
CS 473 Headbanging 7 (October 16–17) Fall 2012

1. Suppose we want to maintain a dynamic set of numbers, subject to the following operations:

• INSERT(x): Add x to the set. (Assume x is not already in the set.)

• PRINT&DELETEBETWEEN(a, b): Print every element x in the range a ≤ x ≤ b in increasing
order, and then delete those elements from the set.

For example, if the current set is {1, 5,3, 4,8}, then

• PRINT&DELETEBETWEEN(4, 6) prints the numbers 4 and 5 and changes the set to {1,3, 8}.
• PRINT&DELETEBETWEEN(6, 7) prints nothing and does not change the set.

• PRINT&DELETEBETWEEN(0, 10) prints the sequence 1, 3,4, 5,8 and deletes everything.

Describe a data structure that supports both operations in O(log n) amortized time, where n is the
current number of elements in the set.

[Hint: As warmup, argue that the obvious implementation of PRINT&DELETEBETWEEN—while
the successor of a is less than or equal to b, print it and delete it—runs in O(log N) amortized
time, where N is the maximum number of elements that are ever in the set.]

2. Describe a data structure that stores a set of numbers (which is initially empty) and supports the
following operations in O(1) amortized time:

• INSERT(x): Insert x into the set. (You can safely assume that x is not already in the set.)

• FINDMIN: Return the smallest element of the set (or NULL if the set is empty).

• DELETEBOTTOMHALF: Remove the smallest dn/2e elements the set. (That’s smallest by value,
not smallest by insertion time.)

3. Consider the following solution for the union-find problem, called union-by-weight. Each set
leader x stores the number of elements of its set in the field weight(x). Whenever we UNION two
sets, the leader of the smaller set becomes a new child of the leader of the larger set (breaking ties
arbitrarily).

MAKESET(x):
parent(x)← x
weight(x)← 1

FIND(x):
while x 6= parent(x)

x ← parent(x)
return x

UNION(x , y)
x ← FIND(x)
y ← FIND(y)
if weight(x)> weight(y)

parent(y)← x
weight(x)← weight(x) +weight(y)

else
parent(x)← y
weight(x)← weight(x) +weight(y)

Prove that if we always use union-by-weight, the worst-case running time of FIND(x) is O(log n),
where n is the cardinality of the set containing x .

1


