
Algorithms
Jeff Erickson

December 26, 2014

http://www.cs.illinois.edu/~jeffe/teaching/algorithms/

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cs.illinois.edu/~jeffe/teaching/algorithms/


© Copyright 1999–2015 Jeff Erickson. Last update December 26, 2014.

This work may be freely copied and distributed in any medium.
It may not be sold for more than the actual cost of reproduction, storage, or transmittal.

This work is available under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
For license details, see http://creativecommons.org/licenses/by-nc-sa/4.0/.

For the most recent edition, see http://www.cs.illinois.edu/~jeffe/teaching/algorithms/.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cs.illinois.edu/~jeffe/teaching/algorithms/


Shall I tell you, my friend, how you will come to understand it?
Go and write a book on it.

— Henry Home, Lord Kames (1696–1782), to Sir Gilbert Elliot

The individual is always mistaken. He designed many things, and drew in other
persons as coadjutors, quarrelled with some or all, blundered much, and some-
thing is done; all are a little advanced, but the individual is always mistaken. It
turns out somewhat new and very unlike what he promised himself.

— Ralph Waldo Emerson, “Experience”, Essays, Second Series (1844)

Theoretical lectures should neither be a reproduction of
nor a comment upon any text-book, however satisfactory.
The student’s notebook should be his principal text-book.

— André Weil, “Mathematical Teaching in Universities” (1954)

About These Notes

These are lecture notes that I wrote for various algorithms classes at the University of
Illinois at Urbana-Champaign, which I have taught on average once a year since January
1999. The most recent revision of these notes (or nearly so) is available online at http:
//www.cs.illinois.edu/~jeffe/teaching/algorithms/, along with a near-complete archive of all
my past homeworks and exams. Whenever I teach an algorithms class, I revise, update, and
sometimes cull these notes as the course progresses, so you may find more recent versions on the
web page of whatever course I am currently teaching.

With few exceptions, each of these “lecture notes” contains far too much material to cover in
a single lecture. In a typical 75-minute class period, I cover about 4 or 5 pages of material—a
bit more if I’m teaching graduate students than undergraduates. Moreover, I can only cover at
most two-thirds of these notes in any capacity in a single 15-week semester. Your mileage may
vary! (Arguably, that means that as I continue to add material, the label “lecture notes” becomes
less and less accurate.) I teach algorithms at multiple leaves; different courses cover different
but overlapping subsets of this material. The ordering of the notes is mostly consistent with my
lower-level classes, with more advanced material (indicated by ∗stars) inserted near the more
basic material it builds on. The actual material doesn’t permit a strict linear ordering, but I’ve
tried to keep forward references to a minimum.

About the Exercises

Each note ends with several exercises, most of which have been used at least once in a
homework assignment, discussion section, or exam. ?Stars indicate more challenging problems;
many of these starred problems appeared on qualifying exams for the algorithms PhD students
at UIUC. A small number of really hard problems are marked with a Ælarger star; one or two
open problems are indicated byÆenormous stars. Many of these exercises were contributed by
my amazing teaching assistants:

Aditya Ramani, Akash Gautam, Alex Steiger, Alina Ene, Amir Nayyeri, Asha
Seetharam, Ashish Vulimiri, Ben Moseley, Brad Sturt, Brian Ensink, Chao Xu,
Chris Neihengen, Connor Clark, Dan Bullok, Dan Cranston, Daniel Khashabi, David
Morrison, Johnathon Fischer, Junqing Deng, Ekta Manaktala, Erin Wolf Chambers,

i

http://www.cs.illinois.edu/~jeffe/teaching/algorithms/
http://www.cs.illinois.edu/~jeffe/teaching/algorithms/


Gail Steitz, Gio Kao, Grant Czajkowski, Hsien-Chih Chang, Igor Gammer, John Lee,
Kent Quanrud, Kevin Milans, Kevin Small, Kyle Fox, Kyle Jao, Lan Chen, Michael
Bond, Mitch Harris, Naveen Arivazhagen, Nick Bachmair, Nick Hurlburt, Nirman Ku-
mar, Nitish Korula, Rachit Agarwal, Reza Zamani-Nasab, Rishi Talreja, Rob McCann,
Shripad Thite, Subhro Roy, Tana Wattanawaroon, and Yasu Furakawa.

Please do not ask me for solutions to the exercises. If you are a student, seeing the
solution will rob you of the experience of solving the problem yourself, which is the only way to
learn the material. If you are an instructor, you shouldn’t assign problems that you can’t solve
yourself! (Because I don’t always follow my own advice, I sometimes assign buggy problems, but
I’ve tried to keep these out of the lecture notes themselves.)

“Johnny’s” multi-colored crayon homework was found under the TA office door among the
other Fall 2000 Homework 1 submissions.

