CS 473 Headbanging 7 (October 16-17) Fall 2012

1. Suppose we want to maintain a dynamic set of numbers, subject to the following operations:

e INSERT(x): Add x to the set. (Assume x is not already in the set.)
e PrRINT&DELETEBETWEEN(a, b): Print every element x in the range a < x < b in increasing
order, and then delete those elements from the set.

For example, if the current set is {1, 5, 3,4, 8}, then

e PrRINT&DELETEBETWEEN(4, 6) prints the numbers 4 and 5 and changes the set to {1, 3, 8}.

e PRINT&DELETEBETWEEN(6, 7) prints nothing and does not change the set.

e PRINT&DELETEBETWEEN(O, 10) prints the sequence 1, 3,4, 5,8 and deletes everything.
Describe a data structure that supports both operations in O(logn) amortized time, where n is the
current number of elements in the set.

[Hint: As warmup, argue that the obvious implementation of PRINT&DELETEBETWEEN—while
the successor of a is less than or equal to b, print it and delete it—runs in O(logN) amortized
time, where N is the maximum number of elements that are ever in the set.]

2. Describe a data structure that stores a set of numbers (which is initially empty) and supports the
following operations in O(1) amortized time:

e INSERT(x): Insert x into the set. (You can safely assume that x is not already in the set.)

e FINDMIN: Return the smallest element of the set (or NuLL if the set is empty).

e DeLETEBOoTTOMHALF: Remove the smallest [n/2] elements the set. (That’s smallest by value,
not smallest by insertion time.)

3. Consider the following solution for the union-find problem, called union-by-weight. Each set
leader X stores the number of elements of its set in the field weight(x). Whenever we UNION two
sets, the leader of the smaller set becomes a new child of the leader of the larger set (breaking ties
arbitrarily).

MAKESET(x): UNION(x, ¥)

parent(x) « x X < Finn(x)

. - y < Finn(y)
weight(x) — 1 if weight(x) > weight(y)
o (x): parent(y) <« x

weight(Xx) < weight(x) + weight(y)
else

parent(x) <y

weight(x) <« weight(x) + weight(y)

while x # parent(x)
x « parent(x)
return x

Prove that if we always use union-by-weight, the worst-case running time of FIND(x) is O(logn),
where n is the cardinality of the set containing x.



