5 Shortest (Homotopic) Paths

In this lecture, we’ll consider a problem that combines both geometry and topology that arises in
VLSI design (or at least did arise in VLSI design in the 1980s). Suppose we have an environment
X that can be modeled as a polygon with holes; this is the area bounded between a simple outer
polygon P, and several disjoint simple polygons or “holes” P, P,,..., Py, each of which lies in
the interior of P;. (Yes, previously we used “polygon” to refer to the boundary, and now we’re
using “polygon with holes” to refer to the area. Welcome to mathematical jargon.)

We are also given a polygonal path 7 in the interior of X. Recall that two paths are homotopic
if one can be continuously deformed to the other within X while keeping both endpoints fixed
at all times. Our problem is to find the shortest path (that is, the path of minimum Euclidean
length) that is homotopic in X to the given path 7.

Although we could reduce to our earlier notion of homotopy by using the vertices of X as point
obstacles, the pictures will be nicer (and the algorithms arguably simpler) if we use X itself as
our underlying space. Our earlier formal definition of homotopy extends directly to this setting:
A homotopy between two paths a and 8 in X is a continuous function h: [0,1] X [0,1] - X
such that the restrictions h(-,0) and h(-, 1) are constant functions, and the restrictions h(0, -) and
h(1,-) are the paths a and f3, respectively.

Throughout this section, n denotes the number of vertices of the environment X, and k denotes
the number of vertices in the input path 7. (Yes, this is reversed from the previous lecture.) Let
s (“source”) and t (“target”) denote the first and last vertices of 7.

5.1 Shortest Paths in Simple Polygons

Let’s start with the topologically trivial case where X is the interior of a simple polygon with no
holes. A strengthening of the Jordan Curve Theorem due to Schonflies theorem implies that
X is homeomorphic to an open circular disk. It follows that any two paths in X with the same
endpoints are homotopic. Thus, we are now looking for the globally shortest path in X between
the endpoints of 7.

The shortest path between two points s and t in a simple polygon P is a polygonal chain, whose
interior vertices lie at concave vertices of P. Imagine a taut rubber band between s to t; the
rubber band will be straight everywhere, except at concave corners that it must wrap around.

Figure 1: The shortest path between two points in a simple polygon

I'll describe an algorithm for this special case as through the topology of the problem were
non-trivial; in particular, even though the output depends only on the endpoints of the input
path 7, I will still use the entire input path to guide my algorithm.

5.2 Triangulations and Dual Graphs

The first step of our shortest-path algorithm is to compute a triangulation of the polygon X. The
sweepline algorithm described in the first lecture computes such a triangulation in O(nlogn)
time.

The (weak) dual graph of a polygon triangulation has a vertex for each triangle and an edge
for each diagonal; two vertices are connected by an edge in the dual graph if and only if the
corresponding triangles share a diagonal. We can draw the dual graph by placing each vertex at
the centroid of its triangle, and drawing each edge as a polygonal path through the midpoint of
the corresponding diagonal.

Lemma: The dual graph of any triangulation of a polygon without holes is a tree.

Proof: Suppose to the contrary that the dual graph contains a cycle C. The image of C in our
drawing is a simple polygon, which I'll also call C (at the risk of confusing the reader).
Any diagonal d whose dual edge is in C crosses C exactly once at the midpoint of d. It
follows that one endpoint of d is inside C and the other endpoint is outside. But that’s
impossible, because the polygon X is connected and does not intersect the dual graph.

Figure 2: The dual graph of a polygon triangulation

5.3 Crossing Sequences

Next we apply the same strategy that we previously used to test whether two paths are homotopic:
we compute the crossing sequence of 7 and reduce it as much as possible. In this setting, the
crossing sequence is the sequence of diagonals crossed by 7, in order along 7.

Figure 3: A path with crossing sequence ABCDDDEFHLKJJKLMNUUTSRQPPQQOOQRSTUVWWWXYYXXYZ

In our earlier homotopy-testing algorithm, we also recorded the sign of each crossing, but

that information is actually redundant in our current setting. Recall from our proof of the
polygon triangulation theorem that any interior diagonal partitions the interior of a poly-
gon into two disjoint subsets. Thus, if 7 crosses the same diagonal multiple times, those
crossings must alternate between positive and negative. It also follows that we can reduce
the crossing sequence by removing arbitrary adjacent pairs of equal symbols; for any such
pair, the corresponding crossings have opposite signs. For example, the crossing sequence
ABCDDDEFHLKJJKLMNUUTSRQPPQQOOQRSTUVWWWXYYXXYZ of the path in the previous figure reduces
to ABCDEFHMNUVWXYZ.