Acknowledgments

All of this material draws heavily on the creativity, wisdom, and experience of thousands
of algorithms students, teachers, and researchers. In particular, I am immensely grateful to
the more than 2000 Illinois students who have used these notes as a primary reference, offered
useful (if sometimes painful) criticism, and suffered through some truly awful first drafts. I’m
also grateful for the contributions and feedback from the teaching assistants listed above. Finally,
thanks to many colleagues at Illinois and elsewhere who have used these notes in their own
classes and have sent helpful feedback and bug reports.

Naturally, these notes owe a great deal to the people who taught me this algorithms stuff in
the first place: Bob Bixby and Michael Pearlman at Rice; David Eppstein, Dan Hirshberg, and
George Lueker at UC Irvine; and Abhiram Ranade, Dick Karp, Manuel Blum, Mike Luby, and
Raimund Seidel at UC Berkeley. I’ve also been helped tremendously by many discussions with
faculty colleagues at Illinois—Cinda Heeren, Edgar Ramos, Herbert Edelsbrunner, Jason Zych,
Lenny Pitt, Madhu Parasarathy, Mahesh Viswanathan, Margaret Fleck, Shang-Hua Teng, Steve
LaValle, and especially Chandra Chekuri, Ed Reingold, and Sariel Har-Peled. I stole the first
iteration of the overall course structure, and the idea to write up my own lecture notes, from
Herbert Edelsbrunner.

The picture of the Spirit of Arithmetic from Margarita Philosophica at the end of the
introductory notes was copied from Wikimedia Commons; the original 1508 woodcut is in the
public domain. The map on the first page of the maxflow/mincut notes was copied from Lex
Schrijver’s excellent survey “On the history of combinatorial optimization (till 1960)”; the original
map is from a US Government work in the public domain. Several of Randall Munroe’s xkcd
comic strips are reproduced under a Creative Commons License. One well-known frame from
Allie Brosh’s comic strip Hyperbole and a Half appears twice without permission. (Hire all the
lawyers?)

I drew all other figures in the notes myself using OmniGraffle, except for a few older
figures that I drew with (shudder) xfig. In particular, the square-Kufi rendition of the name
“al-Khwārizmı̄” on the cover is my own.

ii



Prerequisites

These notes assume the reader has mastered the material covered in the first two years
of a strong undergraduate computer science curriculum, and that they have the intellectual
maturity to recognize and repair any remaining gaps in their mastery. In particular, for most
students, these notes are not suitable for a first course in data structures and algorithms. Specific
prerequisites include the following:

• Discretemathematics: High-school algebra, logarithm identities, naive set theory, Boolean
algebra, first-order predicate logic, sets, functions, equivalences, partial orders, modular
arithmetic, recursive definitions, trees (as abstract objects, not data structures), graphs.

• Proof techniques: direct, indirect, contradiction, exhaustive case analysis, and induction
(especially “strong” and “structural” induction). Lecture 0 requires induction, and whenever
Lecture n− 1 requires induction, so does Lecture n.

• Elementary discrete probability: uniform vs non-uniform distributions, expectation,
conditional probability, linearity of expectation, independence.

• Iterative programming concepts: variables, conditionals, loops, indirection (addresses/
pointers/references), subroutines, recursion. I do not assume fluency in any particular
programming language, but I do assume experience with at least one language that
supports indirection and recursion.

• Fundamental abstract data types: scalars, sequences, vectors, sets, stacks, queues,
priority queues, dictionaries.

• Fundamental data structures: arrays, linked lists (single and double, linear and circular),
binary search trees, at least one balanced binary search tree (AVL trees, red-black trees,
treaps, skip lists, splay trees, etc.), binary heaps, hash tables, and most importantly, the
difference between this list and the previous list.

• Fundamental algorithmic problems: sorting, searching, enumeration.

• Fundamental algorithms: elementary arithmetic, sequential search, binary search,
comparison-based sorting (selection, insertion, merge-, heap-, quick-), radix sort, pre-
/post-/inorder tree traversal, breadth- and depth-first search (at least in trees), and most
importantly, the difference between this list and the previous list.

• Basic algorithm analysis: Asymptotic notation (o, O, Θ, Ω, ω), translating loops into
sums and recursive calls into recurrences, evaluating simple sums and recurrences.

• Mathematical maturity: facility with abstraction, formal (especially recursive) defini-
tions, and (especially inductive) proofs; writing and following mathematical arguments;
recognizing and avoiding syntactic, semantic, and/or logical nonsense.

Two notes on prerequisite material appear as an appendix to the main lecture notes: one
on proofs by induction, and one on solving recurrences. The main lecture notes also briefly
cover some prerequisite material, but more as a reminder than a good introduction. For a more
thorough overview, I strongly recommend the following:

• Margaret M. Fleck. Building Blocks for Theoretical Computer Science, unpublished textbook,
most recently revised January 2013.

