  Suppose \( x = 3 \) and \( y = 4 \).

- 3SAT can be solved in polynomial time.
  - Yes  
  - No  
  
  3SAT is NP-hard.

- If \( P = NP \) then Jeff is the Queen of England.
  - Yes  
  - No  
  
  The hypothesis is false, so the implication is true.

Read each statement very carefully; some of these are deliberately subtle!

(a) Which of the following statements are true?

- The solution to the recurrence \( T(n) = 2T(n/2) + O(\sqrt{n}) \) is \( T(n) = O(\sqrt{n} \log n) \).
- The solution to the recurrence \( T(n) = 2T(n/4) + T(n/3) + O(n) \) is \( T(n) = O(n \log n) \).
- There is a forest with 374 vertices and 374 edges. (Recall that a forest is an undirected graph with no cycles.)
- Given any directed graph \( G \) whose edges have positive weights, we can compute shortest paths from one vertex \( s \) to every other vertex of \( G \) in \( O(VE) \) time using Bellman-Ford.
- Suppose \( A[1 .. n] \) is an array of integers. Consider the following recursive function:

\[
Oops(i, k) = \begin{cases} 
0 & \text{if } i > k \\
1 & \text{if } i = k \\
\max \{ A[i] \cdot A[j] \cdot A[k] + Oops(i, j) + Oops(j, k) \mid i \leq j \leq k \} & \text{otherwise}
\end{cases}
\]

We can compute \( Oops(1, n) \) by memoizing this function into a two-dimensional array \( Oops[1 .. n, 1 .. n] \), which we fill by decreasing \( i \) in the outer loop and increasing \( k \) in the inner loop, in \( O(n^2) \) time.
1. [continued]

(b) Which of the following statements are true for every language $L \subseteq \{0, 1\}^*$?

- Either $L$ is regular or $L$ is infinite.
- $L^*$ is regular.
- $L$ contains arbitrarily long strings.
- If $L$ is decidable, then its complement $\overline{L}$ is also decidable.
- If $L$ is undecidable then $L^*$ is undecidable.

(c) Consider the following pair of languages:

- $3\text{Color} = \{G \mid G$ is an undirected graph with a proper 3-coloring$\}$
- $\text{Forest} = \{G \mid G$ is an undirected graph with no cycles$\}$

(For concreteness, assume that in both of these languages, graphs are represented by their adjacency matrices.) Which of the following statements are true, assuming $P \neq \text{NP}$?

- $\text{Forest} \in P$
- $\text{Forest} \cap 3\text{Color} \in P$
- $3\text{Color}$ is undecidable.
- $3\text{Color}$ is regular.
- A polynomial-time reduction from $3\text{Color}$ to $\text{Forest}$ would imply $P = \text{NP}$.

(d) Suppose there is a **polynomial-time** reduction $R$ from some language $A \in \{0, 1\}^*$ to some other language $B \in \{0, 1\}^*$. Which if the following statements are **always** true, assuming $P \neq \text{NP}$?

- The reduction transforms every string in $A$ into a string in $B$.
- The reduction transforms every string in $B$ into a string in $A$.
- If $A$ is infinite, then $B$ is infinite.
- If $B$ is undecidable, then $A$ is undecidable.
- If $B$ is undecidable, then $A$ is NP-hard.

*Problem 2 appears on the next page.*
2. Several years after graduating from Sham-Poobanana University, you decide to open a one-day pop-up art gallery selling NFTs, using the following dynamic pricing strategy.

All NFTs at your gallery have the same advertised price, which you set at the start of the day, but which you can decrease later. Customers visit your gallery one at a time. If a customer is willing to pay your current advertised price, they buy one NFT at that price. On the other hand, if your advertised price is too high, the customer will suggest a lower price that they are willing to pay. If you refuse to lower your advertised price, the customer will leave without buying anything. If you agree to lower your advertised price to match their offer, the customer will buy one NFT at the new lower price. Whenever you lower your advertised price, your new lower price stays in effect until you lower it again, or until the end of the day. You can never increase your advertised price.

