
CS/ECE 374 A Fall 2016

ý Homework 8ý
Due Tuesday, November 1, 2016 at 8pm

This is the last homework before Midterm 2.

1. After a grueling algorithms midterm, you decide to take the bus home. Since you planned
ahead, you have a schedule that lists the times and locations of every stop of every bus in
Champaign-Urbana. Champaign-Urbana is currently suffering from a plague of zombies,
so even though the bus stops have fences that supposedly keep the zombies out, you’d still
like to spend as little time waiting at bus stops as possible. Unfortunately, there isn’t a
single bus that visits both your exam building and your home; you must transfer between
buses at least once.

Describe and analyze an algorithm to determine a sequence of bus rides from Siebel to
your home, that minimizes the total time you spend waiting at bus stops. You can assume
that there are b different bus lines, and each bus stops n times per day. Assume that the
buses run exactly on schedule, that you have an accurate watch, and that walking between
bus stops is too dangerous to even contemplate.

2. Kris is a professional rock climber (friends with Alex and the rest of the climbing crew from
HW6) who is competing in the U.S. climbing nationals. The competition requires Kris to
use as many holds on the climbing wall as possible, using only transitions that have been
explicitly allowed by the route-setter.

The climbing wall has n holds. Kris is given a list of m pairs (x , y) of holds, each
indicating that moving directly from hold x to hold y is allowed; however, moving directly
from y to x is not allowed unless the list also includes the pair (y, x). Kris needs to figure
out a sequence of allowed transitions that uses as many holds as possible, since each new
hold increases his score by one point. The rules allow Kris to choose the first and last hold
in his climbing route. The rules also allow him to use each hold as many times as he likes;
however, only the first use of each hold increases Kris’s score.

(a) Define the natural graph representing the input. Describe and analyze an algorithm
to solve Kris’s climbing problem if you are guaranteed that the input graph is a dag.

(b) Describe and analyze an algorithm to solve Kris’s climbing problem with no restrictions
on the input graph.

Both of your algorithms should output the maximum possible score that Kris can earn.



CS/ECE 374 Homework 7 (due October 25) Fall 2016

3. Many years later, in a land far, far away, after winning all the U.S. national competitions
for 10 years in a row, Kris retired from competitive climbing and became a route setter
for competitions. However, as the years passed, the rules changed. Climbers are now
required to climb along the shortest sequence of legal moves from one specific node to
another, where the distance between two holds is specified by the route setter. In addition
to the usual set of n holds and m valid moves between them (as in the previous problem),
climbers are now told their start hold s, their finish hold t, and the distance from x to y
for every allowed move (x , y).

Rather than make up this year’s new route completely from scratch, Kris decides to
make one small change to last year’s input. The previous route setter suggested a list of k
new allowed moves and their distances. Kris needs to to choose the single edge from this
list of suggestions that decreases the distance from s to t as much as possible.

Describe and analyze an algorithm to solve Kris’s problem. Your input consists of the
following information:

• A directed graph G = (V, E).

• Two vertices s, t ∈ V .

• A set of k new edges E′, such that E ∩ E′ =∅

• A length `(e)≥ 0 for every edge e ∈ E ∪ E′.

Your algorithm should return the edge e ∈ E′ whose addition to the graph yields the
smallest shortest0path distance from s to t.

For full credit, your algorithm should run in O(m log n+ k) time, but as always, a slower
correct algorithm is worth more than a faster incorrect algorithm.

2



CS/ECE 374 Homework 7 (due October 25) Fall 2016

Solved Problem

4. Although we typically speak of “the” shortest path between two nodes, a single graph could
contain several minimum-length paths with the same endpoints.

1
2

2
3 5

3 2
1

1
1

2

4

2 4

3 5
1

2
2
3 5

3 2
1

1
1

2

4

2 4

3 5
1

2
2
3 5

3 2
1

1
1

2

4

2 4

3 5

14

1
2

2
3 5

3 2
1

1
1

2

4

2 4

3 5

14 14 14

Four (of many) equal-length shortest paths.

Describe and analyze an algorithm to determine the number of shortest paths from a source
vertex s to a target vertex t in an arbitrary directed graph G with weighted edges. You
may assume that all edge weights are positive and that all necessary arithmetic operations
can be performed in O(1) time.

[Hint: Compute shortest path distances from s to every other vertex. Throw away all edges
that cannot be part of a shortest path from s to another vertex. What’s left?]

Solution: We start by computing shortest-path distances dist(v) from s to v, for every
vertex v, using Dijkstra’s algorithm. Call an edge u�v tight if dist(u) +w(u�v) = dist(v).
Every edge in a shortest path from s to t must be tight. Conversely, every path from s to t
that uses only tight edges has total length dist(t) and is therefore a shortest path!

Let H be the subgraph of all tight edges in G. We can easily construct H in O(V + E)
time. Because all edge weights are positive, H is a directed acyclic graph. It remains only
to count the number of paths from s to t in H.

For any vertex v, let PathsToT(v) denote the number of paths in H from v to t; we need
to compute PathsToT(s). This function satisfies the following simple recurrence:

PathsToT(v) =







1 if v = t
∑

v�w

PathsToT(w) otherwise

In particular, if v is a sink but v 6= t (and thus there are no paths from v to t), this
recurrence correctly gives us PathsToT(v) =

∑

∅= 0.

We can memoize this function into the graph itself, storing each value PathsToT(v) at
the corresponding vertex v. Since each subproblem depends only on its successors in H, we
can compute PathsToT(v) for all vertices v by considering the vertices in reverse topological
order, or equivalently, by performing a depth-first search of H starting at s. The resulting
algorithm runs in O(V + E) time.

The overall running time of the algorithm is dominated by Dijkstra’s algorithm in the
preprocessing phase, which runs in O(E log V) time. �

Rubric: 10 points = 5 points for reduction to counting paths in a dag + 5 points for
the path-counting algorithm (standard dynamic programming rubric)

3


