
The problem is that we attempt to solve the simplest questions cleverly,
thereby rendering them unusually complex.
One should seek the simple solution.

— Anton Pavlovich Chekhov (c. 1890)

I love deadlines. I like the whooshing sound they make as they fly by.
— Douglas Adams, The Salmon of Doubt (2002)

E
Matroids

[Read Chapter 4 and 7 first.]
Status: Needs significant revision or deletion

Merge into greedy notes as hardsection?

E.1 Definitions

Many problems that can be correctly solved by greedy algorithms can be described in
terms of an abstract combinatorial object called a matroid. Matroids were first described
in 1935 by the mathematician Hassler Whitney as a combinatorial generalization of linear
independence of vectors—“matroid” means “something sort of like a matrix”.

A matroid (S, I) consists of a finite ground set S and a collection I of subsets of X
that satisfies three axioms:

• Non-emptiness: The empty set is in I. (Thus, I is not itself empty.)

• Heredity: If I contains a subset X ⊆ S, then I contains every subset of X .

• Exchange: If X and Y are two sets in I where |X |> |Y |, then Y ∪ {x} ∈ I for some
element x ∈ X \ Y .

© 2018 Jeff Erickson http://algorithms.wtf 1

https://creativecommons.org/licenses/by-nc-sa/4.0/
http://algorithms.wtf

E. MATROIDS

The subsets in I are typically called independent sets; for example, we would say that
any subset of an independent set is independent. An independent set is called a basis
of the matroid if it is not a proper subset of another independent set. The exchange
property implies that every basis of a matroid has the same cardinality. The rank of a
subset X of the ground set is the size of the largest independent subset of X . A subset
of S that is not in I is called dependent (surprise, surprise). Finally, a dependent set is
called a circuit if every proper subset is independent.

Most of this terminology is justified by Whitney’s original example:

• Linear matroid: Let A be any n×m matrix. A subset I ⊆ {1,2, . . . , n} is independent
if and only if the corresponding subset of columns of A is linearly independent.

The heredity property follows directly from the definition of linear independence; the
exchange property is implied by an easy dimensionality argument. A basis in any linear
matroid is also a basis (in the linear-algebra sense) of the vector space spanned by
the columns of A. Similarly, the rank of a set of indices is precisely the rank (in the
linear-algebra sense) of the corresponding set of column vectors.

Here are several other examples of matroids; some of these we will see again later. I
will leave the proofs that these are actually matroids as exercises for the reader.

• Uniform matroid Uk,n: A subset X ⊆ {1, 2, . . . , n} is independent if and only if
|X | ≤ k. Any subset of {1,2, . . . , n} of size k is a basis; any subset of size k+ 1 is a
circuit.

• Graphic/cycle matroid M(G): Let G = (V, E) be an arbitrary undirected graph. A
subset of E is independent if it defines an acyclic subgraph of G. A basis in the graphic
matroid is a spanning tree of G; a circuit in this matroid is a cycle in G.

• Cographic/cocycle matroid M∗(G): Let G = (V, E) be an arbitrary undirected
graph. A subset I ⊆ E is independent if the complementary subgraph (V, E \ I) of G
is connected. A basis in this matroid is the complement of a spanning tree; a circuit
in this matroid is a cocycle—a minimal set of edges that disconnects the graph.

• Matching matroid: Let G = (V, E) be an arbitrary undirected graph. A subset I ⊆ V
is independent if there is a matching in G that covers I .

• Disjoint path matroid: Let G = (V, E) be an arbitrary directed graph, and let s be a
fixed vertex of G. A subset I ⊆ V is independent if and only if there are edge-disjoint
paths from s to each vertex in I .

Now suppose each element of the ground set of a matroid M is given an arbitrary
non-negative weight. The matroid optimization problem is to compute a basis with
maximum total weight. For example, ifM is the cycle matroid for a graph G, the matroid
optimization problem asks us to find the maximum spanning tree of G. Similarly, if M is
the cocycle matroid for G, the matroid optimization problem seeks (the complement of)
the minimum spanning tree.

2

E.1. Definitions

The following natural greedy strategy computes a basis for any weighted matroid
(S, I), where the ground set S is represented by an array S[1 .. n], and the weights of
ground elements are represented by another array w[1 .. n].

GreedyBasis(S[1 .. n], I, w[1 .. n]):
sort S in decreasing order of weight w
G←∅
for i← 1 to n

if G ∪ {S[i]} ∈ I

add S[i] to G
return G

Suppose we can test in F(n) time whether a given subset X ⊂ S is independent. Then
this algorithm runs in O(n log n+ n · F(n)) time.

Theorem E.1. For anymatroidM= (S, I) and anyweight function w,GreedyBasis(S, I, w)
returns a maximum-weight basis of M.

Proof: We use a standard exchange argument. Let G = {g1, g2, . . . , gk} be the indepen-
dent set returned by GreedyBasis(S, I, w). If any other element of S could be added
to G to obtain a larger independent set, the greedy algorithm would have added it.
Thus, G is a basis.