You know your customers extremely well, so you can accurately predict both when each customer will come to the gallery, and how much each customer is willing to pay for one of your NFTs.

Describe and analyze an algorithm that computes the maximum amount of money you can earn using this dynamic pricing strategy. Your input consists of an array \( \text{Value}[1..n] \), where \( \text{Value}[i] \) is the amount that the \( i \)th customer (in chronological order) is willing to pay for one NFT.

For example, if the input array is \( [5, 3, 1, 4, 2] \), your algorithm should output 13, because you can earn \( 5 + 3 + 0 + 3 + 2 = 13 \) dollars using the prices \( [5, 3, 3, 3, 2] \), and this is optimal.

3. Submit a solution to exactly one of the following problems. Don’t forget to tell us which problem you’ve chosen!

(a) A mostly-3-coloring of a graph \( G = (V, E) \) is any function \( C : V \rightarrow \{\text{red, yellow, blue, none}\} \) such that \( C(v) = \text{none} \) for less than half the vertices in \( V \). A mostly-3-coloring \( C \) is proper if, for every edge \( uv \in E \), either \( C(u) \neq C(v) \) or \( C(u) = C(v) = \text{none} \).

Prove that it is NP-hard to determine whether a given graph \( G \) has a proper mostly-3-coloring.

(b) A Hamiltonian bicycle in a graph \( G \) is a pair of simple cycles in \( G \), with identical lengths, such that every vertex of \( G \) lies on exactly one of the two cycles.

Prove that it is NP-hard to determine whether a given graph \( G \) has a Hamiltonian bicycle.

(In fact, both of these problems are NP-hard, but we only want a proof for one of them.)
4. (a) Let \( L_a \) denote the set of all strings in \( \{0, 1, 2\}^* \) that do not contain any symbol twice in a row. For example, this language includes the strings \( 0101201202, 1010101, 2 \), and the empty string \( \epsilon \), but it does not include the strings \( 01210220 \) or \( 11 \).
   - Describe a DFA or NFA that accepts \( L_a \) and
   - Give a regular expression that describes \( L_a \).
   (You do not need to prove that your answers are correct.)

(b) Let \( L_b \) denote the set of all strings \( w \in \{0, 1, 2\}^* \) such that \( \#(0, w) + \#(1, w) = \#(2, w) \). For example, this language includes the strings \( 01012222 \) and \( 20221020 \) and the empty string \( \epsilon \), but it does not include the string \( 01212 \) or \( 2120210 \).
   Prove that \( L_b \) is not a regular language.

5. Let \( G \) be a directed acyclic graph, in which every edge \( e \in E \) has a weight \( w(e) \), which could be positive, negative, or zero. We define the alternating length of any path in \( G \) to be the weight of the first edge, minus the weight of the second edge, plus the weight of the third edge, and so on. More formally, for any path \( P = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_\ell \) in \( G \), we define
   \[
   \text{AltLen}(P) = \sum_{i=0}^{\ell-1} (-1)^i \cdot w(v_i \rightarrow v_{i+1}).
   \]
   Describe an algorithm to find a path from \( s \) to \( t \) with the largest alternating length, given the graph \( G \), the edge weights \( w(e) \), and vertices \( s \) and \( t \) as input.
   For example, given the graph shown below, your algorithm should return 5, which is the alternating length of the path \( s \rightarrow u \rightarrow t \).

6. Recall that the depth of a vertex \( v \) in a binary tree \( T \) is the length of the unique path in \( T \) from \( v \) to the root of \( T \). A binary tree is complete if every internal node has two children, and every leaf has exactly the same depth. An internal subtree of a binary tree \( T \) is any connected subgraph of \( T \).
   Describe and analyze a recursive algorithm to compute the largest complete internal subtree of a given binary tree. Your algorithm should return both the root and the depth of this internal subtree.

