1. Suppose you are given a set S of n line segments in the plane. Describe and analyze an algorithm to find a line that intersects as many segments in S as possible. [Hint: What is the dual of a line segment?]

2. Let L be a set of n lines in the plane in general position.
 (a) Prove that $\sum_f \text{deg}(f)^2 = O(n^2)$, where the sum is over all faces f in the arrangement of L, and $\text{deg}(f)$ denotes the number of edges of faces f.
 (b) Prove that the arrangement of L contains $\Omega(n)$ bounded triangular faces.

3. Let P be a set of moving points in the plane, each represented by a starting position and a fixed velocity vector. For any real number t, a point with starting position (a, b) and velocity (u, v) is located at $(a + tu, b + tv)$ at time t. As the points in P move through the plane, their axis-aligned bounding box continuously changes.
 (a) Describe an algorithm to compute the time t when the bounding box of the moving points has smallest perimeter.
 (b) Describe an algorithm to compute the time t when the bounding box of the moving points has smallest area.
 [Hint: Consider the one-dimensional case first. The optimal time t could be negative!]

4. In class we saw the classical funnel algorithm to compute shortest paths inside a triangulated simple polygons. How would you modify this algorithm to find shortest paths in a polygon with holes?
 (a) Describe and analyze an algorithm to compute the shortest path between two given points in the interior of a polygon with one hole. [Hint: Which way does the path go around the hole?]
 (b) Describe and analyze an algorithm to compute the shortest path between two given points in the interior of a polygon with two holes.
 (c) [Extra credit] Describe and analyze an algorithm to compute shortest paths in a polygon with h holes; analyze your algorithm as a function of both n (the total number of polygon vertices) and h (the number of holes).

In all cases, you can assume that you are given a triangulation of the input polygon. For full credit, your algorithms should run in $O(n)$ time (for any constant h).