1. **Reservoir sampling** is a method for choosing an item uniformly at random from an arbitrarily long stream of data; for example, the sequence of packets that pass through a router, or the sequence of IP addresses that access a given web page. Like all data stream algorithms, this algorithm must process each item in the stream quickly, using very little memory.

```plaintext
GETONESAMPLE(stream S):
    ℓ ← 0
    while S is not done
        x ← next item in S
        ℓ ← ℓ + 1
        if RANDOM(ℓ) = 1
            sample ← x  (★)
    return sample
```

At the end of the algorithm, the variable \(ℓ \) stores the length of the input stream \(S \); this number is not known to the algorithm in advance. If \(S \) is empty, the output of the algorithm is (correctly!) undefined.

Consider an arbitrary non-empty input stream \(S \), and let \(n \) denote the (unknown) length of \(S \).

(a) Prove that the item returned by \(\text{GETONESAMPLE}(S) \) is chosen uniformly at random from \(S \).

(b) What is the exact expected number of times that \(\text{GETONESAMPLE}(S) \) executes line (★)?

(c) What is the exact expected value of \(ℓ \) when \(\text{GETONESAMPLE}(S) \) executes line (★) for the last time?

(d) What is the exact expected value of \(ℓ \) when either \(\text{GETONESAMPLE}(S) \) executes line (★) for the second time (or the algorithm ends, whichever happens first)?

(e) Describe and analyze an algorithm that returns a subset of \(k \) distinct items chosen uniformly at random from a data stream of length at least \(k \). The integer \(k \) is given as part of the input to your algorithm. Prove that your algorithm is correct.

For example, if \(k = 2 \) and the stream contains the sequence \(⟨ ♠, ♥, ♦, ♣ ⟩ \), the algorithm would return the subset \(\{ ♠, ♣ \} \) with probability \(1/6 \).
(a) Prove that the item returned by `GETONESAMPLE(S)` is chosen uniformly at random from S.

(b) What is the exact expected number of times that `GETONESAMPLE(S)` executes line (\star)?

(c) What is the exact expected value of ℓ when `GETONESAMPLE(S)` executes line (\star) for the last time?

(d) What is the exact expected value of ℓ when either `GETONESAMPLE(S)` executes line (\star) for the second time (or the algorithm ends, whichever happens first)?

(e) Describe and analyze an algorithm that returns a subset of k distinct items chosen uniformly at random from a data stream of length at least k. The integer k is given as part of the input to your algorithm. Prove that your algorithm is correct.