
CS 473 Homework 7 (due April 6, 2010) Spring 2010

1. On an overnight camping trip in Sunnydale National Park, you are woken from a restless sleep
by a scream. As you crawl out of your tent to investigate, a terrified park ranger runs out of the
woods, covered in blood and clutching a crumpled piece of paper to his chest. As he reaches your
tent, he gasps, “Get out. . . while. . . you. . . ”, thrusts the paper into your hands, and falls to the
ground. Checking his pulse, you discover that the ranger is stone dead.

You look down at the paper and recognize a map of the park, drawn as an undirected
graph, where vertices represent landmarks in the park, and edges represent trails between those
landmarks. (Trails start and end at landmarks and do not cross.) You recognize one of the vertices
as your current location; several vertices on the boundary of the map are labeled EXIT.

On closer examination, you notice that someone (perhaps the poor dead park ranger) has
written a real number between 0 and 1 next to each vertex and each edge. A scrawled note on
the back of the map indicates that a number next to an edge is the probability of encountering
a vampire along the corresponding trail, and a number next to a vertex is the probability of
encountering a vampire at the corresponding landmark. (Vampires can’t stand each other’s
company, so you’ll never see more than one vampire on the same trail or at the same landmark.)
The note warns you that stepping off the marked trails will result in a slow and painful death.

You glance down at the corpse at your feet. Yes, his death certainly looked painful. Wait, was
that a twitch? Are his teeth getting longer? After driving a tent stake through the undead ranger’s
heart, you wisely decide to leave the park immediately.

Describe and analyze an efficient algorithm to find a path from your current location to an
arbitrary EXIT node, such that the total expected number of vampires encountered along the path is
as small as possible. Be sure to account for both the vertex probabilities and the edge probabilities!

2. In this problem we will discover how you, too, can be employed by Wall Street and cause a major
economic collapse! The arbitrage business is a money-making scheme that takes advantage of
differences in currency exchange. In particular, suppose that 1 US dollar buys 120 Japanese yen; 1
yen buys 0.01 euros; and 1 euro buys 1.2 US dollars. Then, a trader starting with $1 can convert
his money from dollars to yen, then from yen to euros, and finally from euros back to dollars,
ending with $1.44! The cycle of currencies $ → ¥ → € → $ is called an arbitrage cycle. Of
course, finding and exploiting arbitrage cycles before the prices are corrected requires extremely
fast algorithms.

Suppose n different currencies are traded in your currency market. You are given the matrix
R[1 .. n, 1 .. n] of exchange rates between every pair of currencies; for each i and j, one unit of
currency i can be traded for R[i, j] units of currency j. (Do not assume that R[i, j] · R[j, i] = 1.)

(a) Describe an algorithm that returns an array V[1 .. n], where V[i] is the maximum amount
of currency i that you can obtain by trading, starting with one unit of currency 1, assuming
there are no arbitrage cycles.

(b) Describe an algorithm to determine whether the given matrix of currency exchange rates
creates an arbitrage cycle.

(c) Modify your algorithm from part (b) to actually return an arbitrage cycle, if it exists.

1

CS 473 Homework 7 (due April 6, 2010) Spring 2010

3. Let G = (V, E) be a directed graph with weighted edges; edge weights could be positive, negative,
or zero. In this problem, you will develop an algorithm to compute shortest paths between every
pair of vertices. The output from this algorithm is a two-dimensional array dist[1 .. V, 1 .. V], where
dist[i, j] is the length of the shortest path from vertex i to vertex j.

(a) How could we delete some node v from this graph, without changing the shortest-path
distance between any other pair of nodes? Describe an algorithm that constructs a directed
graph G′ = (V ′, E′) with weighted edges, where V ′ = V \ {v}, and the shortest-path distance
between any two nodes in G′ is equal to the shortest-path distance between the same two
nodes in G. For full credit, your algorithm should run in O(V 2) time.

(b) Now suppose we have already computed all shortest-path distances in G′. Describe an
algorithm to compute the shortest-path distances from v to every other node, and from every
other node to v, in the original graph G. For full credit, your algorithm should run in O(V 2)
time.

(c) Combine parts (a) and (b) into an algorithm that finds the shortest paths between every pair
of vertices in the graph. For full credit, your algorithm should run in O(V 3) time.

The lecture notes (along with most algorithms textbooks and Wikipedia) describe a dynamic
programming algorithm due to Floyd and Warshall that computes all shortest paths in O(V 3) time.
This is not that algorithm.

2