We can compute the crossing sequence of 7 in O(n + k + x) time, where x = O(kn) is the length
of the crossing sequence. Specifically, we find the triangle containing s by brute force; then we
can repeatedly find the next crossing (if any) along the current edge of 7 in O(1) time. Finally,
we can reduce the crossing sequence in O(x) time using left-greedy cancellation.

(The reduced crossing sequence of 7 contains precisely the edge labels that appear an odd
number of times in the unreduced crossing sequence; moreover, these labels appear in the same
order as their first (or last) occurrences in the unreduced crossing sequence.)

5.4 Sleeves

Let x denote the length of the reduced crossing sequence. The reduced crossing sequence defines
a sequence of x + 1 triangles in the triangulation of X, starting with the triangle containing the
first vertex 7 of 7, and ending with the triangle containing the last vertex m;, of 7. The union
of these triangles is called the sleeve of the reduced crossing sequence.

AL
S\

Figure 4: The sleeve of the reduced crossing sequence ABCDEFHMNUVWXYZ

Any path a in X from s to t that leaves the sleeve must cross a diagonal d on the boundary of
the sleeve. The endpoints s to t lie in the same component of X \ d, so the path must cross d
and even number of times. Let p and q be the first and last intersection points along a. The line
segment pq is shorter than the subpath of a from p to g, so a cannot be a shortest path.

Alternatively, the crossing sequence describes a walk in the dual graph of the triangulation,
starting at the vertex dual to the triangle containing s. Reducing the crossing sequence removes
spurs from this walk—subpaths that consist of the same edge twice in a row, necessarily in
opposite directions. Thus, the reduced crossing sequence describes a shortest walk—in fact, the
unique simple path between its endpoints—in the dual graph. This path is also the dual graph of
the induced triangulation of the sleeve.

Note that we do not actually need to construct the sleeve; the sequence of diagonals that the
funnel crosses is exactly the reduced crossing sequence of 7.

5.5 Growing Funnels

To compute the actual shortest path from s to t, we use an algorithm independently discovered
by Tompa (1981), Chazelle (1982), Lee and Preparata (1984), and Leiserson and Maley (1985).
(My presentation most closely follows Lee and Preparata’s.) The funnel of any diagonal d of the
sleeve is the union of the shortest paths the from the source point s to all points on e.

The funnel consists of a polygonal path, called the tail, from s to a point a called the apex, plus a
simple polygon called the fan. The tail may be empty, in which case s is the apex. The fan is
bounded by the diagonal d and two concave chains joining the apex to the endpoints of d. The
shortest path from s to either endpoint of d consists of the tail plus one of the concave chains
bounding the fan. Extending the edges of the concave chains to infinite rays defines a series of
wedges, which subdivide both the fan and the triangle just beyond d.

Figure 5: A typical funnel

Beginning with a single triangle joining s to the first edge in the reduced crossing sequence,
we extend the funnel through the entire sleeve one diagonal at a time. Each diagonal in the
sleeve shares one endpoint with the previous diagonal; suppose we are extending the funnel
from diagonal pq to diagonal gr. Let o be the predecessor of p on the shortest path from s to p.

There are two cases to consider, depending on whether g and r lie on the same sides of the line
through o and p or on opposite sides. We can actually detect this case in O(1) time with a single
orientation test.

* If g and r lie on opposite sides of line op, then the new endpoint r does not lie inside any
wedge of the current fan. We can detect this case in O(1) time with a single orientation
test, and then extend the tunnel in O(1) time by inserting r as a new fan vertex.

Figure 6: Growing the funnel

* If g and r lie on the same side of line op, we contract the funnel, intuitively by moving
p continuously along the boundary edge pr. Each time the moving point crosses the
boundary of a wedge, we remove a vertex from the fan. If the removed vertex is the apex,
the next vertex on that side of the fan (on the shortest path from s to r) becomes the new
apex. We can detect whether the moving point will cross any wedge boundary in O(1) time
using our standard orientation test. Thus, the total time in this case is O(6 + 1), where 6 is

4

the number of vertices deleted from the fan. The total number of deleted vertices cannot
exceed the total number of previously inserted vertices, so the amortized time for this case
is also O(1).