For purposes of deriving a contradiction, suppose there is an independent set
H = {h1, h2, . . . , h`} such that

k
∑

i=1

w(gi)<
∑̀

j=1

w(hi).

Without loss of generality, assume that H is a basis. The exchange property now implies
that k = `.

Now suppose the elements of G and H are indexed in order of decreasing weight.
Let i be the smallest index such that w(gi)< w(hi), and consider the independent sets

Gi−1 = {g1, g2, . . . , gi−1} and Hi = {h1, h2, . . . , hi−1, hi}.

By the exchange property, there is some element h j ∈ Hi such that Gi−1 ∪ {h j} is an
independent set. We have w(h j)≥ w(hi)> w(gi). Thus, the greedy algorithm considers
and rejects the heavier element h j before it considers the lighter element gi . But this is
impossible—the greedy algorithm accepts elements in decreasing order of weight. �

We now immediately have a correct greedy optimization algorithm for any matroid.
Returning to our examples:
• Linear matroid: Given a matrix A, compute a subset of vectors of maximum total

weight that span the column space of A.

3

E. MATROIDS

• Uniform matroid: Given a set of weighted objects, compute its k largest elements.

• Cycle matroid: Given a graph with weighted edges, compute its maximum spanning
tree. In this setting, the greedy algorithm is better known as Kruskal’s algorithm.

• Cocycle matroid: Given a graph with weighted edges, compute its minimum spanning
tree.

• Matching matroid: Given a graph, determine whether it has a perfect matching.

• Disjoint path matroid: Given a directed graph with a special vertex s, find the largest
set of edge-disjoint paths from s to other vertices.

The exchange condition for matroids turns out to be crucial for the success of this
algorithm. A subset system is a finite collection S of finite sets that satisfies the heredity
condition—If X ∈ S and Y ⊆ X , then Y ∈ S—but not necessarily the exchange condition.

Theorem E.2. For any subset system S that is not a matroid, there is a weight function
w such that GreedyBasis(S, w) does not return a maximum-weight set in S.

Proof: Let X and Y be two sets in S that violate the exchange property—|X |> |Y |, but
for any element x ∈ X \ Y , the set Y ∪ {x} is not in S. Let m= |Y |. We define a weight
function as follows:

• Every element of Y has weight m+ 2.

• Every element of X \ Y has weight m+ 1.

• Every other element of the ground set has weight zero.

With these weights, the greedy algorithm will consider and accept every element of Y ,
then consider and reject every element of X , and finally consider all the other elements.
The algorithm returns a set with total weight m(m+ 2) = m2 + 2m. But the total weight
of X is at least (m+ 1)2 = m2 + 2m+ 1. Thus, the output of the greedy algorithm is not
the maximum-weight set in S. �

Recall the Applied Chaos scheduling problem considered in Chapter 4. There is a
natural subset system associated with this problem: A set of classes is independent if
and only if no two classes overlap. (This is just the graph-theory notion of “independent
set”!) This subset system is not a matroid, because there can be maximal independent
sets of different sizes, which violates the exchange property. If we consider a weighted
version of the class scheduling problem, where each class is worth a different number of
hours, Theorem ?? implies that the greedy algorithm will not always find the optimal
schedule. (In fact, there’s an easy counterexample with only two classes!) However,
Theorem ?? does not contradict the correctness of the greedy algorithm for the original
unweighted problem; that problem uses a particularly lucky choice of weights (all equal).

4

E.2. Scheduling with Deadlines

E.2 Scheduling with Deadlines

Suppose you have n tasks to complete in n days; each task requires your attention for
a full day. Each task comes with a deadline, the last day by which the job should be
completed, and a penalty that you must pay if you do not complete each task by its
assigned deadline. What order should you perform your tasks in to minimize the total
penalty you must pay?

More formally, you are given an array D[1 .. n] of deadlines an array P[1 .. n] of
penalties. Each deadline D[i] is an integer between 1 and n, and each penalty P[i] is a
non-negative real number. A schedule is a permutation of the integers {1,2, . . . , n}. The
scheduling problem asks you to find a schedule π that minimizes the following cost:

cost(π) :=
n
∑

i=1

P[i] · [π(i)> D[i]].

This doesn’t look anything like a matroid optimization problem. For one thing,
matroid optimization problems ask us to find an optimal set; this problem asks us to find
an optimal permutation. Surprisingly, however, this scheduling problem is actually a
matroid optimization in disguise! For any schedule π, call tasks i such that π(i)> D[i]
late, and all other tasks on time. The following trivial observation reveals the underlying
matroid structure.

The cost of a schedule is determined by the subset of tasks that are on time.

Call a subset X of the tasks realistic if there is a schedule π in which every task in X
is on time. We can precisely characterize the realistic subsets as follows. Let X (t) denote
the subset of tasks in X whose deadline is on or before t:

X (t) := {i ∈ X | D[i]≤ t}.

In particular, X (0) =∅ and X (n) = X .

Lemma E.3. Let X ⊆ {1,2, . . . , n} be an arbitrary subset of the n tasks. X is realistic if
and only if |X (t)| ≤ t for every integer t.

