
CS 373: Combinatorial Algorithms, Fall 2000
Homework 2 (due September 28, 2000 at midnight)

Name:
Net ID: Alias: U 3/4 1

Name:
Net ID: Alias: U 3/4 1

Name:
Net ID: Alias: U 3/4 1

Starting with Homework 1, homeworks may be done in teams of up to three people. Each team
turns in just one solution, and every member of a team gets the same grade. Since 1-unit graduate
students are required to solve problems that are worth extra credit for other students, 1-unit grad
students may not be on the same team as 3/4-unit grad students or undergraduates.

Neatly print your name(s), NetID(s), and the alias(es) you used for Homework 0 in the boxes
above. Please also tell us whether you are an undergraduate, 3/4-unit grad student, or 1-unit grad
student by circling U, 3/4, or 1, respectively. Staple this sheet to the top of your homework.

Required Problems

1. Faster Longest Increasing Subsequence (15 pts)
Give an O(n log n) algorithm to find the longest increasing subsequence of a sequence of
numbers. [Hint: In the dynamic programming solution, you don’t really have to look back at
all previous items. There was a practice problem on HW 1 that asked for an O(n2) algorithm
for this. If you are having difficulty, look at the HW 1 solutions.]

2. SELECT(A, k) (10 pts)
Say that a binary search tree is augmented if every node v also stores |v|, the size of its subtree.

(a) Show that a rotation in an augmented binary tree can be performed in constant time.

(b) Describe an algorithm SCAPEGOATSELECT(k) that selects the kth smallest item in an
augmented scapegoat tree in O(log n) worst-case time.

(c) Describe an algorithm SPLAYSELECT(k) that selects the kth smallest item in an aug-
mented splay tree in O(log n) amortized time.
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(d) Describe an algorithm TREAPSELECT(k) that selects the kth smallest item in an aug-
mented treap in O(log n) expected time.

[Hint: The answers for (b), (c), and (d) are almost exactly the same!]

3. Scapegoat trees (15 pts)

(a) Prove that only one subtree gets rebalanced in a scapegoat tree insertion.

(b) Prove that I(v) = 0 in every node of a perfectly balanced tree. (Recall that I(v) =
max{0, |T | − |s| − 1}, where T is the child of greater height and s the child of lesser
height, and |v| is the number of nodes in subtree v. A perfectly balanced tree has two
perfectly balanced subtrees, each with as close to half the nodes as possible.)

?(c) Show that you can rebuild a fully balanced binary tree from an unbalanced tree in O(n)
time using only O(log n) additional memory. For 5 extra credit points, use only O(1)
additional memory.

4. Memory Management (10 pts)
Suppose we can insert or delete an element into a hash table in constant time. In order to
ensure that our hash table is always big enough, without wasting a lot of memory, we will
use the following global rebuilding rules:

• After an insertion, if the table is more than 3/4 full, we allocate a new table twice as big
as our current table, insert everything into the new table, and then free the old table.

• After a deletion, if the table is less than 1/4 full, we we allocate a new table half as big
as our current table, insert everything into the new table, and then free the old table.

Show that for any sequence of insertions and deletions, the amortized time per operation
is still a constant. Do not use the potential method—it makes the problem much too hard!

5. Fibonacci Heaps: SECONDMIN (10 pts)

(a) Implement SECONDMIN by using a Fibonacci heap as a black box. Remember to justify
its correctness and running time.

?(b) Modify the Fibonacci Heap data structure to implement the SECONDMIN operation in
constant time, without degrading the performance of any other Fibonacci heap opera-
tion.
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Practice Problems

1. Amortization

(a) Modify the binary double-counter (see class notes Sept 12) to support a new operation
SIGN, which determines whether the number being stored is positive, negative, or zero,
in constant time. The amortized time to increment or decrement the counter should still
be a constant.
[Hint: Suppose p is the number of significant bits in P , and n is the number of significant
bits in N . For example, if P = 17 = 100012 and N = 0, then p = 5 and n = 0. Then
p−n always has the same sign as P −N . Assume you can update p and n in O(1) time.]

?(b) Do the same but now you can’t assume that p and n can be updated in O(1) time.

?2. Amortization
Suppose instead of powers of two, we represent integers as the sum of Fibonacci numbers.
In other words, instead of an array of bits, we keep an array of ‘fits’, where the ith least
significant fit indicates whether the sum includes the ith Fibonacci number Fi. For example,
the fit string 101110 represents the number F6 + F4 + F3 + F2 = 8 + 3 + 2 + 1 = 14. Describe
algorithms to increment and decrement a fit string in constant amortized time. [Hint: Most
numbers can be represented by more than one fit string. This is not the same representation
as on Homework 0!]

3. Rotations

(a) Show that it is possible to transform any n-node binary search tree into any other n-node
binary search tree using at most 2n − 2 rotations.

?(b) Use fewer than 2n − 2 rotations. Nobody knows how few rotations are required in the
worst case. There is an algorithm that can transform any tree to any other in at most
2n − 6 rotations, and there are pairs of trees that are 2n − 10 rotations apart. These are
the best bounds known.

4. Give an efficient implementation of the operation CHANGEKEY(x, k), which changes the key
of a node x in a Fibonacci heap to the value k. The changes you make to Fibonacci heap data
structure to support your implementation should not affect the amortized running time of any
other Fibonacci heap operations. Analyze the amortized running time of your implementation
for cases in which k is greater than, less than, or equal to key[x].

5. Detecting overlap

(a) You are given a list of ranges represented by min and max (e.g., [1,3], [4,5], [4,9], [6,8],
[7,10]). Give an O(n log n)-time algorithm that decides whether or not a set of ranges
contains a pair that overlaps. You need not report all intersections. If a range completely
covers another, they are overlapping, even if the boundaries do not intersect.
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(b) You are given a list of rectangles represented by min and max x- and y-coordinates. Give
an O(n log n)-time algorithm that decides whet her or not a set of rectangles contains a
pair that overlaps (with the same qualifications as above). [Hint: sweep a vertical line
from left to right, performing some processing whenever an end-point is encountered.
Use a balanced search tree to maintain any extra info you might need.]

6. Comparison of Amortized Analysis Methods
A sequence of n operations is performed on a data structure. The ith operation costs i if i is
an exact power of 2, and 1 otherwise. That is operation i costs f(i), where:

f(i) =
{

i, i = 2k,
1, otherwise

Determine the amortized cost per operation using the following methods of analysis:

(a) Aggregate method

(b) Accounting method
?(c) Potential method
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