A,k L

Figure 7: Shrinking the funnel

Let yz be the last diagonal in the reduced crossing sequence. To end the algorithm, we treat
the line segment tz as another diagonal and extend the funnel one more time. The shortest
path homotopic to 7 then consists of the tail of the funnel plus the concave chain of the fan
containing t; we can extract this shortest path in O(1) time per edge.

Summing up, we spend O(nlogn) time triangulating X, then O(k + x) = O(nk) time computing
the crossing sequence of 7, then O(x) = O(nk) time reducing the crossing sequence, O(x) =
O(nk) time growing the funnel, and finally O(x) = O(nk) extracting the shortest path from the
final funnel.

Theorem: Given a polygonal path 7 in a simple polygon X without holes, we can compute the
shortest path in X homotopic to 7 in O(nlogn + nk) time.

5.6 Polygons with Holes

Now let’s consider the more general case where X has one or more holes. Perhaps surprisingly,
the previous algorithm needs no modifications whatsoever to compute the shortest path homotopic
to 7 in O(nlogn + nk) time.

* Triangulate X in O(nlogn) time using the algorithm described in the first lecture. First build
a trapezoidal decomposition using a sweep-line algorithm (such as Bentley-Ottmann).
Then insert diagonals inside every boring trapezoid in O(n) time, partitioning X into
monotone mountains. Finally, triangulate these monotone mountains in O(n) total time.

* Compute the crossing sequence of 7 with respect to this triangulation in O(n + k + x) time,
where x is the number of crossings. Locate the triangle containing s in O(n) time by brute
force, then repeatedly find the next crossing (if any) along the current edge in O(1) time.

* Reduce the resulting crossing sequence in O(x) time using the left-greedy reduction
algorithm.

* Extend the funnel through the sleeve of the reduced crossing sequence in O(x) = O(nk)
time using the standard funnel algorithm.

* Finally, extract the shortest homotopic path from the final funnel in O(1) time per edge.

Theorem: Given a polygonal path 1 in a simple polygon X with holes, we can compute the shortest
path in X homotopic to © in O(nlogn + nk) time.

Same algorithm, same running time, same everything. This strikes many people as counterintu-
itive. After all, the sleeve can runs through the same triangle multiple times, and the funnel can
self-intersect; why doesn’t this cause any problems?

One way to answer this question is that the algorithm doesn’t look for self-intersections, so it’s
behavior can’t be affected by them. Or said differently: the algorithm only makes local decisions,
but self-intersection is a global property. Every branch in our algorithm is based on either a
comparison between two x-coordinates or an orientation test on some triple of points. As far as
the algorithm is concerned, every time the funnel enters a triangle, it is entering that triangle
for the very first time, or equivalently, it is entering a new copy of that triangle. So the sleeve of
the reduced crossing sequence, while not being geometrically a triangulated simple polygon, is
still topologically a triangulated simple polygon: a collection of triangles glued together along

common edges into a topological disk.

Figure 8: The sleeve of a reduced path in a polygon with holes

There is a reasonable analogy here with classical graph traversal algorithms: depth-first search,
breadth-first search, and their more complex descendants. All of these algorithms maintain a set
of vertices; at each iteration, each algorithm pulls one vertex v out of this set, marks that vertex,
and then puts the unmarked neighbors of v into the set. Without the marking logic, unless the
input graph is a tree, these algorithms will visit at least one vertex infinitely many times, each
time treating it as a brand-new vertex.

In fact, even the original shortest-path algorithm does not actually require the environment
X to be a simple polygon. We only require that (1) X is assembled from any set of Euclidean
triangles by identifying disjoint pairs of equal-length edges, (2) all triangle vertices are on
the boundary of X, and (3) the dual graph of the triangulation is a tree (equivalently, X is
homeomorphic to a disk in the plane). More generally, the shortest-homotopic-path algorithm
applies to any triangulated space satisfying conditions (1) and (2); these spaces can reasonably
be called boundary-triangulated flat surfaces. For example, without modification, our algorithm
can compute shortest homotopic paths on a triangulated Mobius band.

JAVAVAVAVAN

Figure 9: A flat Mobius band assembled from nine Euclidean triangles

5.7 The Universal Cover

Another explanation that may be more familiar to topologists is that our algorithm is effectively
exploring the universal cover of the input polygon. Informally, the universal covering space of X
is the infinite topological space constructed by a breadth-first search of X without memory.

