
CS/ECE 374 A] Spring 2018
Y Homework 4 Z

Due Tuesday, February 27, 2018 at 8pm

1. At the end of the second act of the action blockbuster Fast and Impossible XIII¾: Guardians
of Expendable Justice Reloaded, the villainous Dr. Metaphor hypnotizes the entire Hero
League/Force/Squad, arranges them in a long line at the edge of a cliff, and instructs each
hero to shoot the closest taller heroes to their left and right, at a prearranged signal.

Suppose we are given the heights of all n heroes, in clockwise order around the circle,
in an array Ht[1 .. n]. (To avoid salary arguments, the producers insisted that no two
heroes have the same height.) Then we can compute the Left and Right targets of each
hero in O(n2) time using the following algorithm.

WhoTargetsWhom(Ht[1 .. n]):
for j← 1 to n
〈〈Find the left target L[j] for hero j〉〉
L[j]← None
for i← 1 to j − 1

if Ht[i]> Ht[j]
L[j]← i

〈〈Find the right target R[j] for hero j〉〉
R[j]← None
for k← n down to j + 1

if Ht[k]> Ht[j]
R[j]← k

return L[1 .. n], R[1 .. n]

(a) Describe a divide-and-conquer algorithm that computes the output of WhoTargets-
Whom in O(n log n) time.

(b) Prove that at least bn/2c of the n heroes are targets. That is, prove that the output
arrays R[0 .. n− 1] and L[0 .. n− 1] contain at least bn/2c distinct values (other than
None).

(c) Alas, Dr. Metaphor’s diabolical plan is successful. At the prearranged signal, all the
heroes simultaneously shoot their targets, and all targets fall over the cliff, apparently
dead. Metaphor repeats his dastardly experiment over and over; after each massacre,
he forces the remaining heroes to choose new targets, following the same algorithm,
and then shoot their targets at the next signal. Eventually, only the shortest member
of the Hero Crew/Alliance/Posse is left alive.1

Describe an algorithm that computes the number of rounds before Dr. Metaphor’s
deadly process finally ends. For full credit, your algorithm should run in O(n) time.

1In the thrilling final act, Retcon the Squirrel, the last surviving member of the Hero Team/Group/Society, saves
everyone by traveling back in time and retroactively replacing the other n− 1 heroes with lifelike balloon sculptures.

CS/ECE 374A Homework 4 (due February 27) Spring 2018

2. Describe and analyze a recursive algorithm to reconstruct an arbitrary binary tree, given
its preorder and inorder node sequences as input.

The input to your algorithm is a pair of arrays Pre[1 .. n] and In[1 .. n], each containing
a permutation of the same set of n distinct symbols. Your algorithm should return an
n-node binary tree whose nodes are labeled with those n symbols (or an error code if no
binary tree is consistent with the input arrays). You solved an instance of this problem in
Homework 0.

3. Suppose we are given a set S of n items, each with a value and a weight. For any element
x ∈ S, we define two subsets:

• S<x is the set of all elements of S whose value is smaller than the value of x .

• S>x is the set of all elements of S whose value is larger than the value of x .

For any subset R ⊆ S, let w(R) denote the sum of the weights of elements in R. The
weighted median of R is any element x such that w(S<x)≤ w(S)/2 and w(S>x)≤ w(S)/2.

Describe and analyze an algorithm to compute the weighted median of a given weighted
set in O(n) time. Your input consists of two unsorted arrays S[1 .. n] and W [1 .. n], where
for each index i, the ith element has value S[i] and weight W [i]. You may assume that all
values are distinct and all weights are positive.

[Hint: Use ormodify the linear-time selection algorithm described in class on Thursday.]

2

CS/ECE 374A Homework 4 (due February 27) Spring 2018

Solved problem

4. Suppose we are given two sets of n points, one set {p1, p2, . . . , pn} on the line y = 0 and
the other set {q1, q2, . . . , qn} on the line y = 1. Consider the n line segments connecting
each point pi to the corresponding point qi. Describe and analyze a divide-and-conquer
algorithm to determine how many pairs of these line segments intersect, in O(n log n) time.
See the example below.

q1 q4 q7 q3q5 q2 q6

p1 p4p7 p3 p5p2p6
Seven segments with endpoints on parallel lines, with 11 intersecting pairs.