The largest complete internal subtree of this binary tree has depth 2.
1. For each statement below, there are two boxes in the answer booklet labeled “Yes” and “No”. Check “Yes” if the statement is always true and “No” otherwise, and give a brief (at most one short sentence) explanation of your answer. Assume \( P \neq NP \). If there is any other ambiguity or uncertainty about an answer, check “No”. For example:

- \( x + y = 5 \):
  - Yes
  - No
  - Suppose \( x = 3 \) and \( y = 4 \).

- 3SAT can be solved in polynomial time.
  - Yes
  - No
  - 3SAT is NP-hard.

- If \( P = NP \) then Jeff is the Queen of England.
  - Yes
  - No
  - The hypothesis is false, so the implication is true.

Read each statement very carefully; some of these are deliberately subtle!

(a) Which of the following statements are true?

- The solution to the recurrence \( T(n) = 3T(n/3) + O(n^2) \) is \( T(n) = O(n^2) \).
- The solution to the recurrence \( T(n) = 9T(n/3) + O(n) \) is \( T(n) = O(n^2) \).
- There is a forest with 374 vertices and 225 edges. (Recall that a forest is an undirected graph with no cycles.)
- Given any directed graph \( G \) whose edges have positive weights, we can compute shortest paths from one vertex \( s \) to every other vertex of \( G \) in \( O(VE) \) time using Bellman-Ford.
- Suppose \( A[1..n] \) is an array of integers. Consider the following recursive function:

\[
Rizz(i, k) = \begin{cases} 
0 & \text{if } i > k \\
1 & \text{if } i = k \\
\max \left\{ Rizz(i, j - 1) + Rizz(j + 1, k) + A[i] \cdot A[j] \cdot A[k] \right\} & \text{otherwise}
\end{cases}
\]

We can compute \( Rizz(1, n) \) by memoizing this function into a two-dimensional array \( Rizz[1..n, 1..n] \), which we fill by decreasing \( i \) in the outer loop and increasing \( k \) in the inner loop, in \( O(n^2) \) time.

Problem 1 continues onto the next page.
1. [continued]

(b) Which of the following statements are true for at least one language $L \subseteq \{0, 1\}^*$?

- $(L^*)^*$ is finite.
- $L$ is decidable but its complement $\overline{L}$ is undecidable.
- $\{\langle M \rangle \mid M \text{ accepts } L \}$ is undecidable.
- $L$ is the intersection of two NP-hard languages and $L$ is finite.
- There is a polynomial-time reduction from $L$ to the halting problem.

(c) Consider the following pair of languages:

- $\text{Tree} = \{G \mid G$ is a connected undirected graph with no cycles$\}$
- $\text{HamPath} = \{G \mid G$ is an undirected graph that contains a Hamiltonian path$\}$

(For concreteness, assume that in both of these languages, graphs are represented by their adjacency matrices.) Which of the following statements are true, assuming $P \neq NP$?

- $\text{Tree}$ is NP-hard.
- $\text{Tree} \cap \text{HamPath}$ is NP-hard.
- $\text{Tree} \cup \text{HamPath}$ is NP-hard.
- $\text{HamPath}$ is undecidable.
- A reduction from $\text{Tree}$ to $\text{HamPath}$ would imply $P = NP$.

(d) Suppose there is a polynomial-time reduction $R$ from some language $A \in \{0, 1\}^*$ to some other language $B \in \{0, 1\}^*$. Which of the following statements are always true, assuming $P \neq NP$?

- Problem $B$ is NP-hard.
- If $A$ is finite, then $B$ is finite.
- If $A$ is NP-hard, then $B$ is NP-hard.
- If $A$ is undecidable, then $B$ is undecidable.
- If $A \in P$, then $B \in P$. 

Problems 2–6 appear on the next two pages.
2. Submit a solution to exactly one of the following problems.

(a) A theta-graph is a connected undirected graph in which two vertices have degree 3, and all other vertices have degree 2. Equivalently, a theta-graph is the union of three undirected paths that have the same endpoints, but no other vertices in common. The size of a theta-graph is the total number of vertices.