• Eric Lehman, F. Thomson Leighton, and Albert R. Meyer. Mathematics for Computer Science,
unpublished lecture notes, most recent (public) revision January 2013.

iii

http://www.cs.uiuc.edu/~mfleck/building-blocks/
http://opendatastructures.org/LLM.pdf


• Pat Morin. Open Data Structures, most recently revised June 2014 (edition 0.1G). A
permanently free open-source textbook, which Pat maintains and regularly updates.

Additional References

I strongly encourage students (and other readers) not to restrict themselves to my notes
or any other single textual reference. Authors and readers bring their own perspectives to the
material; no instructor “clicks” with every student, or even every very strong student. Finding the
author that most effectively gets their intuition into your head take some effort, but that effort
pays off handsomely in the long run. The following references have been particularly valuable to
me as sources of inspiration, intuition, examples, and problems.

• Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974. (I used this textbook as an undergraduate at Rice and
again as a masters student at UC Irvine.)

• Thomas Cormen, Charles Leiserson, Ron Rivest, and Cliff Stein. Introduction to Algorithms,
third edition. MIT Press/McGraw-Hill, 2009. (I used the first edition as a teaching assistant
at Berkeley.)

• Sanjoy Dasgupta, Christos H. Papadimitriou, and Umesh V. Vazirani. Algorithms. McGraw-
Hill, 2006.

• Jeff Edmonds. How to Think about Algorithms. Cambridge University Press, 2008.

• Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

• Michael T. Goodrich and Roberto Tamassia. Algorithm Design: Foundations, Analysis, and
Internet Examples. John Wiley & Sons, 2002.

• John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and
Computation, first edition. Addison-Wesley, 1979. (I used this textbook as an undergraduate
at Rice. Don’t bother with the later editions.)

• Jon Kleinberg and Éva Tardos. Algorithm Design. Addison-Wesley, 2005.

• Donald Knuth. The Art of Computer Programming, volumes 1–4A. Addison-Wesley, 1997 and
2011. (My parents gave me the first three volumes for Christmas when I was 14, but I didn’t
actually read them until much later.)

• Udi Manber. Introduction to Algorithms: A Creative Approach. Addison-Wesley, 1989. (I used
this textbook as a teaching assistant at Berkeley.)

• Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

• Ian Parberry. Problems on Algorithms. Prentice-Hall, 1995 (out of print). Available from
http://www.eng.unt.edu/ian/books/free/license.html after promising to make a small
charitable donation. Please honor your promise.

• Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003.
(Just in case you thought Knuth was the only author who could stun oxen.)

• Robert Sedgewick and Kevin Wayne. Algorithms. Addison-Wesley, 2011.

iv

http://opendatastructures.org/
http://www.eng.unt.edu/ian/books/free/license.html
http://www.eng.unt.edu/ian/books/free/license.html


• Jeffrey O. Shallit. A Second Course in Formal Languages and Automata Theory. Cambridge
University Press, 2008.

• Michael Sipser. Introduction to the Theory of Computation, third edition. Cengage Learning,
2012. Recommended if and only if you don’t have to pay for it.

• Robert Endre Tarjan. Data Structures and Network Algorithms. SIAM, 1983.

• Robert J. Vanderbei. Linear Programming: Foundations and Extensions. Springer, 2001.

• Class notes from my own algorithms classes at Berkeley, especially those taught by Dick
Karp and Raimund Seidel.

• Lecture notes, slides, homeworks, exams, video lectures, research papers, blog posts, and
full-fledged MOOCs made freely available on the web by innumerable colleagues around
the world.

Caveat Lector!

Despite several rounds of revision, these notes still contain mnay mistakes, errors, bugs,
gaffes, omissions, snafus, kludges, typos, mathos, grammaros, thinkos, brain farts, nonsense,
garbage, cruft, junk, and outright lies, all of which are entirely Steve Skiena’s fault. I revise
and update these notes every time I teach an algorithms class, so please let me know if you find a
bug. (Steve is unlikely to care.) I regularly award extra credit to students who post explanations
and/or corrections of errors in the lecture notes. If I’m not teaching your class, encourage your
instructor to set up a similar extra-credit scheme, and forward the bug reports to Steve me!

Of course, any other feedback is also welcome!

Enjoy!

— Jeff

It is traditional for the author to magnanimously accept the blame for whatever deficien-
cies remain. I don’t. Any errors, deficiencies, or problems in this book are somebody
else’s fault, but I would appreciate knowing about them so as to determine who is to
blame.

— Steven S. Skiena, The Algorithm Design Manual (1997)

v