Proof: Let π be a schedule in which every task in X is on time. Let it be the tth task
in X to be completed. On the one hand, we have π(it)≥ t, since otherwise, we could
not have completed t − 1 other jobs in X before it . On the other hand, π(it) ≤ D[i],
because it is on time. We conclude that D[it] ≥ t, which immediately implies that
|X (t)| ≤ t.

Now suppose |X (t)| ≤ t for every integer t. If we perform the tasks in X in increasing
order of deadline, then we complete all tasks in X with deadlines t or less by day t. In
particular, for any i ∈ X , we perform task i on or before its deadline D[i]. Thus, X is
realistic. �

5

E. MATROIDS

We can now define a canonical schedule for any set X as follows: execute the tasks
in X in increasing deadline order, and then execute the remaining tasks in any order. The
previous proof implies that a set X is realistic if and only if every task in X is on time in
the canonical schedule for X . Thus, our scheduling problem can be rephrased as follows:

Find a realistic subset X such that
∑

i∈X P[i] is maximized.

So we’re looking for optimal subsets after all!

Lemma E.4. The collection of realistic sets of jobs forms a matroid.

Proof: The empty set is vacuously realistic, and any subset of a realistic set is clearly
realistic. Thus, to prove the lemma, it suffices to show that the exchange property holds.
Let X and Y be realistic sets of jobs with |X |> |Y |.

Let t∗ be the largest integer such that |X (t∗)| ≤ |Y (t∗)|. This integer must exist,
because |X (0)| = 0 ≤ 0 = |Y (0)| and |X (n)| = |X | > |Y | = |Y (n)|. By definition of t∗,
there are more tasks with deadline t∗ + 1 in X than in Y . Thus, we can choose a task j
in X \ Y with deadline t∗ + 1; let Z = Y ∪ { j}.

Let t be an arbitrary integer. If t ≤ t∗, then |Z(t)|= |Y (t)| ≤ t, because Y is realistic.
On the other hand, if t > t∗, then |Z(t)| = |Y (t)|+ 1 ≤ |X (t)| < t by definition of t∗

and because X is realistic. The previous lemma now implies that Z is realistic. This
completes the proof of the exchange property. �

This lemma implies that our scheduling problem is actually a matroid optimization
problem, so the greedy algorithm finds the optimal schedule.

GreedySchedule(D[1 .. n], P[1 .. n]):
Sort P in increasing order, and permute D to match
j← 0
for i← 1 to n

X [j + 1]← i
if X [1 .. j + 1] is realistic

j← j + 1
return the canonical schedule for X [1 .. j]

To turn this outline into a real algorithm, we need a procedure to test whether a
given subset of jobs is realistic. Lemma 9 immediately suggests the following strategy to
answer this question in O(n) time.

6

Exercises

Realistic?(X [1 .. m], D[1 .. n]):
〈〈X is sorted by increasing deadline: i ≤ j =⇒ D[X [i]]≤ D[X [j]]〉〉
N ← 0
j← 0
for t ← 1 to n

if D[X [j]] = t
N ← N + 1
j← j + 1

〈〈Now N = |X (t)|〉〉
if N > t

return False
return True

If we use this subroutine, GreedySchedule runs in O(n2) time. By using some
appropriate data structures, the running time can be reduced to O(n log n); details are
left as an exercise for the reader.

Exercises

1. Prove that for any graph G, the “graphic matroid” M(G) is in fact a matroid. (This
problem is really asking you to prove that Kruskal’s algorithm is correct!)

2. Prove that for any graph G, the “cographic matroid” M∗(G) is in fact a matroid.

©3. Prove that for any graph G, the “matching matroid” of G is in fact a matroid. [Hint:
What is the symmetric difference of two matchings?]

©4. Prove that for any directed graph G and any vertex s of G, the resulting “disjoint
path matroid” of G is in fact a matroid. [Hint: This question is much easier if you’re
already familiar with maximum flows.]

5. Let G be an undirected graph. A set of cycles {c1, c2, . . . , ck} in G is called redundant
if every edge in G appears in an even number of ci ’s. A set of cycles is independent
if it contains no redundant subset. A maximal independent set of cycles is called a
cycle basis for G.

(a) Let C be any cycle basis for G. Prove that for any cycle γ in G, there is a subset
A⊆ C such that A∩{γ} is redundant. In other words, γ is the ‘exclusive or’ of the
cycles in A.

(b) Prove that the set of independent cycle sets form a matroid.
ª(c) Now suppose each edge of G has a weight. Define the weight of a cycle to be

the total weight of its edges, and the weight of a set of cycles to be the total
weight of all cycles in the set. (Thus, each edge is counted once for every cycle in

7

E. MATROIDS

which it appears.) Describe and analyze an efficient algorithm to compute the
minimum-weight cycle basis in G.

6. Describe a modification of GreedySchedule that runs in O(n log n) time. [Hint:
Store X in an appropriate data structure that supports the operations “Is X ∪ {i}
realistic?” and “Add i to X ” in O(log n) time each.]

© 2018 Jeff Erickson http://algorithms.wtf8

https://creativecommons.org/licenses/by-nc-sa/4.0/
http://algorithms.wtf

