
CS 473 Homework 4 (due March 2, 2010) Spring 2010

1. Suppose we want to write an efficient function SHUFFLE(n) that returns a permutation of the set
{1,2, . . . , n} chosen uniformly at random.

(a) Prove that the following algorithm is not correct. [Hint: Consider the case n= 3.]

SHUFFLE(n):
for i← 1 to n

π[i]← i
for i← 1 to n

swap π[i]↔ π[RANDOM(n)]
return π[1 .. n]

(b) Consider the following implementation of SHUFFLE.

SHUFFLE(n):
for i← 1 to n

π[i]← NULL
for i← 1 to n

j← RANDOM(n)
while (π[j] != NULL)

j← RANDOM(n)
π[j]← i

return π[1 .. n]

Prove that this algorithm is correct. What is its expected running time?

(c) Describe and analyze an implementation of SHUFFLE that runs in O(n) time. (An algorithm
that runs in O(n) expected time is fine, but O(n) worst-case time is possible.)

2. Death knocks on your door one cold blustery morning and challenges you to a game. Death knows
you are an algorithms student, so instead of the traditional game of chess, Death presents you
with a complete binary tree with 4n leaves, each colored either black or white. There is a token at
the root of the tree. To play the game, you and Death will take turns moving the token from its
current node to one of its children. The game will end after 2n moves, when the token lands on a
leaf. If the final leaf is black, you die; if it’s white, you will live forever. You move first, so Death
gets the last turn.

⊼ ⊼ ⊼ ⊼ ⊼ ⊼ ⊼ ⊼

⊼ ⊼ ⊼ ⊼

⊼ ⊼

⊼

You can decide whether it’s worth playing or not as follows. Imagine that the tree is a Boolean
circuit whose inputs are specified at the leaves: white and black represent TRUE and FALSE inputs,
respectively. Each internal node in the tree is a NAND gate that gets its input from its children and
passes its output to its parent. (Recall that a NAND gate outputs FALSE if and only if both its inputs
are TRUE.) If the output at the top of the tree is TRUE, then you can win and live forever! If the
output at the top of the tree is FALSE, you should challenge Death to a game of Twister instead. Or
maybe Battleship.

1

CS 473 Homework 4 (due March 2, 2010) Spring 2010

(a) Describe and analyze a deterministic algorithm to determine whether or not you can win.
[Hint: This is easy!]

(b) Unfortunately, Death won’t give you enough time to look at every node in the tree. Describe
a randomized algorithm that determines whether you can win in O(3n) expected time. [Hint:
Consider the case n= 1.]

?(c) [Extra credit] Describe and analyze a randomized algorithm that determines whether you
can win in O(cn) expected time, for some constant c < 3. [Hint: You may not need to change
your algorithm from part (b) at all!]

3. A meldable priority queue stores a set of keys from some totally-ordered universe (such as the
integers) and supports the following operations:

• MAKEQUEUE: Return a new priority queue containing the empty set.

• FINDMIN(Q): Return the smallest element of Q (if any).

• DELETEMIN(Q): Remove the smallest element in Q (if any).

• INSERT(Q, x): Insert element x into Q, if it is not already there.

• DECREASEKEY(Q, x , y): Replace an element x ∈ Q with a smaller key y. (If y > x , the
operation fails.) The input is a pointer directly to the node in Q containing x .

• DELETE(Q, x): Delete the element x ∈ Q. The input is a pointer directly to the node in Q
containing x .

• MELD(Q1,Q2): Return a new priority queue containing all the elements of Q1 and Q2; this
operation destroys Q1 and Q2.

A simple way to implement such a data structure is to use a heap-ordered binary tree, where
each node stores a key, along with pointers to its parent and two children. MELD can be imple-
mented using the following randomized algorithm:

MELD(Q1,Q2):
if Q1 is empty return Q2
if Q2 is empty return Q1

if key(Q1)> key(Q2)
swap Q1↔Q2

with probability 1/2
left(Q1)←MELD(left(Q1),Q2)

else
right(Q1)←MELD(right(Q1),Q2)

return Q1

(a) Prove that for any heap-ordered binary trees Q1 and Q2 (not just those constructed by the
operations listed above), the expected running time of MELD(Q1,Q2) is O(log n), where
n = |Q1|+ |Q2|. [Hint: How long is a random root-to-leaf path in an n-node binary tree if
each left/right choice is made with equal probability?]

(b) Show that each of the other meldable priority queue operations can be implemented with at
most one call to MELD and O(1) additional time. (This implies that every operation takes
O(log n) expected time.)

2

