1. Suppose you are given a set of \(n \) halfplanes that define a convex polygon \(P \) in the plane. Show that each of the following objects inside \(P \) can be found in \(O(n) \) expected time using linear programming. (“Axis-aligned” means all are edges either horizontal or vertical.)

 (a) The largest axis-aligned square inside \(P \).
 (b) The axis-aligned rectangle inside \(P \) with maximum perimeter.
 (c) Two interior-disjoint axis-aligned squares inside \(P \) with maximum total perimeter.
 (d) The largest circle inside \(P \).

2. In some applications of linear programming, we want to optimize several different objective functions for exactly the same set of constraints. Given a set \(H \) of \(n \) \(d \)-dimensional linear constraints (halfspaces in \(\mathbb{R}^d \)), we would like to preprocess \(H \) into a data structure that supports linear programming queries. Given an arbitrary objective vector \(c \in \mathbb{R}^d \), a linear programming query reports the solution to the linear program \(\max \{ c \cdot x \mid x \in \bigcap H \} \).

 (a) Describe an algorithm to answer \textbf{two}-dimensional linear-programming queries in \(O(\log n) \) time. How much space does your data structure use? How much preprocessing time do you need construct it?
 (b) Describe an algorithm \textbf{three}-dimensional linear-programming queries in \(O(\log n) \) time. How much space does your data structure use? How much preprocessing time do you need construct it?

 In both problems, assume that the feasible polyhedron \(\bigcap H \) is both non-empty and bounded, and assume as usual that the input is in general position. Don’t build your data structures or preprocessing algorithms from scratch; combine tools that we’ve already developed!

 \[\text{[Hint: Consider the standard projective duality} \ (a, b, c) \Rightarrow z = ax + by - c. \ \text{What is the dual of a linear-programming query?] } \]

3. Given points \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\) in the plane, the \textbf{linear regression problem} asks for real numbers \(a \) and \(b \) such that the line \(y = ax + b \) fits the points as closely as possible, according to some criterion. The most common fit criterion is the \textbf{\(L_2 \) error}, defined as follows:

 \[e_2(a, b) = \sum_{i=1}^{n} (y_i - ax_i - b)^2. \]

 Finding the line with minimum \(L_2 \) error is commonly known as (ordinary) \textbf{least squares regression}.

 But there are several other ways of measuring how well a line fits a set of points, \textit{some} of which can be optimized via linear programming.
(a) The \(L_1 \) error (or total absolute deviation) of the line \(y = ax + b \) is the sum of the vertical distances from the given points to the line:

\[
\varepsilon_1(a, b) = \sum_{i=1}^{n} |y_i - ax_i - b|.
\]

Describe a linear program whose solution encodes the line minimizing this error metric. (Your LP will not have fixed dimension.)

(a') Extra credit: Describe a polynomial-time algorithm to compute the line minimizing this error metric. [Hint: What does your linear program tell you about the structure of the optimal solution?]

(b) The \(L_\infty \) error (or maximum absolute deviation) of the line \(y = ax + b \) is the maximum vertical distance from any given point to the line:

\[
\varepsilon_\infty(a, b) = \max_{i=1}^{n} |y_i - ax_i - b|.
\]

Describe a linear-time algorithm to find the line minimizing this error metric.

4. Let \(S \) be a set of \(n \) line segments in the plane, each parallel to one of \(k \) different directions. Segments in \(S \) may or may not intersect. A stabbing line for \(S \) is a line that intersects every segment in \(S \). Describe an algorithm to determine whether \(S \) has a stabbing line. For full credit, your algorithm should run in \(O(kn) \) time.\(^1\) [Hint: As a warmup, consider the case where \(k = 1 \) and all segments in \(S \) are horizontal.]

\(^1\)In fact, this problem can be solved in \(O(n \log n) \) time even when \(k = n \)—that is, with no restriction on segment directions—but the algorithm is considerably more complicated.