The 5×5 grid graph contains a theta-subgraph of size 24.

Prove that it is NP-hard to compute the size of the largest theta-graph that is a subgraph of a given undirected graph \( G \).

(b) A clique-partition of a graph \( G = (V, E) \) is a partition of the vertices \( V \) into disjoint subsets \( V_1 \cup V_2 \cup \cdots \cup V_k \), such that for each index \( i \), every pair of vertices in subset \( V_i \) is connected by an edge in \( G \). The size of a clique partition is the number of subsets \( V_i \).

Prove that it is NP-hard to compute the minimum-size clique partition of a given undirected graph \( G \).

In fact, both of these problems are NP-hard, but we only want a proof for one of them. Don’t forget to tell us which problem you’ve chosen!

3. A triumph in a sequence of integers (from the Latin tri- meaning “three” and -umph meaning “bodacious”) is a consecutive triple of sequence elements whose sum is a multiple of 3. For example, the sequence

\[
\langle 3, 1, 4, 1, 5, 9, 6, 2, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6 \rangle
\]

contains five triumphs (indicated by lines above and below).

We say that one sequence \( A \) is more triumphant (or less heinous) than another sequence \( B \) if there are more triumphs in \( A \) than in \( B \).

Describe and analyze an algorithm to compute the number of triumphs in the most triumphant (or equivalently, least heinous) subsequence of a given array \( A[1..n] \) of integers.

For example, given the input array \( \langle 0, 1, 1, 2, 3, 5, 8, 13, 21 \rangle \), your algorithm should return the integer 4, which is the number of triumphs in the most triumphant subsequence \( \langle 0, 1, 2, 3, 8, 13, 21 \rangle \). Excellent!

Problems 4–6 appear on the next page.
4. Suppose we are given a directed graph \( G = (V, E) \), where every edge \( e \in E \) has a positive weight \( w(e) \), along with two vertices \( s \) and \( t \).

(a) Suppose each vertex of \( G \) is colored either orange, green, or purple. Describe and analyze an algorithm to find the shortest walk from \( s \) to \( t \) in \( G \) that never visits two consecutive vertices with the same color.

(b) Now suppose each edge of \( G \) is colored either orange, green, or purple. Describe and analyze an algorithm to find the shortest walk from \( s \) to \( t \) in \( G \) that never traverses two consecutive edges with the same color.

5. Let \( T \) be a full binary tree, meaning that every node has either two children or no children.

- Recall that the **height** of a vertex \( v \) in \( T \) is the length of the longest path in \( T \) from \( v \) down to a leaf. In particular, every leaf of \( T \) has height zero.
- A vertex \( v \) is **AVL-balanced** if \( v \) is a leaf, or if the heights of \( v \)'s children differ by at most 1. (You might recall from CS 225 that an **AVL-tree** is a binary search tree in which every vertex is AVL-balanced.)

Describe and analyze an algorithm to compute the number of AVL-balanced vertices in \( T \).

6. (a) Let \( L_a \) denote the set of all strings \( w \in \{0, 1, 2\}^* \) such that \( \#(1, w) + 2 \cdot \#(2, w) \) is divisible by 3. For example, \( L_a \) contains the strings \( 0012 \) and \( 20210202 \) and the empty string \( \epsilon \), but \( L_a \) does not include the strings \( 121 \) or \( 0122210 \).

Describe a DFA of NFA that accepts \( L_a \). (You do not need to prove that your answer is correct.)

(b) Let \( L_b \) denote the set of all strings \( w \in \{0, 1, 2\}^* \) such that no two symbols appear the same number of times, or in other words, the integers \( \#(0, w) \) and \( \#(1, w) \) and \( \#(2, w) \) are all different. For example, \( L_b \) contains the strings \( 110212 \) and \( 20220 \), but \( L_b \) does not include the string \( 01212 \) or \( 2120210 \) or the empty string \( \epsilon \).

**Prove** that \( L_b \) is not a regular language.