We can define the universal cover more constructively in terms of a triangulation of X as follows.
Fix a starting point s. For every reduced crossing sequence w of a path starting at s, let A,
denote an independent copy of the triangle containing the final point in that path. For example,
A, is a copy of the triangle containing s. Two triangles A, and A, are neighbors if x = wd for
some diagonal d; glue every such pair together along their copies of d. For example, if w = ABCB
and x = ABCBD, then we would identify the copies of edge D in A,, and A . We call each triangle
A, alift of the corresponding triangle in the triangulation of X, and we call the original triangle
a projection of A,,.

Figure!

Similarly, the universal cover of the dual graph, which is also the dual graph of the universal
cover, has a vertex for every possible reduced crossing sequence (of a path starting at s), and
an edge between two reduced crossing sequences if they differ by exactly one crossing. Unless
the input polygon X has no holes, the universal cover of the dual graph is an infinite tree. The
crossing sequence describes a walk from some vertex § to another vertex f in this infinite tree;
removing all spurs computes the unique path in that tree between § and .

Figure!

5.8 Formal Definitions

Here are formal definitions for reference. A covering map is a continuous surjective function
p: X — X, such that every point x € X has an open neighborhood U whose preimage p~(U) is
the disjoint union of open sets |_|i€[U;, such that the restriction of the function p to each open
set U; is a homeomorphism to U. The open sets U; are sometimes called sheets over U. If there
is a covering space from one space X to another space X, we call X a covering space of X. By
convention, we require covering spaces to be connected.

A space is simply connected if every closed curve in that space is contractible. Up to homeomor-
phism, every (connected) space has a unique simply-connected covering space, which is called
its universal covering space.

The universal covering space can also be defined as the set of all homotopy classes of paths from

some fixed basepoint s € X:

X = {[7‘5] \ m:[0,1] = X and n(O)zs}

The covering map p: X — X maps each homotopy class [71] of paths to their common final
endpoint 7(1). Similarly, in our construction by gluing triangles, the covering map sends each
triangle A,, to the corresponding triangle in the triangulation of X.

Concrete examples?

5.9

...and the Aptly Named Yadda Yadda

Technicalities for point obstacles

Bundling homotopic subpaths
Minimum-link (homotopic) paths

Thick non-crossing paths

Shortest non-crossing walks / wire routing

5.10 References

1.

Bernard Chazelle. A theorem on polygon cutting with applications. Proc. 23rd Ann. IEEE
Symp. Found. Comput. Sci., 339-349, 1982. The funnel algorithm.

. Shaodi Gao, Mark Jerrum, Michael Kaufmann, Kurt Mehlhorn, and Wolfgang Riilling.

On continuous homotopic one layer routing. Proc. 4th Ann. Symp. Comput. Geom., 15
392-402, 1988.

. John Hershberger and Jack Snoeyink. Computing minimum length paths of a given

homotopy class. Comput. Geom. Theory Appl. 4:63-98, 1994.

Der-Tsai Lee and Franco P Preparata. Euclidean shortest paths in the presence of rectilinear
barriers. Networks 14:393-410, 1984. The funnel algorithm.

. Charles E. Leiserson and E Miller Maley. Algorithms for routing and testing routability

of planar VLSI layouts. Proc. 17th Ann. ACM Symp. Theory Comput., 69-78, 1985. The
funnel algorithm.

. Martin Tompa. An optimal solution to a wire-routing problem. J. Comput. System Sci.

23:127-150, 1981. The funnel algorithm.

https://doi.org/10.1109/SFCS.1982.58
https://doi.org/10.1145/73393.73433
https://doi.org/10.1016/0925-7721(94)90010-8
https://doi.org/10.1016/0925-7721(94)90010-8
https://doi.org/10.1002/net.3230140304
https://doi.org/10.1002/net.3230140304
https://doi.org/10.1145/22145.22153
https://doi.org/10.1145/22145.22153
https://doi.org/10.1016/0022-0000(81)90010-6

	Shortest (Homotopic) Paths
	Shortest Paths in Simple Polygons
	Triangulations and Dual Graphs
	Crossing Sequences
	Sleeves
	Growing Funnels
	Polygons with Holes
	The Universal Cover
	Formal Definitions
	\dotsand the Aptly Named Yadda Yadda
	References