Your input consists of two arrays P[1 .. n] and Q[1 .. n] of x-coordinates; you may
assume that all 2n of these numbers are distinct. No proof of correctness is necessary, but
you should justify the running time.

Solution: We begin by sorting the array P[1 .. n] and permuting the array Q[1 .. n]
to maintain correspondence between endpoints, in O(n log n) time. Then for any
indices i < j, segments i and j intersect if and only if Q[i]>Q[j]. Thus, our goal is
to compute the number of pairs of indices i < j such that Q[i]>Q[j]. Such a pair is
called an inversion.

We count the number of inversions in Q using the following extension of mergesort;
as a side effect, this algorithm also sorts Q. If n < 100, we use brute force in O(1)
time. Otherwise:

• Color the elements in the Left half Q[1 .. bn/2c] bLue.
• Color the elements in the Right half Q[bn/2c+ 1 .. n] Red.
• Recursively count inversions in (and sort) the blue subarray Q[1 .. bn/2c].
• Recursively count inversions in (and sort) the red subarray Q[bn/2c+ 1 .. n].
• Count red/blue inversions as follows:

– Merge the sorted subarrays Q[1 .. n/2] and Q[n/2+1 .. n], maintaining the
element colors.

– For each blue element Q[i] of the now-sorted array Q[1 .. n], count the
number of smaller red elements Q[j].

The last substep can be performed in O(n) time using a simple for-loop:

3

CS/ECE 374A Homework 4 (due February 27) Spring 2018

CountRedBlue(A[1 .. n]):
count← 0
total← 0
for i← 1 to n

if A[i] is red
count← count+ 1

else
total← total+ count

return total

Merge and CountRedBlue each run in O(n) time. Thus, the running time of our
inversion-counting algorithm obeys the mergesort recurrence T (n) = 2T (n/2)+O(n).
(We can safely ignore the floors and ceilings in the recursive arguments.) We conclude
that the overall running time of our algorithm is O(n log n), as required.

Rubric: This is enough for full credit.

In fact, we can execute the third merge-and-count step directly by modifying
the Merge algorithm, without any need for “colors”. Here changes to the standard
Merge algorithm are indicated in red.

MergeAndCount(A[1 .. n], m):
i← 1; j← m+ 1; count← 0; total← 0
for k← 1 to n

if j > n
B[k]← A[i]; i← i + 1; total← total+ count

else if i > m
B[k]← A[j]; j← j + 1; count← count+ 1

else if A[i]< A[j]
B[k]← A[i]; i← i + 1; total← total+ count

else
B[k]← A[j]; j← j + 1; count← count+ 1

for k← 1 to n
A[k]← B[k]

return total

We can further optimize MergeAndCount by observing that count is always
equal to j−m−1, so we don’t need an additional variable. (Proof: Initially, j = m+1
and count= 0, and we always increment j and count together.)

4

CS/ECE 374A Homework 4 (due February 27) Spring 2018

MergeAndCount2(A[1 .. n], m):
i← 1; j← m+ 1; total← 0
for k← 1 to n

if j > n
B[k]← A[i]; i← i + 1; total← total+ j −m − 1

else if i > m
B[k]← A[j]; j← j + 1

else if A[i]< A[j]
B[k]← A[i]; i← i + 1; total← total+ j −m − 1

else
B[k]← A[j]; j← j + 1

for k← 1 to n
A[k]← B[k]

return total

MergeAndCount2 still runs in O(n) time, so the overall running time is still
O(n log n), as required. �

Rubric: 10 points = 2 for base case + 3 for divide (split and recurse) + 3 for conquer (merge
and count) + 2 for time analysis. Max 3 points for a correct O(n2)-time algorithm. This is
neither the only way to correctly describe this algorithm nor the only correct O(n log n)-time
algorithm. No proof of correctness is required.

Notice that each boxed algorithm is preceded by an English description of the task that
algorithm performs. Omitting these descriptions is a Deadly Sin.

5

